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Example-based image inpainting (eros Leung 1999, wexier 2005

Input: Visible part of the image u|oc
Output: reconstruction of the occluded part u|p via

min Z |om(u) — pap(m)(u)”2
ulo meO

where

p(m) = argmin [|pm(u) — pa(u)||®
neQ°

is the nearest neighbour of pm(u):
patches in Images and videos:

Pm(U)




Example'based |mage |npa|nt|ng [Arias-Caselles-Facciolo 2012]

Input: Visible part of the image u|oc
Output: reconstruction of the occluded part u|o via

pm(U)
mn > w(m,n)|lpm(u) — pa(u)[? — T > H(w(m,"))

w,u
lo me O, ne O°

under the constraint >, w(m,n) =1, Vme O

where H(f) = — >, f(n)log(f(n)) is the entropy of the probability

density distribution f.



Example'based |mage |npa|nt|ng [Arias-Caselles-Facciolo 2012]

Input: Visible part of the image u|oc
Output: reconstruction of the occluded part u|p via

Pm(U)
min > w(m,n)|pm(u) — pa(W)[|* = T > H(w(m,))

w,u
lo me O, ne O°

under the constraint > . w(m,n) =1, Vme O

where H(f) = — >, f(n)log(f(n)) is the entropy of the probability

density distribution f.

Non-convex problem
Alternated minimisation of convex problems

@ w-minimization (Learn local distribution)

w(m, n) = 1?9—%||/om(u)—/on(u)||2

@ u-min: (a posteriori expectation)

Pm=El[p| pm(u)] = > w(m, n)py

n

@ Aggregation: u(m) = >, pn[n — m]



Example'based |mage |npa|nt|ng [Arias-Caselles-Facciolo 2012]

Input: Visible part of the image u|oc
Output: reconstruction of the occluded part u|p via

Pm(U)
min > w(m,n)|lpm(u) — pa(u)|I® = T > _ H(w(m,-))
W,U|OmEO, ne Q¢ m
under the constraint > . w(m,n) =1, Vme O
where H(f) = — >, f(n)log(f(n)) is the entropy of the probability u
density distribution f.
Non-convex problem
Alternated minimisation of convex problems Cha”enges
@ w-minimization (Learn local distribution) @ Computation of w truncated and
1 approximated by Patch Match [Barnes
w(m, n) = L o= TllPm(w)—pn(u)|I? 2009] Other alternatives? non-structured
74 data?
@ u-min: (a posteriori expectation) @ Non-convexity: Multi-scale
o _ @ Patch similarity: ¢2 is ambiguous for fine
=E u)l = w(m,n
Pm=E[p | pm(u)] = > w(m,n)pn e

n

@ Aggregation: u(m) = >, pn[n — m]









Example-based vs. model-based image inpainting

Example based

@ w-minimization (Learn local
distribution)

w(m, n) — %e—%||pm(u)—pn(u)||2

@ wu-min: (a posteriori expectation)

Pm=El[p | pm(u)] = > _ w(m,n)pn

n

@ Aggregation: u(m) = >, pn[n — m]

y

Model based

@ w-minimization (Learn local model)
w(m,-) ~ N(um, Xm) that fits

{pn(u) : llpm(u) — pa(u)|I* < T}
@ u-minimization: estimate pn, by:
EAP (blurry), or...
MAP, or...

Random synthesis near
pm(u) based on N(um, Xm)

@ Aggregation: u(m) = >, pn[n — m|

@ fast algorithms on unstructured data
(CovTree)

@ synthesize vs. copy




Model-based image inpainting [Raad-Desolneux-Morel 2014]

original

Synthesized (example-based) Synthesized (model-based)



Non-Local Means denoising [Buades-Coll-Morel 2005]

Input: Noisy image i1 = u + nwhere n ~ N(0, 0 Id).
Output: Estimated clean image u via

max 3 w(m. )l pn(u) = pr(@) = T 3 H(w

under the constraint ), w(m,n) =1, Vme O

Example based

@ w-minimization (Learn local distribution)

1 lemw=—pn(@)3=T
w(m,n) = b T

@ u-minimization: (a posteriori expectation)

bm — Z W(m7 n)pn

n

@ Aggregation: u(m) = >, pa[n— m]




Non-Local Bayes denoising [Lebrun-Buades-Morel 2013]

Input: Noisy image i1 = u + nwhere n ~ N(0, 0 Id).
Output: Estimated clean image u via

zbs Pripm(u) | pn(0), N(pm, m)]
s.t. N(um, Zm) fits {pn(u) : [|pn(U) — pm(u)|| < 4}

Model based
@ w-minimization (Learn Local Gaussian Model)
1 pm(u)— pn(u)n2 .
Ze o? pn(U)
_lem@=—pn@12 o,
— E D e o2 pn(0)pn(t)’ — o“Id
n

@ u-minimization: (MAP)
Pm = arg min —IIq Pm(D)1Z + (9 — ) " Zi' (9 — 12)

@ Aggregation: U(m) = >, pn[n — m]




Piecewise Linear Estimators [Yu-Mallat-Sapiro 2012]

Input: Perturbed image Ui = Au + nwhere n ~ N(0, o?Id).
Output: Restored image U via

U(”rg:e}()((m) Pr [pm(u) | pa(@), N(um), Zx(m))]

with k =1,...,20
s.t. N(uk(m), Tw(m)) fits {pn(u) = k(m) = k(n)}

Model based
@ Iinitialization: &°, (p?, X), k(m)

@ Relearn Gaussian Models (u}, X}) to fit {pm(u) : k(m) = k}
@ Signal estimation (pm) and model selection (k(m))

(Pm, k(m)) = arquax Priq | pm(t), N(pk, Zk)]

@ Aggregation: o'(m) = 3", pa[n — m]




Learning-based restoration [Zoran-Weiss 2011]

Offline learning

Input: a huge database of natural image patches p; € P.
Output: Gaussian Mixture Model {N(ux, Xx) : k =1,...,250} fitting the data
(several days worth of computation)

Restoration

Input: Perturbed image Ui = Au + nwhere n ~ N(0, 02 Id).
Gaussian Mixture Model {N(ux,>x) : k=1,...,250}
(representing the manifold of natural image patches)

Output: Restored image U via

u(rm%m) Pr [Pm(U) ‘ pn(U), N(Nk(m)a Zk(m))]




Covariance Tree [Guillemot-Almansa-Boubekeur 2014]

Learning D, € P

Input: a huge database of data points p; € P.
Output: pre-computed Local Gaussian Models q
at several scales and locations

v

N(l*l’qa ZCI)
Query

Input: a query point g and a scale o
Output: accurate approximation of N(uq, Zq)
fitting PlB(q,a)

Bayesian Restoration J

15



Covariance Trees [Guillemot-Almansa-Boubekeur 2014]



Learning-based denoising

Bruité NLB CovTree NLB CovTree + Dictionnary
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Covariance Trees [Guillemot-Almansa-Boubekeur 2014]

Challenges
@ Time-dependent data
@ Non-gaussian noise
@ Incomplete patches
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High Dynamic Range Imaging (HDR)

Capture a scene containing a large range of intensity levels...




High Dynamic Range Imaging (HDR)

.. using a standard digital camera.




High Dynamic Range Imaging (HDR)

. using a standard digital camera.

S

Limited dynamic range of the camera — loss of details in bright and/or
dark areas.



HDR imaging - Multi-image approach

Irradiance

Map

(number of photons
reaching each

pixel per unit time)



Challenges of Multi-image HDR Imaging

moving
objects

noise
camera

motion



Challenges of Multi-image HDR Imaging

Input frames: camera + object motion

Result: ghosting artifacts




Alternative: Single-image HDR

Spatially Varying pixel Exposures (SVE)
[Nayar and Mitsunaga, 2000]




Alternative: Single-image HDR

1 image = N exposures

"



SVE Single-image HDR

v
v
v
v

No need for image alignment.
No need for motion detection.
No ghosting problems.

No large saturated regions to fill.

Unknown pixels to be restored (over and under exposed pixels).
Noise.

Need to modify the standard camera.

o Alternative without camera modification [Hirakawa and Simon,
2011].



SVE: Regular or Random?

Random pattern to avoid aliasing [Schoberl et al., 2012]




Single-image HDR - Problem to solve




Single-image HDR - Problem to solve




Single-image HDR - Problem to solve



Single-image HDR - Problem to solve



Single-image HDR - Problem to solve



Our approach

Extension of Piecewise Linear Estimators (PLE) [Yu et al., 2012]




Our approach

Extension of Piecewise Linear Estimators (PLE) [Yu et al., 2012]
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Our approach

Extension of Piecewise Linear Estimators (PLE) [Yu et al., 2012]

%Patch-based method



Our approach

Extension of Piecewise Linear Estimators (PLE) [Yu et al., 2012]

%Patch—based method

Gaussian priorto  (u.»)

restore missing %

information



Our approach

Extension of Piecewise Linear Estimators (PLE) [Yu et al., 2012]

%Patch—based method %
Gaussian prior to u ¥) %

restore missing
information % Iﬁ



PLE Patch Model

Observed patch

y



PLE Patch Model

Patch we seek
Observed patch to estimate

y U f

Gaussian prior

for patches l




PLE Patch Model

Patch we seek

Observed patch to estimate
= X +
Known Gaussian prior

degradation  for patches
operator




PLE Patch Model

Gaussian noise
Patch we seek constant variance

Observed patch to estimate N(O, Ozfd)
= X +
Known Gaussian prior

degradation  for patches
operator




Patch Model for Raw Data

RAW data:

y U



Patch Model for Raw Data

RAW data:

Masking due to
saturation

y U



Patch Model for Raw Data

RAW data:

Masking due to
saturation

y U

Gaussian noise
variable variance
dependent on f




Patch Model for Raw Data

RAW data:

%3 Readout Quantization
Wy
s

photogenerated

electrons

Ta gain
o SVE optical gain

a photo-response non-uniformity factor
pry 0% readout noise mean and variance

Vrcart
4 —_ { —_ Raw pixel
'.’ Vout - valuey]'

Gaussian noise
variable variance
dependent on f

Main noise sources:

v’ Shot noise
v Readout noise

_ g20a'rf ‘-|-O'?%
(g%0aT)?

o*(f)




Patch Model for Raw Data

Observed patch

y U f n

+

Il
X

N(/%UZUT + En(f)) N(Na E) N(O, Zn(f))

Gaussian prior
for patches




Patch Reconstruction

y U f n

N(p, USUT + 5,(f)) N, %) N(0,3,(f))

Minimize mean | L . 2
squared error W= argwl;nlnE[(Wy — )]



Patch Reconstruction

y U f n

N (i, USUT + 5, (f)) N (i, %) N(0,E,(F))

Minimize mean | L . 2
squared error W= argwl;nlnE[(Wy — )]

Wiener filter: W =2 UT(USUT + 3,(f)) 1



Patch Reconstruction

y U f n

= X +

N, USUT + 5, (f)) N, %) N(0,E4(F))

Minimize mean |, . . 2
squared error W= argmr/nlnE[(Wy — )]

Wiener filter: W =S UT(UZUT 4+ 2, ()}

Patch reconstruction: f = W(y — UM) + 1




Patch Reconstruction

y U f n

N, USUT + 5, (f)) N, %) N(0,E4(F))

Minimize mean |, . . 2
squared error W= argur/nlnE[(Wy — )]

Wiener filter: W =S UT(UZUT 4+ 2, ()}

Patch reconstruction: f = W(y — UM) + 1

How to set Gaussian prior ;1 and 27



Gau

ssian models for image patches



Gau

ssian models for image patches



Gaussian models for image patches

b ©

K classes




Gaussian models for image patches

(1, 3)




Class parameters estimation

For each class:

k=1,....K
_— 1
2% |Ck:|
~ 1
Y =




How to choose the best class?

~

k = arg max (posterior probability p(f|y, ux, X))
k



Summary: iterative procedure

Estimation Step:

1. Patches assigned
to classes

Q% 2. Patches restored with
@ % chosen class (f1, 2.)
&

f=W(y—Uu) + 1

Class Update Step:

i, = |Ck| Zf

1€Cl,
2 to 3 iterations

- 1 R .
Y = Z (fi — i) (fi — ,[Lk)T Applied in sub-regions of
|Ck| ieCl size 128 x 128



Initialization

K classes to set



Initialization

K classes to set

(K-1) classes

edges with
different
orientations




Initialization

K classes to set ‘= 20

(K - 1) classes patch size = 8x8
edges with

different
orientations

=10

) = L T~ NP~ T
2 = iy 2 B )= )

i€C

DCT

for isotropic
patterns




Results synthetic data




Results synthetic data




Improvement: Patch-based Bayesian restoration method
(on-going work)

o Inspired from:

Piecewise Linear Estimators (PLE) [Yu et al., 2012] High
performance in interpolation of missing pixels.
Non Local Bayes (NLB) [Lebrun et al.,2013] State-of-the-art

denoising method.

o General restoration method.



Patch Reconstruction

y U f n

= X +

NGLUSUT+5,0)  N(1,) N0, Za(F))

Patch reconstruction: | f = Wy —Up) + i

Wiener filter: W =X UL (USUT 4 2, (f)) !



Patch Reconstruction

y U f n

= X +

NGLUSUT+5,0)  N(1,) N0, Za(F))

Patch reconstruction: | f = Wy —Up) + i

Wiener filter: W =2 UT(USUT + 2,(f)) !

How to set Gaussian prior ;1 and 27



How to set Gaussian prior parameters ;4 and .7

Inspired by NLB denoising power:
e Estimate Gaussian parameters ('u, E) locally from similar patches.

<>

M similar patches

e Classical MLE formulas:

1 M
37 2 (== )"

=1 7,:1

I
Sk
Mz



How to set Gaussian prior parameters ;4 and .7

Inspired by NLB denoising power:
e Estimate Gaussian parameters (H> E) locally from similar patches.

<—>

M similar patches

e Classical MLE formulas:

< 1
~ fz S = N — T
z }g 3 - i) (f; — fi)

7 =1

M
|

MLE cannot be used due to missing pixels!



How to set Gaussian prior parameters ;4 and .7

Inspired by NLB denoising power:
e Estimate Gaussian parameters (M» E) locally from similar patches.

<>

M similar patches

e Classical MLE formulas:

M~ 1
P - (= )"
=1 P

~1

M
I

MLE cannot be used due to missing pixels!

Proposed solution: Maximum a posteriori (MAP) with a prior on (,u, E)




MAP to compute Gaussian parameters ;1 and X

® Hyperprior on (¢, ) : Normal - Wishart distribution

* MAP:

(1, %) = arg rgaXp(u,Elyl, M)
1,

M
argmaxx [ [ A (Upt, %)y, N (ulito, /) W(S] (v550) ", ¥)

mE 5 ) — y
| g | o
M similar patches Hyperprior on model
parameters

—> Inclusion of hyperprior information compensates for missing pixels.



Iterative approach

Model parameters estimation Step:

M similar

patches ~Al .
=2 (1, %)
Hyperprlor*

on (11, %

Restoration Step:

f=W(y—Up)+p
W = EUT(UZ UT 4+ En(f))_l 3 to 4 iterations



Initialization

From PLE [Yu et al., 20121:

) i DCT
K predefined models : (K1) edges with . ,
P different orientations ' for isotropic
patterns

(1, %)




Results HDR - Synthetic data



Results HDR - Synthetic data

Ground-truth  HPNLB PLEV Schoberl  Nayar-Mitsun

PSNR: 33.1dB 29.7dB 30.4dB 29.4dB



Results HDR - Synthetic data

Ground-truth  HPNLB PLEV Schoberl  Nayar-Mitsun

PSNR: 35.1dB 34.0dB 30.0dB 28.5dB



Results on other applications

70% missing pixels + additive Gaussian noise variance 5%



Results on other applications

Ground-truth HPNLB




Conclusions
@ Exemplar-based patch regularization: early self-similarity model
@ GMM, PLE: Extension to more inverse problems
@ Local Gaussian Models: finer details, continuous classification

Challenges ahead for local Gaussian models

@ Invert non-diagonal operators

@ Robust neighbors in ill-posed problems

@ Formal framework needed

@ More flexible learning/indexing over large databases




Thanks. Questions?



