Optimal transport between GMM for multiscale texture synthesis

Julie Delon¹, Agnès Desolneux², Laurent Facq³, Arthur Leclaire³

¹ Laboratoire MAP5, Université Paris Cité

 2 Centre Borelli, CNRS and ENS Paris-Saclay

³ Institut de Mathématiques de Bordeaux, with support of the GdR Isis

Arthur.Leclaire@math.u-bordeaux.fr https://www.math.u-bordeaux.fr/~aleclaire/texto/

1) Patch Optimal Transport for Texture Synthesis

GOAL: Texture synthesis from an example $u: \Omega \to \mathbb{R}^d$

Proposed Solution: Patch-based Multiscale Synthesis:

• Compute original at scales $s = 0, \ldots, S - 1$,

 $u_s: \Omega_s \to \mathbb{R}^d$ with $\Omega_s \subset 2^s \mathbb{Z}^2$

- Extract target patch distributions ν_s at scale s

2) Gaussian Mixture Models

Definition 1 We say that $\mu \in \mathsf{GMM}_d(K)$ if

$$\mu = \sum_{k=1}^{K} \pi_k \mathcal{N}(m_k, \Sigma_k) \text{ with } \begin{cases} \pi \in \mathbb{R}^K_+, \ \sum \pi_k = 1\\ m_k \in \mathbb{R}^d, \ \Sigma_k \text{ s.d.p} \end{cases}$$

The set of such GMM is denoted by $\operatorname{GMM}_d(K)$, and let

 $CNANA = \int \int CNANA (K)$

• Apply patch optimal transport at each scale in order to reimpose the patch distribution ν_s on the gravity current synthesis.

Patches are defined on a square domain ω of size $w \times w$.

3) Gaussian Optimal Transport

Let μ_0, μ_1 be two probability measures on \mathbb{R}^d .

$$W_2^2(\mu_0,\mu_1) := \inf_{\gamma \in \Pi(\mu_0,\mu_1)} \int \|y_0 - y_1\|^2 d\gamma(y_0,y_1),$$

where
$$\Pi(\mu_0, \mu_1)$$
 is the set of measures on $\mathbb{R}^d \times \mathbb{R}^d$
with marginals μ_0, μ_1 .
If $\mu_0 = \mathcal{N}(m_0, \Sigma_0), \mu_1 = \mathcal{N}(m_1, \Sigma_1)$, then
 $W_2^2(\mu_0, \mu_1) = ||m_0 - m_1||^2$
 $+ \operatorname{Tr} \left(\Sigma_0 + \Sigma_1 - 2 \left(\Sigma_0^{\frac{1}{2}} \Sigma_1 \Sigma_0^{\frac{1}{2}} \right)^{\frac{1}{2}} \right),$

If Σ_0 is non-singular, there is an optimal map

4) GMM Optimal Transport

Let
$$\mu_0 = \sum_{k=1}^{K_0} \pi_0^k \mu_0^k$$
, $\mu_1 = \sum_{k=1}^{K_1} \pi_1^k \mu_1^k \in \mathsf{GMM}_d$.

Definition 2 The GMM-OT cost is defined as

$$\inf_{\gamma \in \Pi(\mu_0,\mu_1) \cap GMM_{2d}} \int \|y_0 - y_1\|^2 d\gamma(y_0,y_1).$$

A solution γ^* will be called a **GMMOT plan**.

Proposition 1 The GMM-OT cost has an equivalent discrete formulation:

$$MW_2^2(\mu_0,\mu_1) = \min \sum w_{kl} W_2^2(\mu_0^k,\mu_1^l)$$

$$\bigcup_{K\geq 1} \operatorname{Giviv}_d(K).$$

 \rightarrow Inference from samples via Expectation-Maximization (EM algorithm)

5) GMM Transport map

The GMMOT plan between μ_0 and μ_1 is

 $\gamma(x,y) = \sum_{k,l} w_{k,l}^* g_{m_0^k, \Sigma_0^k}(x) \delta_{y=T_{k,l}(x)}.$

where $(w_{k,l}^*)$ is a discrete OT plan for $W^2(\pi_0, \pi_1)$ and $T_{k,l}$ is the OT map between μ_0^k and μ_1^k .

PROBLEM: The GMMOT plan is not of the form $(Id, T) # \mu_0!$ In practice, we use the **barycentric projection**

$$T(x) = \frac{\sum_{k,l} w_{k,l}^* g_{m_0^k, \Sigma_0^k}(x) T_{k,l}(x)}{\sum_k \pi_0^k g_{m_0^k, \Sigma_0^k}(x)}.$$

 $\forall x \in \mathbb{R}^d, \quad T(x) = m_1 + \Sigma_0^{-1} (\Sigma_0 \Sigma_1)^{\frac{1}{2}} (x - m_0).$

The solution will be denoted by w^* .

6) Construction of the TextoGMM Model

Initialize with the Gaussian model $U_{S-1} = \bar{u}_{S-1} + (u_{S-1} - \bar{u}_{S-1}) * Z$ (Z Gaussian white noise) For $s = S - 1, \dots, 0$,

- Fit a GMM μ_s (resp. ν_s) to the patch distribution of U_s (resp. u_s)
- Compute the GMMOT plan γ_s from μ_s to ν_s , and associated map T_s
- Transport patches $T_s(U_{s|a+2^s\omega})$ and find nearest neighbor $u_{s|C_s(a)+2^s\omega}$ in u_s
- Recompose patches: $\forall a \in 2^s \mathbb{Z}^2$, $V_s(a) = \frac{1}{|\omega|} \sum_{b \in 2^s \omega} u_s (C_s(a-b) + b)$
- Upsample: $\forall a \in 2^s \mathbb{Z}^2, \forall k \in \{0, 2^{s-1}\}^2, \quad U_{s-1}(a+k) = \frac{1}{|\omega|} \sum_{b \in 2^s \omega} u_{s-1} (C_s(a-b) + b + k)$

Output: Synthesized texture V_0

7) Results: Synthesis with TextoGMM

Remarks - Conclusion

- One can estimate the model offline
- Patches are transformed independently \rightarrow Parallel computations
- Costly steps: EM, NN projections \rightarrow Random subsampling (10⁴ patches)
- GMMOT compares favorably to other OT methods in terms of time. With patches:
 1' to solve GMMOT (including EM step)
 40' for 10³ iterations of Sinkhorn
 150' for 10⁵ iterations of stochastic solver

CONCLUDING REMARKS:

✓ TextoGMM can model structured textures.
 ✓ Model estimation is much faster than previous models based on semi-discrete OT.
 ✓ TextoGMM allows for mixing and inpainting.
 ✗ Still requires patch NN search/averaging...

 \bigstar ... and the EM algorithm to learn GMM.

References

Delon, Desolneux: A Wasserstein-type distance in the space of Gaussian mixture models. SIIMS, 2020.
Leclaire, Rabin: A stochastic multi-layer algorithm for semi-discrete optimal transport with applications to texture synthesis and style transfer. JMIV, 2021.
Gatys, Ecker, Bethge: Texture Synthesis Using Convolutional Neural Networks. NeurIPS'15.
Ulyanov et al.: Texture networks: feed-forward synthesis of textures and stylized images. ICML'16.