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Chapter 1

Introduction

1.1 Modern push-broom satellites

1.1.1 SPOT5 and PLEIADES satellites

Push-broom acquisition is a specificity of moving instruments with trajectory close to a rigid
translation, such as image scanners for documents digitalization and duplication. This is also the
case of several satellites, we describe below two families of push-broom satellites designed at CNES
which part of our work is applied to.

SPOT5 is the fifth satellite of the SPOT series, it was launched in May 2002 by Ariane 4 from
Kourou. Its major applications are agriculture, 2D and 3D mapping, forest observation, natural
disasters evaluation, telecommunications. Its altitude is approximately 822 km and its trajectory
is nearly circular. Its agility enables a full coverage of the Earth’s surface within 26 days but most
areas, except at the equator, can be observed more frequently (up to five days for France latitude).

Figure 1.1: SPOT5 (left) and PLEIADES (right) 3D view.

The satellite includes two HRG instruments (High Resolution Graphic), one HRS (High Resolu-
tion Stereoscopic) and one VEGETATION intrument (figure 1.2). They have different capabilities
in terms of resolution, angle of observation, wavelengths and agility. The VEGETATION instru-
ment is still, has a wide angle and covers a very large swath but has a low resolution (1 km). The
HRS instrument is made of two panchromatic sensors with a resolution of 10 meters, they are fixed
and the angle between them is 40◦ in the trajectory direction which allows the acquisition of two
views from the same scene with a large tilt. The HRG instrument is made of two identical parts
which consist in multi-spectral sensors with 10 meters resolution and a panchromatic sensor with
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6 CHAPTER 1. INTRODUCTION

a 5 meters resolution (at nadir) with agility in the roll angular direction. When the two parts
image the same region of the Earth it is possible to obtain a 2.5 meters resolution image (called
Supermode).

Figure 1.2: SPOT5 instruments (from left to right) : VEGETATION, HRS and HRG.

PLEIADES is the name of two identical satellites, the first one was launched at the end of year
2011 by Soyouz in Kourou, with improved agility and resolution compared to the SPOT series. It
is the optical part of the ORFEO program a cooperation between France and Italy and its main
applications will be defence, cartography (2D and 3D), geology, geophysics, hydrology, agriculture,
forestry and coastal observation. With a 694 km altitude circular trajectory and improved agility,
any region of the Earth can be imaged within 24 hours and stereoscopic or tri-stereoscopic will be
available with low tilts between the different views. All these possibilities are displayed in figure
1.3.

Figure 1.3: PLEIADES capabilities (from left to right) : adjacent regions, disjoint regions, tri-stereoscopic acqui-
sition.

1.1.2 Acquisition and irregularity in the data

From the moment light is emitted by an object to the digital image received from the satellite the
signal undergoes many geometrical and numerical transformations as represented in figure 1.4.
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Figure 1.4: Classical modelization of the optical chain in a satellite instrument : the input image is the projection
in the focal plane of the light intensity of the scene, it is affected by the diffraction phenomenon as well as other
optical abberations, then integrated and sampled by the detector matrix. Depending on the photon’s arrival it
can also suffer from different kinds of noise. The energy received by each sensor during the integration is counted,
quantized and compressed before transmission.

The push-broom acquisition geometry is slightly different from the classical pin-hole camera
model because of the sensors shape and the trajectory of the optical center during acquisition.
Furthermore the angular state of the instrument may not be exactly the same during the imaging of
a scene, some angular perturbations due to internal mechanisms may occur called microvibrations.
As a consequence, the sampling of push-broom images is not exactly a regular square or rectangular
grid, in this report we consider the simplified model of an irregular sampling as described in figure

1.5, with the assumption of a small angle γ and no rotation along the
−→
X axis (no roll, only pitch).
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Figure 1.5: Sampling of a push-broom device at nadir with a small pitch γ(t) varying along the trajectory (left)
and sampling grid (right). Here the perturbation is assumed horizontal and depends only on the abscissa.

In the SPOT5 or PLEIADES cases, the influence of atmosphere reduces to a simple attenuation
and we use the following model image formation model :

I(k, l) = (hopt ∗ hsens ∗ hmov ∗ u) (xk,l, yk,l) + νk,l (1.1)

I is the raster data image, hopt is the aperture diffraction and optical blurring PSF (Point Spread
Function), hsens is the PSF of a sensor element (generally a square), hmov is the PSF due to the
satellite movement, u is the input illumination, Λ = {(xk,l, yk,l)} is the sampling set and νk,l the
realization of i-i-d random variables.

The sampling set Λ is generally a small perturbation of the regular grid Λreg = {k(V δt), lδy}
where V is the satellite tangential speed, δt the time interval between two integrations, and δy the
spacing between the sensor elements. We consider in this report two forms of sampling sets Λ, in
a first part this set has the form described in figure 1.5 and in a second part it is more general, the
perturbations can be two-dimensional and depend on x and y.
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1.2 Static interferometry

Interferometry is the study of signals resulting from an interference phenomenon described in
chapter 5. It is used in spectrum reconstruction using a collection of interference measurement
also called interferogram whose values are known at regularly spaced locations or on a periodic
grid (see figure 1.6 below).

The bandlimitedness of signals is the key point in the design of these sampling sets. In the
case of simultaneous acquisitions (static interferometry) the instrument contains stepped mirrors
responsible for the optical path differences which form the sampling set. The design of these stepped
mirrors has a limited accuracy, this produces irregularities in the sampling grid and reconstruction
methods differ from the classical periodic case (figure 1.7).

Figure 1.6: In the ideal case the interferogram is sampled on a periodic set, either the regular even sampling (blue)
or the interlaced sampling (red) which consists in a series of doublets with intra-doublet spacing ε and inter-doublet
spacing dx� ε.

Incoming light

Ideal mirror steps

Reflection

Actual mirror’s shape

Figure 1.7: Stepped mirror from a static interferometry instrument. Limited accuracy in the steps (red) is
responsible for irregular sampling in the interferogram (figure 1.8 below)
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Figure 1.8: The shape of the mirrors steps (figure 1.7) leads to a perturbed sampling of the interferogram. The
standard deviation of the perturbation here is typically a tenth of the step size. The resulting optical path differences
are spaced by twice the step size and the perturbation is also twice the perturbation on the steps position.

1.3 Other examples

The case of images fusion from the same scene but with different angles/positions of the acquisition
device is also an irregular sampling problem called super-resolution. Figure 1.9 illustrates the
form of the sampling set when a camera has a rigid motion (translation/rotation) between two
consecutive images (See Nguyen et al. [71], Vandewalle et al. [91], Rochefort et al. [75] for more
details on super-resolution).
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Figure 1.9: Translation and rotation between two sampling grids in the super-resolution problem.

In the two particular cases of figure 1.9 the sampling set is the union of two sets Λ = Λ1 ∪ Λ2
and tools such as Fourier transform and wavelet transform can be used for these rigid motions,
but in the more general case of a non-rigid motion and/or a change in the resolution more general
modellings are necessary.

The sampling problem also occurs in some more exotic acquisition devices, for example cameras
using fish-eye lenses or spherical/conical mirrors have a much larger angle of view (close to 180◦).
The transformation of these omni-directional images into classical geometry images is an irregular
sampling problem, although these images are generally exploited in their native spherical geometry
[11].

Some geophysical measurements also belong to the irregular sampling field because of the
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difficulty in placing sensors at regularly spaced locations (seismic data) or the trajectory of the
remote sensing instrument (atmospherical/astronomical data).

In fact irregular sampling is present in nearly every signal measurements if one consider the
exact spatial or temporal location of the samples with infinite accuracy. Fortunately the classical
mathematical tools are generally sufficient for a very good approximation of the acquisition process
as it is the case for most images. Nevertheless it is sometimes necessary to consider more gen-
eral mathematical tools to efficiently modelize the sampling process, this thesis illustrates several
examples from this case.



1.4. OVERVIEW AND CONTRIBUTIONS OF THE THESIS 11

1.4 Overview and contributions of the thesis

This thesis report is divided in three parts, the first two parts address problems from the satellite
acquisition field, we first treat the problem of estimation of microvibrations during a satellite flight
by exploiting a couple of images from the same scene, and then consider the correction of these
images when the sampling grid is slightly irregular as it is the case with push-broom devices. The
third part concerns an application to interferometry in which an instrument contains stepped mir-
rors with irregularities in the steps responsible for the irregular sampling of the interferogram.

The microvibrations estimation from a couple of stereo-rectified images is an ill-posed prob-
lem for which only manual estimation exists [78]. The problem was brought to our attention by
B. Rougé1 and the resolution we present here was the opportunity for a fruitful collaboration with
L. Moisan2 and CNES members J. Michel, G. Blanchet. The final step of this collaboration was
the delivery of a software package for microvibrations correction. We proposed a modelling of the
disparity measurements which takes into account the microvibrations in each image and a detec-
tion/correction method based on Basis Pursuit [65]. The algorithms we developed solve variational
methods with non-quadratic functions (l1 norm and l0 criterion) using tools from convex analysis
[30] [8] and nonconvex theory [13]. All these algorithms apply to lacunary disparity measurements
as it happens to be the case with many elevation estimation softwares and no manual selection
is required. We obtain experimental results showing the benefits of these non-quadratic functions
in a very ill-posed problem. When the correlation between the elevation and the microvibrations
is too important, these methods partially fail to separate the two components, this is why we
propose an improvement based on the piecewise affine behaviour of urban elevation models. This
more complicated variational problem can still be handled efficiently with similar tools from convex
theory and we obtain a separation of the elevation component and the microvibration component
for a class of well segmented data.

The second part concerns the correction of images where the sampling set is slightly irregular
as it is the case in the presence of microvibrations. We adopt a functional setting different from
previous works of Almansa et al. [4] [46] and show that the spline functions can actually solve this
problem with a much lower numerical complexity. We first present some results we obtained with a
quadratic regularization on the second order derivatives in the simple resampling case (no deblur-
ring) inspired by works of Arigovindan et al. [5] as an introduction to spline variational methods,
part of this work also lead to the delivery of a software package to CNES. Our contribution here
is the adaptation of the spline method to the deblurring problem with a fully automatic algorithm
using global constraints and Total Variation. We use an approximation of the convolution kernel
which is known only in the Fourier domain and solve this problem with a Forward-Backward type
algorithm where the convolution is decoupled from the inner proximal loop. The overall algorithm
has performances similar to the state-of-the art methods but the computation time is reduced by
a factor 10 and up to a factor 20 with low noise levels.

Last part of this thesis is devoted to the study of the general irregular sampling of bandpass
signals applied to the static interferometry instrument SIFTI [16] [20] [51] [74]. This work is a
collaboration with CNES members D. Jouglet and C. Pierrangelo together with S. Ladjal3 who
brought to our attention a certain number of numerical and theoretical questions about the re-
construction of light spectra from irregularly sampled interferograms. After a description of the

1CESBIO, CNES Toulouse
2University Paris Descartes
3Telecom ParisTech
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instrument and its specifications, we study the state-of-the-art algorithms and propose a gener-
alization of these methods with correction of some numerical approximations. This more general
approach is based on nonharmonic Fourier series, thanks to this approach we can give the exact
expression of the result for different reconstruction families and justify the differences observed in
the state-of-the-art methods. We then study the stability of the reconstruction operator in terms
of conditioning when the sampling set is perturbed by random i.-i.-d. Gaussian variables. W show
several theorems on the allowed maximal perturbation in bandpass spaces when the sampling set
is infinite, although our experiments with finitely many samples tend to show that random per-
turbations with amplitudes larger than the theoretical bound still allow correct reconstruction.
At last we study in details the interlaced sampling and its stability properties compared to regu-
lar sampling and show experimentally that this sampling is indeed more stable thanks to a well
conditioned operator whose singular values are almost always bounded by below.



Chapter 2

Mathematics

This chapter concerns the mathematical tools used in this thesis, they belong to two very impor-
tant fields of mathematics, namely Harmonic Analysis and Optimization. They are used in the
resolution of problems arising in satellite imaging, depth estimation and interferometry. We refer
the reader to Katznelson [55] in Harmonic Analysis, Young [95] in Nonharmonic Analysis, Mallat
[65] in Signal Processing and Wavelet theory. Concerning Optimization theory, we use mainly
results from Rockafellar [76], Bertsekas [10] and Combettes [29].

2.1 Fourier Analysis and approximation

2.1.1 The Fourier transform

Fourier transform is a very general transform which can be defined on any locally compact (topo-
logical) commutative group. In Signal Processing it is generally sufficient to know its properties
on the classical additive groups R, Z, Z/nZ, R/wZ and their higher dimension versions. We use
the Fourier transform defined on L1(Rd) by

F : f ∈ L1(Rd) → f̂ : ξ →
∫

Rd
f(x) ei 〈 x | ξ〉 dx (2.1)

but also on L2(Rd) as a limit of this integral. We remind Parseval’s and Plancherel’s formulas and
the derivation/multiplication properties.

〈 f, g〉L2(Rd) = 1
(2π)d

〈
f̂ , ĝ

〉
L2(Rd)

for all f, g ∈ L2(Rd) (2.2)

‖f‖2L2(Rd) = 1
(2π)d ‖f̂‖

2
L2(Rd) for all f ∈ L2(Rd) (2.3)

F
(
∂f

∂xk

)
= i ξk f̂ if f,

∂f

∂xk
∈ L1(Rd) (2.4)

F (xk f) = −i ∂f̂
∂ξk

if f, xk f ∈ L1(Rd) (2.5)

Fourier transform is linear, injective, continuous L2 − L2, L1 − L∞ and with our definition it
verifies

F (F(f)) = (2π)d f̌ for all f ∈ L2(Rd) (2.6)

13
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with f̌(x) : x→ f(−x). The convolution product on L1(Rd) defined by

(f ∗ g) (x) =
∫∫

Rd
f(t) g(x− t) dt (2.7)

has Fourier transform
F(f ∗ g)(·) = f̂(·) ĝ(·) (2.8)

On `2(Z) we use the following definition

F ((ck)k∈Z) (ξ) =
∑

k∈Z
ck e

i k 2π ξ (2.9)

which maps `2(Z) to L2(R/Z) (one-to-one). The inverse transform is the Fourier coefficients
application

f ∈ L2(R/Z)→ (ck)k∈Z ∈ `2(Z) with ck =
∫ 1

0
f(t) e−i k 2πt dt (2.10)

These two transforms are linked by the very usefull Poisson’s formula

Proposition 1 (Poisson’s formula) Let f ∈ L2(R) such that

|f(x)| ≤ C

(1 + |x|)α |f̂(ξ)| ≤ C

(1 + |ξ|)α for all x, ξ ∈ R (2.11)

with C > 0 and α > 1. Let δ > 0, then

∑

k∈Z
f(k δ) ei k 2π ξ = 1

δ

∑

l∈Z
f̂

(
2π
δ

(ξ + l)
)

This formula is crucial in many Signal Processing applications, in particular it provides an inter-
pretation in the Fourier domain of the possible information loss during sampling procedure. In
dimension one, the Fourier transform is periodized with step 2π

δ , in higher dimensions the shifts
depend on the dual lattice of the sampling grid.

2.1.2 Bandlimited functions

Bandlimited functions are functions in L2(R) whose Fourier transform is supported in a compact
subset of R.

Definition 1 (Bandlimited spaces) Let B ≥ 0, we define

BF (B) =
{
f ∈ L2(R) s.t. supp(f̂) ⊂ [−B,B]

}

Poisson’s formula holds a.e. if f ∈ BF (B) without the bound assumptions 2.11, as a consequence
we have the famous Shannon’s theorem.

Theorem 1 (Shannon-Whittaker-Kotel’nikov theorem) Let B > 0. For any function f in
BF (B) we have

f(·) =
∑

k∈Z
f(k π

B
) sinc(B(· − k π

B
))

‖f‖2L2(R) =
∑

k∈Z

∣∣∣f(k π
B

)
∣∣∣
2
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with sinc(x) = sin(x)
(x) if x 6= 0 and sinc(0) = 1. These equalities are linked to the notions of

orthonormal basis and tight frames in Hilbert spaces.

Definition 2 (Frame) Let H be a Hilbert space and E = (ek)k∈Z a family of vector of H. E is
called a frame if there exists 0 < A < B such that for all f ∈ H

A ‖f‖2H ≤
∑

k∈Z
| 〈 f, ek〉H |2 ≤ B ‖f‖2H

In finite dimension, any complete family is a frame but this is not the case in infinite dimension.
When A = B in the inequality above, the frame is called a tight frame, it is very similar to an
orthonormal basis but it is not necessarily independent. In fact frames that fail to be a frame by
the removal of one element are Riesz bases [95].

Definition 3 (Riesz basis) Let E = {ek}k∈Z be a family of vector in a Hilbert space H. E is
called a Riesz basis of H if there exists 0 < A < B such that

• For all N ∈ N and all finite sequence c = (ck)k=−N..N

A

N∑

k=−N
|ck|2 ≤

∥∥∥∥∥
N∑

k=0
ck ek

∥∥∥∥∥

2

≤ B
N∑

k=0
|ck|2

• The family E is complete in H
⋃

N∈N
vect

k=−N..N
〈{ek}〉 = H

Shannon’s theorem states that the family
{

sinc(B(· − k πB )
}
k∈Z is a tight frame of BF (B) and

gives its reconstruction formula. Interpolation and reconstruction in Hilbert spaces often use this
frame property, as detailed in [95].

2.1.3 Stable and interpolation sets, Frame property

Two key notions in Hilbert spaces have arisen from sampling theory in Hilbert spaces, stable
sampling sets and interpolation sampling sets which reflect the existence, uniqueness and stability
problematics of signal reconstruction.

Definition 4 (Stable sampling set) Let H be a functional Hilbert space on Rd, Λ = {zk}k∈Z ⊂
Rd is called a stable sampling set for H if there exists A > 0 such that for every function f ∈ H

∑

k∈Z
|f(zk)|2 <∞ and ‖f‖2H ≤ A

∑

k∈Z
|f(zk)|2

Definition 5 (Interpolation set) Let H be a functional Hilbert space on Rd, Λ = {zk}k∈Z ⊂ Rd
is called an interpolation set for H if

for all (ck)k∈Z ∈ `2(Z) there exists f ∈ H s.t. f(zk) = ck ∀ k ∈ Z

A famous result in approximation theory of bandlimited signals is Landau’s theorem [58] which
gives necessary conditions on the sampling density (definitions below) to have a stable sampling
set and/or of interpolation sets.
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Theorem 2 (Landau [58]) Let Λ = {zk}k∈Z ⊂ R, S ⊂ Rd a measurable set and B(S) the set of
functions in L2(Rd) with Fourier transform supported in S.

If Λ is an interpolation set of B(S) then

D+(Λ) ≤ µ(S)
(2π)d

If Λ is a stable sampling set of B(S) and S is bounded then

D−(Λ) ≥ µ(S)
(2π)d

with

D+(Λ) = lim
r→+∞

1
r
|Λ ∩B(0, r)| D+(Λ) = lim

r→+∞

1
r
|Λ ∩B(0, r)|

In fact Young [95] proved that the stable sampling property in a functional RKHS (Reproducing
Kernel Hilbert Space) is equivalent to the frame property of the family of vectors {gk}k∈Z associated
to the continuous linear forms f ∈ H :→ f(zk), that is

f(zk) = 〈 f, gk〉 for all f ∈ H and zk ∈ Λ

Indeed bandlimited spaces are RKHS spaces since for all f ∈ BF (B) one has

f(x) = 1
(2π)d

〈
f̂ , 1[−B,B]d(·) e−ix ·

〉
L2(Rd)

=
〈
f, F−1 (1[−B,B]d(·) e−ix ·

)〉
H for all x ∈ Rd

The one-dimensional case is more specific as bandlimited functions benefit from the analytical
theory (see Paley-Wiener [73]) in particular bandlimited functions on R are completely character-
ized by their growth rate on C. The C − extension of a bandlimited function f ∈ BF (B) has
expression :

f(z) =
∫ B

−B
f̂(ξ) ei z ξ dξ (2.12)

Theorem 3 (Paley-Wiener [73] p. 13) Let f be an entire function on C, it is the Fourier
transform of a function g ∈ L2(R) (formula 2.12) with support in [−B,B] if and only if f is square
integrable on the real axis and there exists C > 0 such that

|f(z)| ≤ C eB |z| for all z ∈ C

Bandlimited functions have thus an analytic extension to the whole complex space and can be
developed in Taylor series :

f(x) =
∑

l∈N
f (l)(x0) (x− x0)l

l! for all x, x0 ∈ R and f ∈ BF (B) (2.13)

2.1.4 Bandpass functions

In chapter 5 we study a particular form of bandlimited signals with Fourier support in a union of
intervals, in particular signals with Fourier support in two symmetric intervals.
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Definition 6 (Bandpass signals) Let 0 < A < B, we denote by BP (A,B) the set of functions
in L2(R) with Fourier transform supported in Ω = [−B,−A] ∪ [A,B].

BP (A,B) =
{
f ∈ L2(R) s.t. supp(f̂) ⊂ [−B,−A] ∪ [A,B]

}
⊂ BF (B)

These signals benefit from the generalized Shannon’s theorem, as more flexibility is allowed in
the frequency periodization, and a frame reconstruction formula.

Theorem 4 (Generalized Shannon’s theorem) Let 0 < A < B and dx > 0. The set Λ =
{k dx}k∈Z is a stable sampling set of BP (A,B) if and only if dx belongs to one of the intervals

Ik =
[
kπ

A
,

(k + 1)π
B

]
with 0 ≤ k ≤

⌊
A

B −A

⌋
, k ∈ N

In this case, for any f ∈ BP (A,B)

f(·) = F−1

((∑

l∈Z
f̂(ξ + l

2π
dx

)
)
1[−B,−A]∪[A,B]

)
(·)

=
∑

k∈Z
f(k dx) (B −A) dx

π
cos
(
A+B

2 (· − k dx)
)

sinc
(
B −A

2 (· − k dx)
)

(2.14)

with similar energy estimates as Shannon’s theorem because of the special interactions between
intervals [−B,−A] and [A,B] in the Fourier periodization when dx belongs to one of these intervals.

2.1.5 Approximation of bandlimited functions with polynomials

2.1.5.1 Trigonometric polynomials, Toeplitz operators, convergence

Trigonometric polynomials are closely related to the Fourier transform on the torus R/Z and
discrete Fourier transform on Z/nZ. A trigonometric polynomial with degree d and period 1 is a
function P : R→ C of the form

P (t) =
d∑

k=−d
pk e

i k 2π t t ∈ R (2.15)

with (pk)−d≤k≤d its coefficients. The family {ei k 2π ·}k∈Z is an orthonormal basis of L2(R/Z) (also
denoted by L2([0, 1[)) and for every function in this space we have the Parseval and Plancherel
formulas :

〈 f, g〉 =
∫ 1

0
f(t) g(t) dt =

∑

k∈Z
fk gk

‖f‖2 =
∫ 1

0
|f(t)|2 dt =

∑

k∈Z
|fk|2

and convolution identity :

(f ∗ g)(·) =
∫ 1

0
f(t) g(· − t) dt

ck(f ∗ g) = fk gk (2.16)
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with (fk)k∈Z, (gk)k∈Z the Fourier coefficients of f and g and ck(·) the Fourier coefficient application
from (2.10).

Thanks to the finiteness of their Fourier coefficients, trigonometric polynomials benefit from
the discrete Fourier transform on Z/nZ and its fast implementation.

(pk)−d≤k≤d = F(P ) = 1
2d+ 1

∑

−d≤l≤d
f

(
l

2d+ 1

)
ei k 2π l

2d+1

Convolution on the space Bd of 1-periodic trigonometric polynomials with degree at most d admits
a neutral element called the Dirichlet kernel with formula

Dd(t) = 1
2d+ 1

∑

−d≤k≤d
ei k 2π t

= sin((2d+ 1)π t)
(2d+ 1) sin(π t)

and for all P in Bd we have P (·) =
∑2d
k=0 P ( k

2d+1 )Dd(· − k
2d+1 ).

Sampling problems in the space Bd would not be accessible without the nice following property.

Proposition 2 (Groechenig et al. [48]) Let Λ = {tk}k=1..N ⊂ [0, 1[ and P ∈ Bd, the vector
(P (tk)k=1..2d+1 rewrites as a linear combination of the polynomial coefficients

(P (tk)k=1..2d+1 = SΛ (pl)

where SΛ has Vandermonde structure. Furthermore the product S∗Λ SΛ has Toeplitz structure

(S∗Λ SΛ)j,l =
∑

k=1..N
e−i (j−l) 2π xk

This allows fast matrix-vector computation and is completed in works from Groechenig et al. [48]
by a preconditioning.

Proposition 3 (Preconditioned frame operator) Let Λ = {tk}k=1..N ⊂ [0, 1[ be a non-decreasing

sequence with maximal gap 0 < δ = max
1≤k≤N

{|tk+1 − tk|} < 1
2d . Then

(1− 2δM)2 ‖p‖22 ≤
N∑

k=1
|P (tk)|2 tk+1 − tk−1

2 ≤ (1 + 2δM)2 ‖p‖22

for all P ∈ Bd. (with convention t0 = tN − 1 and tN+1 = t1 + 1)

A two-dimensional version of this preconditioning is used in [46] using Voronoi areas.
Trigonometric polynomials are often used to approximate bandlimited functions, indeed the

least-squares approximation by trigonometric polynomials with equal period and number of coef-
ficients (denoted BM (2M + 1)) converges uniformly on every compact set.

Theorem 5 (Convergence theorem) Let Λ = {tk}k∈Z be a non-decreasing sequence such that
sup
k∈Z
|tk+1 − tk| = δ < 1 and f ∈ BF (π). Let PM denote the unique solution of the least-squares

problem

min
PM∈BM (2M+1)

∑

|tk|<M+ 1
2

|PM (tk)− f(tk)|2 tk+1 − tk
2
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Then

lim
M→+∞

∫ M+ 1
2

−M− 1
2

|f (l)(t)− P (l)
M (t)| dt = 0

for all derivative order l ∈ N.

2.1.5.2 Splines, interpolating splines and convergence theorem

Splines are piecewise polynomial functions often used in approximation. Given a nondecreasing
sequence (tk)1≤k≤N of points called knots, they have a polynomial expression on each segment
[tk, tk+1] with degree d and d−1 global regularity. B-splines are compactly supported splines with
minimal support in [tk, tk+d+1] and form a basis of the spline space of order d. In this thesis we
consider regularly spaced knots at integer location (the common framework in image processing)
and approximate the image with tensorial B-splines as defined by Unser et al. [89] [90] :

Definition 7 (B-splines) We call regular B-spline of order d ∈ N the function βd defined by
iterated convolutions :

βd(x) = 1[− 1
2 ,

1
2 [
∗(d+1)(x)

= 1[− 1
2 ,

1
2 [ ∗ · · · ∗ 1[− 1

2 ,
1
2 [︸ ︷︷ ︸

(d+1) terms

(x)

The βd functions are symmetric, supported in [−d+1
2 , d+1

2 ], have a C(d−1) regularity as shown in
figure 2.1. Theses functions have an explicit spatial expression :

Figure 2.1: Regular B-splines from order 0 to 5.

βd(x) = 1
d!

d+1∑

k=0
(−1)k

(
d+ 1
k

)(
x+ d+ 1

2 − k
)d

+
(2.17)

where (·)+ denotes the positive part. Another very useful formula is a particular case of De Boor’s
recurrence formula in the case of uniform knots.

βd(x) = 1
d

[(
d+ 1

2 + x

)
βd−1

(
x+ 1

2

)
+
(
d+ 1

2 − x
)
βd−1

(
x− 1

2

)]
(2.18)
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Original formula by De Boor uses the knots {tk} but our definition of splines with even order is
different.

Regular B-splines have a lot of interesting properties :

• the derivative of βd is in the vectorial space generated by the shifted B-splines of order d− 1
:

βd
′(x) = βd−1(x+ 1

2)− βd−1(x− 1
2) (2.19)

• the scalar-product of two B-splines is easily computable :

〈βd(·), βd′(· − α)〉L2(R) = βd+d′+1(α) (2.20)

• shifted B-splines {βd(· − k)}k∈Z form a multi-resolution analysis (see [65]) up to a translation
of 1

2 for even orders. The inter-scale relation is given by :

βd(x) = 1
2d

d+1∑

k=0

(
d+ 1
k

)
βd

(
2x − 2k − d− 1

2

)

The signals we deal with are two dimensional (images), and are combination of translated functions
βd(· − k) with different boundary conditions. We define the classical, periodic and symmetric-
periodic approximation spaces for images with height m and width n :

Sd(n,m) =
{
n−1∑

k=0

m−1∑

l=0
ak,l βd,2(· − (k, l)) s.t. (ak,l) ∈ Rm×n

}
(2.21)

Sdper(n,m) =





∑

(p1,p2)∈Z2

f (·+ (p1 n, p2m)) s.t. f ∈ Sd(n,m)



 (2.22)

=
{
n−1∑

k=0

m−1∑

l=0
ak,l β̃d,2(· − (k, l)) s.t. (ak,l) ∈ Rm×n

}

Sdsym(n,m) =
{
f ∈ Sdper(2n, 2m) s.t.

{
f(−x, y) = f(x− 1, y)
f(x,−y) = f(x, y − 1) ∀x, y

}
(2.23)

where β̃d,2 is the periodized version of function βd,2 = βd ⊗ βd with periods (n, 0) and (0,m).
Sdsym(n,m) also admits a basis formed by periodization an then symmetrization relatively to axes

{x = − 1
2} and {y = − 1

2}. This last spline space is related to symmetric boundary conditions in the
direct spline transform as detailed in [90]. Interpolating B-splines, also called cardinal B-splines or
fundamental splines, are basis functions denoted by (ηd,2)k,l such that for all f ∈ Sd(n,m) one has

f(·) =
n−1∑

k=0

m−1∑

l=0
f(k, l) (ηd,2)k,l (·)

Such a basis always exists in Sd(n,m), Sdper(n,m) and Sdsym(n,m) but the expression of the (ηd,2)k,l
functions depends on the considered space. We define the spline transform and inverse spline
transform operators (here on Sd(n,m)) :

Td : f → (ak,l) ∈ Rn×m s.t. f(·) =
n−1∑

k=0

m−1∑

l=0
ak,l βd,2(· − (k, l)) (2.24)
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T −1
d : (ak,l) ∈ Rn×m →

n−1∑

k=0

m−1∑

l=0
ak,l βd,2(· − (k, l)) (2.25)

We are generally interested in recovering a function in Sd(n,m) on the regular grid Λreg. Since a
function in Sd(n,m) is uniquely determined by its values on Λreg we consider the spline sampling
matrix Md related to T −1

d

(Md)(k,l),(q,p) = βd,2(k − q, l − p) (2.26)

We note that for the periodic space Sdper(n,m) the spline sampling matrix is circulant and its
inverse is given by inversion of its singular values in the Fourier basis of [0, n− 1]× [0,m− 1]. In
the other cases (Sd(n,m) and Sdsym(n,m)), a matrix inversion is necessary (by LU factorization
for example) and a fast implementation is presented in [90].

The interpolating splines (ηd,2)k,l are given by

(ηd,2)(k,l)(·) =
n−1∑

q=0

m−1∑

p=0
(M−1

d )(k,l),(q,p) βd,2(· − (q, p)) (2.27)

In the periodic space Sdper(n,m) the basis of interpolating splines is shift-invariant since (Md)−1 is
also circulant, but it is generally not the case in other spaces due to boundary conditions. The use
of splines in signal approximation only makes sense if the sampling step (here 1) is adapted to the
space of possible signals. As shown by Unser et al. [1], the cardinal spline ηd,2(·) in the infinite
setting converges to the cardinal sine function (sinc( ·π )) as d tends to infinity and thus provides a
good approximation of bandlimited functions in BF (π).

Theorem 6 ([1] Aldroubi, Unser, Eden 1991) Let ηd be the cardinal spline on R with order
d ≥ 0. The Fourier transform of ηd converges in Lp(R) to the indicator function of [−π, π] as d
tends to infinity for all p ∈ [1,+∞[.

As a consequence, the sequence
(
fd =

∑
k∈Z ck ηd(· − k)

)
d≥0 converges uniformly to the bandlim-

ited function f ∈ BF (π) such that f(k) = ck for all c ∈ `2(Z) as d tends to infinity. In the finite
setting Sdper(n,m), the cardinal spline function ηd converges to the Dirichlet kernel and the spline
approximation converges to the trigonometric polynomial interpolation of the coefficients (ck).
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2.2 Optimization in Hilbert spaces

Optimization is the field of mathematics which deals with the resolution of minimization problems

find x∗ = argmin
x∈E⊂H

f(x) or compute m = min
x∈E⊂H

f(x) (2.28)

All the properties and theorems in this section concern a real Hilbert space H. When H is
finite-dimensional (H = Rd, d ≥ 1) we consider the canonical scalar product and norm

〈x, y〉 =
d∑

j=1
xj yj , ‖x‖ =




d∑

j=1
x2
j




1/2

x, y ∈ Rd

We deal with cost/objective functions f : H → R = R ∪ {−∞,+∞}. Conventions for combination
of infinite values and/or scalars are described in [76] p.24 and the only forbidden case is ”∞−∞”.

2.2.1 Proper functions, Convexity, continuity, semi-continuity, inf-sup
stability

Since we are interested in minimizing a cost function f , the values −∞ and +∞ have a special role.
Nice functions for this problem are the ones which cannot take the −∞ value (in practice a cost or
energy function always admits a finite minimum) and are not equal to +∞ everywhere (it would
be useless to minimize such a function). These functions from H to R ∪ {+∞} are called proper
function. The value +∞ plays a key role because the set of points where this value is reached
forms an impossible set for the minimization problem. The set of possible minimizers, where f is
not +∞ is called the domain of f and denoted by dom(f).

The main difficulty in finding the minimum of f with an algorithm is that numerical imple-
mentations generally use a local approach and can get stuck near a non-optimal local minimizer.
A very important property to avoid this situation is the convexity property

Definition 8 (Convex functions) A function f is said convex on H if for all x, y ∈ H and for
all θ ∈]0, 1[ ,

f(θ x+ (1− θ) y) ≤ θ f(x) + (1− θ) f(y)

In this case two different local minima f(x∗) and f(y∗) such that f(x∗) < f(y∗) would verify for
θ ∈]0, 1[ :

f (y∗ + θ(x∗ − y∗)) ≤ θ f(x∗) + (1− θ) f(y∗)
< f(y∗)

in contradiction with the local minimum property of y∗. Convexity of functions is closely related
to convexity of sets :

Definition 9 (Convex sets) A subset E ⊂ H is said convex if for all x, y ∈ H and for all
θ ∈ [0, 1]

θ x+ (1− θ) y ∈ E
Indeed, an equivalent definition for a convex function is a function with convex epigraph

epi(f) = {(x, µ) ∈ H × R s.t. f(x) ≤ µ}

Proper functions then correspond to functions with non-empty epigraph (f non identically +∞)
which contain no vertical line (no x verifies f(x) ≤ µ for all µ ∈ R which is equivalent to f(x) 6= −∞
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for all x ∈ H). In this setting it is possible to extend any convex function f defined on a convex
subset E of H to the entire space by setting f̃(x) = f(x) on E and f̃(x) = +∞ on H\E thanks to
the convention

∀ θ ∈ [0, 1],∀C ∈ R ∪ {+∞} θ C + (1− θ)× (+∞) = +∞

The theory of convex analysis also treats the infinite dimensional case, which lead to the considera-
tion of discontinuous convex functions. In the finite dimension case, finite convex functions behave
locally like continuous functions.

Proposition 4 (Rockafellar [76] p. 83) A function f : Rd → R is continuous if it is convex.

Finiteness is important of course, consider for example the function I defined on R by

I(x) =
{

0 if x ∈ [−1, 1]
+∞ else

I is clearly not continuous at x = ±1. If we replace the interval [−1, 1] with any subset E of H
we call the function I the indicator function of E, denoted by IE . Finiteness on Rd and convexity
imply continuity but a convex function is also continuous on any convex relatively open subset of
its domain ([76] p. 82). The more general notion of lower semi-continuity is also very important in
optimization.

Definition 10 (Lower semi-continuity) A function f : H → R ∪ {+∞} is said lower semi-
continuous if its level sets sµ = {x ∈ H s.t. f(x) ≤ µ} are closed for all µ ∈ R.

Full continuity is equivalent to lower and upper semi-continuity, where upper semi-continuity corre-
sponds to the closedness of the sets sµ = {x ∈ H s.t. f(x) ≥ µ}. Lower semi-continuous functions
have the following properties : if f is lower semi-continuous then for any sequence {xk} converging
to x∗ with f(x∗) 6= +∞ we have

f(x∗) ≤ lim
k→∞

f(xk)

such that if
(
f(xk)

)
k≥0 is a minimizing sequence of f and (xk)k≥0 converges to x∗ then

f(x∗) = lim
k→∞

f(xk) = min
x∈H

f(x)

We also have that the supremum of a family of lower semi-continuous functions {fi}i∈I defined by
S(x) = supi∈I fi(x) is a lower semi-continuous function and as well the supremum of a family of
convex functions is a convex function. Lower semi-continuity and convexity are also preserved by
the infimum I(x) = infi=1..p fi(x) over a finite family of functions. The indicator function above
is an example of convex, lower semi-continuous function since sµ = [−1, 1] for µ ≥ 0 and sµ = ∅
else. An indicator function I is convex if and only if the set E is convex and lower semi-continuous
if and only if E is closed in H. Proper, convex, semi-continuous functions on H form an important
class in Optimization theory denoted by Γ0(H) ([29] p. 132). Note that finite convex functions are
always lower semi-continuous, and that lower semi-continuous functions reach their minimum on
any compact set of H. If f ∈ Γ0(H) is inf-compact (lim‖x‖→+∞ f(x) = +∞) then it necessarily
reaches its minimum.
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2.2.2 Properties and characterization of convex functions

Convex functions in finite dimension are locally Lipschitz on the relative interior of their domain.

Proposition 5 ([76] p. 86) Let f be a proper, convex function then f is Lipschitz on any rela-
tively closed, bounded subset E of ri(dom(f)) :

∃α > 0 s.t. |f(x)− f(y)| ≤ α ‖x− y‖ for all x, y ∈ E

where ri(dom(f)) is the relative interior of dom(f) (see [76] p. 44). Consider the function g : x→
1 −

√
x(1− x) on [−1, 1], it is convex on [−1, 1] and can be extended to a convex function on R

but it is not Lipschitz on [−1, 1], not even on ] − 1, 1[ but it is Lipschitz on any interval of the
form [α, β] with 0 < α ≤ β < 1. In the case of a differentiable function f on an open subset E,
convexity is equivalent to an inequality on the differences of f [10].

f(y)− f(x) ≥ 〈∇f(x), y − x〉 for all x, y ∈ E (2.29)

and in the case of a twice differentiable function, convexity is equivalent to the semi-positivity of

the Hessian matrix H(x) on E with Hj,k(·) = ∂2f
∂xj∂xk

(·).

〈V, H(x)V 〉 ≥ 0 for all V ∈ H and for all x ∈ E (2.30)

A very close notion, strict convexity, concerns functions f such that for all x, y ∈ dom(f) and for
all θ ∈]0, 1[

f(θ x+ (1− θ) y) < θ f(x) + (1− θ)f(y)
and similar characterizations of convex differentiable or twice differentiable functions exist with
a strict inequality in (2.29) and a positive definite Hessian in (2.30). Strict convexity assures
uniqueness of the minimizer x∗. Convex functions on Rd are not necessarily differentiable on their
whole domain, but the set where a convex function is differentiable has good properties.

Theorem 7 (Rockafellar [76] p. 246) Let f be a convex, proper function on Rd and D the
subset of ri(dom(f)) where f is differentiable. Then D is a dense subset of ri(dom(f)) and its
complement in ri(dom(f)) has measure zero. Furthermore the gradient ∇f : D → Rd is continuous
on D.

We see here that convex functions in finite dimension are nice objects. When f is convex differen-
tiable on H the characterization of a minimizer x∗ is quite easy

x = argmin
x∈H

f(x) ⇔ ∇f(x) = 0

but a minimum can be reached at a nondifferentiable point of f , this is why we introduce the
notion of subdifferential.

2.2.3 Subdifferential and Legendre transform

Let f in Γ0(H), at every point x it is possible to determine a set of directions which decrease f
locally like −∇f(x) in the differentiable case.

Definition 11 (Subdifferential) The subdifferential of f , denoted by ∂f is a set-valued operator
from H → P(H) defined by

∂f(x) = {T ∈ H s.t . f(y) ≥ f(x) + 〈T, y − x〉 for all y ∈ H}
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If x /∈ dom(f) then ∂f(x) = ∅. A vector in ∂f(x) is called a subgradient of f at x and determines
an affine function tangent to f at x. The subdifferential ∂f(x) is a closed convex set, it is nonempty
at points of ri(dom(f)) and bounded at points of Int(dom(f)) ([76] p. 217). It can be linked to
the notion of Gâteaux derivative, since a subdifferentialble function at x ∈ ri(dom(f)) is Gâteaux
differentiable and the directional derivative f ′(x, y) = lim

α→0,α>0
1
α (f(x+ α y)− f(x)) verifies

f ′(x, y) = sup
T∈∂f(x)

〈T, y〉

The subdifferential gives a necessary and sufficient condition for problem (2.28) :

Proposition 6 Let f ∈ Γ0(H) and x∗ ∈ H. Then

x∗ = argmin
x∈H

f(x) ⇔ 0 ∈ ∂f(x∗)

When ∂f(x) is reduced to a single point the function f is differentiable at x and ∂f(x) = {∇f(x)}.
Subdifferentiation of functions works (generally) like the classic differentiation operator.

Proposition 7 (Rockafellar [76] p. 225) Let f, g ∈ Γ0(H), A a linear mapping from Rp → Rd.

∂(f + g)(x) ⊃ ∂f(x) + ∂g(x) for all x ∈ dom(f + g)

with equality if ri(dom(f)) ∩ ri(dom(g)) 6= ∅, and

∂(f ◦A)(x) ⊃ A∗ ∂f(Ax) for all x ∈ dom(f ◦A)

with equality if R(A) ∩ ri(dom(A)) 6= ∅.

These conditions are always verified by the functions we deal with. A duality principle states that
a function in Γ0(H) is the supremum of all affine functions majorized by f and in particular the
affine functions of the form x → 〈x, x∗〉 − µ∗ whenever µ∗ ≥ sup

z∈H
〈 z, x∗〉 − f(z). This function

of x∗ is called the conjugate or Legendre transform of f at x∗ and it is a one-to-one mapping of
Γ0(H)→ Γ0(H).

Proposition 8 (One-to-one Legendre transform) Let f ∈ Γ0(H) , there exists a unique func-
tion f∗ ∈ Γ0(H) such that

f(x) = sup
x∗∈H

〈x∗, x〉 − f∗(x∗) for all x ∈ H

and the conjugate of f∗ is f itself
(f∗)∗ = f

The relation between conjugacy and subdifferential is :

∂f(x) = {y ∈ H s.t. f(x) + f∗(y) = 〈x, y〉}

such that
y ∈ ∂f(x) ⇔ x ∈ ∂f∗(y)

This provides an alternative to the problem in f :

0 ∈ ∂f(x) ⇔ x ∈ ∂f∗(0)
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2.2.4 Lagrangian, duality gap, Fenchel-Moreau duality

Minimization problems often contain one or several constraints :

x∗ = argmin
x∈H

f(x) s.t.

{
gi(x) = 0 for 1 ≤ i ≤ Ne
hj(x) ≤ 0 for 1 ≤ j ≤ Ni (PE,I)

with Ne the number of equality constraints and Ni the number of inequality constraints. In the
case when the gi functions are affine functions and the hj functions are finite functions in Γ0(H),
we introduce the notion of Lagrangian function L : H × RNe × RNi → R ∪ {+∞} associated to
(PE,I) such that

sup
(λ,µ)∈RNe×RNi

L(x, λ, µ) =
{
f(x) if x satisfies (PE,I)
+∞ else

A Lagrangian function transforms the minimization problem (PE,I) in x into a saddle point problem
in (x, λ, µ)

x∗ = argmin
x∈H

sup
(λ,µ)
L(x, λ, µ) (2.31)

A classical example of Lagrangian function is

L(x, λ, µ) = f(x) +
Ne∑

i=1
λi gi(x) +

Ni∑

j=1
µj hi(x) λ ∈ RNe , µ ∈ (R+)Ni

The saddle point problem (2.31) is called the primal problem and inf and sup invertion gives the
dual problem

sup
(λ,µ)

min
x∈H

L(x, λ, µ) (2.32)

This provides an empirical method for solving (PE,I) : first minimize the Lagrangian in x and then
explore the space of Lagrange multipliers (λ, µ). When there are only inequality constraints, this
approach can be seen as a penalization method on f with penalization functions hj : the higher the
penalization parameter µj , the lower the value of hj(x∗). The Karush-Kuhn-Tucker theorem ([76]
p. 293) provides an existence result for the Lagrange parameters (λ, µ) to problem (2.31) whenever
the original problem (PE,I) is feasible, that is there exists x∗ ∈ H such that all the constraints
hold. This duality principle can be applied to general saddle point problems providing that both
primal and dual problems have the same value :

(
inf
x∈X

sup
s∈S

F (x, s)
)
−
(

sup
s∈S

inf
x∈X

F (x, s)
)

= 0

This quantity is always positive and called the duality gap. It is not always zero and attention
should be paid to the inf-sup exchange procedure. The inf-sup exchange in the Fenchel-Rockafellar
duality formula is a case of zero duality gap.

Theorem 8 (Fenchel-Rockafellar duality principle [30]) Let f ∈ Γ0(Rd), g ∈ Γ0(Rp) and A
a linear operator Rd → Rp such that 0 ∈ Int(dom(g)−A dom(f)). Then

inf
x∈Rd

f(x) + g(Ax) = −min
s∈Rd

f∗(−A∗ s) + g∗(s)
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2.2.5 The proximal operator, examples

We use intensively in this thesis minimization problems involving the sum of two convex functions

min
x∈H

f(x) + g(x)

with f convex nondifferentiable and g convex differentiable. The subdifferential equation of this
problem can be solved by a semi-implicit scheme [28]

{
yn+1 = xn − ρ∇ g(xn)
yn+1 ∈ (Id+ ρ ∂f)(xn+1)

The second step of this scheme always has a unique solution xn+1 and the operator defined by this
inclusion is called the proximal operator of (ρ f).

Proposition 9 (Proximal operator) Let f ∈ Γ0(H) and ρ > 0. For all x ∈ H, there exists a
unique vector y such that x ∈ y + ρ ∂ f(y), called the proximal point of f at x with parameter ρ,
denoted by proxρ f (x) and characterized by the variational problem

y = proxρ f (x) ⇔ y = argmin
z∈H

f(z) + 1
2ρ ‖x− z‖

2

We present in table 2.1 examples of proximal operators. The proximal operator has many proper-
ties, among which the decomposition formula

Proposition 10 For all f ∈ Γ0(H) and x ∈ H ,

x = proxf (x) + proxf∗(x)

It is firmly nonexpansive and thus continuous

‖ proxf (x)− proxf (y)‖2 ≤
〈

proxf (x)− proxf (y), x− y
〉

for all x, y ∈ H

Functions of the type sup
s∈S
〈Ax, s〉 (with A a linear mapping Rd → Rp) are special functions

with the positive homogeneous property

Definition 12 (Positive homegeneous functions) A function f : H → R ∪ {+∞} is positive
homogeneous if for all x ∈ H and α > 0

f(αx) = α f(x)

These functions rewrite as the conjugate of an indicator function IK where K is a convex closed
subset of H, namely the zero level of the conjugate :

Proposition 11 (Rockafellar [76] p. 114) Let f ∈ Γ0(H) a positive homogeneous function,
K = s0(f∗) the zero levelset of f∗, then

f = (IK)∗

and K is bounded if and only if f is finite.
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Function Proximal Operator

f(x) = IE(x) with E proxρ f (y) = proj
E

(y)

a closed convex subset of H

g(x) = sup
s∈K
〈Ax, s〉 proxρ g(y) = y − proj

ρA∗K
(y)

h(x) = 1
2 ‖Ax− z‖2 proxρ h(y) = (Id+ ρA∗A)−1 (y + ρA∗ z)

k(x) = ‖x‖1 =
∑d
j=1 |xj |

(
proxρ k(y)

)
j

= 0 if |yj | ≤ ρ
on Rd yj − ρ

|yj | yj else

l(x) =
∑d
j=1 |xj | z = argmin

x∈Cd
l(x) + 1

2 ρ
∑d
j=1 |xj − yj |2

on Cd then zj = 0 if |yj | ≤ ρ and yj − ρ
|yj | yj else

Table 2.1: Proximal operators examples.

The `1-norm belongs to this class and we note that the set S in this case is [−1, 1]d. Another
classical example is the discrete total variation TV (f) = ‖∇f‖1, it is the conjugate function of

I∇∗S where S =
{
s ∈

(
R2)d s.t ‖sj‖ ≤ 1 for all j ∈ {1..d}

}
such that

proxρ TV (·)(y) = y − proxIρ∇∗S (y) = y − proj
ρ∇∗S

(y)

The existence and uniqueness of the orthogonal projection in Hilbert space are always verified
thanks to the projection theorem.

Theorem 9 (Projection theorem) Let H be a Hilbert space with scalar product 〈 ·, ·〉H and
norm ‖ · ‖H. Let E be a non-empty, convex, bounded subset of H then for all z ∈ H the following
problem

min
x∈E

‖x− z‖H

admits a unique solution denoted by x∗ = proj
E

(z) and characterized by

Re(〈 z − x∗, x− x∗〉H) ≤ 0 for all x ∈ E

2.2.6 Minimization algorithms and convergence results

2.2.6.1 The Conjugate Gradient algorithm

Quadratic functions on Rd of the form F (x) = 1
2 〈Ax, x〉+ 〈 y, x〉 are frequently used in optimiza-

tion algorithms like Quasi-Newton methods or quadratic regularization. A function of this form
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with A ∈ Md(R) is strictly convex if and only if A + At is a positive definite matrix. This gives
a variational foundation to the solving of linear systems Ax = y with A positive definite, very
helpful for a line search descent. This line search, together with an orthogonalization of residues
results in the very famous Conjugate Gradient method detailed below (algorithm 2.2).

Let y ∈ H, A ∈ Md(R) a positive definite matrix. Let (xn), (pn), (qn) ∈ H,
(αn), (βn) ∈ R be finite sequences defined by :

• x0 ∈ H, r0 = y −Ax0, p0 = r0, q0 = Ap0

• α0 = ‖r0‖2
〈 p0, q0〉

, x1 = x0 + α0 p0, r1 = r0 − α0 q0

• For all n ≥ 1 such that ‖rn‖ > ε :

– βn = ‖rn‖2
‖rn−1‖2

– pn = rn + βn pn−1 (conjugated descent directions)

– qn = Apn

– αn = ‖rn‖2
〈 pn, qn〉 (line search step)

– xn+1 = xn + αn pn (optimal gradient descent)

– rn+1 = rn − αn qn (residue update)

Figure 2.2: The (classical) Conjugate Gradient algorithm for symmetric positive definite linear systems.

This algorithm guarantees that xn minimizes F over the affine subspace x0 + Kn with Kn =
vect (p0, . . . , pn) the Krylov space at iteration n. Residues rn and descent directions pn are conju-
gate relatively to A.

〈 rn, A rk〉 = 0 for all 0 ≤ k < n

It converges (theoretically) to a solution of Ax = y in at most d iterations (there exists d0 ≤ d
such that rd0 = 0) but it is also used as an iterative algorithm for sparse linear systems with good
conditioning.

Theorem 10 Let A be a positive definite matrix on Rd, y ∈ Rd and x∗ the solution of Ax = y.
Let κ be the condition number of A and (xn) a finite sequence defined by the previous CG algorithm
2.2. For all n ≥ 0 such that xn is defined

‖xn − x∗‖ ≤ 2
(√

κ− 1√
κ+ 1

)n
‖x0 − x∗‖

2.2.6.2 Nonsmooth optimization : Forward-Backward, FISTA, TWIST, Nesterov

In the setting of nonsmooth+smooth minimization, the classical semi-implicit scheme also called
Forward-Backward amounts to compute iteratively an explicit descent step yn+1 = xn − ρ∇g(xn)
and an implicit inclusion

yn+1 ∈
(
Id+ ρ ∂f(xn+1) ⇔ xn+1 = argmin

z∈H
ρ f(z) + 1

2 ‖y
n+1 − z‖2

We recognize here the proximal of f . When f = λ ‖x‖1 this algorithm is called ISTA (Iterative
Soft-Thresholding Algorithm) but this denomitation is also used for the general Forward-Backward
algorithm. Convergence of the Forward-Backward algorithm (2.3) was proved with optimal step
by Combettes [28].
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• Let x0 ∈ H, L(g) the Lipchitz constant of ∇g and 0 < ρ < 2
L(g)

• For all n ≥ 0 :

– xn+1/2 = xn − ρ∇g(xn)
– xn+1 = proxρ f (xn+1/2)

Figure 2.3: Scheme of the Forward-Backward algorithm with nonsmooth f and differentiable g

Theorem 11 ( [30] Combettes, Wajs 2009) Let f, g ∈ Γ0(Rd) with g differentiable on Rd, ∇g
Lipschitz on Rd, L(g) > 0 its Lipschitz constant and 0 < ρ < 2

L(g) . The sequence (xk)k≥0 defined

by and

x0 ∈ H xn+1 = proxρ f (xn − ρ∇g(xn)) for all n ∈ N

converges weakly and thus strongly to a minimizer of f + g.

The convergence speed of ISTA was studied by Beck et al. [8] and proved a O( 1
N ) (sublinear) with

N the number of iterations.

Theorem 12 ([8] Beck, Teboulle 2009) Let f, g be convex functions on Rd → R, with g dif-
ferentiable and ∇g Lipschitizian with constant L(g). Let X∗ be the set of minimizers of F = f +g,
the sequence (xn)n∈N defined in theorem 11 with ρ ≤ 1

L(g) verifies for all n ≥ 1 and x∗ ∈ X∗

F (xn)− F (x∗) ≤ L(g) ‖x0 − x∗‖2
2n

Bioucas-Dias et al. proposed the TWIST algorithm (TWo step Iterative Soft-Thresholding)
as an accelerated scheme for the ISTA algorithm, and Beck et al. proposed the FISTA algorithm
(Fast ISTA) which has a O( 1

n2 ) convergence rate. These accelerated algorithms are not necessarily
monotone, which is a big disadvantage in numerical optimization. The TWIST algorithm and its
monotone version are described in [12], here we only present the FISTA and monotone FISTA
algorithms we used in this thesis.

• Let x0 ∈ H, y1 = x0, t1 = 1, L(g) the Lipschitz constant of∇g and 0 < ρ ≤ 1
L(g)

• For all n ≥ 1 :

– xn = proxρ f (yn − ρ∇g(yn))

– tn+1 = 1+
√

1+4(tn)2
2

– yn+1 = xn +
(
tn−1
tn+1

)
(xn − xn−1)

Figure 2.4: Scheme of the FISTA algorithm for the nonsmooth+smooth minimization of f + g
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• Let x0 ∈ H, y1 = x0, t1 = 1, L(g) the Lipschitz constant of∇g and 0 < ρ ≤ 1
L(g)

• For all n ≥ 1 :

– zn = proxρ f (yn − ρ∇g(yn))

– tn+1 = 1+
√

1+4(tn)2
2

– xn+1 = argmin {F (x) s.t. x ∈ {xn, zn}}

– yn+1 = xn +
(

tn
tn+1

)
(zn − xn) +

(
tn−1
tn+1

)
(xn − xn−1)

Figure 2.5: Monotone version of FISTA

Theorem 13 ([7] Beck and Teboulle 2009) Let f, g be convex functions Rd → R with g dif-
ferentiable and ∇g Lipschitz.

Let (xn)n∈N the sequence generated by either FISTA (algorithm 2.4) or mFISTA (algorithm
2.5). For all x∗ ∈ X∗ the set of minimizer of F and for all n ≥ 1

F (xn)− F (x∗) ≤ 2L(f) ‖x0 − x∗‖2
(n+ 1)2



32 CHAPTER 2. MATHEMATICS



Chapter 3

Estimation of the microvibrations

. . . of a satellite in a couple of push-broom images

3.1 Exploitation of the disparity map

3.1.1 Introduction

Estimation of the microvibrations of a satellite is a very important point in sub-pixel disparity
computation. Aliasing and noise reduction in modern Earth imaging devices have made possible
the reconstruction of 3D scenes from small B/H image couples (B is the baseline or instrument
displacement, H is its altitude) with high precision [35], and this small B/H acquisition mode
will be used by the PLEIADES satellites. Depth estimation in an image couple is a large field of
computer vision, and the most famous method is normalized cross-correlation (NCC) minimization
along epipolar lines1 (or at a neighboorhood), or the simple sum of squared differences (SSD) :

du1(x) = min
y

∫∫

R2
φ(y) |u1(x)− u2(x+ y)|2dy (3.1)

where u1,u2 are the two images and φ is a two-dimensional window function, generally a truncated
Gaussian function with small standard deviation. Theses methods require rectified images, which
consist in a continuous scene projected on the same plane but from different optical centres. This
can be achieved by resampling the second image u2 on a grid determined by the calibration pa-
rameters of both cameras. If the parameters or some of them are unknown (for example the exact
location and angular state of the cameras), then one must address the bundle adjustment problem
or estimation of the transformation between the two images. Once the images are correctly stereo-
rectified, the computation of the disparity in image u1 by the minimization (3.1) can be performed
but suffers from several errors :

• adhesion or dilatation : when elevation varies quickly the image contents can change very
fast (contraction) or even disappear (occlusion) and the correlation of elevated points (closer
to the imaging device) can be associated to less elevated ones.

• stroboscopic effect : each part of a repetitive pattern is likely to match with any other part
of the pattern.

1the epipolar line of a point A in image 1 is the projection in image 2 of the set of 3D points whose projection
in image 1 is A

33
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• wrong matches in under-detailed areas and/or noisy areas (noise has a bigger influence in the
smooth parts of an images).

These phenomena are well described in [82], as well as the literature in stereo-vision. The algorithm
proposed in [82] is now implemented in the CNES MARC2 software (Multiresolution Algorithm
for Refined Correlation) used in this report for the computation of the disparity maps2. The
reason why we focus on disparity is that there is no easy way to estimate the deformation in a
single image without any apriori on the ground truth : roads are not exactly straight, the size
and spacing of buildings are not always available and the placement of mires on the ground with
appropriate spacing is too demanding and rarely possible. Automatic estimation of the sampling
error necessarily involves two views of the same scene and the intuitive approach for this estimation
is a comparison of the locations of features present in both images.

3.1.2 State of the art

Influence of microvibrations in Earth images is illustrated in figure 3.1 where we display the original
images and the images with deformation. The microvibrations oscillate between in [−1, 1] and have
a negligible influence to a human eye but modify the disparity map. The microvibrations add an
oscillating component to the disparity map.

Figure 3.1: Without (top row) and with microvibrations (second row). The difference between images of the first
and second row is invisible to the human eye although the disparity map is perturbed by low frequency, horizontal
oscillations.

A simple method used to cancel this kind of oscillating perturbations is FFT selective filtering
[63], this is a thresholding method in the Fourier domain. In this approach the removal of the
perturbation consists in the application of a mask to the Fourier coefficients. This implies that

2We thank the CNES for providing this software.
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some frequencies are completely removed and the amount of perturbation removed this way is not
constant in all parts of the disparity map. The authors of [63] addressed here the more general
denoising problem in which the noise has a small support in the Fourier domain and unknown
amplitude. In our case it would be possible to estimate the perturbation in homogeneous areas as
in the selective FFT filtering method, and then subtract this perturbation but :

• the selected area should have a size of several periods of the microvibration (which is not
possible in urban landscapes).

• the true elevation of the selected area may not verify our homogeneous assumption, even
after a vertical smoothing (if the elevation is affine for example)

In a work by Roques et al. [78] (2001), the authors estimate the three angular vibrations of a
satellite with dense disparity maps using various methods. As in the FFT selective filtering method,
the pitch is estimated from manually selected homogeneous areas. This estimation is completed
by a Matching Pursuit algorithm (see section 3.2.1) in a redundant time-frequency dictionary.

The microvibration problem has also been treated at CNES by Breton et al. [17] and then
Greslou et al. [45] for SPOT5 HRG images with several couples from different sensors (the SPOT5
HRG device is made of a panchromatic and 4 spectral sensors). In [45], the authors work with
quasi-stationary and quasi-harmonic noisy signals, and modelize the microvibrations as a sum of
sine functions depending on the time variable and shifted by a factor τj where j is the index of the
image couple : {

V1,j(·) =
∑n
k=1 ak sin(wk ·+φk)

V2,j(·) = V1(t+ τj)
(3.2)

The different τj parameters depend on the shape and placement of the sensors and lead to an
overdetermined linear system solved by Least-Squares method.

3.1.3 Framework of this study

On the contrary of [45], we work here with a single couple of stereo-rectified images, with high
resolution and quasi-harmonic microvibrations as modelized at CNES (see table 3.0(a)). We studied
both stationary and non-stationary cases : the case of non-stationary microvibrations occurs with
agile devices which alternatively point forward during aquisition of the first image and backward
once the satellite has passed over the target. This repointing has an influence on the angular
oscillations and microvibrations in the sampling grid of the two images can be decorrelated. In the
stationary case (no repointing) we assume that the microvibrations V1 and V2 are correlated up to
a time shift (V2(t) ≈ V1(t+ τ)).

Our experiments only concern the correction of pitch oscillations, in the case of a sensor line
orthogonal to the flight direction as described in section 1.1.2. We tried to improve the approach
in [78] when only two images of the same scene are available. The available data is a lacunary
disparity map and we approximate the microvibrations with sparse signals in the Fourier domain.
In a second part (section 3.4) we add an a priori on the elevation map in order to fix some incorrect
detections and show the improvements in urban landscapes.

3.1.4 The MARC2 software package

MARC software has been developed at CNES and is continuously improved by new techniques
from image processing and stereo-vision. The version we present here benefits from the recent
works of Sabater et al. [81] [82] [83]. The software was used with input data consisting in two
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stereo-rectified views from the same scene I1 and I2 suffering from microvibrations and produced
several output disparity maps.

The package implements an automatic rejection of false matches thanks to an a contrario
approach and uses only a very small number of input parameters. The disparity associated to
a point in image I1 is a measure of its elevation obtained by subtracting its (supposed) location
in I2 to its coordinates in I1, it can be computed up to a very small precision ≈ 1

20 pixel with
high quality images such as PLEIADES images but only certain regions are assigned a disparity
measure, typically the ones containing structures.

A first set of positive matches is determined using a Principal Component Analysis on classes
of patches (neighbourhood of a point) with similar properties (mean and variance). Patches from a
patch class are projected on a set of orthonormal components, namely the principal components of
the class, this gives an empirical distribution for PCA coefficients. As remarked by many authors,
this set of principal components is almost independent of the image and can be computed once for
all.

The disparity is determined as the minimum of a correlation function dI1 at point M0 = (x0, y0)
belonging to I1, a distance between the patch centered on M0 and all other patches centered on
M(x, y0) on the same line as M0 in image I2.

dI1(M0, x) =
∫∫

V

I1(x0 + s, y0 + t) I2(x+ s, y0 + t)φ(s, t) ds dt (3.3)

with V a neighbourhood of (0, 0) and φ a window function.
The first elimination step of the algorithm is based on the a contrario approach [37] [82] and

performed before the minimization of dI1,(M0, x). This gives a first disparity map with pixel
precision (disp1). The disparity is then refined with subpixel precision (disp sub) by minimizing
3.3 with bandlimited hypothesis on I1 and I2. It is then made denser by the application of a
median filter (disp med) and undergoes an anti-adhesion filtering process based on line segments
detection (disp final).

Figure 3.2: Principle of MARC2 software. The output disparity map (the masks correspond to binary images
with value 1 where the disparity is valid).

The information available in these different disparity maps is thus one-dimensional since only
patches on the same horizontal line are compared. In our case the y displacement information is
not necessary as we consider horizontal microvibrations (εy = 0) but the algorithm can be applied
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to stereo-rectified images with 2D microvibrations if necessary with the risk for increased rejections
from the a contrario method.

3.1.5 Information in the disparity map

The MARC2 software produces several disparity maps with variable density, depending on the
number of false alarms in the a contrario method, the precision of the disparity and the correction
of adhesion. This density also depends on the contents of images (see figure 3.3) and we considered
in our tests the final disparity map, which is even less dense than figure 3.3.

We denote by (dk = d(zk))1≤k≤|Λ| the vector of known disparities on the grid

Λ = {zk = (xk, yk)}

where the mask given by MARC2 is equal to 1 (each dk is a 2 dimension vector but here the vertical
component is assumed to be zero). Λ is a subset of [0,m− 1]× [0, n− 1] with integer coordinates
(examples are displayed in the last column of figure 3.3) and the disparities dk correspond to the
measured displacement values of points in image I1. This data can be expressed as a function of
the true displacement h and the microvibrations in each image V1 and V2. In the following, the
continuous functions I1 and I2 : [0,m[×[0, n[→ R correspond to the interpolation of the left and
right images I1 and I2. We also introduce two continuous signals U1 and U2, the continuous scenes
observed in the rectification plane from each optical center. Images I1 and I2 have the expression :

Ii(z) = Ui(z + Vi(z)) i ∈ {1, 2} (3.4)

We note (hk = h(zk))zk∈Λ the true displacements of the physical points in image 1, while the
(d(zk))zk∈Λ are the measured displacements :

{
I1(zk) = I2(zk + d(zk)) for all 1 ≤ k ≤ |Λ|
U1(z) = U2(z + h(z)) locally in z

(3.5)

This gives the expression of dk :

I1(zk) = U1 (zk + V1(zk))
= U2 (zk + V1(zk) + h(zk + V1(zk))

On the other side we have

I1(zk) = I2(zk + dk)
= U2 (zk + dk + V2(zk + dk))

V1(zk) + h(zk + V1(zk)) = dk + V2(zk + dk)

Finally, in order to facilitate the interpretation of the data, we consider the opposites of dk and hk
such that objects close to the rectification plane have a larger disparity :

{
Dk = −dk
Hk = −hk

⇒ Dk = H(zk + V1(zk))− V1(zk) + V2(zk −Dk) (3.6)

Equation (3.6) verified by the measured disparities shows the mixing between V1 and V2, although
one microvibration is sampled at integer locations and the other one is sampled on the irregular
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(a) Disparity from simulated PLEIADES images (CNES copyrighted image) (middle) and
corresponding mask (right) (no microvibrations).

(b) In the presence of microvibrations.

(c) Disparity of Village image from L. Moisan’s images simulator (middle) and corresponding
mask (right)

Figure 3.3: Examples of disparity maps from MARC2 algorithm (the one with the highest density possible here).
Resolution and the presence of deep black areas have a great influence on the density of the disparity maps (first
row). The map can be even less dense in the presence of microvibrations (second row)

grid Λ′ = {zk −Dk}1≤k≤|Λ|. The other point, as expected, is that the real disparity H is also
sampled on an irregular grid {zk+V1(zk)}1≤k≤|Λ| and can be corrected only if V1 is well estimated.

Our goal here is to retrieve H from D without any a priori on the observed scene, except that it
does not look like a low frequency sine function. By this assumption we mean that the horizontal
component of the elevation H should be homogeneously distributed in the Fourier domain.
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3.2 Detection by l1 regularization

3.2.1 A nonlinear solver for sparse signals

In the late 90’s, researchers from the Signal Processing community addressed a special kind of
problem : reconstruction of signals from only a few measurements. In some cases, the physical
information could not be acquired at the Nyquist’s rate given by Shannon’s theorem and it was nec-
essary to develop new algorithms. The first methods were computationally heavy and called Greedy
Algorithms : Matching Pursuit (MP) [34] and its orthogonal variation (OMP) [65], Orthonormal
Least Squares (OLS) [25] [14], and even the recent Stage-wise OMP [39].

The basic idea is to solve a N × m linear system BX = Y by iterative subtraction of a
vector proportional to the most significant column of B. The cost of such algorithms is typically a
O(kmN) with N is the vector length (Y ∈ RN ), m is the size of the approximation family and k
the number of nonzero coefficients of X in this family, but it can be reduced if the column vectors
{Bj}j=1..m admit a fast scalar product (discrete Fourier basis, wavelet bases, local cosines . . . ). In
a non-orthogonal setting, these methods are not guaranteed to find the exact coordinates of the
solution, although they converge quickly to a solution with a few nonzero coefficients in the family
{Bj}j=1..m. OMP and OLS have a larger numerical cost per iteration but converge faster to the
solution.

Another set of methods called Basis Pursuit (BP) [26] or Frame Pursuit (FP) appeared which
consist in the resolution a `1 constrained problem :

min
u
‖u‖1 s.t. Φ Γu = b (BP1)

min
u
‖u‖1 s.t. ‖Φ Γu− b‖22 ≤ ε (BP2)

aimed at recovering signals with a few nonzero coefficients u in the family of vectors (Γk). The
matrix Φ is the measurement matrix and the number of lines of Φ can be much smaller than the
number of columns (the signal Γu is undersampled in the basis formed by the row vectors (Φ)(k,·)
of Φ).

For the last ten years this problem has gathered people from the Signal Processing, Optimization
and Statistics community and is known as Compressive Sensing (CS). The first algorithms to solve
(BP1) were based on Linear Programming (LP) such as Interior Point methods, but researchers
quickly noticed that this kind of problems could be solved by fast iterative shrinkage algorithms [33]
[43] [44]. Works of Donoho et al. [38] , Candes et al. [18] [19] and many others have contributed
to a better understanding of the circumstances when the resolution of the Basis Pursuit problem
(BP2) produces the right sparse solution and is stable to the presence of noise in the data.

In the following study of the microvibrations problem we use the ability of the `1-norm to
produce sparse vectors as observed in the literature, because the microvibrations of the push-
broom devices can be well approximated by a sum of few pure sines. The way we conceived the
following modelizations is closer to the original Basis Pursuit than Compressive Sensing. This
latest concerns more specific problems for which a condition called Restricted Isometry Property
(RIP) is verified, this is not necessarily the case in our study. Furthermore the disparities suffer
from non-stochastic perturbations (elevation of buildings and ground) with large amplitudes (in
the provided PLEIADES images, we have typically d(k) ∈ [−5, 5] and Vi(k) ∈ [−0.5, 0.5]) and the
sampling set depends on the perturbations, which is quite unusual.

3.2.2 Approximation with trigonometric polynomials

Because of the irregularity in the sampling grid of V2 (3.6), we have to consider continuous functions
on Ω = [0,m[×[0, n[. The shape of the microvibrations (as described in [59]) is very close to a sum
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of sine functions with specific frequencies, this is why we approximate them with the classical 1D
trigonometric polynomials.

Vi(x) =
T−1∑

l=1−T
Ai(l) eil

π
T x , i ∈ {1, 2} (3.7)

where the Ai are the Fourier coefficients and T is an integer parameter such that V1 and V2 are
2T -periodic. The signals V1 and V2 are real so we impose Hermitian symmetry of the coefficients
A1(l) and A2(l), and since we use FFT on 2T periodic signals we also impose one null coefficient
at index T [2T ].

{
Ai(−l) = Ai(l) 0 ≤ l ≤ T − 1
Ai(T ) = 0 , i ∈ {1, 2} (3.8)

This approximation provides a discretization of the frequency interval [− 1
2 ,

1
2 ] at points { l

2T }1−T≤l≤T−1.
Indeed, by Landau’s theorem [58] this is the largest bandlimited space with frequency interval cen-
tred on the origin we can retrieve with a sampling density dens(Λ) = 1 (perturbed sampling may
allow larger frequency intervals, but here the interval [− 1

2 ,
1
2 ] is enough). The frequency accuracy

of this approximation is 1
2T but a pure sine function with frequency ω /∈ { l

2T }0≤l≤T−1 will generally
be approximated by a sum of two or more (but few) sine functions with frequency belonging to
the approximation grid.
V1 is sampled on Λ with integer coordinates and V2 has sampling grid Λ′ with non-integer coordi-
nates. The first vector V1 can therefore be computed very quickly from A1 by discrete FFT.

The second microvibration V2 does not benefit from this fast implementation. We introduced
in chapter 2 the sampling operator of a trigonometric polynomial and detailed the properties of
such operators. The sampling matrix L2 is a complex Vandermonde matrix with general term

(L2)k,l = ei
π
T l x

′
k for all 1− T ≤ l ≤ T − 1 0 ≤ k ≤ |Λ|

where x′k = xk − (dk)1.
The operators L∗1 L1 and L∗2 L2 are intensively used in our algorithms, it is thus crucial to

implement the matrix-vector multiplication with these operators in an efficient way. The lines of
L1 are simply repeated lines of the classical discrete Fourier transform matrix (with possible gaps) :

(L1A1)j = (F(A1))xj [2T ]

and the product L∗1 L1A1 can be computed by means of simple algebra operations and discrete
FFT. This operation thus has a cost of approximately 2 FFTs on 2T -length signals.

(L∗1 L1)A1 � O(2T log 2T )

Computation of the product L∗2 L2A2 necessarily uses the Toeplitz property of L∗2 L2 because
of the irregularity of the grid Λ2. We remind that P2 = L∗2 L2 is a Toeplitz matrix verifying

(P2)k,l =
NΛ∑

j=1
ei
π
T (k−l) xj

and the computation of matrix-vector product benefits from the FFT :

(P2A2)k =
(
p2 ∗ Ã2

)
[k]

=
(
F−1(F(p2)×F(Ã2))

)
[k] 1− T ≤ k ≤ T − 1
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1. Apply the FFT to A1

Yj = (F(A1))j 0 ≤ j ≤ 2T − 1

2. Sum the Yj with equal x-coordinate xj in a 2T length signal Z :

Z[k] = |{j / xj = k [2T ]}| × Yk 0 ≤ k ≤ 2T − 1

3. Take the inverse Fourier transform of Z

(L∗1 L1 A1)l =
(
F−1(Z)

)
[l] 0 ≤ l ≤ 2T − 1

Figure 3.4: Fast computation of the matrix-vector product L∗1 L1 A1 where L1 is the sampling matrix of a
trigonometric polynomial with equal period and degree on a grid Λ ⊂ N.

where p2 and Ã2 are the 4T -length signals defined by :

p2[l] =
{

(P2)j,k s.t. k − j = l [4T ] if l 6= 2T [4T ]
0 else

Ã2[l] =
{
A2(l) for 1− T ≤ l ≤ T − 1
0 else

This requires the precomputation of p̂2 (accounts for a non-negligible part of the computation time
of algorithms presented in this section) and the numerical cost is finally :

L2A2 � O(T |Λ|)

F(p2) � O(2T |Λ|) +O(4T log 4T )) ( initialization )

P2A2 � O(4T log 4T ) ( for each multiplication )

(3.9)

1. Store A2 in a 4T -length signal Ã2 (indices vary in [0, 4T − 1] modulo 4T ).

2. Compute the discrete Fourier transform Y = F(Ã2).
3. Multiply by F(p2) : Z[k] = F(Ã2)[k]×F(p2)[k].
4. Compute the inverse discrete Fourier transform F−1(Z) and keep only the

terms of index l ∈ [1− T, T − 1] modulo 4T .

Figure 3.5: Fast computation of the matrix-vector product L∗2 L2 A2 where L2 is the sampling matrix of a
trigonometric polynomial.

The main drawback of trigonometric polynomials is that L2 has no fast implementation because
of the irregularity of Λ′. The resolution of the different problems we address in the next section
was influenced by this numerical constraint and we tried, whenever it was possible, to use a fast
implementation of previous matrices. A numerically satisfying solution to decrease the computation
cost of matrix-vector products L2A2 would be the use of the NFFT (Non-uniform Fast Fourier
Transform) of Keiner et al. [56] with the drawback of small numerical errors (but it is possible to
make this approximation error arbitrarily small by refining the approximation grid of the NFFT).
This would decrease the computation cost to a O (T log T ) +O(|Λ|)) (the term in T log T is larger
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than the usual FFT) and should be very helpful for large data sets. In the case of detection and
estimation algorithms below, the computation times for 600 × 600 images was reasonable (about
one minute). In section 3.4 we propose algorithms slower algorithms (about hours) but the main
part of this computation time is not due to the L2

3.2.3 Variational formulations of the problem

3.2.3.1 General formulation

In our problem the available data is made of a disparity map and a mask which determines the
sampling grid Λ. The distribution of available points can be very chaotic as the MARC2 software
eliminates several kind of disadvantages from the patch comparison method (see figure 3.6).

(a) Subpixel raw mask (b) Mask after different corrections

Figure 3.6: The different output masks in MARC2 : correction of adhesion and false alarms can produce very
complicated maps. (some roofs are not detected because of the chosen disparity range [−5, 5].

Tools like selective FFT filtering or other filtering methods use a full density map and introduce
thresholds, here we propose to determine the signals V1 and V2 from lacunary density maps and
a single parameter : the number of frequencies with nonzero amplitudes (or the l0 value of the
Fourier coefficients). In the spirit of Basis Pursuit, we consider the following minimization problem
(P1) and its Lagrangian formulation.

(A1, A2) = argmin
(A,B)

E(A,B) s.t. ‖A‖1 ≤ C1 and ‖B‖1 ≤ C2

⇒ ∃λ1 , λ2 > 0 s.t. (A1, A2) = argmin
(A,B)

E(A,B) + λ1‖A‖1 + λ2‖B‖1
(P1)

where E(A,B) = 1
2‖D + L1A− L2A‖22 = 1

2

∥∥∥∥D − L
(
A
B

)∥∥∥∥
2

2
and L = (−L1 , L2)).
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3.2.3.2 Stationary case

As we considered stationary and non-stationary signals, we can add a stationarity constraint to
(P1) or impose

V2(t) = V1(t+ τ) ⇔ A2 = Sτ A1

with (Sτ )k,l = δk,l e
i πT lτ

This leads to the two following problems

(A1, A2) = argmin
(A,B)

E(A,B) + λ1 ‖A‖1 + λ2‖B‖1 + λ3
2 ‖Sτ A1 −A2‖22 (P2)

A1 = argmin
A

E(A,SτA) + (λ1 + λ2) ‖A‖1 (P3)

In (P2) we added a quadratic constraint on the Fourier coefficients of V1 and V2 and in (P3)
we impose the exact time shift between the two microvibrations. This formulation preserves the
l1 + (l2)2 structure in (P1) and could be implemented with very few changes. Problem (P3) is
simpler since the number of parameters is halved compared to (P1) and (P2).

3.2.4 Resolution of problem (P1) and its variations

3.2.4.1 Minimization with the FB/ISTA algorithm

Let E1(A,B) = E(A,B) + λ1‖A‖1 + λ2‖B‖1 be the minimized functional in problem (P1). This
function is a the sum of two convex continuous functions with E(A,B) a differentiable function
with affine gradient.

∇E(A,B) = L∗
(
L

(
A
B

)
−D

)

=
(

L∗1 L1 −L∗1 L2
−L∗2 L1 L∗2 L2

)(
A
B

)
−
(
−L∗1 D
L∗2 D

) (3.10)

so we can solve problem (P1) by the semi-implicit ISTA algorithm 3.7 :

0. Initialize n = 0 , A0 , B0 and l > 0 the Lipschitz constant of L∗ L (3.10) and
ρ < 2

l
. Compute L∗1 D and L∗2 D.

1. Repeat

(a)

(
A
B

)n+1/2

=
(

A
B

)n
− ρ∇E(An, Bn)

(b) (A , B)n+1 = proxρλ1‖A‖1+ρ λ2‖B‖1 (An+1/2, Bn+1/2)
= soft(ρλ1,ρλ2)(An+1/2, Bn+1/2)

(c) n← n+ 1

while |E1(An, Bn)− E1(An−1, Bn−1)| > εE1(An−1, Bn−1) and n < nmax.

2. V1 = L1 A
n , V2 = L2 B

n and D∗ = D + V1 − V2

Figure 3.7: Forward-Backward algorithm applied to problem (P1). The corrected disparity vector here is denoted
by D∗.
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We also proposed an alternate minimization scheme in order to compare the gain of fast im-
plementations of Toeplitz matrices above and full-matrices multiplications. Indeed, in equation
(3.10) we note the presence of two non-Toeplitz matrices L∗1 L2 and L∗2 L1 which penalizes the
computation of matrix-vector products. Without explicit computation of the matrix L∗1 L2 we
have

L∗1 (L2B) � L∗2 (L1A) � O (2T (log 2T + |Λ|))
The cost of each matrix-vector multiplication can be reduced to O(T 2) if this matrix is explicitly
computed and stored :

(L∗1 L2) � O (2T (log 2T + |Λ|)) (initialization)

⇒ (L∗1L2)A2 � (L∗2 L1A1) � O
(
T 2) (for each multiplication)

whereas the minimization in A or B uses only Toeplitz matrices but requires an update of the
constant part of the gradient in (3.10) at each iteration.

0. Set n = 0 , initialize A0 , B0. Let ρ < 2
l

with l > 0 the maximum Lipschitz
constant among L∗1 L1 and L∗2 L2. Compute L∗1 D and L∗2 D.

1. Repeat

(a) Set k = 0 , Ã0 = An. Compute L∗1 L2 B
n.

(b) Repeat

• Ãk+1/2 = Ãk − ρ
(
L∗1 L1 Ã

k − L∗1 L2 B
n − L∗1 D

)

• Ãk+1 = softρλ1(Ãk+1/2)
• k ← k + 1

while |E1(Ãk, Bn)− E1(Ãk−1, Bn)| > ν E1(Ãk−1, Bn) and k < kmax.

(c) An+1 = Ãk

(d) Set k = 0, B̃0 = Bn. Compute L∗2 L1 A
n+1.

(e) Repeat

• B̃k+1/2 = B̃k − ρ
(
L∗2 L2 B̃

k − L∗2 L1 A
n+1 + L∗2 D

)

• B̃k+1 = softρ λ2(B̃k+1/2)
• k ← k + 1

while |E1(An+1, B̃k) − E1(An+1, B̃k−1)| > ν E1(An+1, B̃k−1) and k <
kmax.

(f) Bn+1 = B̃k

(g) n← n+ 1

while |E1(An, Bn)− E1(An−1, Bn−1)| > εE1(An−1, Bn−1) and n < nmax.

2. V1 = L1 A
n , V2 = L2 B

n and D∗ = D + V1 − V2

Figure 3.8: Alternate minimization of problem (P1). Each sub-problem involves only Toeplitz matrices except for
the initialization and has very fast convergence.

(L∗1 L1)A � O (2T log 2T )

(L∗2 L2)B � O (4T log 4T )
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Alternate minimization 3.8 consists here in inner loops with fast convergence due to the Toeplitz
matrices but the outer loop includes the same kind of computations as one iteration in 3.7. The
alternate minimization provided early results which encouraged us to implement the full Forward-
Backward algorithm 3.7 with non-Toeplitz operators. Problem (P2) is easy to implement from the
previous algorithm as the additional quadratic term λ3 ‖Sτ A1 −A2‖22 in energy E(A,B) becomes
a linear term in ∇E(A,B) (3.11).

∇
(
λ3
2 ‖Sτ A1 −A2‖22

)
= λ3

(
A1 − S−τ A2
A2 − Sτ A1

)
(3.11)

since S−1
τ = S−τ . In (P2) the Lipschitz constant l of L is replaced with the Lipschitz constant

of L + λ3 P (see algorithm 3.17 in section 3.2.6), and should be chosen approximately equal to
max(l, λ3). This is clearly a drawback because the convergence speed of the Forward-Backward
algorithm depends on this Lipschitz constant and its estimate.

3.2.4.2 Detection results

The first step in our study consists in the detection of the right frequencies in the disparity map.
Tables 3.0(a) and 3.0(b) contain the different parameters of the microvibrations in the test images
we used. The two main frequencies are 0.0048672 pix−1 and 0.008112 pix−1 in both cases, but
in the Village images we reduced the number of nonzero frequencies to the number of principal
modes of PLEIADES. Indeed, our experiments on the PLEIADES couples showed that the other
modes are never detected by our method. The shift parameters of each frequency in table 3.0(b)
correspond to the time/space values tj,l in the following expression :

Vj(·) =
∑T−1
l=0 |Aj(l)| ei

π
T l (·−tj,l)

⇔ arg(Aj(l)) = − π
T l tj,l [2π]

(3.12)

(a) PLEIADES images (unknown
phase ratios in the microvibrations)

Frequencies Amplitudes

0,0048672 0,25
0,008112 0,25
0,0356928 0,075
0,0397488 0,082
0,04056 0,082
0,056784 0,041

(b) Village images (imposed time ratio τ = 75.91)

Frequencies Amplitudes Shift Shift
(V1) (V2)

0,0048672 0,25 0 75,91
0,008112 0,25 34,12 110,03

Table 3.1: Parameters of the microvibrations in the different image couples of this test. Microvibrations in
PLEIADES images have six nonzero frequencies with unknown phases (or shift) and the Village couple microvibra-
tions contain only two nonzero frequencies with known phases (the time ratio between V1 and V2 is known and here
equal to 75.91)

The simulated PLEIADES images provided by the CNES3 are available in two versions : i) a

3We thank the CNES and specially G. Blanchet for providing these images.
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first version in which one frequency is in phase opposition in the two microvibrations ii) a second
version with random phases microvibrations. In both cases the phases or shift of each frequency are
unknown, consequently the only valid model for these images is problem (P1). The second version
(random phases) should be harder to restore because a mixing between the two microvibrations has
more chances to occur. Each couple of coefficients (A1(l), A2(l)) will add a sine looking perturbation
to the disparity D as shown in figure 3.3 and in regions of constant disparity H this perturbation
will be close to :

2 |A(l)| sin
(
φ2(l)− φ1(l)

2

)
sin
(
ω(l)x+ φ1(l) + φ2(l)

2

)

where ω(l) is the corresponding frequency and φ1(l), φ2(l) the arguments of A1(l) and A2(l). Phase
opposition for a given frequency means that φ1(l) − φ2(l) = π [2π] and the associated amplitude
is thus twice larger than |A1(l)|. Stationary microvibrations such that V2(t) = V1(t+ τ) cannot in
general have all frequencies in phase opposition since the amplitude associated to frequency ω(l)
in the difference (V1 − V2) is

2|A1(l)| sin
(
ω(l) τ

2

)
.

The relation ω(l) τ ∈ π [2π] between the oscillation modes of the satellite (the ω(l)s) and the shift
τ is certainly never verified for every frequency mode in table 3.0(a).

In all the cases we considered4, the amplitudes of each frequency in both microvibrations are
equal so the Lagrange parameter λ1 and λ2 should be very close. In figures 3.10 and 3.11 we display
the evolution of the `0 and `1 values of the solution as a function of the Lagrange parameters (with
λ1 = λ2 , λ2 ∈ [2000, 15000]). The moduli of the coefficients A1(l) and A2(l) in figures 3.12 and
3.13 show that in general the opposition case is indeed better detected, as the two principal modes
≈ 0.0048 pix−1 and ≈ 0.0081 pix−1 have similar amplitudes. These amplitudes can be very different
in the random case (this happens in all cases of figure 3.13 ) which means that the target frequency
has the same phase in both microvibrations and thus a lower amplitude in the disparity map. In
the general case, and up to the convergence precision, we observe that the number of nonzero
coefficients (l0 value) in each vector A1 and A2 is a piecewise constant, decreasing function when
the Lagrange parameters λ1 and λ2 increase. We verify experimentally that the sum of the `1

norms is a strictly decreasing function, but this is not the case for each vector separately (figure
3.11 (top)).

4The study of completely independent microvibrations is possible with model (P1), but in practise this case is
not verified.
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(a) PLEIADES images #1 (b) PLEIADES images #2 (c) PLEIADES images #3

Figure 3.9: Test images (CNES copyrighted simulated PLEIADES images of Toulouse with resolution 0.7m). The
couples have been rectified to epipolar geometry before the addition of horizontal microvibrations.
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Figure 3.10: `1 norms and `0 values of both A1, A2 and sum as a function of the Lagrange parameters λ1 and
λ2 with λ1 = λ2 : phase opposition (one of the frequencies is in phase opposition). The left images are displayed in
figure 3.9 .
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Figure 3.11: `1 norms and `0 values of both A1, A2 and sum as a function of the Lagrange parameters λ1 and λ2
with λ1 = λ2 : random phases.
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Figure 3.12: Amplitudes of coefficients in the solutions A1 and A2 : phase opposition (Frequencies in pix−1 on
horizontal axis) . Our experiments tend to prove that the frequency in phase opposition is 0.0048672 although its
amplitude in the third row is lower than the expected 0.5
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Figure 3.13: Amplitudes of coefficients in the solutions A1 and A2 : random phases. This clearly has an influence
in the third case where the inlier 0.0045 is hardly detected compared to figure 3.12.
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Instinctively (and for practical reasons) we chose to explore the Lagrange domain with λ1 = λ2,
but we observe that in general it produces vectors A1 and A2 with different `0 values. Tuning these
parameters in such a way that A1 and A2 have the same number of nonzero coefficients is still
possible with an outer Uzawa loop, but the computation time can become arbitrarily large in this
case.

Indeed, the update of one parameter can decrease the `0 value of one vector and increase the
other. This phenomenon is not a critical point in the detection step since we do not take care
about the associated amplitudes, but it is probable that the amplitudes estimation will suffer from
this. We observe on the one hand that irregularity in the sampling of V2 produces different vectors
A1 and A2, and on the other hand the separation of these two microvibrations will be a difficult
task because of the mixing between these two vectors. This is illustrated in figure 3.14 where we
chose Lagrange parameters λ1 and λ2 such that λ1 + λ2 = Cte. We observe the approximative
conservation of the quantity |A1(l)| + |A2(l)| for the principal frequencies, which means that a
portion of the disparity can be explained with either V1 or V2.
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Figure 3.14: Mixing between V1 and V2 : increasing the penalty on one vector transfers the amplitudes to the
other. This graph also shows how to choose parameters λ1 and λ2 such that ‖A1‖1 = ‖A2‖1 (here 20200 and
19800). In this case the `0 values of these vectors are the same (`0(A1) = `0(A2) = 2).

These first tests on PLEIADES simulated images seem to detect correctly the principal modes
in the microvibrations but it is not possible here to check the accuracy of the correction since we
do not know the ground truth. In the next experiment we applied this detection algorithm to the
image Village from L. Moisan’s simulator (figure 3.3(c) p. 38).

3.2.5 Partial correction

These results can be used to remove a part of the microvibrations in the disparity map despite
the difficulty in the tuning of Lagrange parameters. The partially corrected map can be viewed
in figure 3.16. The data Village does not satisfy the decorrelation hypothesis between the true
disparity signal H(k + V1(k)) and the microvibrations despite the presence of a large plane area.
The spacing between buildings and their resolution are certainly at the origin of this mixing and
illustrates the case of correlated microvibrations and disparity.



52 CHAPTER 3. ESTIMATION OF THE MICROVIBRATIONS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 12000  14000  16000  18000  20000  22000  24000  26000  28000  30000

Lagrange parameters λ1 and λ2

l1 norms of A1 and A2 (Village)

A1
A2

Sum

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0
 0

.0
02

 0
.0

04
 0

.0
06

 0
.0

08
 0

.0
1

 0
.0

12
 0

.0
14

 0
.0

16
 0

.0
18

 0
.0

2
 0

.0
22

 0
.0

24
 0

.0
26

 0
.0

28
 0

.0
3

 0
.0

32
 0

.0
34

 0
.0

36
 0

.0
38

 0
.0

4
 0

.0
42

 0
.0

44
 0

.0
46

 0
.0

48
 0

.0
5

 0
.0

52

Village #1

12000
15000
18000
21000
24000
27000
30000

 0

 2

 4

 6

 8

 12000  14000  16000  18000  20000  22000  24000  26000  28000  30000

Lagrange parameters λ1 and λ2

Number of nonzero coefficients in A1 and A2 (Village)

A1
A2

Sum

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0
 0

.0
02

 0
.0

04
 0

.0
06

 0
.0

08
 0

.0
1

 0
.0

12
 0

.0
14

 0
.0

16
 0

.0
18

 0
.0

2
 0

.0
22

 0
.0

24
 0

.0
26

 0
.0

28
 0

.0
3

 0
.0

32
 0

.0
34

 0
.0

36
 0

.0
38

 0
.0

4
 0

.0
42

 0
.0

44
 0

.0
46

 0
.0

48
 0

.0
5

 0
.0

52

Village #1

12000
15000
18000
21000
24000
27000
30000

Figure 3.15: Detection algorithm applied to the simulated Village images. The frequency 0.008 is indeed detected
but the associated amplitude decreases faster than the 0.0068 outlier, partial correction is not accurate at all (3.16).

(a) Ground truth disparity from simulator (b) MARC2 output with microvibrations

(c) Partial correction of the disparity map with λ1 =
λ2 = 2.104

(d) Partial correction of the disparity map with λ1 =
λ2 = 3.104

Figure 3.16: Partial correction of the disparity map after the detection step (here with large parameters λ1 =
λ2 = 3.104). Despite the large plane areas in the ground truth the detection contains an outlier and does not
correctly estimate the perturbation.
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The next section is a resolution of problem (P3) applied to the Village images. We imposed a
known time shift between the two microvibrations of this couple and propose to reduce the number
of unknowns to check whether this mixing phenomenon persists or not with additional knowledge
on the oscillations.

3.2.6 Stationary microvibrations

Our solving of the stationary case was achieved first by a quadratic penalization on the difference
Sτ A1−A2 where Sτ is a diagonal matrix with general term (Sτ )l,l = ei

π
T l τ . It corresponds to the

diagonalization of the shift operator acting on the set of trigonometric polynomials :

∑T−1
l=1−T A1(l) ei πT l (·+τ) =

∑T−1
l=1−T

(
A1(l) ei πT l τ

)
ei
π
T l ·

=
∑T−1
l=1−T (Sτ A1)l ei

π
T l ·

This problem suffers from the following disadvantage : if one wants to impose exact time shift
between V1 and V2, the associated Lagrange λ3 in (P2) should be very large (a factor ≈ 100 between
λ1 and λ3 was necessary in our case) and so would the Lipschitz constant of the associated linear
operator. We mention in algorithm 3.17 the modifications to algorithm 3.7 corresponding to this
implementation.

0. Initialize n = 0 , A0 , B0 and l > 0 the Lipschitz constant of L∗ L +λ3 P .

where P =
(

Id −S−τ
−Sτ Id

)

(. . . )

1. (. . . )

(a)

(
A
B

)n+1/2

=
(

A
B

)n
− 1

l
∇E(An, Bn) + λ3 P

(
A1
A2

)

(b) (. . . )

(. . . )

Figure 3.17: Modified Forward-Backward algorithm for (P2).

This formulation allows flexibility in the microvibrations, for example in the case when the
stationarity hypothesis is not exactly verified, an l2 penalization between the two vectors A1 and
A2 can allow slight differences in amplitudes and phases of Sτ A1 and A2. Concerning problem
(P2), we verified experimentally that for large parameters λ3 the solution of (P2) converges to the
solution (P3) for the l2 norm (but the number of nonzero coefficients is generally larger with (P3).

We focus now on the simpler problem (P3). The scheme of the algorithm is similar to 3.7 but
gradient of the l2 part no more has Toeplitz structure :

∇
(

1
2 ‖(−L1 + L2 S−τ ) · −D‖2

)
(A1) = (L∗1 L1 + (L2 S−τ )∗(L2 S−τ )

−(L2 S−τ )∗ L1 − L∗1 L2 S−τ ) A1 − (−L1 + L2 S−τ )∗D

and the algorithm should be adapted according to algorithm 3.18.
Experiments on the Village couple (figure 3.19) unfortunately shows the persistence of the

outlier under stationarity hypothesis with algorithm 3.18. The resolution of the scene is thus



54 CHAPTER 3. ESTIMATION OF THE MICROVIBRATIONS

0. Initialize n = 0 , A0, ρ < 2
l

with l > 0 the Lipschitz constant of L∗τ Lτ and
Lτ = −L1 + L2 S−τ . Compute L∗τ D.

1. Repeat

(a) An+1/2 = An − ρ (L∗τ Lτ A1 + L∗τ D)

(b) An+1 = softρ (λ1+λ2)(An+1/2)
(c) n← n+ 1

while |E3(An)− E3(An−1)| > εE3(An−1) and n < nmax.

2. V1 = L1 A
n , V2 = L2 Sτ A

n and D∗ = D + V1 − V2

Figure 3.18: Forward-Backward algorithm for (P3).

very important when using this blind separation approach and we observe that the stationarity
hypothesis is not sufficient in this problem.
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Figure 3.19: Detection of microvibrations with formulation (P3) and a time shift corresponding to the real time
shift between V1 and V2. The outlier 0.0068 pix−1 is still present and the correction is not improved compared to
3.16
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3.3 Amplitude estimation

Results from the detection step show that it is necessary to over-regularize the problem in order
to remove wrong detections (outliers). In this case correct detections suffer from the so-called
erosion effect which occurs in every `1 constrained problem. This drawback of Basis Pursuit
can be corrected by solving the least-squares problem with restriction to the detected frequencies
provided that they do not contain outliers. We present in this section two approaches to perform
this additional least-squares step.

3.3.1 Iterated Hard-Thresholding Algorithm (IHTA)

Erosion is a well known phenomenon due to soft-thresholding and works by Bluemensath et al. [13]
have shown that replacing this soft-thresholding by a hard-thresholding in the Forward-Backward
algorithm gives a local minimizer of a l0 Lagrangian constrained function.

Theorem 14 (Blumensath, Davies 2008) Let CL0(X) = ‖ΦX −Y ‖2 +λ l0(X) with λ > 0, Φ
a linear operator on Rd such that Id− Φt Φ has a Lipschitz constant < 1. The sequence

(
Xk
)
k≥0

defined by X0 ∈ Rd and ∀k ≥ 0 :

Xk+1 = hard√λ
(
Xk − Φt (ΦXk − Y )

)
(3.13)

converges to a local minimizer of CL0 .

with

(hardλ(X))i =
{

0 if |Xi| ≤ λ
Xi else

(3.14)

By a rescaling argument we obtain that the hard-thresholding algorithm with threshold ρλ and
gradient descent step ρ as in (3.7) converges to a local minimizer of :

1
2 ‖ΦX − Y ‖2 + ρλ2

2 l0(X) (3.15)

The local minimizer is an optimal result because the `0 Lagrangian constrained problem in this
case is a NP-hard problem (see [65] p. 612). It is thus necessary to initialize this algorithm close to
the global minimizer to avoid a non-satisfying local minimizer. We applied the hard-thresholding
algorithm (3.13) to the solution of the Forward-Backward algorithm (3.7) with various parameters
λ1, λ2 in order to get a number of nonzero frequencies smaller than the number of frequencies in
tables 3.0(a) and 3.0(b), respectively six and two.
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(a) Here we chose Lagrange parameters λ1 = λ2 = 3.103 such that the numbers of nonzero
frequencies in A1 and A2 are close to six as in table 3.0(a). The presence of outliers in the
detection leads to significant errors in the least-squares solution.

Frequencies Amplitudes (V1)

0.006818 0.231948
0.007576 0.295975
0.009848 0.122875
0.015909 0.119733
0.020455 0.196495

Frequencies Amplitudes (V2)

0.000758 0.175933
0.003030 0.064870
0.004545 0.558571
0.008333 0.391177
0.018182 0.123960
0.021212 0.258301
0.021970 0.249609

(b) Elimination of outliers : λ1 = λ2 = 5.103. There are still outliers ({0.006818, 0.000758})
in the detected frequencies but they have smaller amplitudes (0.093 and 0.187).

Frequencies Amplitudes (V1)

0.006818 0.093781
0.007576 0.347388

Frequencies Amplitudes (V2)

0.000758 0.187512
0.004545 0.501771

(c) Elimination of outliers : λ1 = λ2 = 9.103. Here we eliminated all the outliers and the
associated amplitudes of the right frequencies match the data in table 3.0(a) (the phase
opposition seems to be for 0.004545) but the correct frequencies are separated.

Frequencies Amplitudes (V1)

0.007576 0.343936

Frequencies Amplitudes (V2)

0.004545 0.531971

Table 3.2: Results of hard-thresholding iterations for the PLEIADES #1 images. The correct frequencies are
0.0048672 and 0.008112 with amplitude 0.25, we observe here that these two modes are correctly estimated. The
first mode is 0.004545 with amplitude ≈ 0.5, this seems to correspond to the phase opposition frequency, and the
second mode is detected with a 0.007576 value and 0.36 amplitude instead of two components with 0.25 amplitude.
It clearly appears that we recovered V1 + V2 here instead of V1 and V2.
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(a) No perturbation (b) MARC 2 output

(c) Corrected map (d) Initial error : (a) - (b)
in [− 1, 1]

(e) After correction : (a) - (c)
(same scale)

Figure 3.20: Correction of PLEIADES #1 map with parameters λ1 = λ2 = 9.104 (see table 3.1(c)). Initial error
oscillates between [−1, 1] (except for a few points due to the median filter). After correction the vertical stripes
disappeared and the error oscillates between [−0.2, 0.2].

Correction with parameter λ1 = λ2 = 9.103 (no outlier) of PLEIADES images #1 is displayed
in figure (3.20). Although we cannot quantify the accuracy of the correction, we observe that
the vertical stripes have disappeared (we applied our correction to the median map for display
purpose).

Experiments in table 3.2 and 3.3 show the importance of correct detection in the resolution
of the Basis Pursuit problem. Amplitudes associated to outliers are significant in the PLEIADES
images when the number of nonzero coefficients correspond to the modelization of microvibrations.
It is necessary to over-regularize the microvibrations in order to eliminate these outliers and even
in this case the problem of mixing between V1 and V2 can be confusing. Table 3.2 shows that
an intermediary regularization factor (5.104) reduces the l0 values to 2 which is the number of
principal frequencies in V1 and V2, but these frequencies are not present in both vectors. Other
coefficients correspond to outliers (with small amplitudes). Table 3.2(b) reveals that without
the stationarity hypothesis, the detected frequencies may contain outliers even if the number of
frequencies matches the input data. Unfortunately we observed that adding this hypothesis does
not eliminate the outlier 0.006838 as shown in table 3.4.
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(a) Hard-thresholding with λ1 = λ2 = 2.104. The l0 value of the solutions is increased by
the hard-thresholding step compared to the minimizer of P1 (figure 3.15) and outliers have
a great amplitude.

Frequencies Amplitudes (V1)

0.004883 0.763256
0.007812 0.390295
0.009766 0.657341

Frequencies Amplitudes (V2)

0.006836 0.995422
0.011719 0.585008

(b) Elimination of outliers : λ1 = λ2 = 3.104. Although the l0 values after hard-
thresholding iterations are smaller than the correct values (table 3.0(b)) , there is still
an outlier with significant amplitude (0.006836) which dominates the correct frequency
0.007812.

Frequencies Amplitudes (V1)

0.004883 0.903166
0.007812 0.339373

Frequencies Amplitudes (V2)

0.006836 0.734917

Table 3.3: Hard-thresholding for the Village #1 couple

Frequencies Amplitudes (V1)

0.004883 0.30
0.006836 0.34

Table 3.4: Hard-thresholding with stationarity hypothesis and same thresholds as in (3.2(b)). The solution does
not improve the correction of the disparity map (see figure 3.16).

As a conclusion of this estimation step, we observed that in the provided PLEIADES images
the l1 detection followed by a hard-thresholding step generally gives correct results provided that
the number of frequencies is reduced to the number of principal modes (here 0.0048 and 0.0081).
Frequencies with lower amplitudes are not detected in the first step and cannot be retrieved by the
`0-constrained least squares. Even in this case, the absence of outliers is not guaranteed because of
the mixing between V1 and V2 but this phenomenon can be highly reduced by over-regularization.
In that case we tried to eliminate outliers thanks to an a contrario approach, in the framework of
a contrario methods proposed by Desolneux et al. in the late 90’s.
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3.3.2 A contrario least-squares

The a contrario method developed by Desolneux, Moisan and Morel [36] - [37] aims at detecting
meaningful events (with a very low probability of occurence) in images among criteria of the
Gestalt theory of Wertheimer (1923) et al. . The main idea is that some qualitative geometric
properties (alignment, parallelism, grouping, symmetry . . . ) are meaningful for the human vision
system because they have a low probability of occurrence in the general set of possible images.
In this context, measuring the meaningfulness of a geometric event requires an a priori statistical
model for the general set of images. The classical example [36] is the detection of a square in an
image whose pixels are the realization of i.i.d. Bernoulli variables B(1, p). Although this approach
was originally applied to geometric problems, it has been successfully applied more recently to
very different problems (for example [82] [31]) with the same formalism (the choice of a statistical
model and a definition of ε-meaningfulness). Work in this section is greatly inspired by works of L.
Moisan and S. Durand in the one dimensional case [80], which deals with randomly sampled signals
perturbed by additive Gaussian white noise. In that case it revealed quite efficient in recovering
sums of few sine functions, as predicted by the Compressive Sensing theory.

Assume (H0) that the disparity Dk is the realization of i.i.d. Gaussian variables with mean
zero and standard deviation σ (the mean part of the disparity is subtracted in the algorithms in
order not to detect the zero frequency). For a given set of p frequencies F = {fj}j=1..p ⊂]0, 1

2 [, the
minimization of the least squares problem :

IF = min
supp(A),supp(B)⊂Fp

‖L (A,B)−D‖22 (3.16)

gives the squared norm of the difference betweenD (real) and its projection on the 4p R-dimensional
space spanned by :

{(
ei2π fj kx

)
k∈Λ ,

(
e−i2π fj kx

)
k∈Λ ,

(
ei2π fj k

′
x

)
k′∈Λ′

,
(
e−i2π fj k

′
x

)
k′∈Λ′

}

j=1..p

Thus the random variable 1
σ2

(
‖D‖22 − IF

)
follows a χ2 law with 4p parameters. In the spirit of

a contrario methods, a quantity called NFA (Number of False Alarms) is associated to such a set
F with |F | = p and represents a kind of probability of occurrence (the smaller the NFA, the less
probable the event).

NFA(F ) = Ntest(p)
(

1− β4p

(
1
σ2 (‖D‖22 − IF )

))
(3.17)

where Ntest is the number of tests for objects similar to F (here the number of frequency subsets
with p elements) and β4p is the repartition function of the χ2 law with 4p parameters. Consider a
maximal set of possible frequencies Fmax with Nmax elements, the total number of subsets with p

elements is simply

(
Nmax
p

)
. The function 1− β4p(x) has the expression :

1
(2p− 1)!

∫ +∞

x/2
e−t t2p−1 dt

and its logarithm can be apprimated for large x by

log10(1− β4p(x)) ≈ −(2p− 1) log10

(x
2

)
+ x

2 ln(10) + log10 ((2p− 1)!)

which gives a fast computation of log10(NFA(F )).
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An initial maximum set Fmax is selected from the solutions of the detection step (with `1

regularization) and all subsets of Fmax are tested. The computation of the NFA for each subset
requires the resolution of a least squares problem with very few unknowns. In our problem, the
number of selected frequencies is usually small (≤ 10) and it is possible to compare the NFAs of
all subsets of Fmax in a reasonable time. We applied this algorithm to PLEIADES images with an
initial set of frequencies reduced to approximately ten frequencies (table 3.2 (top) is a good example
of the set of frequencies we used). The resolution of the least squares problem (3.16) in this case
produces microvibrations V1 and V2 completely different from the results of the hard-thresholding
algorithm. Here the vectors we obtain have high amplitudes and similar phases (table 3.5).

(a) A contrario method applied to image PLEIADES #1. Here the best subset found
is the whole initial set of frequencies and amplitudes are completely overestimated
by the least squares solving.

Frequencies |A1(l)| argA1(l)(rad) |A2(l)| argA2(l)(rad)

0.00681818 30.0695 2.82185 30.3029 2.80227
0.000757576 252.913 -0.0261188 252.959 -0.0283931
0.0030303 16.4557 -1.68534 16.511 -1.69452
0.00454545 12.0895 -1.77027 12.1493 -1.78369
0.00833333 37.4141 -0.368789 37.8258 -0.393235
0.0212121 2.96079 -2.44681 3.0136 -2.50594
0.0219697 1.69744 -0.853755 1.74718 -0.925229
0.00757576 53.9689 -1.90772 54.4271 -1.92992
0.00984848 17.272 -0.418362 17.6003 -0.447587
0.0106061 10.1413 1.11991 10.3687 1.08782
0.0204545 2.06628 2.34208 2.06584 2.28599

(b) With a different initial frequency set (left column) the overestimation of ampli-
tudes persists.

Frequencies |A1(l)| argA1(l)(rad) |A2(l)| argA2(l)(rad)

0.00757576 5.53161 -1.58311 5.27379 -1.57022
0.00454545 4.44838 -2.89816 4.85415 -2.84339

Table 3.5: A contrario elimination of outliers : this approach fails because of the intrinsic formulation of our
problem. The very special shape of the sampling set makes it highly ill-posed, the elevation D and the perturbations
are not decorrelated.

In our experiments with the least squares method, the estimated microvibrations V1 and V2
were always overestimated and the residue D + V1 − V2 was very small, which means that a large
portion of the disparity can be represented with a few nonzero coefficients.

Indeed, problem (P1) admits trivial solutions : let V1(x) = V2(x) = −x + cte on the disparity
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support Λ ⊂ [0, n− 1]× [0,m− 1], then

V1(zk)− V2(zk − (Dk)1) = −(Dk)1 for all 1 ≤ k ≤ |Λ|

Trivial solutions correspond to 2T periodic functions equal to −x+cte on the image domain. Since
we usually take T = n, these trivial solutions are possible and unfortunately discredit the least
squares method. This drawback cannot be eliminated by taking a different initial frequency set
as shown in table 3.4(b) where we eliminated low frequency outliers (among which the largest
harmonic components of the trivial solution).

This phenomenon can be explained by Parseval’s energy formula : the solution of the least-
squares problem with frequency set F has a great probability (depending on the lacunary set
Λ) to give frequency vectors (A1, A2) equal to the restriction on F of the trivial solution (V1 =
V2 = −x + Cte). This is not exactly the case in table 3.4(b), we remark that amplitudes are
still over-estimated but lower than in table 3.4(a), we guess the shape of the sampling set Λ is
the cause of this observation. The less probable frequency set in the a contrario approach will
always be the whole initial set Fmax which gives the smallest residu among all subsets of Fmax.
This explains why this approach does not work here. This also reveals that the separation of two
microvibrations is much harder than the single microvibration estimation. In the Basis Pursuit and
Hard-Thresholding steps, the presence of a non-quadratic regularization (`1 and `0) prevented this
ill-posedness, the counterpart is the mixing phenomenon between V1 and V2 (a correct frequency
lies in V1 or V2 but not in both V1 and V2 at the same time).

3.3.3 Conclusion of the estimation step

Our initial goal was the blind separation of the disparity and the microvibrations in the spirit of
Basis Pursuit and our results show that this task is partially feasible in the framework of this study.
Detection of microvibrations in PLEIADES type images is possible with this approach because the
amplitudes of the disparity and the perturbation are not so different (a factor 10 is still reasonable)
and more importantly because the contents of the disparity maps (buildings, streets, hills . . . ) do
not correspond to the principal vibration modes. Estimation of amplitudes is more difficult and
one of our approaches (Hard-Thresholding) gives encouraging results although we cannot measure
the accuracy of the correction in the PLEIADES images. The a contrario approach revealed the
high ill-posedness of the problem and the role of nonquadratic regularizations (`1 and `0 prevented
this ill-posedness but the counterpart is the mixing between V1 and V2).

We applied our blind separation method to synthetic data (images Village from the simulator)
and observed that the resolution of the buildings in this case has an influence on the detection.
The elevation model itself contains low frequencies because of the spacing between buildings and
our corrections could not eliminate the outliers. Our observations also show that the separation of
V1 and V2 in the images we considered is too difficult and that only V1 − V2 can be estimated. In
the next section we detail a successful attempt to deal with images of the Village type, in which
large areas corresponding to affine elevation are present. It corresponds to the case when blind
separation fails because of the elevation contents, but a closer look at the disparity map 3.3(c)
reveals a segmentation of the disparity due to the adhesion correction mask. We propose a new
formulation to exploit this feature.



62 CHAPTER 3. ESTIMATION OF THE MICROVIBRATIONS

3.4 An additional hypothesis for better correction

The preceding sections have shown the difficulty of estimating the amplitudes in the signals V1 and
V2 from lacunary disparity maps. In the case of simulated images Village, this difficulty persists
despite the presence of large affine parts in the map H(k+V1(k)) and this for several reasons. First,
the disparity may contain low frequencies, like repetitive buildings structures or natural oscillatory
elevations (sand dunes, hills, mountains ). Second, the output of a sub-pixel disparity software like
MARC2 is irregularly sampled, large holes may be present in the disparity mask which make the
frequency detection harder. In this context of impossible blind separation, we an a priori on the
elevation model H and consider it as a piecewise affine function in order to reduce the difficulty of
this problem.

3.4.1 Formulation of the piecewise affine hypothesis

Consider equation (3.6) :

D(zk) = H(zk + V1(zk))− V1(zk) + V2(zk −D(zk)) 1 ≤ k ≤ |Λ|

The main difficulty in the previous modelizations is that the real disparity H may have large
amplitudes compared to V1 and V2, contains low frequencies as well as V1 and V2, and that the
sampling set Λ may have large gaps which remove frequency information. If H is locally determined
by a few coefficients, the system (3.6) will have more equations ( |Λ| ) than unknowns ( the
coefficients of H, A and B in a certain basis). Again, the sparsity of the different signals in
presence is the key point we want to exploit to solve a problem apparently underdetermined.

This approach is somehow similar to the state of the art methods of section 3.1.2 in which
a plane area is used to estimate the microvibrations, but it is more general. In urban areas, the
disparity is certainly not a single plane on a length of several microvibrations periods, at least for the
PLEIADES data. Assuming that the disparity H is piecewise affine seems more reasonable and the
relevance of this assumption can be verified by looking at the elevation H(k+V1(k)) provided by the
simulator (figure 3.21). We display in the middle the difference H(zk)−H(zk+V1(zk)) thresholded
between [−0.1, 0.1]. We verify that irregular sampling has a small influence on the shape of the
elevation in flat areas and that most of the points in image 3.21(b) with high amplitudes correspond
to edges of buildings and are eliminated by the adhesion correction filter (figure 3.21(c)).

The adhesion correction mask not only removes points with wrong disparities, but also separates
the different surfaces present in the elevation (roofs, walls, ground). The remaining connected
components generally correspond to a single surface and are very likely to be piecewise affine in
urban areas. In dimension two, a function F is said to be affine if there exists a, b, c ∈ R such that
:

F (x, y) = a x+ b y + c (3.18)

and a differential characterization of such functions is :

F ∈ C2(R2) ∂2F

∂x2 = ∂2F

∂y2 = ∂2F

∂x∂y
= 0 on R2 (3.19)

At this point, our choice to treat the affine property in a variational formulation is questionable.
Using either (3.18) on each connected component or (3.19) on the whole disparity domain would
give the same function. We chose to use the variational characterization because of its flexibility.
Adhesion correction here is a blessing since it removes edges in the disparity map associated to
strong contrast changes in the original images, but it might not remove roof edges (discontinuity
in the gradient of the elevation) and smooth non-affine surfaces, although this kind of surfaces
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(a) Simulated disparity
H(k + V1(k)) in (-5,5)

(b) Simulated difference
H(k) − H(k + V1(k)) between
(−0.1, 0.1)

(c) Difference (b) after ad-
hesion correction between
(−0.1, 0.1)

Figure 3.21: Relevance of the hypothesis on H(k + V1(k)) . The approximation H(k) ≈ H(k + V1(k)) does not
seem to introduce errors in the equation (3.6) thanks to adhesion correction which removes edges from the sampling
set Λ1 = {k + V1(k)} .

is more unusual in satellite images (see for example the circular buildings from image 3.3(c) in
the zoom below). The use of penalization on second order derivatives in (3.19) preserves some of
the features that do not exactly fit the piecewise affine model, but the price for this flexibility is
the number of unknowns in H (which is not reduced), the presence of one or more regularization
parameters, and the necessity to solve a minimization problem involving second order derivatives
on a lacunary sampling set.

(a) Extract from image Village (b) Disparity associated to this area

Figure 3.22: Example of nonaffine surfaces from images Village. Curved surfaces and roof edges do not satisfy
the piecewise affine hypothesis and may be present in the final disparity map
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3.4.2 Regularization on the second order derivatives

3.4.2.1 Choice of an `1-norm

As mentioned earlier, our approach consists in decreasing the number of unknowns in our problem
by approximating the disparity with a function close to (3.19). Unfortunately, penalizing the
second order derivatives of H and assuming that H is piecewise affine are two very different ways
of adressing the problem and not every penalization function will produce the desired result. The
definition set of H is an important argument for using spatial penalization functions, as opposed
to Fourier semi-norms. The regularity of the solution is the most important parameter, and we
chose here to penalize the `1-norm of the Hessian.

∑

k∈Λ3

∑

0 ≤ i, j ≤ 2
i+ j = 2

∣∣∣∣
∂2H

∂xi ∂yj
(z)
∣∣∣∣ (3.20)

where Λ3 ⊂ Λ is the set of points where these derivatives can be computed. In the theory of Sobolev
spaces, this amounts to consider a solution in BV 2(R2) where BV 2(Ω) is defined for regular open
sets Ω ⊂ Rn by

BV 2(Ω) =
{
u ∈ W1,1(Ω) s.t.

∂u

∂xi
∈ BV (Ω) ∀i ∈ {1 . . . n}

}
(3.21)

which allows discontinuous derivatives but does not allow discontinuous functions because of the
following properties :

BV (R2) * C(R2) , BV 2(R2) ⊂ W1,2(Ω) ⊂ C(R2)

where W1,2(Ω) is the classical H1(Ω) Hilbert space. (see [9]). This kind of Sobolev inclusions give
a good insight of the properties of a differential semi-norm in penalization methods. In a discrete
framework, these inclusions mean that discontinuities in the function have a much larger cost than
discontinuities in the gradient. Another important property in the discrete implementation of `1

norms is the sparsity of the solution due to the non-smoothness of the `1 norm at points with a
null coordinate. This sparsity is well-known in total variation regularizations (stair-casing effect in
BV (R2) with the Total Variation) and in our case this is likely to produce solutions with sparse
second order derivatives as desired.

3.4.2.2 The Hessian operator and related variational problems

In the following we use the notation F for the piecewise affine disparity on Λ. We use the classical
first and second order finite differences operators on images defined by





∂2F
∂x2 (k, l) = F (k − 1, l)− 2F (k, l) + F (k + 1, l)

∂2F
∂y∂x (k, l) = ∂2F

∂x∂y (k, l) = F (k, l)− F (k − 1, l)− F (k, l − 1) + F (k − 1, l − 1)

∂2F
∂y2 (k, l) = F (k, l − 1)− 2F (k, l) + F (k, l + 1)

(3.22)

and noteH(F ) the discrete Hessian matrix of F . Here the definition set of F is Λ ( [0, n− 1]× [0,m− 1] ∩ N
on the contrary of classical denoising problem and computation of the previous differences is not
always possible. The penalization of the Hessian will involve a different set Λsub ⊂ Λ defined by :

Λsub = {(k, l) ∈ Λ× [0, n−1[ s.t. (k−1, l−1), (k, l), (k, l+1), (k−1, l), (k+1, l), (k−1, l−1) ∈ Λ}
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This corresponds to an erosion of Λ by the set of pointsN = {(−1,−1), (−1, 0), (0,−1), (0, 0), (0, 1), (1, 0)}
(see example in figure 3.23). Thanks to the practical observations on H (figure 3.21(c)) we can
approximate F on the sampling set Λ1 = {k + V1(k)} as in equation (3.6) by its values on Λ :

F (k + V1(k)) ≈ F (k) k ∈ Λ

We denote by M the linear operator from R|Λ| → R3|Λ3| of second order finite differences

M F =




∂2F
∂x2

2 ∂2F
∂y∂x

∂2F
∂y2




and we formulate our problem as a constrained minimization problem as in (Pi)i=1,2,3

(A1, A2, F ) = argmin
(A,B,G)

E′(A,B,G) s.t. ‖A‖1 ≤ C1 , ‖B‖1 ≤ C2 and ‖H(F )‖1 ≤ C4

⇒ ∃λ1 , λ2 , λ4 > 0 s.t. (A1, A2, F ) = argmin
(A,B,G)

E′(A,B,G) + λ1‖A‖1 + λ2‖B‖1 + λ4‖H(F )‖1

(P4)

with E′(A,B,G) = ‖D + L1A1 − L2A2 −G‖22 the squared differences on Λ and ‖H(F )‖1 the
sum of absolute values of the Hessian on Λ3. We made this approximation in the first place to
simplify the problem in the F variable, but a clever implementation of a sampling operator on
F would preserve the complexity of the problem (for example an interpolation operator with P1
finite elements, or a simple neighbourhood weighting). But the dependence of Λ1 on V1 would also
change the properties of the minimized function in (P4), in particular the convexity in the variables
A,B and F .

(a) Original mask of points in Λ (b) Mask of points in Λ3 obtained by
erosion

Figure 3.23: Set of sampling Λ of F (left) and set of penalization Λ3 on the Hessian H(F ) (right)

As in the detection section, it is possible to consider time dependant microvibrations as in (P3),
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this leads to a simpler problem with only one vector of Fourier coefficients A1

(A1, F ) = argmin
(A,G)

E′(A,Sτ A,G) + (λ1 + λ2) ‖A‖1 + λ4‖H(F )‖1 (P5)

The energies we deal with still have good minimization properties, we show in the next section
that these new problems share many properties with previous problems (Pi)i=1,2,3, the same kind
of tools can be used to solve them.

3.4.2.3 Minimization algorithms

We use the following notations :

E4(A,B,G) = E′(A,B,G) + λ1‖A‖1 + λ2‖B‖1 + λ4‖H(F )‖1 (3.23)

E5(A,G) = E′(A,Sτ A,G) + (λ1 + λ2)‖A‖1 + λ4‖H(F )‖1 (3.24)

Similarly to Ei, i ∈ {1, 2, 3}, the functions E4 and E5 belong to the nice class of l1 +(l2)2 functions
(up to linear operators). Here we have :

E4(A,B,G) = ‖(λ1A, λ2B, λ4M G)‖1 + 1
2 ‖D + L1A− L2B −G‖22 (3.25)

with different vector sizes in the l1 and (l2)2 terms, indeed A and B have size T , M G the vector
of second order derivatives has length 3|Λ3| and D has length |Λ|. Semi-implicit schemes and their
accelerated versions are of course efficient algorithms here, but were not the first ones we considered.
Experiments proved we were right when using an alternate minimization scheme for this problem
(see algorithm 3.27 ). Still, it suffers from an intrinsic drawback of iterated dual schemes (we detail
this later in the alternate minimization paragraph). Both the semi-implicit algorithm 3.29 and the
alternate minimization algorithm share a common step which is the computation of the proximal
of ‖M · ‖1

proxλ‖M ·‖1(Y ) = argmin
G

λ‖M G‖1 + 1
2 ‖G− Y ‖

2
2 (3.26)

also called TV 2-denoising problem (with quadratic fitting term). We first give the details of this
minimization problem.

3.4.3 The TV 2-denoising problem

This denoising problem has been addressed in the literature (Chambolle et al. 1997 [23], Piffet et
al. 2010 [9]) for square images and is very close to our proximal problem in its implementation.
The function

ETV 2(G) = λ‖M G‖1 + 1
2 ‖G− Y ‖

2
2

is strictly convex on R|Λ| due to the square norm, but it is not differentiable because of the `1

term. Gradient and subgradient schemes have in this case a low convergence speed and the dual
formulation of this problem provides faster algorithms (as in [22] with the Total Variation). The
problem 3.26 can be formulated as a saddle point problem :

(PTV 2) min
G

max
s∈K∗

λ 〈M F, s〉Λ3
+ 1

2 ‖Y − F‖
2
Λ (3.27)
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and has the following dual problem (Fenchel-Moreau duality formula) :

(DTV 2) − min
s∈K∗

1
2‖Y − λM

∗ s‖2Λ −
1
2 ‖Y ‖

2
Λ (3.28)

Here K∗ is the convex set of s ∈
(
R3)|Λ3|

such that |si,j | ≤ 1 i ∈ {1, 2, 3}, 1 ≤ j ≤ |Λ3|. The
vector F is expressed in terms of Y and s by F = Y −λM∗ s, that is the difference between Y and
its projection on λM∗ (K∗). Uniqueness of the minimizer in the dual problem is not guaranteed
because of the definition of M∗, nevertheless the projection of Y on the convex set λM∗K∗ exists
and is unique (theorem 9).

The algorithms we used to solve this dual problem are direct implementations of recent works
in convex optimization by Combettes et al. [30], Nesterov [69], Beck et al. [8]. We describe below
some Projected-Gradient-like algorithms (PG, FISTA) and Nesterov’s algorithm applied to our
problem.

0. Initialize n = 0, t0 = 1, w0 = s0 ∈
(
R3)|Λ3|

, F 0 = λ
(
Z −M∗ s0), Z = 1

λ
Y and

l > 0 the Lipschitz constant of MM∗ and 0 < ρ ≤ 1
l
.

1. Repeat

(a) sn+1/2 = wn − ρM (M∗ wn − Z)
(b) sn+1 = proj

K∗
(sn+1/2)

(c) tn+1 = 1
2 (1 +

√
1 + 4 t2n)

(d) wn+1 = sn+1 + tn−1
tn+1

(sn+1 − sn)

(e) Fn+1 = λ
(
Z −M∗ sn+1)

(f) n← n+ 1

while |ETV 2(Fn)− ETV 2(Fn−1)| > εETV 2(Fn−1) and n < nmax

2. G = Fn = Y − λM∗ sn

Figure 3.24: FISTA algorithm ( accelerated version of the classical Projected Gradient algorithm here) applied
to problem (DTV 2). The stopping criterion is based here on the primal energy ETV 2.

Compared to [9] our utilization of the BV 2 semi-norm is very different. First, the data has
support in a lacunary subset of Ω = [0,m− 1]× [0, n− 1] ∩ N. But the goal of the regularization
is also different, here we seek a strong regularization effect on the contrary of image denoising
where the regularization is usually small (for reasonable noise). Convergence speed of the FISTA
and Nesterov algorithms are equivalent (O( 1

N2 ) with N the number of iterations) but Nesterov
algorithm has a bigger computational cost per iteration. Indeed, it contains two Projected Gradient
steps and twice the number of vectors as FISTA.

We display in figure (3.26) a comparison of Projected Gradient, FISTA and Nesterov algorithms
applied to our problem with a small regularization parameter (non-monotonicity phenomena also
occur with large regularization parameters). It is a crucial disadvantage of accelerated FISTA algo-
rithm (and possibly Nesterov’s algorithm, although it was not observed in this case). As mentioned
by their authors (Beck [7] and Nesterov [70]) these algorithms have indeed a O( 1

N2 ) convergence
speed but do not necessarily decrease the primal energy in (3.26). Two monotone algorithms can be
derived from FISTA and Nesterov’s algorithms, as described in chapter 2 p. 31 and we display the
energy decrease of these two monotone versions in figure (3.26). Monotone FISTA (mFISTA) gen-
erally converges faster than Nesterov’s algorithm and has a lower computation cost per iteration,
this justifies our preference for mFISTA in the following.
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0. Initialize n = 0, x0, z0, s0 ∈
(
R3)|Λ3|

, G0 = 0 ∈
(
R3)|Λ3|

, Z = 1
λ
Y , F 0 =

λ
(
Z −M∗ s0) and 0 < ρ ≤ 1

l
with l > 0 the Lipschitz constant of MM∗.

1. Repeat

(a) gn = M (M∗ xn − Z)
(b) sn+1 = proj

K∗
(xn − ρ gn)

(c) Fn+1 = λ
(
Z −M∗ sn+1)

(d) Gn+1 = Gn + n+1
2 gn

(e) zn+1 = proj
K∗

(x0 − 1
l
Gn+1)

(f) xn+1 = 2
n+3 z

n + n+1
n+3 s

n+1

(g) n← n+ 1

while |ETV 2(Fn)− ETV 2(Fn−1)| > εETV 2(Fn−1) and n < nmax

2. G = Fn = Y − λM∗ sn

Figure 3.25: Nesterov’s algorithm applied to problem (DTV 2). It is very different from the FISTA algorithm as
it uses a summation of all gradients from previous steps and an additional projection involving the initial vector.

It is commonly admitted among the Image Processing community that a denoising or deblurring
algorithm does not need exact convergence, which justifies the use of relatively slow algorithms
(sub-linear convergence speeds like O( 1

Nα ) with α ≥ 1 are commonly used). The most important
criterion is usually the numerical complexity of each iteration as a function of the number of
unknowns. In our case the TV2 denoising problem is intended to be used iteratively, this is why
we need a fast convergence rate.
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Figure 3.26: Energy in the primal problem PTV 2 with different methods. The non-monotonicity of FISTA
algorithm at large iterations can completely cancel the gain at early iterations compared to Projected Gradient or
Nesterov algorithms.

As described in [7], the monotone FISTA algorithm is guaranteed to produce a decreasing
sequence (ETV 2(Fk))k≥0. A stopping criterion can be adapted in the case of energy equality
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ETV 2(Fk+1) = ETV 2(Fk) but the number of iterations necessary to decrease the energy can be
arbitrarily large as we observed in some experiments with l1 minimization of problem (P1). Nev-
ertheless, monotone FISTA seems to be the best alternative to the minimization of ETV 2 as it
reaches a numerical precision much higher than Projected Gradient and Nesterov algorithms at
early iterations.

3.4.4 Global minimization

3.4.4.1 Alternate minimization

We first present the alternate minimization as it is the first algorithm we used and the one used to
obtain the presented results, but a global scheme has also been tested, with surprising slower conver-
gence. The scheme of the algorithm is presented in algorithm 3.27. The TV2 problem here is solved
iteratively with a large parameter λ4 and it is applied to the vector Zn = D + L1A

n
1 − L2A

n
2 . We

present in figure 3.28 an example of energy decrease in the outer loop (the alternate minimization)
at the origin of a very long debugging step.

In the dual problems we were faced with, the primal variable is always expressed as a function
of the dual variable (the one we iteratively compute) for example U∗ = V − λ∇∗ s∗ in the TV-`2

problem. We observed in this experiment that the initialization of the dual variable can increase
the energy E4, a very large number of iterations (here 105 iterations) in the TV2 problem is the
necessary in order to actually decrease the primal energy E4.
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0. Initialize n = 0 , A0 , B0 ∈ CT , F 0 ∈ R|Λ| , v0 = 0 ∈ R3|Λ3|, let l > 0 be the lipschitz
constant of L = (−L1 , L2).

1. Repeat

(a) Let Y n = D − Fn

(b) Minimize E4(A,B, Fn) in (A,B) with FB or FISTA and step ρ

(An+1, Bn+1) = argmin
(A,B)

λ1 ‖A‖1 + λ2 ‖A2‖1 + 1
2 ‖Y + L1 A− L2 B‖22

(c) Let Zn+1 = D + L1 A
n+1 − L2 B

n+1

(d) Minimize E4(An+1, Bn+1, F ) in F with the dual problem (DTV 2)

vn+1 = argmin
v∈K∗

1
2‖λ4 M

∗ v − Zn+1‖22

(e) Let Fn+1 = Z − λ4 M
∗ vn+1

(f) n← n+ 1

while |E4(An, Bn, Fn)− E4(An−1, Bn−1, Fn−1)| > εE4(An−1, Bn−1, Fn−1)
and n < nmax.

2. V1 = L1 A
n , V2 = L2 B

n and D∗ = D + V1 − V2

• Let ṽ0 = vn

• F̃ 0 = Zn+1 − λ4M
∗ ṽ0

• Bad things can happen : E4(An, Bn, F̃ 0) > E4(An, Bn, Fn)

Figure 3.27: Alternate minimization of problem (P4) (up). Iterated dual schemes (for the TV2 problem here)
suffer from an initialization drawback since the primal energy is not preserved after Fn is updated. The number of
iterations necessary to decrease the primal energy becomes arbitrarily large for large regularization parameters λ4.
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(a) Energy in the alternate minimization as a function of time (left) and zoom (right). En-
ergy can increase due to the initialization in the dual inner loop under loose convergence
requirements (although a 10−7 relative convergence parameter is usually admitted).
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(b) Evolution of the number of nonzero coeffi-
cients.

Figure 3.28: Energy in the alternate minimization scheme (left) and evolution of the number of detected frequencies
(right) for λ1 = λ2 = 200. Despite the large number of iterations in the proximal it can happen that the proximal
step increases the primal energy (here at approximately 7.104 seconds).

This could discredit the alternate minimization scheme, although we managed to get conver-
gence with a very large number of iterations in the proximal step. A better understanding of the
convergence criterion in the inner proximal loop would certainly prevent this huge computation
cost, and works of Solodov et al. [86] for example on approximated proximal operators could be
investigated.

3.4.4.2 Direct minimization schemes

The energies E4 and E5 belong to the same class of nonsmooth+smooth functions for which we
used accelerated semi-implicit schemes. Algorithm 3.29 presents the classical Forward-Backward
algorithm applied to this problem, and we refer to algorithm 2.5 p. 31 for the scheme of the
accelerated version (this is valid for all Forward-backward algorithms presented earlier).
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0. Initialize n = 0 , A0 , B0 ∈ CT , F 0 ∈ R|Λ| , v0 = 0 ∈ R3|Λ3|, let 0 < ρ < 2
l

with
l > 0 the Lipschitz constant of (L)′∗ L′ :

L′ = (−L1 , L2 , Id)

1. Repeat

(a) Let gn = ∇
(

1
2 ‖L

′ (A,B, F )−D‖22
)

(An, Bn, Fn)

(b) Let (An+1/2, Bn+1/2, Fn+1/2) = (An, Bn, Fn)− ρ gn

(c) Proximal in (A,B) :

(An+1, Bn+1) = softρλ1,ρλ2(An+1/2, Bn+1/2)

(d) Proximal in F with dual problem (DTV 2) :

vn+1 = argmin
v∈K∗

1
2
∥∥ρ λ4 M

∗ v − Fn+1/2∥∥2

(e) Let Fn+1 = Fn+1/2 − ρ λ4 M
∗ vn+1

(f) n← n+ 1

while |E4(An, Bn, Fn) − E4(An−1, Bn−1, Fn−1)| > εE4(An−1, Bn−1, Fn−1)
and n < nmax

2. V1 = L1 A
n , V2 = L2 B

n and D∗ = D + V1 − V2

Figure 3.29: Direct minimization of problem (P4) with the FB algorithm (take ρ ≤ 1
l

for the FISTA algorithm).

This algorithm contains the same kind of dual inner loop as the alternate minimization scheme
but the proximal parameter (the factor ρ λ4) is much smaller. In our tests the order of magnitude
of λ4 was 1.104 and 1

ρ ∈ {2.105, 4.105}, the stopping criterion in the proximal was ε = 1.10−6 and

the maximum number of iterations nmax = 105.
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3.4.4.3 Results

We display in figure (3.30) the corrected disparity maps and nonzero coefficients of vectors (A1, A2)
obtained by the alternate minimization scheme on E4. This shows that the piecewise affine hy-
pothesis was correct in this case, the regularization parameter λ4 on the Hessian has to be quite
large in order to separate the low-frequency microvibrations and the elevation part.

(a) Restored disparity map
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Figure 3.30: Experiment on the disparity map with adhesion correction (left) : We observe the separation of the
affine elevation and the oscillating component. The small remaining oscillations (middle) are certainly due to the
erosion effect of the l1 norm, but it outperforms the previous partial correction of figure 3.16 with much smaller
Lagrange parameters λ1 and λ2. (λ1 = λ2 = 200). Microvibrations have been reduced by a factor 10.

The algorithm does not perform so well when there is no adhesion correction (figure 3.32). The
regularization parameter λ4 has to be chosen smaller than previous experiment (figure 3.30), such
parameters no longer work with the subpixel disparity map. Over-regularization in this case has
the same drawback as previous detection and estimation methods, the elevation is not well fitted
by the piecewise affine term F and a part of the elevation (mainly edges) will be fitted by the
microvibration terms L1A1 and L2A2 instead.
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Figure 3.31: Experiments on the subpixel disparity map (without adhesion correction). For different regularization
parameters λ4 ∈ {102, 103} and microvibrations with `1 norm approximately equal to 1. The estimated disparity
D+ V1 − V2 is clearly affected the discontinuities in the elevation due to buildings. Low regularization corresponds
to λ4 = 1.102, λ1 = λ2 = 200, we observe that the lowest frequency 0.0048 pix−1 is not correctly detected in V1 and
V2 but is present in F . Medium regularization case (1) and case (2) correspond to λ4 = 1.103, λ1 = λ2 ∈ {400, 600},
the frequency 0.0048 pix−1 is better detected.
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Figure 3.32: Experiments on the subpixel disparity map (without adhesion correction) with large regularization
parameter λ4 = 1.104. Cases (1) and (2) correspond to λ1 = λ2 ∈ {2.102, 1.103}. Case (1) has the same parameters
as in figure 3.30, we clearly observe the bad behaviour due to elevation fitted by the microvibrations. Case (2) is better
since we used a larger `1-penalization parameter, amplitudes are closer to what they should be : ‖A‖1 + ‖B‖1 ≈ 1.

3.4.4.4 Numerical observations

The reason why we displayed results from the alternate minimization above is that the Forward-
Backward and monotone FISTA in this case exhibited very bad convergence rates, the Forward-
Backward was not even monotonous for all the parameters we tested. Figure 3.33 presents the
energy convergence as a function of time for different convergence parameters ε in the inner dual
TV2 algorithm.
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Figure 3.33: Influence of the convergence parameter in the dual inner loop for both Forward-Backward (FB) and
monotone FISTA algorithms. FB is not monotonous but the chaotic behaviour is reduced with lower parameter
ε (with the drawback of an increased computation time). mFISTA can be non-decreasing during large periods of
time with low convergence rate ε = 1.10−5 but still performs better than cases ε = 1.10−6 and ε = 1.10−7 which
are nearly monotonously decreasing.
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Figure 3.34: Energy for the three algorithms we implemented. Alternate minimization has much better perfor-
mances in this case than our implementation of global schemes FB and mFISTA.

Results from the FB and mFISTA schemes were very different from the Alternate scheme
because of the lack of convergence. The norm of the Hessian was indeed decreased and solutions
looked piecewise affine, but the fitting constraint did not converge. This produces discontinuities
between the different connected parts. Convergence of the TV2 prox in both FB and mFISTA
does not seem to be crucial here (figure 3.33) and a better strategy could be to stop this inner loop
after very few iterations.

But the weakness of the global minimization scheme here seems to be the large Lipshitz constant
of L′ = (−L1 l2 Id) compared to Id due to L1 and L2. A change of variable F ← 1

C F in this case
amounts to minimize :

argmin
A,B,F̃

λ1 ‖A‖1 + λ2 ‖B‖1 + λ4 C‖M F̃‖1 + 1
2
∥∥D + L1A− L2B − C F̃

∥∥2
(3.29)

with C > 0 the maximal Lipschitz constant of L1 and L2.
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We examined this formulation as a possible improvement of algorithm 3.29, we believe this
would accelerate the algorithm as the formulation is more general than the alternate minimization
scheme and involves almost the same Lagrange parameters : λ4 is replaced by λ4 C

l with l >
0 the Lipschitz constant of (−L1 L2 C Id)∗ (−L1 L2 C Id). This strategy belongs to the
more general set of preconditioning methods, we believe this would make the Forward-Backward
and FISTA more efficient than the alternate minimization scheme although here this necessarily
modifies the Lagrange parameters and thus the convergence rate of the different loops.
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3.5 Conclusion

In this study we treated the highly ill-posed problem of microvibrations in a couple of stereo images
by means of non-quadratic regularization (`1 and then `0). Experiments show that it is indeed
absolutely necessary because of the unusual form of the sampling set and the relation between this
last one and the data. In a first detection step Basis Pursuit provided the two main frequency
modes in the perturbation in the case of simulated PLEIADES images.

Over-smoothing can eliminate outliers but of course this is a difficult task since the frequency
set is not known in general. Furthermore the mixing phenomenon between microvibrations V1 and
V2 makes harder this elimination with a constraint based on the number of nonzero coefficients.
We obtained a quite good estimation of the perturbation with a `0 constrained variational method
(Iterated Hard-thresholding Algorithm) which is nonconvex and thus highly depends on the ini-
tialization and the presence of outliers.

The Village image was more challenging because of the correlation between microvibrations and
elevation. Detection step could not get rid of some outliers this is why we proposed a new method
with a penalization on the Hessian of the elevation. This worked very well when the adhesion mask
gives a nice segmentation of the data, it is a little less efficient without this adhesion mask and
raises a new numerical challenge, indeed the computation time was much larger than the single
ISTA and HSTA algorithms.

A more general method for subpixel maps, which could be investigated together with numer-
ical considerations, is the TV-TV2 inf-convolution from Chambolle et al. [23] which amounts to
decompose the disparity into two terms plus the microvibrations :

D = V2 − V1 + F1 + F2

with F1 ∈ BV (Ω) and F2 ∈ BV 2(Ω).



Chapter 4

Restauration of irregularly
sampled images with splines

4.1 Introduction

This chapter deals with the very first topic treated during my thesis which pulled me to the
satellite imaging domain. Among the classical problems in satellite imaging (calibration, denoising,
deblurring, images fusion . . . ) we find a more specific problem due to the push-broom acquisition
mode of many satellites. For example the latest SPOT satellites launched by the CNES, and the
new generation of PLEIADES satellites, use a TDI (Time Delayed Integrator) sensor with much
more columns than rows (about ten rows and several thousands of columns). This sensor receives
light from Earth locations which may not be exactly equally distributed because of the sensor’s
motion (trajectory) and microvibrations (unstable pointing direction). The resulting image is
not sampled on the usual rectangular grid Λreg =

{
(j, k) ∈ [0,m[×[0, n[∩N2} but rather on a

perturbation of this grid Λ.

Λ =
{

(x+ ε1(x, y), y + ε2(x, y)) ∈ R2 s.t. (x, y) ∈ Λreg
}

with ε = (ε1, ε2) a two dimensional perturbation. Here we consider more general two dimensional
perturbations, on the contrary of previous section where we treated only the problem of pitch
correction (ε2 = 0). These perturbations have a low amplitude (a few pixels) and are low frequency
(about a tenth of the sampling frequency of the image) but do not have a sparse Fourier transform.
We study the general case of random perturbations (ε1, ε2) obtained by taking the real part of a
two dimensional signal with random i.i.d. Gaussian Fourier coefficients ≈ N (0, 1) in the basis of
complex exponentials.

We address here the inverse problem of recovering an image u irregularly sampled in the context
of satellite imaging. We first describe the two problems (resampling and deblurring+resampling)
and the literature in this domain. This literature is rich and already provides accurate algorithms
based on the bandlimitedness hypothesis and local regularization. But these approaches suffer
from the heavy computational cost of trigonometric polynomials in dimension two. We propose a
resolution of this problem based on a different approximation space (splines). The first part of this
work concerns the irregular sampling problem, this is a first approach treated during my training
course. The second part includes deblurring with the Total Variation and a fast algorithm, part of
this work was presented at the ICIP 2010 conference in Hong-Kong [3].

79
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4.1.1 Two irregular sampling problems

In a very general image formation framework, we address both resampling (Psamp) and deblur-
ring+resampling (Pblur) problems.

Find u∗ s.t. u∗(zk) = vk + νk for all zk ∈ Λ (Psamp)

Find u∗ s.t. (h ∗ u∗) (zk) = vk + νk for all zk ∈ Λ (Pblur)

with u∗ : Ω = [0, n[×[0,m[→ R, {vk}k=1..|Λ| the data, h a convolution kernel in either L1(R2) or

L1(Ω) depending on the boundary conditions and νk the noise term (here i-i-d. Gaussian variables).

The first problem applies to a very wide range of images as the formation model is not taken
into account. The second problem is more particular and the we consider here the satellite image
formation model of SPOT 5 HRG hipermode described in [61].

hsat = hopt ∗ hsens ∗ hmov (4.1)

namely the optical, sensor and motion equivalent PSFs with

ĥopt(ξ1, ξ2) = e−α1
√
ξ2
1+ξ2

2 (4.2)

ĥsens(ξ1, ξ2) = sinc
(
ξ1
2

)
sinc

(
ξ2
2

)
e−β1 |ξ1| (4.3)

ĥmov(ξ1, ξ2) = sinc
(
ξ1
4

)
sinc

(
ξ2
4

)
(4.4)

In particular we decompose the sensor PSF in two terms :

ĥsens,1(ξ1, ξ2) = sinc
(
ξ1
2

)
sinc

(
ξ2
2

)
, ĥsens,2(ξ1, ξ2) = e−β1 |ξ1|

as ĥsens,1 is the Fourier transform of a spline function and can be treated separately. The movement
PSF also belongs to a spline space, indeed

hmov(x, y) = 1[−1,1](x)⊗ δ0

and in the following we mainly focus on the non-spline PSF h = hopt ∗hsens,2. The TDI instrument
also implies a spatially variant blurring kernel due to microvibrations of the array sensors hvib, this
kernel is unfortunately not shift-invariant and cannot be diagonalized in the Fourier basis this is
why we did not consider the vibrations kernel in this work but could be integrated since we work
with known perturbations ε on the sampling grid.
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Figure 4.1: FTM of the convolution kernel hmov ∗ hopt we consider in the following : it is at most 0.15 at the
frequency (0, π) and approximately 8.10−2 at (π, 0).

4.1.2 State-of-the-art

Image resampling is not a recent problem, in fact it was already addressed in the early 90’s by
Feichtinger, Groechenig and Rauth [49] [87] and people have always searched for faster algorithms
because of the large number of unknowns in images. In [50] the authors proposed an acceleration
of the frame algorithm, in [87] the Toeplitz property of the sampling operator is used to solve the
least-squares problem in the space of 2D trigonometric polynomials. In [48] the authors proposed
an acceleration based on frame theory and local weights and named this method ACT (Adaptive
weights and Conjugate gradient with Toeplitz matrices). The ACT algorithm also applies to cer-
tain quadratic regularizers if the Toeplitz structure is preserved. This is the case for the H1 or
H2 discrete semi-norms, but more recently Almansa et al. have combined trigonometric polynomi-
als and nonquadratic regularization to efficiently solve highly ill-posed problems (deblurring and
zooming) [4] [46]. These algorithms are very accurate and stable, but their high computational
cost is problematic, this is why we studied the resampling and deblurring+resampling problems
in another functional setting (splines). We present below the ACT+TV (TV regularization with
local constraints) algorithm in [4] and ACT+FAR (Frequency Adaptive Regularization with local
constraints) from [46] the two state-of-the-art algorithms with nonquadratic regularization.

ACT+TV and ACT+FAR aim at recovering an image u from incomplete data

{vk = P (u)(λk)}k=1..|Λ|

on an irregular grid Λ = {λk}k=1..|Λ| ⊂ R2 where P is diagonal in the Fourier basis (convolution
and/or spectral projection). The image is approximated by a two dimensional, real trigonometric
polynomial :

u(x, y) =
(n−1)/2∑

k=(1−n)/2

(m−1)/2∑

l=(1−m)/2

û[k, l] ei( 2kπ
n + 2lπ

m )
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with odd sizes n,m. The associated linear sampling operator is denoted by SΛ, it acts on the
Fourier coefficients û[·], each of its blocks of size n × |Λ| has Vandermonde structure up to a
multiplication, and the overall product (SΛ P )∗ (SΛ P ) has a two dimensional Toeplitz structure
(it is block-Toeplitz with Toeplitz blocks). The minimized energy in ACT+TV and ACT+FAR
is the Lagrangian corresponding to the minimization of an energy E(u) under local constraints
gj(u) ≤ 0. These local constraints tend to homogenize the residue (SΛ P û− v) locally to a value
depending on the noise level.

gj(x) =
(
G(k) ∗ (SΛ P̂ û− v)2

k

)
[j]− σ2 , j ∈ J

where G is a normalized, positive, narrow window function (indicator or Gaussian) and J a set
of points homogeneously distributed in the image domain. The form of the minimized function is
E(u)+

∑
j∈J µj gj(u) with µj ≥ 0 the Lagrange multipliers. In [4] the function E(u) is the classical

Total Variation of Rudin et al. [79], and in the ACT+FAR method E(u) is the discretization of a
two-dimensional fractional Sobolev semi-norm.

ETV =
∑

k

∑

l

‖∇++u(k, l)‖ (4.5)

EFAR =
∑

k

∑

l

√∥∥∥∥Hγ(u)
(
k

2 ,
l

2

)∥∥∥∥
2

+ C (4.6)

where ∇++ is the classical discretized gradient operator, C > 0 is a small regularization parameter
and Hγ(u) is defined in the Fourier domain by

F(Hγ(u))(ξ1, ξ2) =
(
|ξ1|γ

iξ1
|ξ1|

û(ξ1, ξ2), |ξ2|γ
iξ2
|ξ2|

û(ξ1, ξ2)
)

(the case γ = 1 is a Riemann series involving the exact gradient of u computed in the Fourier
domain)

Function ETV is not differentiable because of the norm of the gradient, this is why in [4] Al-
mansa, Haro, Caselles and Rougé used a dual formulation. EFAR is differentiable and the algorithm
in this case is a Quasi-Newton algorithm (iterated minimization of a second order approximation
involving the Hessian of EFAR). The algorithm developed in ACT+TV contains two nested loops
(plus Uzawa’s loop). The outer loop is an implicit diffusion (Crandall-Liggett) with the subgradient
of EACT+TV :

un+1 − un
τ

∈ −∂EACT+TV (un+1) (4.7)

such that cluster points u∗ of (un)n∈N verify 0 ∈ ∂EACT+TV (u∗). The developed algorithm solves

the dual form of this equation, this amounts to compute the proximal of
(
TV (Q−1/2 ·)

)∗
with Q a

positive definite operator :

bn ∈ wn+1 + ∂TV (Q−1/2 wn+1) with wn+1 = Q1/2 un+1 , bn = un + τ Q1/2 v (4.8)

This proximal computation is the inner loop and is performed by Chambolle’s algorithm [22].
Unfortunately it amounts to inverse operator Q by conjugate gradient at each iteration. We give
the outline of the algorithm in [4] (Uzawa’s loop is not included) :

We notice that ACT+TV algorithm always requires an invertible operator Q = (SΛ P )∗ (SΛ P ).
The algorithm is quite slow (approximately 30 minutes for a 149 × 149 image) in the deblurring
case although the simple resampling algorithm takes a few seconds, this is why the ACT+FAR
method was later proposed by Facciolo, Almansa, Aujol and Caselles in [46].
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0. Initialize u0

1. For all n ≥ 0 compute un+1 solving (4.7)

(a) Compute bn, initialize s̃0, k = 0
(b) For all k ≥ 0 compute s̃k+1 by Chambolle’s algorithm

• Compute qk = Q−1∇∗++ s̃k by the Conjugate Gradient algorithm

• Compute the gradient gk = ∇++
(
qk +Q−1 bn

)

• Update sk+1

• k ← k + 1
(c) un+1 = Q−1(bn +∇∗++ s̃k+1)
(d) n← n+ 1

Figure 4.2: ACT+TV algorithm.

This ACT+FAR method is the one we use in our comparative tests since it is much faster and
efficient than ACT+TV. The Quasi-Newton algorithm used in ACT+FAR is a fixed point where
the denominator of∇EFAR is assumed constant and each iteration amounts to solve a linear system
(the approach is more conventional as it uses only linear algebra).

0. Initialize u0, n = 0

1. For all n ≥ 0 compute un+1 by the Conjugate gradient algorithm solving :

H∗γ Hβ un+1√
‖Hγ un‖2 + C

+
∑

j

∇ gj(un+1) = 0

2. n← n+ 1

Figure 4.3: ACT+FAR algorithm.

4.2 Restauration with splines

The resampling problem (Psamp) in perturbed sampling does not really suffer from the slow conver-
gence observed in previous methods. Though, the following section provides an interesting intro-
duction to the state of the art methods with splines. Our resolution of the deblurring+resampling
problem can be found in section 4.2.3 p. 89.

4.2.1 Stable resampling

We consider the case of nonblurry images, acquired at irregular locations Λ = {(xk,l, yk,l)} with
(xk,l, yk,l) = (k, l) + (ε1, ε2)(k, l)), and suffering from additive Gaussian white noise wk,l ∼ N (0, σ)

Ik,l = u(xk,l, yk,l) + wk,l for all k, l (4.9)
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If we assume that u belongs to a spline space, the recovering of u from the data Ik,l can be
highly ill-posed even in the absence of noise because of the local sampling density of Λ. Indeed, the
relation between the coefficients of u in a spline basis and the data Ik,l is a linear system with a few
nonzero coefficients on each row, as opposed to the interpolation with trigonometric polynomials
or thin-plate splines. If the sampling grid has a hole around a point (k0, l0) of radius d+1

2 with d
the degree of the regular B-splines, then the linear system is under-determined since the sampling
matrix SΛ has a null column. We write the relation between vector (Ik,l) and the spline coefficients
of u as a linear system :

(Ik,l) = SΛ (ak,l) (4.10)

with (SΛ)(k,l),(q,p) = βd,2(xk,l−q, yk,l−p) for all 0 ≤ k, q < n and 0 ≤ l, p < m if the approximation

space is Sd(n,m).
To illustrate this ill-posedness, we display in figure 4.4 an example of irregularly sampled image

restored by a simple least-squares applied to (4.10). Artifacts are clearly visible in several parts of
the restored image, although the quantity ‖SΛ a − I‖2 (the square norm of the residue) tends to
zero. These artefacts are amplified in the presence of noise, this justifies the use of stable methods
such as regularization. In the next section we present a quadratic regularization with a semi-norm
on the Hessian of u inspired by works of Arigovindan et al. [5].

Figure 4.4: Distorted and noisy image (CNES copyrighted image) with noise level σ = 5 (left) and solution obtained
by least-squares solving of problem (4.10) (zoomed at right). We remark the presence of localized high-frequency
artefacts due to the ill-conditioned sampling matrix SΛ.

4.2.2 Quadratic regularization on the Hessian

4.2.2.1 Variational formulation

In article [5] Arigovindan, Sühling, Hunziker and Unser present a multigrid algorithm for solving
the Lagrangian constrained problem (4.11), we give a few details of this implementation only for
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the last scale. The formulation amounts to find u∗ such that

u∗ = argmin
v∈S3(n,m)

‖v(xk,l, yk,l)− Ik,l‖2 + λ ‖D2 v‖2L2(R2) (4.11)

with an approximation space S3(n,m) equal to the space of bicubic splines. This problem is
well defined in the space S3 since bicubic splines are C2 on R2 and the minimizer is unique since
constant and affine functions do not belong to S3(n,m) whose elements are compactly supported
in R2. The function EH : v → ‖D2v‖ is a thus norm on S3(n,m) and E2

H rewrites as a strictly
convex quadratic function EH(v) = 〈H a, a〉 where a is the vector of spline coefficients of v and the
positive definite matrix H can be computed by means of scalar products between shifted splines
βd,2 and their derivatives :

H(k,l),(q,p) = Hxx
(k,l),(q,p) +Hyy

(k,l),(q,p) + 2Hxy
(k,l),(q,p)

with

Hxx
(k,l),(q,p) =

∫∫

R2

∂2 βd,2
∂x2 (· − (k, l)) ∂

2 βd,2
∂x2 (· − (q, p))

Hxx
(k,l),(q,p) =

∫∫

R2

∂2 βd,2
∂y2 (· − (k, l)) ∂

2 βd,2
∂y2 (· − (q, p))

Hxy
(k,l),(q,p) =

∫∫

R2

∂2 βd,2
∂x ∂y

(· − (k, l)) ∂
2 βd,2
∂x ∂y

(· − (q, p))

The approximation space S3(n,m) here might not be well adapted near the image boundaries
where this space has different approximation properties due to missing knots around boudary
samples. In our case this fortunately did not appear thanks to the windowing applied to the
data. This windowing was used in previous state-of-the-art articles [4] [46] to avoid periodization
problems, here we used it to prevent the mentioned problem in S3(n,m).

If the minimization is performed on S3
per(n,m) instead of S3(n,m) and the Hessian is integrated

on Ω = [0, n[×[0,m[, the regularity term is no more strictly convex, constant functions lie in
the kernel of the Hessian operator but the function still admits a unique minimizer. Given two
minimizers u∗ and v∗ the difference (u∗ − v∗) would lie in the kernel of H : v → D2v which
consists in constant functions (or equivalently functions with constant spline coefficients). But the
function G : v → ‖v(xk,l, yk,l)−Ik,l‖2 is strictly convex on any affine space oriented in the constant
direction. Thus the problem (4.12) below has a unique solution.

u∗per = argmin
v∈S3

per(n,m)
‖v(xk,l, yk,l)− Ik,l‖2 + λ

∫∫

Ω
‖D2v(x, y)‖2 dx dy (4.12)

The matrix H becomes circulant (the matrix of a convolution operator) and we verify that its
kernel is restricted to constant functions by the observation of its singular values. This approach
consists in the penalization of the square norm of the Hessian, and thus gives a solution u∗ in
W2,2(R2). This assumption implies that both u∗ and ∇u∗ are continuous by Sobolev inclusions
and the result u∗ will be smooth (i.e. blurry). This kind of regularization belongs to the family of
Tikhonov methods [68] which usually oversmoothes edges in images. In the simple resampling and
denoising framework the authors of [5] claim that this penalization is sufficient and that bicubic
splines provide a nearly optimal solution in reference to works of Duchon [40]. Duchon showed
that the solution of problem (4.11) in the distributions sense is a particular thin-plate spline :

u(X) = P (x, y) +
∑

(xk,l,yk,l)∈Λ

φ((x, y)− (xk,l, yk,l))
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where P is a polynomial belonging to the kernel of the Hessian operator and φ a radial function
whose expression depends on dimension d :

φ(‖X‖) =
{
‖X‖4−d if 4− d is odd
‖X‖4−d log(‖X‖) else

In dimension one, and in the regular sampling case, cubic splines provide the optimal solution
since x → |x|3 coincides with a function in S3(n) on [0, n[. This is not the case in dimension
two, nevertheless bicubic splines have been used in many problems to approximate images and are
very efficient in this problem. The quantities Hxx, Hyy, Hx,y at index (k, l), (q, p) only depend on
(k− q, l− p) and the computation of H is reduced to the computation of three filters hxx, hyy, hxy.
Derivatives of splines can be expressed as linear combinations of splines with lower degree (formula
(2.19) p. 20 ) and using the scalar product formula (2.20) we get :

hxx(k, l) = ((δ−2 − 4δ−1 + 6δ0 − 4δ1 + δ2)⊗ δ0) ∗ (〈β1(·), β1(· − k)〉 ⊗ 〈β3(·), β3(· − l)〉)
= ((δ−2 − 4δ−1 + 6δ0 − 4δ1 + δ2) ∗ β3[k])⊗ β7[l]

hxy(k, l) = ((δ−1 − 2δ0 + δ1)⊗ (δ−1 − 2δ0 + δ1)) ∗ (〈β2(·), β2(· − k)〉 ⊗ 〈β2(·), β2(· − l)〉)
= ((δ−1 − 2δ0 + δ1) ∗ β5[k])⊗ ((δ−1 − 2δ0 + δ1) ∗ β5[l])

hyy(k, l) = hxx(l, k)
(4.13)

Finally, H is the matrix of the convolution with the following kernel

h = hxx + hyy + 2hxy =




0.0002050 0.0073016 0.0411706 0.0693122 0.0411706 0.0073016 0.0002050

0.0073016 0.0800000 0.0142857 −0.2031746 0.0142857 0.0800000 0.0073016

0.0411706 0.0142857 −0.6776786 −0.2555556 −0.6776786 0.0142857 0.0411706

0.0693122 −0.2031746 −0.2555556 3.4455028 −0.2555556 −0.2031746 0.0693122

0.0411706 0.0142857 −0.6776786 −0.2555556 −0.6776786 0.0142857 0.0411706

0.0073016 0.0800000 0.0142857 −0.2031746 0.0142857 0.0800000 0.0073016

0.0002050 0.0073016 0.0411706 0.0693122 0.0411706 0.0073016 0.0002050




(4.14)
The minimization of (4.11) amounts to solve the Euler-Lagrange equation below since both terms
are differentiable and H is self-adjoint.

2StΛ (SΛ a− I) + 2λ(Ht +H) a = 0 ⇔ a =
(
StΛ SΛ + λH

)−1
StΛ I (4.15)

We considered two approaches for the choice of Lagrange parameters. The first one is based on
works of Vazquez et al. [93] who proposed a different formulation of this problem by means of local
Lagrange parameters α = (αk,l) and the solving of :

StΛ (SΛ a− I) + λDαH a = 0 (4.16)

where Dα is the diagonal matrix with general term D(k,l),(k,l) = αk,l ≥ 0 (the αk,l depend on the
sampling grid) and λ is the regular Lagrange parameter.

The second approach is based on a denoising criterion. We consider the constrained denoising
problem :

u∗ = argmin
u∈S3(n,m)

‖D2u‖2 s.t. ‖u(xk,l, yk,l)− Ik,l‖2 ≤ R |Λ|σ2 (4.17)

where R is a denoising parameter chosen in ]0, 1]. This last problem can be addressed by the Uzawa
algorithm with a classic Lagrangian (with λ a multiplier of the regularization term as above) and
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we consider a band of width W |Λ|σ2 for valid solutions of the constrained problem :

(u∗, λ∗) is a valid solution if

{
u∗ = argmin

u∈S3(n,m)
‖u(xk,l, yk,l)− Ik,l‖2 + λ∗ ‖D2 u‖2

‖u∗(xk,l, yk,l)− Ik,l‖2 ∈ [(R−W ) |Λ|σ2, (R+W ) |Λ|σ2]
(4.18)

In the following we detail this second approach and the results obtained with the conjugate gradient
algorithm.

4.2.2.2 Conjugate gradient and Uzawa’s algorithm

The linear system in (4.15) is of the form Y = ΦX with Φ a symmetric positive definite matrix.
We even know that ΦX − Y is the gradient of the function F (a) = 1

2
(
‖SΛ a− I‖2 + λ 〈H a, a〉

)

at X. We used the following conjugate gradient algorithm 4.5 with an initial vector x0 obtained
by the simple Least-Squares and a stopping criterion based on the noise level :

• Let ã0 = 0

• Let ãn be result of the CG algorithm with λ = 0 ( Φ = StΛ SΛ ) and stopping criterion

‖SΛ ãn − I‖2 ≤ (R+W ) |Λ|σ2

0. Let n = 0, a0 ∈ Rn×m, Φ = StΛ SΛ + λkH, r0 = StΛ I − Φ a0, p0 = r0

1. Compute an+1 by the CG algorithm 2.2 with stopping criterion

(R−W ) |Λ|σ2 ≤ ‖SΛ an − I‖2 ≤ (R+W ) |Λ|σ2

Figure 4.5: Conjugate gradient algorithm applied to problem (4.15) with Lagrange parameter λk (kth step of the
Uzawa algorithm).

The computation cost of this initialization is lower than the regularized CG since only SΛ and
the Hessian filter h are computed. In our observations it produces quite good initial images, but
remaining distortions and noise make this approach convenient only as an initialization. We can
derive an estimate of the Lagrange parameter λ∗ from a0 by :

StΛ (SΛ a
∗
0 − I) + λ∗H a∗0 ≈ 0 ⇒ λ∗ ≈ λ0 = ‖S

t
Λ (SΛ a

∗
0 − I)‖

‖H a∗0‖
(4.19)

and we chose to update the Lagrange parameter with an exponential method as in Tseng [88] :

λk+1 = λk / min{e‖SΛ a
∗
k−I‖2−R|Λ|σ2

, c0} (4.20)

with a∗k the result of the CG algorithm at step k.
This update of the Lagrange parameter is in fact a semi-implicit version of the original Uzawa

algorithm with exponential constraint described in [88] and produces the desired couple (u∗, λ∗)
with a very small number of iterations in Uzawa’s algorithm. We present some of the test images we
used in figure (4.7) together with the SNR results and computation times. The value of R depends
of course on the image but also on the noise level. For low noise levels a factor R ≈ 0.5 gives the
best performances, but this factor increases for higher noise levels from 0.5 to approximately 0.8.
This phenomenon is well known and is simply due to the variational method which cannot fully
denoise a signal and preserve its contents, such that partial denoising is generally preferred.
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0. Let ã0 = 0, µ = |Λ|σ2, k = 0.

1. Compute a∗0 by the CG algorithm 4.5 with λ = 0 and stopping criterion

ε = (R+W )µ

2. Compute λ0 with equation (4.19)

3. Repeat

(a) Compute a∗k+1 by the CG algorithm with λk and stopping criterion

ε�W µ

(b) Update λk by formula (4.20)

(c) k ← k + 1

4. While ‖SΛ a
∗
k − I‖2 6∈ [(R−W )µ, (R+W )µ]

Figure 4.6: Uzawa algorithm with exponential constraint and multiplicative update applied to the stable resam-
pling problem.

(a) Images with various sizes and contents (CNES copyrighted images. (1-2))

W = 0.1 W = 0.01
image time(s) SNR RMSE time(s) SNR RMSE

nimes 0.680 28.90 1.09 1.212 28.94 1.08
stmichel 2.612 32.46 1.02 4.520 32.47 1.02
jussieu 2.024 31.43 1.43 3.620 31.50 1.42
uqam 10.417 31.02 1.73 53.471 31.07 1.73
lac 2.972 31.53 1.13 9.129 31.61 1.12
parisnord 5.216 32.31 1.38 5.216 32.31 1.38

(b) SNR results obtained with the quadratic Hessian regularization (top-left to
bottom right above images)

Figure 4.7: Test images and results with a noise level σ = 1 and a partial denoising criterion R = 0.5. A narrow
band stopping criterion W increases the computation time with a negligible improvement in the RMSE. (Single
thread implementation run on a dual-core 2.5 GHz CPU)
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σ = 3 σ = 5 σ = 10
image time(s) SNR RMSE time(s) SNR RMSE time(s) SNR RMSE

nimes 0.520 22.21 2.35 0.504 19.5 3.38 0.476 14.57 5.67

stmichel 2.104 25.70 2.23 1.976 22.43 3.25 1.832 17.79 5.55

jussieu 1.344 25.81 2.74 1.132 22.55 3.99 1.080 18.38 6.53

uqam 5.240 26.74 2.84 7.584 23.68 4.04 4.144 19.39 6.63

lac 2.228 25.34 2.31 1.948 22.18 3.33 1.856 17.52 5.69

parisnord 3.924 26.85 2.58 3.280 23.76 3.68 3.092 19.40 6.09

Figure 4.8: Results of the Hessian regularization for R = 0.5 and W = 0.1 and noise levels σ ∈ {3, 5, 10}.
Computation time depends on the noise level : partial denoising not only gives good SNR results but also accelerates
the restoration.

This first approach of the sampling problem showed that the computational cost of a stable
spline approximation was reasonable (it is a O(m×n) with n,m the image sizes) thanks to the fast
conjugate gradient algorithm and a strongly convex regularization. But quadratic regularizers are
known to be very bad at denoising very noisy signals because of the smoothing effect. In that case
a nonlinear regularization is necessary, in the following we apply the TV regularization to (Pblur).

4.2.3 On the deblurring problem

Works of Almansa et al. [4] [46] have shown the improvements in image quality of nonquadratic
regularizers such as TV or TV-FAR with local constraints. These methods benefit from the setting
of bandlimited functions, in particular convolution operators are well defined and have a convenient
expression in the Fourier domain. This is not the case with splines and we begin this section with
a presentation of the new mathematical formulation of the deblurring problem (Pblur) in spline
spaces.

4.2.3.1 Convolution and projection on spline space

Spline functions βd,2 are not bandlimited functions, indeed the Fourier transform

β̂d,2(ξ1, ξ2) =
(

sinc
(
ξ1
2

)
sinc

(
ξ2
2

))d+1

has its first zero at ξ1, ξ2 = ±2π, that is twice the Nyquist frequency corresponding to the integer
sampling grid. The Fourier transform can even have significant contents outside of the square
[−2π, 2π]2 depending on the spline degree d, this is why we must take into account values of the
MTF (Modulation Transfer Function) outside the Nyquist square [−π, π]2.

Another drawback of splines in the deblurring case is the periodic convolution of a spline
function in Sdper(n,m) with a kernel h ∈ L2(Ω) which does not necessarily lie in the same spline

space or in any other spline space Sd
′

per(n,m). Though, two cases indeed verify this property,
the sensor PSF (hsens) without the exponential term and the movement equivalent PSF (hmov)
described in section 4.1.1 :




hsens,1(x, y) = 1[−1,1]2(x, y) = β0,2
(
x
2 ,

y
2
)

hmov(x, y) =
(
1[− 1

2 ,
1
2 ] ⊗ δ0

)
(x, y) = (β0 ⊗ δ0) (x, y)

(4.21)

⇒





hsens,1 ∗ βd,2(·) = ((δ0 + δ−1)⊗ (δ0 + δ−1)) ∗ β(d+1),2
(
· −
( 1

2 ,
1
2
))

hmov ∗ βd,2(·) = (βd+1 ⊗ βd) (·)
(4.22)
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The optical PSF hopt is generally known only in the Fourier domain (ĥopt) and does not belong
to a spline space. Given u ∈ Sdper(n,m), the convolution product hopt ∗u rewrites as a combination
of non-spline functions :

hopt ∗ u(·) =
n−1∑

k=0

m−1∑

l=0
ak,l φ (· − (k, l))

where φ = h∗β3,2 may have a very large support depending on hopt. The sampling operator of these
non-spline functions loses the nice numerical property of splines and no longer has a small number
of nonzero coefficients. A solution to reduce the number of coefficients is the truncation of φ but
the exact computation of this function remains problematic since it is not piecewise polynomial.

The solution we propose here is an approximation of φ in the L2 sense without truncation.
In this projection process, the convolution operator on βd,2 is replaced by a convolution operator
on the spline coefficients thanks to the periodic structure of Sdper(n,m). We consider here a very
general function h ∈ L2(Ω) defined by its Fourier coefficients, but cases when φ = h∗βd,2 has small
support and can be computed exactly should not be treated by this approach (this is the case for
hsens,1 and hmov).

We define the projection problem (4.23) related to convolution operator h and spline spaces
Sdper(n,m) (d ∈ {d1, d2}) where d1 is the degree of the approximation space for u (same as before)
and d2 is the degree of the approximation space for φ :

proj
S
d2
per(n,m)

(h ∗ βd1,2) = min
H∈Rn×m

∥∥∥∥∥h ∗ βd1,2 −
n−1∑

k=0

m−1∑

l=0
Hk,l βd2,2(· − (k, l))

∥∥∥∥∥

2

L2(Ω)

(4.23)

This problem admits a unique solution by the projection theorem and because the periodic functions
βd2,2 form a basis of the spline space Sd2

per(n,m). It amounts to solve a linear system involving
scalar products between splines and/or the convolution kernel h :

n−1∑

k=0

m−1∑

l=0
H(k, l) 〈βd2,2(· − (k, l)), βd2,2(· − (q, p))〉 = 〈h ∗ βd1,2, βd2,2(· − (q, p))〉 ∀ q, p (4.24)

The scalar products between splines can be easily computed by formula (2.20) and the other scalar
products can also be computed exactly by Parseval’s formula :

cq,p = 〈h ∗ βd1,2, βd2,2(· − (q, p))〉L2(Ω) = (mn) 〈 F(h ∗ βd1,2), F (βd2,2(· − (q, p)))〉l2(Z) (4.25)

where the discrete scalar product (right term) must be computed on the grid 2π
n Z × 2π

m Z. The
right term rewrites :

F (h ∗ βd1,2) = 1
(mn)2 F(h)F(βd1,2)

and we get a formulation of scalar products (cq,p) as a series ”similar” to a Riemann series :

cq,p = 1
mn

∑

k,l∈Z2

[F(h)F(βd1,2)F(βd2,2)]
(

2kπ
n
,

2lπ
m

)
ei(q ( 2kπ

n ) + p ( 2lπ
m )) (4.26)

Of course we cannot compute this infinite series but it converges very fast for usual splines degrees
d1, d2 ≈ 3 since the FTM ĥ is bounded by 1 (and decreases exponentially fast for hopt) and the
sinc term decreases as a O( 1

‖ξ1ξ2‖d1+d2+2 ). In practice the computation of this series for frequencies

in [−κπ, κπ[2 with κ = 2 is sufficient as shown in figure (4.9). Accurate computation of the series
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in (4.25) is possible up to any precision in a reasonable time thanks to fast Fourier transform on
[−κπ, κπ[2 and sub-sampling (or equivalently a periodization in the Fourier domain) :

cq,p = F−1
(

[F(h)F(βd1,2)F(βd2,2)]
(

2kπ
n
,

2lπ
m

))
(κ q, κ p)

with a K n× κm signal.
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Figure 4.9: Mean Square Error between the result of (4.26) at given κ and the result at κ = 16. The error drops
below the single precision for κ = 6 and is already very low for κ = 2. (here we chose d1 = d2 = 3)

Finaly the resolution of (4.24) is easily performed by means of FFT since the involved matrix
is circulant with corresponding filter b :

M(k,l),(q,p) = 〈βd2,2(· − (k, l)), βd2,2(· − (q, p))〉
= β(2d2+1),2 ((k, l)− (q, p))
= b[(k − q, l − p)]

(4.27)

⇒ F(H) = F(c)
F(b)

The division is well defined in the Fourier domain since |F(b)(ξ)| > 0 for all spline order d2 and
all ξ ∈ [−π, π].

This projection finally allows the computation of an approximation of hopt ∗ βd1,2 with a spline
sampling operator and a discrete convolution on splines coefficients :

proj
S=Sd2

per(n,m)
(h ∗ u) =

n−1∑

k=0

m−1∑

l=0
ak,l proj

S
(h ∗ βd2,2(· − (k, l)))

=
n−1∑

k=0

m−1∑

l=0
ak,l

n−1∑

q=0

m−1∑

p=0
Hq,p βd2,2(· − (k − q, l − p))

=
n−1∑

k=0

m−1∑

l=0
ak,l

n−1∑

q′=0

m−1∑

p′=0
Hk−q′,l−p′ βd2,2(· − (q′, p′)) (change of indices)

=
n−1∑

q′=0

m−1∑

p′=0

(
a ∗ Ȟ

)
[q′, p′]βd2,2(· − (q′, p′)) (invert summations) (4.28)
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We will use this projection in the deblurring problem with a non-spline convolution kernel and
show that it preserves the good approximation property of splines.

4.2.3.2 Consistency with Shannon’s conditions

We know how to model blurry data by means of convolution kernels, but what is exactly restoration
of blurry data ? In the simple regular sampling case, a blurry image is modelled as :

v[k, l] = (u ∗ h)[k, l] + w[k, l] (4.29)

The inverse blurring operator h−1 such that F(h−1) = 1
F(h) can be numerically unstable and the

application of h−1 produces coloured noise h−1 ∗ w with possible high Fourier coefficients. This
is why a trade-off between regularity and data fitting is necessary (by means of local or non-local
regularizations) and leads to formulations of the type :

u∗ = argmin
u

1
2 ‖h ∗ u− v‖

2 + E(u) (4.30)

This data-fitting term means that we want to recover a fully deblurred image, while forgetting the
most important theorem in image sampling : Shannon’s theorem. For a given sampling step ∆
the sampled image (u(k∆, l∆))(k,l)∈Z2 has Fourier transform proportional to the periodization of

û with periods ( 2π
∆ , 0) and (0, 2π

∆ ).

F (u(k∆, l∆)) =
∑

q∈Z

∑

p∈Z
û(ξ1 + q

2π
∆ , ξ2 + p

2π
∆ )

An image generally has important contents at low frequencies and if û has large contents outside the
Nyquist square [− π

∆ ,
π
∆ ], the periodization in frequency domain will alter the frequency contents.

This well known phenomenon called aliasing has a great influence in sampling design. In order to
acquire non-aliased images, the device MTF has low amplitudes at the boundaries of the Nyquist
square [− π

∆ ,
π
∆ ]. Thus, the inversion of h in (4.29) cancels the frequency attenuation of the MTF

which allowed non-aliased acquisition.
The user is the only judge for the accuracy of the restoration since there does not exist a single

reference image for this problem. Indeed, every image sampled with frequency 1
∆ and previously

convolved with a kernel href respecting Shannon’s conditions is a valid image. This curse cannot
be avoided unless we address the super-resolution or image fusion problems.

In all our experiments, the reference image is obtained by convolution of a high-resolution
image u0 with a 2D prolate kernel pα and sub-sampling according to the prolate cut-off frequency.
A prolate function as defined by Landau, Pollak and Slepian [85] is a time-limited signal (small
support filter here) and has most of its energy concentrated in [−απ, απ] in the Fourier domain.
The factor α ∈]0, 1] is the cut-off parameter although the Fourier coefficients of the prolate are
not necessarily zero above απ. The construction of 2D prolates is similar to the 1D case and is
performed by iterative Fourier projections with the operator :

F−1 ◦ Pα ◦ F

where Pα is the support restriction in Fourier domain (it can be a square with size 2πα or disc with
radius απ). The cut-off parameter is chosen as the inverse of the sub-sampling parameter, and the
prolate has generally a support length about 3 − 5. The images produced this way are visually
well sampled, i.-e. high frequency structures do not seem aliased by this filtering+sub-sampling
procedure. The deblurring should be aimed at recovering the image u0 ∗ pα on the coarse grid
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Λreg of the sub-sampling step, and there exist at least two ways to achieve this goal. The first one
consists in a new formulation of the deblurring problem :

u∗ = argmin
u

1
2 ‖(h ∗ p

−1
α ) ∗ u− v‖2 + E(u) (4.31)

but the numerical behaviour of the convolution operator h∗p−1
α is not well defined since the prolate

function can take arbitrary low values in the Fourier domain. Furthermore, this implies that the
solution u∗ of (4.31) depends on pα, the second approach we propose is more flexible. Consider v∗

the solution of the initial deblurring problem and u∗ defined by :

v∗ = argmin
u

1
2 ‖(h ∗ u)− v‖2 + E(u) , u∗ = pα ∗ v∗ (4.32)

Here the regularization should only prevent the noise explosion. The aliasing problem may appear
in v∗ (depending on the regularization) but it is no more problematic because u∗ is obtained by
a further convolution of v∗ with a low-pass filter. This way we can consider the usual deblurring
problem (with h) and compare our results to the reference we want. The prolate kernel may even
be replaced by a more general low-pass filter, with a well-chosen value at the Nyquist frequency.

Finally we present the deblurring formulation we use in the following for the irregular sampling
problem :

v∗ = argmin
u∈Sd1

per(n,m)

1
2 ‖( proj

Sd2
per(n,m)

(h ∗ u)(xk, yk)− vk‖2 + λTVZ(u) , u∗ = pα ∗ v∗ (4.33)

and the reference we choose (see figure 4.10) :

uref =
(
u0 ∗ p( 1

K )

)
↓κ

K is typically 2 or 3.
We propose to use the classical TV on the integer grid, as a deblurring and denoising regular-

ization with a global constraint. We know from [4] that TV produces stair-casing effect for high
regularizations, but here the noise level is usually low (σ ≈ 1 but we tested higher noise levels) and
the post-filtering step should be taken into account as it will smooth the sharp edges of TV and
decrease the remaining noise.

4.2.3.3 Variational formulation

We rewrite the function in (4.33) as a function of the spline coefficients (ak,l) :

E(a) = ‖SΛHproj a− v‖2 + λETV (Md1(a)) (4.34)

where Hproj is the convolution matrix with the 2D filter associated to the spline projection operator
(4.28) and Md1 is the linear operator associated to the inverse spline transform

(Md1 a)k,l = u(k, l)

For the moment we call ETV (u) a general regularization function which behaves like TV, it is not
necessarily differentiable so we consider the subdifferential inclusion related to equation 4.34.

0 ∈ (SΛHproj)t (SΛHproj a− v) + λ∂(ETV ◦Md1)(a)
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∗ ↓K

Figure 4.10: How we generate reference images for the deblurring problem : first a high resolution image (CNES
copyrighted image) (left) is convolved with a low-pass prolate with cut-off frequency 1

K
(Fourier transform is

displayed in the middle), it is then subsampled with a factor K ∈ {2, 3, . . .} (right). The result is visually nice and
does not suffer from the aliasing effect.

In this form the problem looks like the ACT+TV formulation (see section 4.1.2) in which the
authors compute the proximal of TV ◦ Q−1/2. Here the operator (Md1 is always invertible, its
inverse has a fast implementation for periodic signals by means of FFT, it also has a much faster
implementation with FIR filters as described in [89] for other boundary conditions.

We adopt a different approach and reformulate the problem in terms of U = Md1 a (the regularly
sampled image) instead of (ak,l) the spline coefficients, this allows the direct computation of matrix-
vector products with matrix HprojMd1 thanks to the Fourier transform since Md1 is circulant in
periodic spline spaces.

V ∗ = argmin
U∈Rm×n

E(U)

= argmin
U∈Rm×n

‖SΛHproj (Md1)−1 U − v‖2 + λETV (U) (4.35)

The two minimization problems (4.34) and (4.35) are equivalent but the subdifferential inclusion
associated to (4.35) now uses a simpler subdifferential operator and we can compute matrix-vector
products Hproj (Md1)−1 U in the Fourier domain with fast FFT with a cost of 2 FFTs and one
multiplication on complex data.

0 ∈ (Md1)−tHt
proj S

t
Λ
(
SΛHproj (Md1)−1 U − v

)
+ λ∂ETV (U)

Hproj (Md1)−1 U � O( (m× n) logm× n) + 2 (m× n)

We can use the Forward-Backward algorithm and acccelerated variants to solve problem (4.35) as
described in algorithm 4.11.

As in previous chapter, we need to compute iteratively a proximal operator of a TV-like energy.
Next section provides details of this computation for nonsmooth and smooth TV with a dual
approach.
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0. Let n = 0, U0 ∈ Rm×n, l > 0 the Lipschitz constant of T t T and 0 < ρ < 2
l

with
T = SΛ Hproj (Md1)−1

1. Reapeat

(a) Un+1/2 = Un − ρ T t (T Un − v)
(b) Un+1 = proxρ λETV (Un+1/2)
(c) n← n+ 1

while E(Un)− E(Un−1) > εE(Un−1) and n < nmax.

Figure 4.11: Forward-Backward algorithm for the resampling+deblurring problem (4.35)

4.2.3.4 Proximal of TV

The TV-denoising problem (i.e. proximal of TV) has a very dense literature, indeed many authors
have contributed to this non-quadratic minimization problem in both discrete and continuous case,
among whom Chambolle et al. [22] [21] [24] (2010).

Several TV-like energies have emerged, here we consider the classical TV :

TV (U) =
m−1∑

k=0

n−1∑

l=0
‖∇++U(k, l)‖

where ∇++ : Rm×n → (R2)m×n is the finite differences operator defined by :

(∇++U)1(k, l) =
{
U(k + 1, l)− U(k, l) if k 6= n− 1

0 else

(∇++U)2(k, l) =
{
U(k, l + 1)− U(k, l) if l 6= m− 1

0 else

(4.36)

This operator is the classical one in image processing, we will use the simpler ∇ notation from
now. The classical TV is convex (and thus continuous), positive homogeneous and its conjugate is
the indicator function of a convex set :

TV ∗ = I∇∗KTV , KTV =
{
s ∈ (R2)m×n s.t. ‖si,j‖ ≤ 1 for all i, j

}
(4.37)

Thus the ρ-proximal of this TV energy amount to compute the projection of a vector U on the
convex set ρ∇∗KTV and the result is given by :

proxρ TV (U) = U − proj
ρ∇∗KTV

(U) (4.38)

A smooth TV energy with the same nice property as studied in [72] derives from the Huber function
ψµ : R→ R :

TVµ(U) =
m−1∑

k=0

n−1∑

l=0
ψµ(‖∇U(k, l)‖) , ψµ(x) =

{
|x| if |x| ≥ µ

x2

2µ + µ
2 else

(4.39)

Huber’s function rewrites as a supremum :

ψµ(x) = µ

2 + sup
|s|≤1

x s− µ

2 s
2
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thus, its conjugate is ψ∗µ(s) = µ
2 (s2 − 1) + I[−1,1](s).

As TVµ =
∑
k,l ψµ(‖∇U(k, l)‖), we can rewrite TVµ as a supremum :

TVµ(U) = sup
S∈[−1,1]m×n

∑

k,l

‖∇U(k, l)‖Sk,l −
µ

2
∑

k,l

(S2
k,l − 1)

= sup
S′∈KTV

〈∇U, S′〉 − µ

2 (‖S′‖2 −mn)

where the scalar product on 〈∇U, S′〉 is equal to
∑
k,l ((∇U)1(k, l)(S′)1(k, l)+(∇U)2(k, l)(S′)2(k, l)).

The inf-sup exchange provides the expression of the proximal of TVµ :

sup
S′∈KTV

min
V ∈Rm×n

λ
(
〈∇V, S′〉 − µ

2 (‖S′‖2 −mn)
)

+ 1
2 ‖U − V ‖

2 (DTVµ)

⇔ V = U − λ∇∗S′ and S′ = argmin
T∈KTV

1
2‖∇

∗T − 1
λ
V ‖2 + µ

2λ ‖T‖
2 (4.40)

The proximal of TVµ is thus as easy to compute as the proximal of classical TV, which corresponds
to the particular case µ = 0. Problem (4.40) can be solved by the same algorithms as classical
TV dual approaches (see [24] for a review). For the classical TV proximal we use Chambolles’s
algorithm in [22] although more efficient schemes now exist : FB, mFISTA, Nesterov, all these
algorithms can be applied to this problem.

• Let S0 ∈ KTV , l > 0 the Lipschitz constant of ∇∇∗ and 0 < τ ≤ 0.25.

• gn = ∇ (∇∗Tn − 1
λV )

• (Sn+1)k,l = 1
1+τ ‖(gn)k,l‖ (Sn + τ gn)k,l for all k, l.

Figure 4.12: Chambolle’s algorithm for the dual minimization problem (4.40) with µ = 0 (classical TV).

On the other hand we solved problem (4.40) by the projected gradient algorithm (which coin-
cides with the Forward-Backward and can also be applied to classical TV) :

• Let S0 ∈ KTV , l > 0 the Lipschitz constant of
(
∇∇∗ + µ

λ Id
)

and
0 < τ < 2

l .

• gn = ∇ (∇∗Sn − 1
λV ) + µ

λ S
n

• Sn+1 = proj
KTV

(Sn − τ gn)

Figure 4.13: Projected gradient for the minimization of the dual problem associated to the proximal of TVµ.

More recently the authors of [24] have compared several algorithms for the TV-l2 and show some
experiments in which accelerated primal-dual algorithms converge faster than the FB, mFISTA
and Nesterov’s algorithms, works of this section could certainly benefit from these breakthroughs.
Figure (4.14) below shows the tuning of the step parameter τ in the projected gradient algorithm
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4.13. Chambolle’s algorithm is known for its monotonicity, the primal energy is strictly decreasing
for 0 < τ ≤ 1

4 , unfortunately this is not the case for the projected gradient if τ ≈ 2
l with l the

Lipschitz constant of ∇∇∗ + µ
γ Id.
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Figure 4.14: Energy in the proximal computation of TVµ by the projected gradient algorithm. The energy is
not guaranteed to decrease for steps τ close to the theoretical boud 2

l
, one should care about this when using the

smooth TV proximal.

It is thus possible to use a smooth TV energy as a regularization for our problem, but the
post-filtering of V ∗ in our approach already reduces the stair-casing effect, this is why we mainly
used the classical TV function.

4.2.3.5 The whole algorithm

The function we minimize in (4.35) is a classical Lagrangian for the constraint :

‖SΛHprojM
−1
d1

U − v‖2 ≤ θ |Λ|σ2

with θ is the same partial denoising parameter as in (4.17) p. 86. We consider the same update of
Lagrange parameter λ in the Uzawa’s loop, that is :

λn+1 = λk / c(V ∗n ) (4.41)

where V ∗n is the result obtained by the Forward-Backward algorithm at step n with λn and c(·) is
defined by :

c(V ) = exp
(∥∥SΛHprojM

−1
d1

V − I
∥∥2 −R |Λ|σ2

R |Λ|σ2

)

with minimum value cmin and maximum value cmax two fixed parameters controlling the La-
grangian update in cases of bad initialization. This is summed up in algorithm 4.16.
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(a) noisy image (σ = 10) (b) classical TV

(c) smooth TVµ, µ = 1 (d) smooth TVµ, µ = 10

Figure 4.15: Experiments with the smooth TV proximal (denoising). For low smoothing parameters the difference
is hardly visible ((b) vs (c)), but for higher smoothness the staircasing effect is clearly reduced ((b) vs (d)).

0. Let n = 0, R ∈ ]0, 1], W ∈ ]0, R[.

1. Compute initial guess V ∗−1 ∈ Rn×m, λ0 > 0 and l > 0 the Lipschitz
constant of T ∗ T with

T = SΛHprojM
−1
d1

2. Repeat

(a) Compute V ∗n by the Forward-Backward algorithm 4.11 with La-
grange parameter λn, stopping parameter ε > 0 and initial vector
U0 = V ∗k−1.

(b) Update λn+1 by formula (4.41).

(c) n← n+ 1

While ‖T V ∗n − v‖ /∈ [(R−W ) |Λ|σ2, (R+W ) |Λ|σ2]

Figure 4.16: Whole deblurring algorithm : we kept the stopping criterion and multiplicative update of the Lagrange
parameter. The FB algorithm amounts to compute iteratively a proximal, this is done either by Chambolle’s
algorithm for classical TV energy or Projected Gradient (FB) for the smooth TVµ.
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4.2.3.6 Experiments

We present below the set of images we used as a validation for our algorithm. These images have
been obtained by irregular sampling of larger resolution images together with a low-pass filtering
(the prolate for example) and a band-limited hypothesis. The irregularity in the sampling set is
obtained by adding a low-frequency Gaussian variable to the regular integer coordinates as shown
in figure 4.17.

Figure 4.17: Original Lena image (left), perturbation in the Fourier domain (middle) and perturbed image (right).
The border smoothing is aimed at avoiding periodization problem in the simulation and restoration and depends
here on the maximum perturbation.

This is the kind of perturbations we can find in satellite images as modelized in [2]. The results
we present were obtained with the comparison criterion described in section 4.2.3.3 and bicubic
splines (the approximation space is thus S3

per(n,m)).
We used the non-spline kernel hopt ∗hsens,2, it is a strongly smoothing kernel with a singularity

at the origin in the Fourier domain. It is due to the optical device blurring kernel (hopt) and to
the diffusion of electrical charges between neighbour elements of the TDI (hsens,2). The results
below correspond to the classical nonsmooth TV. The algorithm uses parameters ε and ν in the
Forward-Backward and TV-`2 problems, we used the value 1.10−5 as a trade-off between accuracy
and time.
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H]

(a) Beauvais image 367× 590

(b) Nimes image 257× 257 (c) Stmichel image (Toulouse) 512× 512

Figure 4.18: Our test images have various resolutions : from coarsest (top) to finest (CNES copyrighted images)
(bottom). Perturbations follow a low-frequency Gaussian law (with minimum period a tenth of the image sizes).
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(a) PSNR measurements

image noise level ACT FAR CG-S TIKH-S TV-S

beauvais

1 24.3587 39.2606 38.6486 39.822 39.9626
3 24.3408 33.2418 32.7089 33.5623 33.9708
5 24.3132 30.9623 30.3513 31.1895 31.4893
7 24.27 29.6102 29.051 29.5223 29.8931

nimes

1 26.6265 40.3505 38.816 39.8873 40.9131
3 26.5929 34.2299 32.7798 33.7992 34.9151
5 26.5374 31.9392 30.7082 31.4423 32.3899
7 26.4442 30.6132 29.5112 29.8485 30.5806

stmichel

1 28.0076 42.7022 40.5794 41.5334 43.1228
3 27.9677 36.9147 34.7294 35.8409 37.5323
5 27.8996 34.6547 32.8676 33.3145 34.5249
7 27.7711 33.0287 31.3372 31.119 32.4016

(b) Computation time

image noise level ACT FAR CG-S TIKH-S TV-S

beauvais

1 2.404s 24m36.808s 7.048s 28.430s 58.124s
3 2.452s 8m55.637s 3.424s 12.461s 37.194s
5 2.476s 5m55.774s 2.804s 11.749s 31.778s
7 2.420s 4m36.645s 2.564s 10.893s 29.674s

nimes

1 0.828s 4m30.369s 1.180s 4.556s 12.169s
3 0.836s 1m56.851s 0.652s 2.744s 9.201s
5 0.816s 1m20.633s 0.552s 2.520s 8.273s
7 0.824s 0m56.364s 0.516s 2.556s 9.453s

stmichel

1 2.860s 17m56.179s 2.888s 4.276s 34.522s
3 2.852s 7m24.924s 1.732s 2.856s 28.926s
5 2.920s 5m5.375s 1.588s 1.792s 33.410s
7 2.872s 4m12.044s 1.404s 2.404s 30.506s

Table 4.1: PSNR (top) and computation time (bottom) for the deblurring experiments of images in data set 4.18.
In terms of PSNR, our method (TV-S) usually provides very good results close to FAR. The adaptive frequency
regularization in FAR depends on the image, we did not tune it here so it could be improved. PSNR should not be
the only comparative criterion, we display extracts from the result of these methods in the figures below.
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noise level ACT FAR CG-S TV-S

1

3

5

7

Figure 4.19: Extracts from the red square in top image. Despite the small stair-casing effect, TV regularization is
sharper, it better denoises than other truncated methods (ACT and CG-S). Some textured areas in FAR and CG-S
are not perfectly restored (it also appears in our method in a lesser extent), this might be due to a low regularization
together with a low sampling density.
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noise level ACT FAR CG-S TV-S

1

3

5

7

Figure 4.20: Extracts from image Nimes.
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method ACT FAR CG-S TV-S

1

3

5

7

Figure 4.21: Extracts from image Stmichel.
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image noise level ACT FAR CG-S TIKH-S TV-S

beauvais

1 32.6674 45.2063 44.7302 45.508 43.4553
2.420s 4m47.618s 1.556s 4.800s 14.809s

3 32.5057 38.647 38.5967 39.6871 37.7864
2.400s 2m4.076s 1.284s 2.408s 13.005s

5 32.2144 35.4431 35.3518 36.4137 34.8764
2.436s 2m46.018s 1.240s 2.056s 12.953s

7 31.8291 33.6107 33.8758 34.2623 32.9373
2.412s 3m24.809s 1.268s 2.148s 12.721s

nimes

1 34.6487 46.4246 45.5707 46.2529 44.5179
0.836s 0m39.454s 0.380s 0.976s 3.372s

3 34.3649 39.4128 38.8316 39.589 38.6841
0.824s 27.842s 0.332s 0.628s 3.216s

5 33.7547 36.2019 35.0681 36.2501 35.8202
0.828s 36.962s 0.300s 0.500s 3.404s

7 33.0592 34.3023 33.5249 33.794 33.9268
0.828s 46.167s 0.320s 0.548s 3.172s

stmichel

1 37.3659 48.0765 47.1979 47.6472 46.6596
2.896s 2m33.406s 1.248s 4.276s 12.209s

3 36.8503 41.3718 39.6832 40.8319 40.5863
2.856s 2m37.018s 1.024s 2.856s 15.405s

5 35.9848 38.3882 35.2134 37.5416 37.9242
2.932s 3m32.937s 0.932s 1.792s 16.609s

7 34.9904 36.6007 33.9408 35.0942 36.1572
2.896s 3m47.030s 0.936s 2.404s 19.589s

Table 4.2: Results from the denoising problem (no deblurring). Quadratic regularization on the Hessian (TIKH-S)
gives very good results with a very low computation time. FAR method is very close and our TV regularization
with splines is worse than some unregularized methods (truncated CG with trigonometric polynomials (ACT) and
the same with splines (CG-S)). TV regularization on the integer grid is not well-adapted to the resampling problem,
the stair-casing effect is too strong.
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4.2.3.7 Observations

The goal of this formulation with splines was the reduction of the computation time and the
preservation of the image quality. The first point is verified, compared to FAR (Quasi-Newton
algorithm with smooth TV-like regularization at half-integers and local constraints) our algorithm
is approximately 20 times faster for low noise levels and about 10 times faster for very high noise
levels. We observed that the local constraints approach requires more iterations in Uzawa’s loop
(the update of Lagrange parameters) which explains a part of the computation time reduction, but
this accounts only for a factor two at most for low noise levels, and the overall gain in computation
time for typical image sizes seems to be a factor 10.

We obtained equivalent PSNR results but the reason for better looking results with global
constraints (except for the stair-casing) compared to local constraints is unclear. As we can see in
extracts from figures 4.19 and 4.20, the two methods have different behaviours in the presence of
highly oscillating textures. In the FAR results, the textures are less regularized because of the local
adaptation but the result looks smooth where the sampling density is low. Global regularization
certainly has drawbacks (oversmoothing effect in textured regions) but it seems to have better
inpainting properties in regions of low sampling density.

The stair-casing effect is present in our results, despite the post-processing step. This point
could be improved, for example by using a smooth version of TV (TVµ) or a different discretization
of TV on the half-integers grid as described in the perspectives.

4.2.3.8 Influence of some parameters

We provide here a short study of the influence of spline approximation degrees (d1 for the image
and d2 for the projection) and smoothing parameter in TVµ.

The following experiments consist in the resolution of both problems (Psamp) and (Pblur) with
arbitrary spline orders, although we kept the same approximation and projection degree convention
d1 = d2. The overall Uzawa’s algorithm structure is the same, as a consequence the regularization
parameters may slightly vary with the approximation degree d1. Table 4.3 shows the evolution of
computation time and PSNR in the two algorithms. We also display the results in figure 4.22.
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spline degree
PSNR and

Computation time
resampling deblurring

0
21.4673 29.2966
45.623s 1m57.731s

1
37.9543 38.7212
6.852s 44.299s

2
43.5424 40.8748
4.336s 18.453s

3
43.9713 40.9
6.252s 19.853s

4
44.0268 40.851
8.389s 21.937s

5
44.1683 40.8517
9.745s 16.969s

6
44.2732 41.0533
14.853s 22.933s

7
44.2308 41.1621
22.053s 25.390s

Table 4.3: Experiments on Nimes (259×259) image with different spline degrees. The zero order splines (piecewise
constant functions) give very poor results, the Uzawa’s loop fails in this case to find the appropriate Lagrange
parameter (infeasible constraint). In all the other cases the algorithm performs well and the best results are
obtained for high spline degrees (here 6 and 7). This is consistent with the image deformation model (trigonometric
polynomials) and we observe that computation time is not very sensitive to the spline degree since most of the
computation concerns the TV proximal.
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...
...

Figure 4.22: Results of our algorithm in the resampling (left) and deblurring+resampling case (right) with spline
degree d1 ∈ {0, 1, 2, 7} (from top to bottom). Results for d1 = 0 are clearly unsatisfactory and artifacts due to
the sampling local density are visible. For d1 ≥ 2 the results are very close and the pixelation effect present for
d1 ∈ {0, 1} nearly disappears when d1 ≥ 2.
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Figure 4.23: Experiment with spline degree zero (no deblurring) : gaps in the sampling set together with the
conjugate gradient produce initial guess (left) with holes. If we force the Lagrange parameter the TV regularization
fills these holes. Here we display an intermediate result (middle) where the holes are partially filled and a full
convergence result (right) in which the holes have completely disappeared (remaining artifacts are due to the
pixelation effect).

Experiments show that the computation time has a low sensitivity to the spline order, although
it slightly increases for orders greater than 3. We did not test the influence of the projection order
d2 but it should have a similar effect on the quality of the restoration because of the convergence
of interpolating splines in periodic spaces Sdper(n,m) to the Dirichlet kernel.

Concerning the smoothing parameter, a new algorithm such as Nesterov’s algorithm [69] would
be necessary since the function TVµ is strongly convex and admits faster minimization schemes
(with linear convergence rate). We denoted an improvement in statistics and a reduction of the
stair-casing effect in resampling experiments for µ ∈]0, 1], the improvement was less significant in
the deblurring case. A sharp estimation of this regularization parameter for a class of images would
be necessary to add this feature as an automatically tuned parameter in our algorithm.

4.2.4 Perspectives

4.2.4.1 Total variation at half-integers

TV is usually implemented by finite differences on the integer grid, but there exist other versions
such as the half-integer implementation of L. Moisan [67] which reduces the stair-casing effect. We
use bicubic splines here together with this modified TV and study the influence of this variation
on the performances of our algorithm.

TVZ/2(u) =
2n−1∑

k=0

2m−1∑

l=0

∣∣∣∣∇u
(
k

2 ,
l

2

)∣∣∣∣ (4.42)

where the gradient can be computed either by finite differences on the half-integer grid, or exactly as
a function of the spline coefficients by formula (2.19). The Lagrangian formulation of the sampling
problem with TV penalization rewrites as

u∗ = argmin
u∈S3

per(n,m)

1
2‖u(xk,l, yk,l)− Ik,l‖2 + λ

∫

Ω
|∇u(x, y)| dx dy (4.43)
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The norm of the gradient is not differentiable this is why we replaced it here by
√
|∇u|2 + C (C > 0

a very small constant) and obtain the following expression for the gradient of ETV :

∂

∂ak,l
ETV (a) =

(
StΛ (SΛ a− I)

)
k,l

+ λ

∫∫

Ω

〈∇u(x, y), ∇β3,2(· − (k, l))〉√
|∇u(x, y)|2 + C

∀ k, l (4.44)

where u ∈ S3
per(n,m) has spline coefficients (ak,l). The computation of this integral is not elemen-

tary even in a spline space, where the exact expression of u is known. This is why we used the
modified TV of L. Moisan on the half integer grid as a discretization of this integral with Riemann
series :

TVZ/2(u) = 1
4

2n−1∑

q=0

2m−1∑

p=0

√
|∇u

(q
2 ,
p

2

)
|2 + C (4.45)

∂

∂ak,l
ETVZ/2(a) =

(
StΛ (SΛ a− I)

)
k,l

+ λ

4

2n−1∑

q=0

2m−1∑

p=0

〈
∇u
(
q
2 ,

p
2
)
, ∇β3,2

(
q
2 − k,

p
2 − l

)〉
√
|∇u

(
q
2 ,

p
2
)
|2 + C

∀ k, l

(4.46)
The computation of ∇u

(
q
2 ,

p
2
)

is a simple zoom operation on the gradient of u, it can be performed
by convolution of the up-sampled spline coefficients as described in [89]. The gradient of ∇β3,2 is
computed thanks to separable filters and every convolution/scalar product uses periodic boundary
conditions as we work in S3

per(n,m). The computation cost of the TV gradient can be compared
to the computation of the gradient of the quadratic term

StΛ (SΛ a− I) � 32×m× n ∇ETVZ/2 � (300 + 4α)×m× n (4.47)

with α the cost of a square root computation (about 10 floating point operations). This modified
TV has a great impact on the numerical complexity, here the gradient of the classical TV would
have a computational cost similar to the gradient of the quadratic term.

We implemented the gradient descent algorithm 4.24 below, although faster algorithms exist
for this strictly convex function. This gives an insight of the difference between TV and TVZ/2
despite the very small smoothing constant C = 1.10−15 aimed at avoiding a division by zero. This
smoothing is in fact not necessary if we use a sub-gradient descent algorithm or a dual method,
which we had not heard of at the time of this implementation.

• Let a0 ∈ Rn×m

• For all n ≥ 0

– ρn = α
10+n

– an+1 = an − ρn∇ETVZ/2(an)

Figure 4.24: Simple gradient descent with step size ρn → 0 following Polyak’s rule.
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Figure 4.25: Results from the half integer TV (left) compared to classical TV (right) for low noise level (σ = 1).
The error term shows the advantage of half integer TV in the reconstruction of textured areas, there is almost no
difference in smooth regions for this noise level. For higher noise levels the stair-casing effect is slightly reduced in
smooth areas.

PSNR
noise level TVZ/2 TV

1 44.5339 43.2283
3 39.1153 38.5255
5 36.1033 35.7112
7 34.2309 33.8419

Figure 4.26: Resampling with the TV at integers (left) and TVZ/2 (right) for the same Lagrange parameters (104

iterations in the gradient descent). Results displayed here use a very high number of iterations for both algorithms
which emphasizes the stair-casing effect, this explains the differences between these PSNR results and results from
table 4.2 but the phenomenon persists for lower convergence rates.

In our experiments, the half-integers TV always gave slightly better results than classical TV.
The improvement should be more important in deblurring and zooming experiments as explained
in [46]. An adaptation of our deblurring algorithm to this zoomed TV could be a new path of
research but it is not as straight forward as the Quasi-Newton algorithm in [46]. Indeed the dual
TVZ/2 denoising problem in this case amounts to compute the following projection
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S∗ = argmin
S∈KTV

1
2 ‖λZ

∗∇∗S − V ‖2

with S a 2n×2m two-dimensional vector and Z the derivation+zooming operator on the considered
spline space.

The conjugate derivation+zoom operator requires the computation of a convolution by means
of FFT in periodic spline spaces, this would increase the cost of each iteration in the Projected
Gradient algorithm in a non-negligible way. Other boundary conditions could prevent the use of
Fourier transforms (symmetric or constant extension) but the impact on the computation time
would still be significant 4.47, and the spline approach would be no more advantageous.

4.2.4.2 Decomposition of the convolution operator

We examined the question of the computational cost of the gradient of the data-fitting term. Our
formulation of the deblurring problem uses the Fourier transform for the diagonalization of the
matrix HprojM

−1
d1

, this implementation is certainly faster than the naive implementation because

of the large support of the equivalent filter (given by a row of HprojM
−1
d1

with periodic conditions)
but can be very expensive for large image sizes.

Works of Malgouyres [64], Durand et al. [42], Kalifa et al. [54] have shown the efficiency of
wavelet bases and wavelet packets [65] in the resolution of deblurring problems. The main idea is
that wavelets have a quite good frequency localization and the blurring kernel can be decomposed
as a series in the basis or family of wavelets.

We present here an application to functions in S3
per(n,m) with n,m sufficiently large integers

multiples of 2J and orthogonal wavelet bases ( Daubechies wavelets). The idea is to approximate
the projection in section 4.2.3.1 by an operator with very few coefficients in the wavelet domain
thanks to the shape of the FTM. Indeed this FTM is smooth except at the origin which is exactly
the part of the frequency domain refined by the classical wavelet transform (Mallat’s cascade
algorithm). Let f, g be the discrete filters associated to a multi-resolution analysis and a(0) the
signal to be decomposed, for simplicity we present the case of one dimensional signals with length
N :

a(−1)(l) = (f̌ ∗ a(0))(2l) l = 0..N/2− 1

b(−1)(l) = (ǧ ∗ a(0))(2l) l = 0..N/2− 1

. . .

a(−J)(l) = (f̌ ∗ a(−j+1))(2l) l = 0..N/2j − 1

b(−J)(l) = (ǧ ∗ a(−j+1))(2l) l = 0..N/2j − 1

The reconstruction of a(0) from a(−J) and the
{
b(−j)

}
j=1..J uses the two properties of f̂ , ĝ :

partition of unity and orthogonality [65] :

a(−j+1)(l) =
N/2j−1∑

k=0
f(l − 2k) a(−j)(k) +

N/2j−1∑

k=0
g(l − 2k) b(−j)(k)

. . .

a(0)(l) =
N/2−1∑

k=0
f(l − 2k) a(−1)(k) +

N/2−1∑

k=0
g(l − 2k) b(−1)(k)
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We showed in section 4.2.3.1 that the projection of h ∗u rewrites as a convolution on the spline
coefficients :

proj (h ∗ u) =
∑

k,l

(hproj ∗ a) [k, l]βd2,2 (· − (k, l))

If the a(0) vector represents the spline coefficients of u, we propose to approximate the projection
proj

S
d2
per(n,m)

(h ∗ u) with the following series :

proj (h ∗ u)(x) ≈
∑

j

∑

l′

(∑

k

b(−j)(l′ − k)hj(k)
)
ψ̃

(−j)
l′ (x) +

∑

l′

(∑

k

a(−J)(l′ − k)hJ+1(k)
)
φ̃

(−J)
l′ (x)

≈
∑

j

∑

l′

(hj ∗ b(−j))(l′) ψ̃(−j)
l′ (x) +

∑

l′

(hJ+1 ∗ a(−J))(l′) φ̃(−J)
l′ (x) (4.48)

where hj , hJ+1 are discrete filters acting on the wavelet coefficients and ψ̃(−j), φ̃(−J) correspond
to the convolution of h with of some continuous functions ψ(−j) and φ−J defined by :

φ
(0)
k (x) = β(3)(x− k) k = 0..N − 1

φ
(−1)
k (x) =

∑

l

f(l)φ(0)
l (x− 2.k)

ψ
(−1)
k (x) =

∑

l

g(l)φ(0)
l (x− 2.k)

. . .

φ
(−j)
k (x) =

∑

l

f(l)φ(−j+1)
l (x− 2j .k)

ψ
(−j)
k (x) =

∑

l

g(l)φ(−j+1)
l (x− 2j .k)

The approximation formula 4.48 is generally not verified but it is indeed verified for the Shan-
non multi-resolution analysis. This approximation of a blurring kernel in Shannon’s wavelet

basis amounts to approximate ĥ with trigonometric polynomials ĥj on each set
[
− π

2j−1 ,− π
2j
]
∪[

π
2j ,− π

2j−1

]
, 1 ≤ j ≤ J and

[
− π

2J ,− π
2J
]
.

Filters hj with chosen support size can be computed exactly thanks to the cascade algorithm
and the same initial scalar products as in section 4.2.3.1. Our attempt to use small support filters hj

(3× 3 and 5× 5) together with Daubechies wavelets revealed unfortunately quite bad with typical
wavelet filter sizes (we tried filter sizes from 8 to 16). The aliasing effects nearly disappeared
for large wavelet filters sizes but the method was no more competitive compared to the Fourier
transform and has not been chosen in the final implementation. Experiments have shown that this
accounts for only a small part of computations and does not prevent the algorithm from being
much faster than the FAR method.

In fact every nonlinear process on the wavelet coefficients suffers from this aliasing effect since
the orthogonality relation between wavelets is no more verified as pointed out in previous works
from F. Malgouyres with simpler 1 × 1 filters hj (equivalent to a multiplication by a scalar). A
better solution for further investigation could be the design of especially adapted wavelet filters
(not necessarily orthogonal wavelets) or a different computation of filters hj which would reduce
the aliasing phenomenon compared to the classical L2 projection.
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4.3 Conclusion

This study of the irregular sampling problems shows that splines are numerically interesting even
in the deblurring case. The convolution operator can be handled with an approximation (here a
projection) and the use of spatial regularization (quadratic penalization on the Hessian as in [5]
and TV in our works) gives very good results. Problems Psamp and Pblur should not be treated the
same way. Indeed we observed as in [46] that quadratic penalization gives better results than non-
quadratic TV regularization when no deblurring is required. In the deblurring case we proposed a
semi-implicite algorithm for the resolution of the subdifferential inclusion with automatically tuned
parameters (Lipschitz constant,Uzawa’s loop), together with a dual approach in the proximal com-
putation. Many new results have appeared in the literature on these semi-implicit schemes and dual
approaches since our work was achieved, for example [24] [8] [12]. Our algorithm could easily be
adapted to these new schemes and provide an even faster implementation of the spline restoration.

In the perspectives we mention a variant of TV and show how it would increase the compu-
tational cost of our algorithm. We think that splines would no more be advantageous with this
variant, trigonometric polynomials in this case would certainly have a comparable numerical com-
plexity and allow for more general regularization functions (such as FAR). Finally, we observed
slight differences in the behaviour of locally and globally constrained methods, this phenomenon
could be due to the low sampling density and further investigation is necessary if a local approach
with splines is examined.



Chapter 5

A study of bandpass signals in
interferometry

5.1 An application of bandpass signals sampling in Static
Interferometry

This last chapter of my thesis report is a summary of a R&T work in collaboration with D.
Jouglet and C. Pierrangelo from CNES. The foundation of this R&T is the SIFTI project (Static
Interferometry Fourier Transform Instrument) of a sounding device for the monitoring of CO and
O3 concentration in the high atmosphere [16] [20] [51] [74].

The nature of the signals and the acquisition modes raise both theoretical and numerical ques-
tions, in particular the feasibility and stability of the reconstruction for the different sampling
modes. The first part of this chapter is a short description of the physical phenomenon (inter-
ferometry), the SIFTI instrument and some of the questions that were brought to our attention.
In a second part we provide answers to these questions in the form of a self-consistent article-like
section, with several theoretical results on irregular sampling in bandpass spaces.

5.1.1 Presentation of the SIFTI static interferometer

CNES1 studied the feasibility of the SIFTI optical instrument (Static Infrared Fourier Transform
Spectrometer) between 2007 and 2010 (Hébert et al. [51]). The scope of SIFTI is to monitor
atmospheric pollution from space. SIFTI is a new kind of Fourier Transform Spectrometer (FTS)
in which all mobile parts have been replaced by a 100% static concept. This concept imposes
instrumental constraints on the measured signal and requires new processing which lead us to
the present study. The SIFTI mission aims at providing an atmospheric sounding from space of
ozone and carbon monoxide, in several places in the world with a revisit of a few hours. Such
soundings may be performed thanks to spectra with high spectral and radiometric resolution in
the thermal infrared, from which the tropospheric mixing ratios may be retrieved [77]. These
spectra are given in radiance (S, in W.m−2.sr−1.cm) or in brightness temperature (in K) with
respect to the sampled wavenumber (σ in cm−1). In [74], Pierangelo et al. expose the mission
specification expressed by scientific users. The two gases are studied through two separate and
narrow spectral bands in which each gas presents significant signatures : B1, dedicated to ozone,
covers the 1030− 1070 cm−1 range (about 9.5 µm); and B2, dedicated to carbon monoxide, covers

1French Space Agency
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the 2140− 2180 cm−1 range (about 4.6µm). The spectra of gases present very narrow and regular
absorption or emission peaks as shown by figure 5.1. No assumption is made in the present study
on the signal we want to retrieve, except for continuity and differentiability. This choice aims at
avoiding any removal of unexpected feature. SIFTI is specified to a spectral apodized resolution of
0.125cm−1 (0.0625cm−1 non apodized), with a spectral sampling of 0.0625 cm−1. The radiometric
requirements are ∼ 0.1K (noise equivalent difference temperature) in B1 and ∼ 0.2K NeDT in B2.

Figure 5.1: Example of atmospheric spectra for several elements among which CO and O3.

Fourier Transform Spectrometry is based on the Michelson interferometer. The incident light
flux is divided into two paths, or arms, by a separating plate. The light in the two arms encounters
different optical path lengths before being recombined and then focused on a square detector as
shown in figure 5.3 and illustrated by the famous Young’s double slit experiment below.

These interferences can be expressed as a function of the oscillating electromagnetic fields
corresponding to each arm. In the simplified case of a single frequency light source with (time)
frequency f (in s−1), each arm corresponds to an electromagnetic field with amplitudes E1(t) and
E2(t) at the sensor’s location :

E1(t) = e1 sin(2π f t+ φ1) E2(t) = e2 sin(2π f t+ φ2)

where the phase difference φ2 − φ1 is linked to the OPD by the relation φ2 − φ1 = 2π OPD
λ with λ

the wavelength (λ = c
f with c the light velocity).

The signal retrieved by the sensor is proportional to the energy of E1 + E2 computed on a
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Figure 5.2: Interferences of light passing through two slits (Young’s experiment 1801). This famous experiment
illustrates the constructive (bright areas) and destructive interferences (dark areas) between two coherent light
sources. The intensity of interferences is a function of the optical paths difference, the distance from the considered
point P of the observation plane to each slit.

period T = 1
f which produces the interference patterns.

I(OPD) ∝
∫ T

0
(E1(t) + E2(t))2

dt

∝
∫ T

0
(e1 sin(2π f t+ φ1) + e2 sin(2π f t+ φ2))2

dt

∝ T

2

(
e2

1 + e2
2 + 2 e1 e2 cos(2π OPD

λ
)
)

In the case of a polychromatic signal with continuous spectral distribution S(σ) (σ is the spatial
frequency in cm−1 or wavenumber), the SIFTI sensor measures a collection of interferences with
spatial frequencies belonging to a certain interval [σ1, σ2] called the interferogram I acquired for
different OPDs.

I(OPD) =
∫ σmax

σmin

S(σ) (1 + cos(2πσ OPD)) dσ (5.1)

with I in W.m−2.sr−1 and S in W.m−2.sr−1.cm.
This formula shows that the measured interferogram is the cosine transform of the searched

spectrum. After conversion to complex values, the spectrum can be retrieved by the inverse Fourier
transform of the interferogram. In classical Michelson interferometers like IASI ( Blumstein [15],
Simeoni [84]), the different OPDs between the two arms are obtained by a moving mirror in one
or both arms (figure 5.3). The sampling of the interferogram is obtained for several positions of
the mirrors at different successive times. In static interferometers like SIFTI, the moving mirror is
replaced by a pair of crossed staircase fixed mirrors (figure 5.3). A laboratory breadboard proved
the feasibility of this concept (Brachet et al. [16]). This evolution reduces parasitic dynamic
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perturbations and increases the reliability of the instrument. The crossed staircase mirrors are
imaged on a detector matrix on which several facets appear, each facet being the crossing of two
steps, one in each arm of the interferometer. Each facet corresponds therefore to the value of the
interferogram for a single OPD. The entire interferogram is acquired at once from the reading of
the value of each OPD facet. The OPDs are obtained for B1 and B2 by a unique interferometer
core, after which dichroic filters separates the two bands on two different detectors.

Figure 5.3: Michelson’s static and dynamic interferometers

In every FTS, the spectral non apodized resolution ∆σ imposes the value of the maximum OPD
: 1

2∆σ . An optical apodization reduces the contrast at high OPDs because of the wide field angle of
SIFTI, but we do not to consider it for simplification. The numerical value for maximum OPD is
8 cm, which constrains the physical depth of the staircase mirrors. Static FTS imposes additional
constrains to interferograms that have to be taken into account for the spectrum computation.
First, the staircase mirrors have a limited number of steps (∼ 30) due to manufacturing design.
The OPDs obtained by the crossing of both mirrors are therefore limited to a number of ∼ 1000. As
a comparison, IASI provides more than 50, 000 samples in the interferogram. The SIFTI mission
needs for high spectral resolution and narrow spectral bands can be well accommodated with this
small number of samples by 1) acquiring only single-sided interferograms in the positive OPDs,
and by 2) applying the generalized Shannon theorem. According to this theorem, the signal may
be strongly under-sampled without any loss of information if

∆OPD > 1
2(σmax−σmin)

∃k ∈ N k
2∆OPD

< σmin < σmax <
k+1

2∆OPD

(5.2)

with ∆OPD the distance between two samples of the OPD. Under these conditions, several low
frequency aliases of the useful signal appear but their small width prevents any overlapping.
These conditions makes the concept of static FTS well suited to the SIFTI mission. In SIFTI,
∆OPD = 80µm defines the Nyquist frequency σnyquist equal to 62.5 cm−1 while [σmin, σmax] ∼
[1030, 1070] cm−1. A second constraint of the static FTS appears in the design of the staircase
mirrors which is of limited precision. The positions of the steps are slightly irregular with respect
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Figure 5.4: The static interferometry instrument concept uses fixed stepped mirrors instead of a moving plane
mirror. The incoming light is filtered and separated into two arms which are then reflected by the stepped mirrors
and the beam splitter in direction of the detection array. The two mirrors have different step sizes, one of them
has small steps with height dx/2 and the other one has larger steps, each large step is equal to the sum of all small
steps. ( figure from [16] )

to the requested regular positions, which results in a slightly irregular OPD sampling of the inter-
ferogram. In our preliminary studies, we proved that the OPDs can be modelized at each sample
by a Gaussian law, whose mean is the regular expected OPD and whose standard deviation is
5µm. The irregular OPD values will be known accurately (up to 10nm) in the flight instrument.

Figure 5.5: Multiplicative filter on the spectrum (top) and the high-resolution spectrum (bottom). This filtering
takes place before the intensity measurements by the matrix detector and is thus taken into account in the simulation
of the interferogram, together with sampling perturbations, noise and possible apodization.

A sampling improvement has been proposed by Cansot at al. [20] which consists in the concate-
nation of two identical sampling combs shifted by λ/4 with λ = 1/σmid = 2/(σmax + σmin) (phase
opposition), as illustrated by figure 5.6. Each comb presents the same characteristics of under-
sampling and slight irregularities as described in the previous paragraphs, but may be sparser.
Empirical studies at CNES proved that using this sampling reduces the radiometric noise am-
plification from interferogram to spectrum. This variant is called IIS (Interferogram Interlaced
Sampling), while the nominal one is called IES (Interferogram Even Sampling). Such a sampling
is obtained in practice by the phase modulation created by an optical coating deposed on the half
of each step of the crossed mirror, splitting it into steps of same length but half widths. Each facet
is split into four values, which are linearly combined to provide the expected doublets.



120 CHAPTER 5. A STUDY OF BANDPASS SIGNALS IN INTERFEROMETRY

ΛIES = {xk} with xk = xmin + k dx+ νk 0 ≤ k ≤ Ns − 1 xmin ∈ [−0.13, 0] cm (5.3)

The second sampling mode, called Interferogram Interlaced Sampling (IIS), consists in two shifted
grids with inter-doublet step dx and intra-doublet step ε :

ΛIIS = {x′k} with x′2k = xmin + k dx+ νk x′2k+1 = x2k + ε

0 ≤ k ≤ Ns
2 − 1

(5.4)

IES

IIS

Figure 5.6: The two main sampling schemes we study here i) perturbed regular sampling (IES) described in
eq. (5.3) and ii) perturbed interlaced sampling or nonuniform sampling (IIS) described in eq. (5.4) where the
consecutive samples x′2k and x′2k+1 are always separated by the same gap ε > 0.

To summarize, the SIFTI instrument amounts to compute a spectrum through the Fourier
Transform of an interferogram irregularly sampled and acquired in the Shannon’s generalized
theorem conditions. The irregularity of the sampling makes the FFT algorithm useless without
prior processing and, associated with the undersampling, it prevents the numerical computation
of Fourier transforms as integrals. SIFTI therefore rises a new challenge in signal processing that
this paper contributes to solve.

5.1.2 CNES’s state of the art

Two methods have been proposed at CNES for the retrieval of spectra in such conditions. The
first method computes the interferogram on a regular sampling from the measurements and then
applies an FFT to get the spectrum. The regularization is based on the interpolation formula
from a regular sampling, which gives the interferogram value I at any OPD from the convolution
between the Ireg values at the regular positions OPDreg

I(OPD) =
∑

k

I(OPDreg(k)) Φ(OPD −OPDreg) (5.5)

with Φ(·) = sinc(π(σmax − σmin) ·) cos(2π σmin ·). We express this formula at the instrumental
irregular OPDs {OPDirreg} and compute the unknown vector Ireg by pseudo-inversion :

Iirreg = QIreg (5.6)

with Qk,l = Φ (OPDirreg(k)−OPDreg(l)). Then we take

Ireg = Q† Iirreg
= (QtQ)−1M t Ireg

(5.7)

if (QtQ) is invertible. The quality of the result depends on the condition number of QQt. To
increase this conditioning Iirreg has more values than Ireg.
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The second method avoids any FFT and considers the relationship between Sreg, the vector of
the regular samples of the spectrum at {σj} with σj = σmin + j∆σ, and Iirreg the vector of the
irregular samples of the interferogram at {OPDirreg(k)}. The cosine transform of the spectrum can
be calculated as numerical integrals because {σj} is regular. A matrix relationship can therefore
be derived

Iirreg = RSreg (5.8)

where R is defined by Ri,j = cos(2π OPDirreg(i)σj) ∆σ. Obtaining the regular samples of the
spectrum from the irregular samples of the interferogram is an inverse problem that can be solved
by optimal estimation

Sreg = R† Iirreg
= Rt (RRt)−1

Iirreg
(5.9)

if (RRt) is invertible. Here we consider that the matrix R has more columns than rows (the
discrete spectrum has more points than the irregular interferogram). Once again the quality of the
result depends on the conditioning of the (RRt) matrix.

5.1.3 Questions

The early implementation of these two methods in the SIFTI sampling conditions has raised both
theoretical and numerical problems. Because of the irregularity in the design of the mirrors steps the
reconstruction can be unstable and one can easily imagine that a strong irregularity may produce
non-invertible systems. At this time the conditions for a feasible reconstruction are unknown for
the kind of signals we are dealing with.

The second problem is the evaluation of each method : experiments on a simulated spectrum
with very high resolution have shown that the two methods produce very similar results but have
different sensitivities to noise in the interferogram and to irregularity in the OPDs. Because of
the mission specifications we need sharp error estimations for each method and we would like to
understand why the two reconstructions are generally close but different.

And last we want to understand what are precisely the sampling conditions in the IIS case
and the theoretical justification for the good performances of this sampling relatively to noise and
irregularity.

5.1.4 Contents of this chapter

Answering these questions demands a rigorous mathematical modelization of the signals and mea-
surements in all the cases we presented, which are regular and irregular IES and IIS samplings in
the presence of noise. In the following we first introduce the notations and remind the important
theorems in bandpass sampling like the famous generalized Shannon’s theorem mentioned earlier,
but also other results well known from the Signal Processing community.

Then we consider the existing CNES’s methods and show that they belong to a more general
framework (Nonharmonic Fourier Series) which benefits from many mathematical results in irreg-
ular sampling in the bandlimited case. We extend the Duffin-Shaeffer perturbation theorem [41] to
the bandpass case and study from a numerical point of view the behaviour of some reconstruction
operators relatively to the irregularity in the OPDs.

The last part of this chapter is an attempt to justify the observations concerning sensitivity
to noise in the interferogram. Some modelizations seem to be numerically less sensitive to these
parameters, and a new one from the general nonharmonic Fourier series framework is analysed.
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5.2 Sampling in BP (A, B)
In the following we will note BP (A,B) the subset of L2(R) of functions with Fourier transform
supported in Ω = [−B,−A] ∪ [A,B] , 0 < A < B. Its Fourier transform F (BP (A,B)) is closed in
L2(R) and it is a Hilbert space for the scalar product on Ω

〈 f, g〉L2(Ω) =
∫

Ω
f(t) g(t) dt .

5.2.1 Link with Static Interferometry

Consider the basic interferometry model for a signal S with support in [A,B] at locations {xk}k=1..M

Ik =
∫ B

A

S(σ) cos(2πxkσ) dσ . (5.10)

The spectrum energy S is measured by scalar products with a cosine function on [A,B], which are
in fact values of the Fourier transform of S̃ the even part of S (with support in Ω ) at irregular
locations.

Ik =
∫ B
A
S(σ)

(
ei2πxkσ+e−i2πxkσ

2

)
dσ

= 1
2
∫

Ω (S(σ) + S(−σ)) ei2πxkσ dσ
= F

(
S̃
)

(xk) := F (xk) .

The fact that S is real-valued implies that the Fourier transform has Hermitian symmetry F (−x) =
F (x)∗ , x ∈ R and the knowledge of F at positive locations is indeed sufficient. We see that our

problem is equivalent to recovering the Fourier transform f̂ of an even function f in BP (A,B)
from the data {f(xk)}k=1..N .

5.2.2 Periodic Sampling

Functions whose Fourier transform has support in the union of intervals are called bandpass signals
in Signal Processing (Kohlenberg [57], Vaughan [92], Vaidyanathan [62] et al.). Uniform and
periodic nonuniform sampling of these signals correspond to nonperturbed IES and IIS sampling
modes (see section 5.1) and are ruled by the two following theorems [92].

Theorem 15 Generalized Shannon Theorem
Let 0 < A < B, dx > 0. Any function f in BP (A,B) can be reconstructed from its samples

{f(k dx)}k∈Z if and only if dx belongs to one of the intervals

[
k

2A,
k + 1
2B

]
, 0 ≤ k ≤ A

B −A , k ∈ N (5.11)

The sampling step dx may belong to the union of at most b A
B−Ac intervals: these values guaranty

that Ω and all the shifted Ω + k
dx ( k ∈ Z\{0} ) do not overlap in Poisson’s summation formula :

this is a non-aliasing criterion.
We take the following example which includes the band B1 : [A,B] = [1020, 1080] cm−1. The

generalized Shannon’s theorem gives 17 intervals of the form [ k
2040 ,

k+1
2160 ], and the last interval is

reduced to the point
{ 17

2040
}

= { 1
120}.

Periodic nonuniform sampling rule is more complicated because it depends on the way the
two intervals [−B,−A] and [A,B] overlap when Ω is periodized with a step 1

dx , as stated in the
following theorem.
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]
0, 1

2160
]

[ 1
2040 , 2

2160
]

17
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[ 16
2040 , 17

2160
]

Figure 5.7: Example of Shannon’s intervals with [A,B] = [1020, 1080] cm−1. The last point is 83, 3µm and the
last interval is approximately [78.4, 78, 7] µm.

Theorem 16 Periodic Nonuniform Sampling
Let 0 < A < B , 0 < dx ≤ 1

B−A and d > 0. Consider the set J = J(A,B, dx) of indices k for

which the translation of step k
dx leads to non trivial overlapping.

J =
{
k ∈ Z / µ

((
[−B,−A] + k

dx

)
∩ [A,B]

)
> 0
}

with µ the Lebesgue’s measure. Then Λ = {l dx}l∈Z ∪ {l dx+ d}l∈Z allows reconstruction of any
function f in BP (A,B) from its samples {f(xk)}xk∈Λ if and only if

J ∩ dx
d
Z = ∅

Two special cases are detailed in [92], integer and half-integer band positioning, which corre-
spond to the case B+A

B−A ∈ N and J = {B+A
B−A}. The authors computed the best d in this case in

terms of inversion norm

d ∈ 1
4fc

+ 1
2fc

Z fc = B +A

2 (5.12)

and verified experimentally that this ”quadrature” sampling leads to the best precision in the
reconstruction. This result comes as a justification for the choice of intra-doublets spacing d = λ

4
described in section 5.1.1 in the IIS case. This will be detailed in section 5.3.4.

In the general case of periodic nonuniform sampling (when B+A
B−A /∈ N), the quadrature sampling

is no more optimal and the best shift d realizes the minimal norm of an aliasing matrix :

infd maxk∈J

∥∥∥∥∥

(
1 1
1 e−i2πd

k
dx

)−1∥∥∥∥∥
2,2

= infd maxk∈J 1
2| sin(πd k

dx )|

√
2 + |2 cos(πd k

dx )|

(5.13)

with d such that J ∩ dx
d Z = ∅. Unfortunately there is no general formula for the best d in the case

|J | > 1.
Reconstruction formulas are different in the uniform and nonuniform case. In the regular

sampling case, a single reconstruction function Φ is necessary but in the nonuniform case other
functions Φ1 and Φ2 with piecewise constant Fourier transform are necessary to reconstruct the
signal (see [92]). When conditions of theorems 15 or 16 are verified, any function f ∈ BP (A,B) is
the limit of a uniformly converging series on every compact subset of R :

f(·) =
∑

k∈Z
f(k dx) Φ(· − k dx)
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or
f(·) =

∑
k∈Z ( f(k dx) Φ1(· − k dx)

+ f(k dx+ d) Φ2(· − k dx− d) )
(5.14)

In [32] and [62] the authors generalized nonuniform sampling to multiband signals by considering
an arbitrary union of regular sampling sets of the form

Λ =
⋃

1≤i≤n
{k dx+ di}k∈Z (5.15)

and give a decomposition formula similar to (5.14) with n basis functions Φi , 1 ≤ i ≤ n. The
goal of this generalization is to approach the Landau’s sampling density µ(Ω) which is the smallest
density of a stable sampling set [58]. Note that the minimum density set of the form (5.15) always
exists in the case of two bands with equal length, but not necessarily in the general multiband case
[52].

5.2.3 Perturbed Sampling

A lot of works exist about perturbed sampling in bandlimited spaces, starting from Paley and
Wiener [73], Duffin and Schaeffer [41], Kadec [53] and many others, to the more recent works of
Favier and Zalik [47], Chui and Shi [27] who generalized the perturbation results in dimension one
to higher dimensions . But only a few articles deal with irregular sampling in bandpass spaces,
and more particularly perturbed sampling of the form

xk,i = k dx+ di + ξk,i 1 ≤ i ≤ n k ∈ Z (5.16)

with ξk,i i.i.d. random variables with compactly supported distribution. Martin et al. [94] have
observed very interesting experimental results concerning such sampling sets. For large enough
perturbations, the perturbed regular sampling set {k dx+ ξk} allows reconstruction of a bandpass
signal with the only restriction on 1

dx to be slightly larger than µ(Ω), whereas regular sampling
must obey the generalized Shannon’s condition (5.11).

But what happens if the sampling set already allows reconstruction ? This is the problem of
optimal bound on the perturbation. In dimension one the best result about perturbed sampling of
bandlimited functions with maximum frequency B (noted BF (B)) is Kadec’s theorem [53].

Theorem 17 Kadec’s 1/4 Theorem
Let B > 0 , Λ = {xk}k∈Z be a subset of R such that

|xk −
k

2B | ≤ L ∀k ∈ Z

If L < 1
8B then the family {ei2πxk ·}k∈Z is a Riesz basis of L2([−B,B]) and there exists a Riesz

basis {gk}k∈Z of BF (B) such that

f(·) =
∑

k∈Z
f(xk) gk(·)

The bound 1
8B is tight due to an example by Levinson (see [60] p. 65) and the name 1/4-theorem

comes from the ratio 1
8B /

1
2B = 1/4. Levinson showed that if L = 1

8B the sampling set captures
all the signal information and Young [95] also showed that if L > 1

8B , then there exist sampling
sets that do not capture all the information in the signal. But we want to sample functions in
BP (A,B) at a much lower density than 2B, close to 2(B −A).
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The ln 2
2πB -perturbation theorem of Duffin and Schaeffer [41] can be adapted easily to the band-

pass case since it only requires analytic functions with exponential growth (bandlimited functions)
and a tight frame of L2(Ω). It is well known [66] that the stable sampling problem in bandlimited
spaces is equivalent to the frame property of a family of complex exponentials in the Fourier do-
main. We remind here the definitions of stable sampling set, frame and the frame property (see
[58] and [66]).

Definition 13 Stable Sampling Set
Let E be a subset of C(R)∩L2(R) and Λ = {xk}k∈Z a subset of R. Λ is called a stable sampling

set of E if
∑
k∈Z |f(xk)|2 <∞ for all f ∈ E and if there exists C > 0 such that

‖f‖L2(R) ≤ C ‖f(xk)‖l2(Z) ∀ f ∈ E

Definition 14 Frame
Let H be a C-Hilbert space and F = {fk}k∈Z a subset of H. F is a frame of H if there exist

C,D ∈ R with 0 < C < D, such that

C ‖h‖2H ≤
∑

k∈Z
| 〈h, fk〉 |2 ≤ D ‖h‖2H ∀h ∈ H

Theorem 18 Frame Property
Let Λ = {xk}k∈Z be a subset of R, 0 < A < B and Ω = [−B,−A] ∪ [A,B]. Λ is a stable

sampling set of BP (A,B) if and only if {ei2πxk·}k∈Z is a frame of L2(Ω).

We can choose dx such that {ei kdx ·}k∈Z forms a frame (in that case it is a tight frame) and get
the following perturbation theorem.

Theorem 19 Perturbed IES Sampling
Let 0 < A < B and dx > 0 satisfying the generalized Shannon’s condition (5.11). The set

Λ = {xk}k∈Z such that
|xk − k dx| ≤ L ∀ k ∈ Z

is a stable sampling set of BP (A,B) if L < ln 2
2πB .

We refer the reader to appendix 5.6.1 for the proof of this theorem which uses Taylor series, as in
[41].

At this time this is the only perturbation constant we know for bandpass spaces and the problem
of the optimal perturbation bound for a given sub-Nyquist uniform sampling set is still not solved.
The same problem occurs in periodic nonuniform sampling, where it would be useful to know the
order of magnitude of the maximum perturbation. This case will be treated in details in section
5.3.4.

In our example [A,B] = [1020, 1080] cm−1 with finitely many samples, the bound L = ln 2
2πB

is approximately 1.02 10−4 cm, which is five times smaller than the standard deviation of the
sampling location for the SIFTI interferometer. If we consider that no irregularity larger than 3.5
times the standard deviation occurs, we are very far from this bound (by a factor 17.5). Though,
we are able to correctly reconstruct the signal (figures 5.8 and 5.9).

The observations of Martin et al. can be compared to the recent results of Meyer and Mattei
[66], who have shown that there exist universal sampling sets called quasicrystals for the kind of
functions we deal with. The main result of [66] is that any quasicrystal Λ with density dens(Λ) is
a stable sampling set for functions in L2(Rn) with Fourier transform supported in a compact K
provided that dens(Λ) > |K|.



126 CHAPTER 5. A STUDY OF BANDPASS SIGNALS IN INTERFEROMETRY

In the bandpass case, experiments tend to favour perturbed sampling as a universal sampling

method, especially when the perturbation is larger than the theoretical bound (here ln(2)
2πB ). This

perturbed set keeps its good properties when the original sampling set is stable, and becomes stable
when the original set is not. This is not in contradiction with the results of Meyer and Mattei and
makes easier the design of universal sampling sets.

We point now an important difference between regular and perturbed sampling : because of
irregularity, there does not exist a single function Φ1 such that the following reconstruction formula
holds :

f(·) 6=
∑

k∈Z
f(xk) Φ1(· − xk)

but there exists a more general decomposition formula which uses analytic functions defined by
infinite products of monomials {(·−xk)}. In the case of a finite number of samples, this corresponds
to Lagrange’s interpolation : this method is unfortunately too unstable. But in some cases (we
give an example in section 5.4) it is possible to derive the expression of this decomposition from
the infinite sampling set.

5.3 Reconstruction from a small number of irregular sam-
ples

5.3.1 A study of CNES methods

We consider here the two methods described in section 5.1.2. The CNES first method uses a linear
system deriving from the truncated series (5.14), when dx satisfies the generalized Shannon’s
condition (5.11) .

(Ik) = (F (xk)) ≈ ∑N
l=−N F (l dx) Φ(xk − l dx)

≈ Q × (F (l dx))l=−N..N
where the matrix Q has general term Qk,l = Φ(xk − l dx). Since F is real and even, the system
can be reformulated as

(Ik)k=1..M ≈ Q′ (F (l dx))l=0..N (5.17)

with Q′k,l = Φ(xk − l dx) + Φ(xk + l dx) if l 6= 0 and Q′k,0 = Φ(xk).
We get an approximation of the vector (F (l dx))l=0..N by inversion of the system. The number

of unknowns is usually equal to the number of observations (N = M) , so the inversion can be
performed :

(F (l dx)) = (Q′)−1(Ik)

but because of the redundant sampling or the bad condition number of the system it is better to
take the pseudo-inverse of Q′ with a chosen threshold.

The inverse Fourier transform of F can be observed on any output grid by the formula

S̃rec(·) = F (0) + 2
N∑

l=1
F (l dx) cos(2πl dx ·) on Ω (5.18)

but it can also be observed on the base band by periodization with the fast Fourier transform (see
figure 5.8(a) ).
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The second CNES method for the recovering of S̃ is an approximation of the integral in (5.10)
by a Riemann integral

Ik ≈
∑

0≤l<bB−A∆σ c

S̃(A+ l∆σ) ∆σ cos(2πxk(A+ l∆σ))

This approximation makes sense when ∆σ is small, and depends on the sup norm of S̃′. We know
that the number of samples M in the device is not sufficient (even in the nonperturbed case) to
catch all the information in S̃. In the CNES experiments the discretization of S̃rec between 1020
and 1080 cm−1 had as many points as the number of samples in the interferogram, typically less
than 1600 points. This is clearly not enough and leads to the resolution of the linear system

(Ik)k=1..M ≈ Q′′
(
S̃rec(A+ l∆σ)

)
0≤l<[B−A∆σ ] (5.19)

with Q′′k,l = ∆σ cos(xk(A+ l∆σ)). The matrix Q′′ should be rectangular with much more columns
than rows to get a good approximation of the Riemann integral (our experiments showed that a
factor 75 was enough) and must be inverted by pseudo-inversion (two reconstructions of the same
interferogram are displayed in figure 5.9, both methods have 976 unknowns, which corresponds to
the critical sampling dx = 83, 3µm between [0, 8] cm).

(a) Baseband reconstruction by FFT

(b) Interpolation by formula (5.18)

Figure 5.8: Reconstructions from the result of CNES method 1 (eq. (5.17)). The top reconstruction approximates
a periodized version of the spectrum, whereas the bottom one is the more classical approximation on the interval
[A,B].
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Figure 5.9: Results from the two state of the art methods (zoom around the 1050 cm−1 frequency). Because of
the low OPDmax = 8 cm compared to the spectrum S̃ frequency contents, the reconstructions look like a low-pass
version of the spectrum.

These two methods give an approximation of a certain vector, but the error cannot be made
explicit easily as a function of S and the sampling parameters. We show in section 5.3.3 that the
two methods are an approximation of a more general formulation using linear algebra and families
of complex exponentials.

Our experiments are quite different from [94] since we are looking for a continuous approxi-
mation of the bandpass signal. Given interferometry measurements Ik = F (xk), k = 1..M , we
want to reconstruct the Fourier transform of F with support in Ω. Approximation of F in a finite
dimensional vectorial space can lead to acceptable results, as was done in CNES method 1 (5.17)
with the family of functions {Φ(· − l dx)}l=0..N . But assuming that F is a trigonometric polyno-
mial as in [94] only gives a weak sense to F̂ = S̃ as a sum of diracs. This happens somehow in
CNES method 2 (5.19) where the only values of S̃rec we know after reconstruction are the values
at points {A+ l∆σ}0≤l<bB−A∆σ c

. This prevents any zoom or re-interpolation of the spectrum after

reconstruction. To our view, this is incompatible with the type of information we have about S̃ :
scalar products with spatially badly localized function.

5.3.2 The general setting : nonharmonic Fourier series

We consider here an infinite number of samples : let {yk}k∈Z ⊂ R be a stable sampling set of
BP (A,B). The frame property (theorem 18) implies that the Fourier transform of f ∈ BP (A,B)
is an infinite sum :

f̂(σ) =
∑

k∈Z
ck e

iykσ ∀σ ∈ Ω (5.20)

with (ck) ∈ l2(Z). The function f is obtained by pseudo-inversion of the sampling operator
SΛ : f → (f(yk))k∈Z and the ck coefficients are unique if and only if {ei2πyk·}k∈Z is a Riesz basis
of L2(Ω) (see [95] p. 169).

A non-stable sampling set which allows reconstruction is not valid here because the reconstruc-
tion operator would be unbounded (and so would be the reconstruction noise). Theorems 15, 16
and 17 give sufficient conditions on the set Λ to be a stable sampling set of BP (A,B), this is why
we will consider frames of complex exponentials of L2(Ω) of the form {ei2πyk·} and approximate
the unknown signal S̃ as an infinite sum of these elements. Because F is symmetric we can assume
that the yk are nonnegative and replace complex exponentials by cosines :

∃ (ck)k∈Z ∈ l2(Z) s.t. S̃(·) =
∑

k∈Z
ck cos(2πyk ·) (5.21)
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The data (Ik)k=1..M rewrite

Ik =
〈
S̃(·), e−i2πxk·

〉
L2(Ω)

=
〈
S̃(·), cos(2πxk·)

〉
L2(Ω)

since S̃ is a real even function. Any approximation of S̃ with a finite number of cosines leads to
the resolution of the linear system

(Ik) = Q (cl) k = 1..M , l = 1..N (5.22)

with Qk,l = 〈 cos(2πyk·), cos(2πxk·)〉L2(Ω) and (cl) the coefficients of the approximation in the basis

BN = {cos(2πyk·)}k=1..N . The number of basis functions N can be chosen such that the sys-
tem is invertible (N = M), but the redundancy of the sampling at the neighbourhood of zero
has an influence on the condition number. Again the resolution of the system with a thresholded
pseudo-inversion is necessary.

5.3.2.1 Reconstruction is a projection operator

The following theorem states that for a given reconstruction frame {cos(2πyk·)}k∈Z, and random
sampling location {xk}, the system (5.22) almost surely has a solution whenever N ≥ M . When
N = M , the reconstructed function is then the oblique projection of S̃ on

YN =< {cos(2πyl ·)}l=1..N >

along the orthogonal of XM =< {cos(2πxk ·)}k=1..M >.

Theorem 20 Existence of a solution Let {yl}l∈Z be a subset of R+ and {xk}k=1..M be independent
real-valued random variables with absolutely continuous distribution for the Lebesgue measure. For
all positive integer N ≥M , for all I ∈ RM the N ×M system

I = Qc

with Qk,l = 〈 cos(2πxk·), cos(2πyl·)〉L2(Ω)

(5.23)

has almost surely at least one solution.

Proof We note Q(X) the N ×M matrix defined on RN by

(Q(X))k,l = 〈 cos(2πXk·), cos(2πyl·)〉L2(Ω)

Given a sequence of strictly increasing positive numbers {yl}l∈Z, the family {cos(2πyl·)}l∈Z is a
linearly independent family of functions on any interval [A,B] with A < B and thus on Ω . Assume
N ≥M , we take the first M functions from this family and prove that the restriction of Q(X) to
its first M rows is almost surely invertible. We note QM this restriction with general term

(QM (X))k,l = 〈 cos(2πXk·), cos(2πyl·)〉L2(Ω)
= 1

2 (Φ(Xk + yl) + Φ(Xk − yl))
= Ψl(Xk)

Φ = F−1(1Ω(·))
We use the two lemmas below to prove that the zero set of the determinant of QM has measure
zero.
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Lemma 1 Let {Ψl}l=1..M be functions on R and QM the M ×M matrix defined on RM by

(QM (X))k,l = Ψl(Xk)

The determinant of QM is identically zero on RM if and only if the {Ψl} are linearly dependant
on R

The proof of this lemma can be found in appendix 5.6.2. This implies that the determinant of QM
is not identically zero on RM . Furthermore, it is a bandlimited function with spectral support in
[−B,B]M as a linear combination of tensor products of bandlimited functions. Lemma 2 implies
that its zero level-set has zero measure in RM .

Lemma 2 Measure of the zero set
Let f ∈ L2(RM ) with Fourier transform supported in a compact set. f is non identically zero

if and only if its zero level set has zero Lebesgue measure on RM .

The proof is a classical result in Harmonic Analysis (see appendix 5.6.3). Finally QM (X) is
invertible a.e. and the linear system (5.23) has almost surely a solution.

When M = N , the reconstruction S̃rec is the projection of S̃ on YN along (XM )⊥ since it
verifies for all 0 ≤ k ≤M

〈
S̃rec(·), cos(2πxk·)

〉
L2(Ω) =

〈
S̃(·), cos(2πxk·)

〉
L2(Ω) (5.24)

This oblique projection operator is not the best linear operator we can find which verifies this
equation. The best reconstruction is the orthogonal projection of S̃ on XM .

Theorem 21 Best reconstruction operator
Let PM be the linear operator from L2(Ω) to CM defined by

PM (S) = (〈S, cos(2πxk·)〉L2(Ω))1≤k≤M ∀S ∈ L2(Ω)

and K the space of linear operators from CM to L2(Ω) such that

L ∈ K ⇔ 〈LPM (S), cos(2πxk ·)〉 = Ik k = 1..M

With the previous notations, the best reconstruction operator in terms of operator norm on K is
unique and gives the orthogonal projection on XM .

L = argmin
L∈K

|||Id− LP ||| ⇔ LP = proj
⊥,XM

where the norm is the classical operator norm on the Hilbert space L2(Ω).

The proof of this very intuitive result can be found in appendix 5.6.4. If we take the orthogonal
projection as a reference, the reconstruction error E is bounded by the difference between the
oblique projection and the orthogonal projection on XN , whose norm depends on the maximum
angle θ between a vector of XM and a vector of YN (figure 5.10).

‖E(S̃)‖ ≤ ‖( proj
⊥,XM

− proj
//(XM )⊥,YN

)(S̃)‖

≤ tan(θ)‖ proj
⊥,XM

(S̃)‖

≤ tan(θ) ‖S̃‖
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where proj
⊥,XM

holds for the orthogonal projection on XM and proj
//(XM )⊥,YN

is the oblique projection

on YN along the XM
⊥ direction (this applies only in the case N = M).

b

b

b

S̃
YM

P//X⊥
N ,YM

(S̃)

XN

P⊥,XN
(S̃)

θ

Figure 5.10: Oblique and orthogonal projections correspond to the two kind of approximations we get. The
theoretical error is the distance between these two vectors, not the distance to S̃.

5.3.2.2 The bad condition number of the orthogonal projector

The computation of proj
⊥,XM

(S̃) from the {Ik} is generally an ill-conditioned problem. When {xk}k∈Z
is a small perturbation of a tight frame, the proof of theorem 19 (appendix 5.6.1) shows that the re-
construction operator has a good behaviour, with a condition number smaller than (2e−2πBL − 1)−1,
where L is the maximum perturbation (although the result holds in infinite dimension).

When the perturbation is larger than ln(2)
2πB , or when the family of vectors {cos(2πxk·)}k∈Z

is not complete in L2(Ω), the condition number can be very large. Figures 5.11(a) and 5.11(b)
show the singular values and the deterioration in the condition number of the matrix Q with
dx = dxcrit = 1/120 and perturbations of standard deviation ν in {0, 1.10−5, . . . , 5.10−4}. We also
display the singular values in the case dx = 50µm (figure 5.12) which verifies the conditions of
theorem 15 and in the case of dx = 81µm which does not verify this condition (figure 5.13). The
first figure shows that the average number of invertible singular values is independant of the the
sampling step dx and is equal to xmax×µ(Ω)+1 = 961. The second case illustrates the observation
of Martin et al. [94] : when dx is forbidden by the generalized Shannon’s theorem, perturbations
increase the number of invertible singular values and thus the amount of information retrieved by
the sampling/reconstruction couple.



132 CHAPTER 5. A STUDY OF BANDPASS SIGNALS IN INTERFEROMETRY

(a) Singular values of Q

(b) Average condition number of Q

Figure 5.11: Perturbed IES sampling in the orthogonal projection case. The standard deviation ranges from 0
to 5. 10−4 cm. The larger the perturbation, the worst the condition number (average on 100 random simulations,
dx = 83, 3µm, OPDmax = 8 cm).
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Figure 5.12: Perturbed IES sampling and orthogonal projection with dx = 50µm : orthogonal projection. (average
on 100 random simulations, OPDmax = 8 cm). The perturbation in the sampling set deteriorates the conditioning
of matrix Q.

Figure 5.13: Perturbed IES sampling and orthogonal projection with dx = 81µm (forbidden dx) in the orthogonal
projection case. (average on 100 random simulations, OPDmax = 8 cm). The number of invertible singular values
increases to approximately 965 as if the generalized Shannon’s theorem were verified. Singular values over index
965 have a much lower amplitude.
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5.3.2.3 Oblique projection

Any other choice of reconstruction basis BN leads to the oblique reconstruction operator if the
number of reconstruction vectors N is equal to the number of samples M . This oblique projector
can have a better condition number than the orthogonal projector. In figure 5.14(a) we display the
singular values of operator Q with regular cosines reconstruction basis and the average condition
number. This last one is smaller than in the irregular cosines case, with an average value of 600
with ν = 1.0e− 4 when the irregular cosines method is ten times worse. This explains the stability
of this method and the differences in reconstructions from noisy data.

(a) Singular values of Q

(b) Average condition number

Figure 5.14: Perturbed IES sampling with dx = 83.3µm : oblique projection (average on 100 random simulations,
OPDmax = 8 cm). The reconstruction basis is BN = {cos(2πk dx ·)}k=1..N . Here the perturbation also deteriorates
the conditioning, but the deterioration is less important.

5.3.3 A generalization of existing methods

We show here that the two cited methods (5.17) and (5.19) correspond to an approximation of the
nonharmonic Fourier series method with certain basis functions of the form cos(2πyl·). The first
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method is equivalent to the following assumption

S̃rec(·) = F (0) + 2
N∑

k=1
F (l dx) cos(2πl dx ·) on Ω

where the coefficients (F (l dx))l=1..N+1 are supposed to solve the linear system

(Ik) = QF

with F0 = F (0) and Fl = 2F (l dx) if l > 0 . This is clearly the case yl = l dx which we will call
the regular cosines method.

The second method is only asymptotically similar to a nonharmonic Fourier series when the
step ∆σ tends to zero. Consider the matrix Q′′ as in (5.19) and note sl = S̃rec(A+ l∆σ). If ∆σ is
sufficiently small and if Q′′ has rank M , the pseudo-inverse of Q′′ has the expression

(Q′′)† = tQ′′ (Q′′ tQ′′)−1

= 1
∆σ

tQ′′ ( 1
∆σQ

′′ tQ′′)−1 .

The general term of 1
∆σQ

′′ tQ′′ is a Riemann integral which tends to

∫ B

A

cos(2πxkσ) cos(2πxlσ) dσ

when ∆σ tends to zero and the general term of 1
∆σ

tQ′′ is
cos(2πxk(A+ l∆σ)). Finally if Q is invertible and ∆σ sufficiently small

sl ≈
M∑

k=1
cos(2πxk(A+ l∆σ))Q−1 I .

The reconstructed vector s converges to the discretization on {A + l∆σ} of the solution of the
nonharmonic Fourier method with yl = xl , l = 1..M , which is the orthogonal projection of S̃
on XM . We call this method the irregular cosines method : the reconstruction basis and the
measurement basis are the same.

5.3.4 Focus on Interlaced Sampling

5.3.4.1 Non perturbed case

Interlaced sampling, also called periodic nonuniform sampling in the literature, combines two
aliased signals in the case of two bands ([−B,−A] and [A,B]). The more frequency bands the
signal contains, the more shifted sampling grids are required for its reconstruction (see [62] [32]
[52]). The following formulation only deals with two bands but can be extended to the n-bands
case, even if they have different lengths.

Let f ∈ BP (A,B), 0 < dx < 1
B−A , d > 0, f1, f2 ∈ l2(Z) defined by

f1 = (f(k dx))k∈Z , f2 = (f(k dx+ d))k∈Z

By Poisson’s Formula, the Fourier transforms, respectively F1 and F2, verify

F1(·) = 1
dx

∑
l∈Z f̂(·+ l

dx )

F2(·) = 1
dx

∑
l∈Z f̂(·+ l

dx ) ei2πd(·+ l
dx )

(5.25)
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Intervals [−B,−A] and [A,B] may overlap if dx does not verify the generalized Shannon’s theorem.
Consider an index k such that Ξk =

(
[−B,−A] + k

dx

)
∩ [A,B] has positive measure. We get the

following system on Ξk




dxF1(·) = f̂(·) + f̂(· − k
dx )

dx e−i2πd · F2(·) = f̂(·) − e−i2πd
k
dx f̂(· − k

dx )
(5.26)

Since (a, b) → (a, ei(2πd ξ) b) is an isometry of C2 we get the same condition as in (5.13) and we
derive an energy estimate for the reconstructed signal on Ξk :

C2 dx2 (|F1(·)|2 + |F2(·)|2) ≤ |f̂(·)|2 + |f̂(· − k

dx
)|2 ≤ D2 dx2 (|F1(·)|2 + |F2(·)|2) (5.27)

with C = 1√
2+2| cos(πd k

dx )|
and D = 1

2|sin(πd k
dx )|

√
2 +

∣∣2 cos(πd k
dx )
∣∣ .

If 0 < dx ≤ 1
B−A and (B + A) dx ∈ N then there exists only one index k = (B + A) dx such

that µ(Ξk) > 0 and the optimal shift corresponds to the values of d that minimize D, that is
d ∈ dx

2k + dx
k Z ⇔ d ∈ 1

2(B+A) + 1
B+AZ (quadrature sampling).

This is true for an infinite sampling set but not necessarily for a finite number of samples, this
is why we display in figures 5.15(a) and 5.16(a) the smallest singular value of Q as a function
of the shift d. The two figures correspond to orthogonal projection (irregular cosines method)
and oblique projection with the basis {cos(2πk dxcrit ·)} and show that there indeed exist optimal
values, close to 1

2(B+A) + 1
B+AZ, and that the values in 1

B+AZ should not be used. These figures

also show that the irregular cosines method is worse than the classical regular cosines method when
d = 1/2(B + A), that is quadrature sampling. The ratio is approximately 1.7 × 105, clearly the
irregular cosines method cannot be used here with small shift values.
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(a) Minimum singular value of Q.

(b) Zoom at origin of figure (a).

Figure 5.15: Non-perturbed case : smallest singular value of Q as a function of d (shift parameter) with irregular
cosines method (orthogonal projection) and dx = 166.6µm = 2 dxcrit, OPDmax = 8 cm. It can take very small
values compared to some other oblique projections (figure 5.16(b)).
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(a) Minimum singular value of Q.

(b) Zoom at origin of figure (a).

Figure 5.16: Non-perturbed case : smallest singular value of Q as a function of d (shift parameter) with regular
cosines method with dx = 166.6µm = 2 dxcrit, OPDmax = 8 cm. Here the first extremum has amplitude ≈ 13 and
the maximum value is 30 so the matrix Q is well-conditioned.
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5.3.4.2 Perturbed case

In SIFTI interlaced sampling, the mirrors are covered with a deposit which adds a small length
to the optical paths, dividing each facet into four smaller facets corresponding to four successive
OPDs of the form {xk, xk+ ε, xk+2ε, xk+3ε}. We do not address the problem of a combination of
four sampling grids and consider the approximation {xk}k=1..N ∪{xk+ε}k=1..N (see section 5.1.1).
Each position xk is a perturbation of k dx where 0 < dx ≤ 1

B−A . This sampling has less irregularity
than the perturbed IES sampling described in the previous section. Of course the positions xk and
xk + ε are different from k dx and k dx + ε, but the irregularity is the same in the two samples.
Frame theory can be applied here to compute a bound on the perturbation as in theorem 19. Note
that the existence of a positive bound L for the perturbation of a frame in bandlimited spaces is
a very well known by Duffin and Shaeffer [41].

Theorem 22 Perturbed IIS Sampling

Let 0 < A < B, 0 < dx < π
B−A and d satisfying theorem 16. There exists a constant L > 0

such that the set Λ = {xk}k∈Z which verifies

{
|x2k − k dx| ≤ L
|x2k+1 − k dx− d| ≤ L ∀ k ∈ Z

is a stable sampling set of BP (A,B). When dx > 1
A+B and (B +A) dx ∈ N (exact overlapping in

Fourier domain), the constant L is at least ln(1+1/κ)
2πB , where κ is the condition number of the 2× 2

matrix in equation (5.13)

κ = cond(
(

1 1
1 e−i2πd

k
dx

)
)

The computation of this bound can be found in appendix 5.6.5. One interesting remark is
that this bound can never be larger than d/2, which prevents samples superposition and loss of
information : it ensures that the set Λ is uniformly discrete.

This bound is certainly not optimal when d > 1
2(B+A) because of the periodicity of the condition

number κ(d) at fixed dx. For d = 1
2(A+B) the bound L is ln(2)

2πB , as in theorem 19.

As shown in figure 5.16(a) the IIS sampling together with regular cosines has a good numerical
behaviour for some values in 1

4fc + 1
2fcZ but not better than non-perturbed IES sampling (figure

5.14(a) ). The main advantage of IIS sampling is its stability to perturbations in the OPDs xk
as shown in figure 5.17. On the contrary of perturbed IES sampling (figure 5.14(a)) the smallest
singular value at d /∈ 1

2fcZ does not tend to zero as the standard deviation increases.
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Figure 5.17: IIS with random perturbations : regular cosines method (the standard deviation is displayed on
the right). The reconstruction basis is B = {cos(2πk dxcrit ·)} and OPDmax = 8 cm. The quadrature sampling
(extremum) also corresponds to a well-conditioned matrix.

We did not find any reference to this stability of interlaced sampling in the literature. This is
a very remarkable property of multiband signals and multichannel sampling.

5.4 Link with the dual basis

Choosing the same reconstruction basis and sampling basis guaranties the best operator error norm
among all possible linear operators but does not guaranty the good numerical behaviour. In the
previous paragraphs the orthogonal projection had an acceptable condition number in only one
case : the regular uniform sampling. This is due to the fact that the regular cosines basis (for
dx = dxcrit) is orthonormal, and thus its own dual. The dual basis of B = {gk}k∈Z is the set of
functions B̃ = {g̃k}k∈Z such that

〈 gk, g̃l〉 = δk,l ∀k, l ∈ Z (5.28)

and any signal can be reconstructed with the formula

f(·) =
∑

k∈Z
〈 f, gk〉 g̃k

Choosing the dual basis as the reconstruction basis is then the easiest way to solve our problem,
since the matrix Q is now identity. In terms of inversion norm, the class of optimal reconstruction
bases is the dual basis, up to an isometry. In the following we propose an explanation for the bad
behaviour of the irregular cosines method in periodic nonuniform sampling. We consider the case
(B + A)dx = k ∈ N as in section 5.3.4, and rewrite the equations verified by f̂(·), f̂(· + k

dx ), F1
and F2 on [A,B]

(
f̂(·)

f̂(· − k
dx )

)
= α

(
e−i2πd

k
dx −1

−1 1

)(
F1(·)

e−i2πd ·F2(·)

)
(5.29)



5.4. LINK WITH THE DUAL BASIS 141

with α(d) = dx/
(
e−i2πd k/dx − 1

)
. Taking the inverse Fourier transform of f̂(·) and f̂(· − (B−A))

on [A,B] gives a decomposition of f as in (5.14) from which we derive Φ̂1 and Φ̂2 on [A,B].

α(d)−1 Φ̂1(·) =
{
−1 on [−B,−A]
e−i2πd k/dx on [A,B]

α(d)−1 Φ̂2(·) =
{

1 on [−B,−A]
−1 on [A,B]

(5.30)

We are looking for an even spectrum S̃ and thus consider the even parts Φe1,l and Φe2,l of the Fourier
transforms of Φ1(· − l dx) and Φ2(· − l dx− d) :





α(d)−1 Φ̂e1,l(·) = −i e−i2πd fc sin(2π(l dx ·+d fc))

α(d)−1 Φ̂e2,l(·) = i e−i2πd fc sin(2π((l dx+ d) · −d fc)
(5.31)

and now taking the real parts, since the spectrum we seek is real, we get the correct reconstruction
basis in the Fourier domain





Ψ̂1,l(·) = dx
2 sin(2πd fc) sin(2π(l dx ·+d fc))

Ψ̂2,l(·) = dx
2 sin(2πd fc) sin(2π(d fc − (l dx+ d) ·)

(5.32)

We notice that d ∈ 1
4fc + 1

2fcZ is a special case because the Ψ̂1,l functions become dx
2 cos(2πl dx ·)

and the Ψ̂2,l become dx
2 cos(2π(l dx+ d) ·).

This is the irregular cosines basis from figure 5.15(a), but since we took the even part of the
Ψ1,l and Ψ2,l, the duality relation (5.28) is no more verified. A closer look at the whole set of
singular values of Q when d ∈ 1

4fc + 1
2fcZ reveals that this is indeed a good approximation basis as

nearly all the singular values are constant and equal to 1
dx . We display in figure 5.18 the singular

values in the perturbed case : the approximation basis is fixed and equal to {Ψ1,l} ∪ {Ψ2,l} (up to
a dx

2 factor) with d = 1
4 fc .

Figure 5.18: Singular values of Q in quadrature IIS sampling with perturbation (displayed on the right). Although
the last singular value is small, all the others are approximately equal to 1

dx
= 30 and very stable with the

perturbation.
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(a) B1 = {Ψ1,l} ∪ {Ψ2,l} (fixed) : oblique projection.

(b) B2 = {cos(2π xk ·)} : orthogonal projection.

Figure 5.19: Singular values of Q in IIS sampling with different approximation bases. Here the shift parameter is
half the optimal parameter (d = 1

4fc
). The singular values are still bounded by below as the perturbation increases.

The behaviour in the non-quadrature case is similar but slightly different. We display in figures
5.19 the singular values of Q when d = 1

4fc along with the perturbation amplitude. In both cases
all the singular values but the last one are bounded by below but the bound decreases in the first
case (figure 5.19(a)) and slowly increases in the orthogonal projection case (figure 5.19(b)). Both
methods are stable to noise in the interferogram thanks to this bound, so we can conclude that
perturbed IIS sampling is clearly more stable than perturbed IES sampling for a large number of
reconstruction bases.
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5.5 Conclusion

In this chapter we addressed the problem of restoring a spectrogram (i.e. the Fourier transform
of a real-symmetric narrow-band limited signal2) from its interferogram measured at slightly per-
turbed regular samples. We studied two methods previously proposed by CNES, in the framework
of the SIFTI project. We further developed the theory allowing to correct numerical problems and
understand their properties in terms of approximation and stability, depending on the sampling
geometry.

Concerning sampling modes, we considered first the infinite dimensional case (infinite number
of samples), which allows to determine the cases where perfect reconstruction is possible. Four
situations were analysed: Periodic IES, i.e. regular sampling, Periodic IIS, i.e. the union of a
regular sampling grid and its shift by a constant, and their (non-periodic) randomly perturbed
counterparts. In the periodic sampling cases, IES critical sampling is governed by the generalized
Shannon sampling theorem, and IIS by its nonuniform counterpart, both well known from early
developments in telecommunications theory (see [57], [92] and [62]). The perturbed counterparts
were much less studied, and were the subject of the section 5.3. First the Duffin-Schaeffer theorem
for perturbed (IES) sampling of band-limited signals is extended to the case of narrow-band signals
(theorem 19), then this result is extended to the perturbed IIS case (theorem 22). In both cases
an upper bound ln 2

2πB on the perturbation is established, which provides a sufficient condition for
stable reconstruction. However, whether this bound is tight is still an open problem, since no
counterexample could be found for a perturbation larger than this upper bound and smaller than
the obvious upper bound provided by half the sampling step. Furthermore this upper bound is
about five times smaller than the perturbations that arise in practice due to limited manufacturing
precision within the SIFTI project.

In practice only a very limited number of samples is allowed, whereas the support of the inter-
ferogram is either infinite or at least much larger (up to noise precision) than the attainable range.
Hence perfect reconstruction is not possible, and we can only expect to obtain good approxima-
tions which are stable to noisy measurements. In fact we show, under a very general setting, two
theoretical results that correspond to these two optimization criteria. We consider the vector space
XM spanned by the measurement functions and the vector space YN spanned by the reconstruction
functions. Then: (i) The best approximation (in the sense of min-max L2 error under interpo-
lation constraints) corresponds to the orthogonal projection on X (see theorem 7); (ii) Given a
set of reconstruction functions spanning YM , the most stable approximation (in the sense that the
condition number of the reconstruction operator is minimized) for a given reconstruction space is
given by the oblique projection on YM and orthogonal to XN .

We observed that the second method proposed by CNES (pseudo-inverse) actually corresponds
to a numerical approximation to case (i) where the matrix of dot-products between the measure-
ment and reconstruction functions is approximated by Riemann sums. When substituting these
Riemann sums by the exact analytical dot-products we obtain the desired best approximation
reconstruction.

In addition the first method proposed by CNES actually corresponds to case (ii) with XN

the irregular cosines measurement functions, and YM the regular cosines reconstruction functions,
which explains its relatively good conditioning.

A further increase in conditioning is still possible if we choose YM to be spanned by the dual basis
of the measurement functions spanning XN . However, as pointed out in section 4, the analytical
computation of this basis is non trivial, and is left as an open problem for future research.

2i.e. with spectral support in [A,B] ⊂ [0,∞[
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Future research could also be conducted in order to devise a method that makes a good compro-
mise between best approximation and stability. In this context IIS sampling is a very interesting
scheme as it was shown stable to noise in the data (singular values are bounded by below, except
the last one) for several reconstruction bases.
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5.6 Appendix

5.6.1 Perturbation constant ln(2)
2πB

Let dx > 0 verifying the generalized Shannon’s condition (5.11). For all f ∈ BP (A,B) we have
the Poisson’s formula

∑

k∈Z
f(k dx) ei2πk dx · = 1

dx

∑

k∈Z
f̂(·+ k

dx
) a.e.

and since there is no overlapping, the integral of the periodized Fourier transform over an interval
of length 1

dx is equal to the integral on Ω. By Plancherel’s formula we get

‖f(k dx)‖2l2(Z) = 1
dx ‖f̂‖2L2(Ω)

= 1
dx ‖f‖2L2(Ω)

with f(k dx) =
〈
f̂(·), ei2πk dx·

〉
L2(Ω)

so {ei2πk dx·}k∈Z is a tight frame of L2(Ω). Since BP (A,B) is stable under differentiation, we have
for any integer l ≥ 1

‖f (l)(k dx)‖2l2(Z) = 1
dx ‖f̂ (l)‖2

= 1
dx ‖(i2π ·)lf̂(·)‖2

≤ (2πB)2l

dx ‖f‖2

We then use similar arguments as [41], and develop (f(xk)− f(k dx)) with Taylor series :

f(xk)− f(k dx) =
∑

l≥1

1
l! f

(l)(k dx)(xk − k dx)l

By Cauchy-Schwartz inequality (taking α > 0) :

∑
k∈Z |f(xk)− f(k dx)|2

=
∑
k∈Z |

∑
l≥1

1
l! f

(l)(k dx)(xk − k dx)l|2

≤ ∑
k∈Z

(∑
l≥1

α2l

l! |f (l)(k dx)|2
)(∑

l≥1
1
l!
(
L
α

)2l)

≤ 1
dx‖f‖2

(
eα

2(2πB)2 − 1
)(

eα
−2L2 − 1

)

which is minimal for α =
√

L
2πB :

⇒
∑

k∈Z
|f(k dx)− f(xk)|2 ≤ 1

dx
(e2πB L − 1)2 ‖f‖2

and by triangular inequality :

1√
dx

(
2− e2πB L) ‖f‖ ≤

√∑
|f(xk)|2 ≤ 1√

dx
e2πB L ‖f‖

A sufficient condition for having a frame is thus L < ln(2)
2πB .
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5.6.2 Non zero determinant

We proceed by induction. In dimension 1 the linear dependence of {ψ1} means that there exist
a1 6= 0 such that a1ψ1 = 0 on R which is equivalent to a zero determinant on R of the 1× 1 matrix
(Ψ1(·)). Assume that the proposition is true in dimension M ≥ 1.

Let {Ψl}l=1..M+1 be linearly independent functions on R and Q be the (M+1)×(M+1) matrix
with general termQk,l(x) = Ψl(xk). The determinant ofQ can be developed with Laplace’s formula
:

det(Q(x)) =
M+1∑

l=1
(−1)l+M+1 Ψl(xM+1) det((Qr Tn+1,l)(x))

where Tn+1,l is the union of the last row and l-th column and the sub-determinants do not depend
on xM+1. If det(Q(x)) is identically zero on RM+1 then by linear independence of the {Ψl} the
sub-determinants are identically zero which is in contradiction with the recurrence hypothesis. The
converse is trivial (for all M ≥ 1, if the {Ψl}l=1..M are linearly dependant then the determinant
det(Q(x)) is zero everywhere).

5.6.3 Measure of the zero set

This is a classical result with trigonometric polynomials [6] and the proof is similar with bandlim-
ited functions. In dimension 1 the zeros of a bandlimited function are uniformly discrete by the
analytic extension theorem and isolated zeros theorem. We proceed by induction : let supp(f̂) ⊂
[−B,B]M+1 with M ≥ 1. The function f(x1, . . . , xM , ·) is bandlimited for all (x1, . . . , xM ) ∈ RM
so its zero set has measure zero. The zero set of f , denoted by Zf , has finite measure on any com-
pact subset K of RM+1. The indicator function of Zf is measurable and belongs to L1

loc(RM+1).
By Fubini’s theorem we have

µ(Zf ∩K) =
∫
RM

∫
R 1Zf∩K(x1 . . . xM , y) dy dx1 . . . dxM

=
∫
RM 0 dx1 . . . dxM

= 0 ∀K ⊂⊂ RM+1

By upper continuity of the measure, and considering an exhaustive sequence of compacts on RM+1,
we get µ(Zf ) = 0.

5.6.4 Best reconstruction operator

We show here that the minimizer of |||Id−LP |||2,2 among all linear operators from RM to L2(Ω)
such that

〈LP S, cos(2πxk·)〉 = Ik ∀S ∈ L2(Ω)

is unique and verifies LP = proj⊥,XM . The above equation can be reformulated :

P LP = P on L2(Ω)

Since Ker(P ) = X⊥M , we get

P (LP − proj⊥,XM ) = P (Id− proj⊥,XM )
= P proj⊥,X⊥

M

= 0
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Thus, R(LP − proj⊥,XM ) ⊂ X⊥M which we rewrite

LP = proj⊥,XM + T P

with R(T ) ⊂ X⊥M . If T = 0, LP is the projection on XM and Id−LP = proj⊥,X⊥
M

has norm 1. If

T 6= 0, then we show that Id− LP has a norm > 1. Consider f ∈ XM such that T P (f) 6= 0 and

‖f‖ ∈]0, 1]. Then consider g = λT P (f) with λ = −
√

1−‖f‖2
‖T P (f)‖ such that ‖f‖2 + ‖g‖2 = 1. We get

(Id− LP )(f + g)
= f + g − proj⊥,XM (f + g)− T P (f + g)
= f + g − f − T P (f)
= g − T P (f)

‖(Id− LP )(f + g)‖2 = (‖T P (f)‖+
√

1− ‖f‖2)2

this is also true for αf with 0 < α ≤ 1 and we develop this expression when α→ 0 :

‖(Id− LP )(f)‖ ≈ 1 + α‖T P (f)‖

which implies |||Id − LP ||| > 1. The minimum of |||Id − LP ||| on K is 1 and is obtained for L
verifying LP = proj⊥,XM .

Uniqueness : assume that two operators L1 and L2 in K verify this equation, by linearity :

(L1 − L2)P = 0 on L2(Ω)

Since R(P ) = CM , L1 − L2 is the null operator on CM and L1 = L2.

5.6.5 Perturbation constant ln(1+1/κ)
2πB

The existence of the perturbation bound L > 0 results from the frame property of the family of
functions G = {ei2πk dx·}k∈Z ∪ {ei2π(k dx+d) ·}k∈Z in L2(Ω) (see [41] Lemma II). In the special case
when (B +A) dx = k > 1 with k ∈ N

[−A,−B] + k

dx
= [A,B]

we get the inequalities (5.27), and by integration on [A,A+ 1
dx ]

C2 dx (‖F1‖2 + ‖F2‖2) ≤ ‖f̂‖2 ≤ D2 dx (‖F1‖2 + ‖F2‖2)

⇔ 1
D2dx ‖f‖2 ≤

∑
k∈Z |f(xk)|2 ≤ 1

C2dx ‖f‖2

since f̂ is zero on [B,A+ 1
dx ] and [−A,−B + 1

dx ]. These inequalities imply that the frame bounds

of G are 1
D2dx and 1

C2dx . Following the same scheme as in [41] we get L < ln(1+C/D)
2πB where D

C is
the condition number κ.

Remark : the set Λ is uniformly discrete (there exists e > 0 such that |xm − xn| > e whenever

m 6= n). To show this, consider the derivative of Lmax(d) = ln(1+C(d)/D(d))
2πB . Then

L′max(d) = fc
B

1
(1 + cos(2πfc d) + sin(2πfc d))
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for d ∈ [0, 1
4fc ]. Furthermore Lmax(·) is even and periodic with period 1

2fc , so the differences of
Lmax are bounded.

Lmax(d) ≤ fc
B

|d− k
2fc |

2 for d ∈
[
− 1

4fc
,

1
4fc

[
+ k

2fc

⇒ x2k+1 − x2k ≥ d−
fc
B
|d− k

2fc
|

and by a shift in indices we also have

x2k+2 − x2k+1 ≥ dx− d−
fc
B
|dx− d+ k′

2fc
|

where dx− d ∈
[
− 1

4fc ,
1

4fc

[
+ k′

2fc .



Chapter 6

Conclusion

The large scope of this thesis, initially devoted to an image processing problem (chapter 4), reveals
the importance of adapted mathematical tools in satellite remote sensing. The usual framework
of Fourier’s theory is often not sufficient, more general modellings and more evolved algorithms
are necessary to efficiently handle the irregular sampling phenomenon. This latest raises both
theoretical (well-posedness and stability of such samplings) and numerical questions (choice of an
approximation space, regularization, boundary conditions, computational complexity) as we ob-
served in the three major problems we treated.

Our contributions to the scientific research through this thesis first showed the feasibility and
accuracy of fast irregular sampling restoration in image processing thanks to spline functions,
non-quadratic regularization and dual approaches (chapter 4).

In chapter 3 we considered a highly ill-posed problem in stereoscopy and showed the good
performances of modern `1 and `0 approaches with ISTA and IHTA algorithms while classical ap-
proaches completely fail. The model has been later completed with an assumption on the elevation
which allows for more accurate corrections in the case of correlated elevation and microvibrations.

And last we studied the problem of spectrum reconstruction from irregular interferometry mea-
surements and obtained theoretical results on the well-posedness of the problem and the allowed
maximal perturbation. Our modelling is a generalization of existing methods and provides a better
understanding of the sampling set properties in bandpass spaces.

A general principle in this work on applied problems involving irregular sampling sets is the
importance of a good modelling and its influence on the implementation of sampling operators
and algorithms. The behaviour of the restored signals is directly related to this modelling and
this thesis has been an exciting journey to the land of sparse signals, stair-cases, splines, wavelets,
Fourier atoms, convex sets, hyper-planes and many others. The more you know them and their
capabilities, the more possibilities you are offered in the resolution of high level applied problems.

As a perspective, the simultaneous resolution of the microvibrations and image restoration
problems is a natural continuation of this work. More complex models including some unconsidered
aspects of the physical phenomena could be examined such as the spatially variant TDI blurring
kernel or the irregular sampling in the disparity map and also the more accurate TV-TV2 inf-
convolution model for disparity data. I hope this thesis work will encourage researchers to consider
these promising improvements.
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[51] P. Hébert et al. . Instrumental Concept and Preliminary Performances of SIFTI: Static Infrared
Fourier Transform Interferometer. International Conference on Space Optics, Toulouse, 2008.

[52] C. Herley and P. W. Wong. Minimum rate sampling and reconstruction of signals with
arbitrary frequency support. IEEE Transactions on Information Theory, 45:1555–1564, July
1999.

[53] M. I. Kadec. The exact value of the Paley-Wiener constant. Sov. Math. Dokl., 5:559–561,
1964.
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sion Papers 2007076, Université catholique de Louvain, Center for Operations Research and
Econometrics (CORE), September 2007.

[71] N. Nguyen, P. Milanfar, and G. Golub. A computationally efficient superresolution image
reconstruction algorithm. IEEE Transactions on Image Processing, 10:573–583, April 2001.

[72] Weiss P. Algorithmes rapides d’optimisation convexe, applications à la restauration d’images
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Résumé

Les performances des instruments d’acquisition satellitaire progressent rapidement grâce au développement
des technologies mais aussi grâce à la compréhension et l’intégration des phénomènes physiques complexes
intervenant lors de l’acquisition. Cette thèse traite de plusieurs problèmes d’échantillonnage irrégulier dont
les micro-vibrations des satellites dits push-broom tels que SPOT5 et les récents satellites Plé̈ıades dont
les capacités en imagerie permettent la détermination de modèles d’élévation très précis. Nous traitons
aussi de l’inversion d’interférogrammes en spectrogrammétrie où l’irrégularité de l’échantillonnage est liée
à la précision d’usinage des composants réfléchissants. Les microvibrations dans le cas du tangage sont
estimées à partir d’une nappe de disparité altérée et non-dense par contraintes de parcimonie. Nous
montrons expérimentalement que ce modèle et les algorithmes utilisés permettent de résoudre en partie ce
problème mal posé. L’ajout d’un apriori sur la régularité de l’élévation permet d’améliorer encore cette
estimation dans les cas plus difficiles. Les images acquises en présence de microvibrations nécessitent de
plus un rééchantillonnage auquel s’ajoute la déconvolution avec une problématique de coût numérique.
L’algorithme que nous présentons ici répond à ces besoins grâce au cadre fonctionnel des splines que nous
adaptons au problème de la déconvolution, avec des performances équivalentes à l’état de l’art et un coût
numérique mâıtrisé. Enfin nous abordons un problème inverse en interférométrie statique où la nature
des signaux et de l’échantillonnage soulève de nombreuses questions, ce travail réalisé lors d’une R&T sur
l’instrument SIFTI développé au CNES y apporte des réponses claires sous forme de résultats théoriques
et numériques dans le cadre unifié des séries de Fourier non-harmoniques.

Abstract

Performances of remote-sensing satellite instruments have been increasing fast thanks to developing tech-
nologies but also thanks to the better understanding and integration of complicated physical phenomena
occurring during the acquisition. This thesis report addresses several irregular sampling problems includ-
ing the microvibrations of push-broom satellites such as SPOT5 and recently launched Plé̈ıades satellites
whose imaging capabilities allow for the computation of very accurate numerical elevation models. We also
address the inversion of interferograms in spectrogrametry where the sampling irregularity comes from the
imperfectly machined reflecting components. Microvibrations in the single pitch case are estimated from a
perturbed, non-dense disparity map with sparsity constraints. Experiments show that this modelling and
the developed algorithms enable partial resolution of this ill-posed problem. Furthermore, an additional
regularity hypothesis on the elevation improves this estimation for more difficult cases . Images suffering
from micro-vibrations during acquisition necessitate a sampling correction together with deblurring and
fast restoration. The algorithm we present here fulfils these requirements thanks an adaptation of the
splines setting to the deblurring case, it is faster than state-of-the-art algorithms with equivalent perfor-
mances. Finally we address the interferogram inversion problem in which the signals and sampling sets
raise many questions , this work was achieved during a R&T study of the SIFTI instrument examined
at CNES, it clarifies these questions in the form of theoretical and numerical results using the unifying
framework of nonharmonic Fourier series.
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