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Today

• We will discuss imaging inverse problems.
• We will recall classical (simple) tools for solving inverse problems.

In particular we will recall simple regularization techniques (Tychonov, smoothTV)
• We will discuss quantitative evaluation of image restoration.



3/35

Imaging Inverse Problems Optimization for Inverse Problems Metrics for Inverse Problems

Plan

Imaging Inverse Problems

Optimization for Inverse Problems

Metrics for Inverse Problems



4/35

Imaging Inverse Problems Optimization for Inverse Problems Metrics for Inverse Problems

Inverse problem with additive noise:
v = Au0 + w

where
• u0 ∈ Rd is the clean image to recover
• A : Rd → Rm

• w is a noise

In many cases, the degradation operator A can be approximated with a linear operator A,
and the noise model w is assumed to be Gaussian.

But, there are also inverse problems with non-linear A and non-Gaussian noise (e.g. Poisson noise).
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Classical Inverse Problems
42 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 1, MAY 2020

TABLE I
EXAMPLES OF INVERSE PROBLEMS IN IMAGING

to noise (e.g., when the spectrum of A is not bounded below;
in the case where A is the linear operator A, this corresponds
to some eigenvalues of A�A being small).

In some settings, one might have prior knowledge about
which x are more likely; for instance, we might expect x to
be smooth, or be smooth away from edges and boundaries.
Such knowledge can be codified into a prior distribution for
x, leading to a maximum a posteriori (MAP) estimate

x̂MAP = arg max
x

p(x|y) = arg max
x

p(y|x)p(x)

= arg min
x

− ln p(y|x) − ln p(x).

For the special case of additive white Gaussian noise, the MAP
formulation leads to

arg min
x

1
2‖A(x) − y‖2

2 + r(x), (1)

where r(x) is proportional to the negative log-prior of x.
Examples of this framework include Tikhonov regulariza-
tion [54], sparsity regularization in some basis or frame [55],
[56], and total variation regularization [11], [57]. In some
settings, MAP estimation with underdetermined A(·) can be
considered an algorithmic procedure for choosing, among the
infinitely many values of x that satisfy y = A(x), the one that
is most likely under the prior.

While in principle MAP estimation can be used to solve
most image reconstruction problems, difficulties arise when

(1) the statistics of the noise are not known, (2) the distribu-
tion of the signal is not known or the log-likelihood does not
have a closed form, or (3) the forward operator is not known
or only partially known. In the last five years, machine learn-
ing has provided machinery to (partially) overcome many of
these issues. Variations on the aforementioned inverse problem
appear in a range of imaging settings. We highlight a few
prominent examples in Table I.

A. Supervised vs. Unsupervised Inversion

We start by explaining a central dichotomy in the litera-
ture and in our proposed taxonomy of approaches to inverse
problems. The first (and most well-known) family of deep
learning inversion methods use what we call supervised inver-
sions. The central idea is to create a matched dataset of ground
truth images x and corresponding measurements y, which can
be done by simulating (or physically implementing) the for-
ward operator on clean data, i.e., measure them. Subsequently,
one can train a network that takes in measurements y and
reconstructs the image x, i.e., learns an inverse mapping. Such
supervised methods typically perform very well, but are sen-
sitive to changes or uncertainty to the forward operator A. In
addition, a new network needs to be trained every time the
measurement process changes.

The second family of techniques we cover are unsuper-
vised, i.e., do not rely on a matched dataset of images x and
measurements y. In our taxonomy we separate unsupervised

Authorized licensed use limited to: CEA DAM. Downloaded on June 30,2021 at 07:30:38 UTC from IEEE Xplore.  Restrictions apply. 

(source: [Ongie et al., 2020])
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Gaussian denoising

Let’s start with the case A = Id, i.e. image denoising:

v = u0 + w where w ∼ N (0, σ2Id).

We want to estimate u0 from a single realization of v ...

→ We need to add some prior knowledge on the solution (e.g. regularity assumption).

u0 v
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Deblurring

• A spatially invariant blur can be modeled by a
convolution operator Au = k ∗ u

• Several types of blur exist (motion, defocus)
• Non-blind deblurring consists in recovering u0 from

v = k ∗ u0 + w .

• We won’t tackle blind deblurring here.

Isotropic blur Motion blur

Original Blurred

Example of motion blur
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Super-Resolution

Super-résolution consists in finding another version of v at higher resolution.

This is an inverse problem corresponding to the subsampling operator with stride s ∈ N∗:

u↓s(x , y) = u(sx , sy).

In practice, we often apply an (anti-aliasing) filter before subsampling.

With prefiltering, we obtain the operator

Au = (k ∗ u)↓s.

Super-resolution consists in recovering u0 from

v = (k ∗ u)↓s + w .

The degraded image v is defined on a subgrid of stride s.
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Inpainting

Inpainting consists in filling missing regions in images

The degradation operator then writes
Au = u1ω

where ω ⊂ Ω is the set of known pixels and Ω \ ω the mask.
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Inverse problem

We wish to recover u0 from
v = Au0 + w .

The problem is said ill-posed when A is not invertible or with unstable inverse.

Example : For deblurring, Au = k ∗ u, we can invert A directly in Fourier domain:

u = F−1
(

v̂
k̂

)
= F−1

(
û0 +

ŵ
k̂

)
−→ but noise explodes !

When the problem is ill-posed, there may be multiple solutions or erroneous solutions.

It is thus useful to adopt an a priori on the solution, e.g. imposing some kind of regularity.
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Image Restoration by Optimization

We will therefore try to solve

F (u) =
1
2
∥Au − v∥2

2 + λR(u)

where R(u) imposes some kind of regularity of u, and λ ≥ 0 is a parameter.

The problem Argmin
u∈RΩ

F (u) is very high-dimensional, and we need efficient algorithms.

Simple (nearly useless) regularization: Consider R(u) = λ
2 ∥u∥2

2. Then uλ ∈ ArgminF is given by

AT (Auλ − v) + λuλ = 0 i.e. uλ = (AT A + λI)−1AT v

Example: for denoising (A = Id),

it just divides all values by 1 + λ...

For differentiable F , we can always consider simple gradient descent.

Example: The gradient of f (u) = 1
2∥Au − v∥2

2 is ∇f (u) = AT (Au − v).

If Au = k ∗ u (periodic convolution), then AT u = k̃ ∗ u with k̃(x) = k(−x).
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The Steepest Descent

https://mathinsight.org/directional_derivative_gradient_introduction

https://mathinsight.org/directional_derivative_gradient_introduction
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Descent Lemma

Let f : Rd → R be differentiable with L-Lipschitz gradient. Then, for any x , y ∈ Rd ,

f (y) = f (x) +
∫ 1

0
∇f (x + t(y − x)) · (y − x)dt

= f (x) +∇f (x) · (y − x) +
∫ 1

0

(
∇f (x + t(y − x))−∇f (x)

)
· (y − x)dt

≤ f (x) +∇f (x) · (y − x) +
∫ 1

0
∥∇f (x + t(y − x))−∇f (x)∥∥y − x∥dt

≤ f (x) +∇f (x) · (y − x) +
∫ 1

0
Lt∥y − x∥2dt

≤ f (x) +∇f (x) · (y − x) +
L
2
∥y − x∥2.

Consequence: If we choose τ ∈ [0, 2
L ], then

f (x − τ∇f (x)) ≤ f (x)− τ
(

1 − τL
2

)
∥∇f (x)∥2 ≤ f (x).
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Gradient Descent

We consider here the gradient descent method:

xn+1 = xn − τn∇f (xn) ,

where τn > 0 is a sequence of step sizes.
• For τn = τ constant, we speak of fixed step size.
• We speak of optimal step size if, at each iteration n, we choose

τn ∈ Argmin
t∈R

f (xn − t∇f (xn)).

The descent lemma gives that for f differentiable with L-Lipschitz gradient and τ ⩽ 2
L ,

f (xn+1) ⩽ f (xn)

Thus, if f is lower bounded, f (xn) converges.
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Convexity and Minimum

The function f : Rd → R is convex if for all x , y ∈ Rd ,

∀t ∈ (0, 1), f ((1 − t)x + ty) ⩽ (1 − t)f (x) + tf (y).

It is said strictly convex if the inequality is strict.

If f is convex and differentiable, one can show that for any x , y ∈ Rd ,

f (y) ⩾ f (x) +∇f (x) · (y − x).

Consequence : If f is convex and differentiable, then

x ∈ Argmin f ⇐⇒ ∇f (x) = 0.

The argmin is unique as soon as f is strictly convex.
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Strong Convexity

We say that f is α-convex (with α ∈ R) if f − α
2 ∥ · ∥

2 is convex.

When α > 0, we say that f is strongly convex.

Remark : The convexity and the gradient Lipschitz constant can be read on the Hessian:

If A,B ∈ Rd×d are symmetric, we write A ⪰ B if A − B if semi-definite positive, i.e.

∀x ∈ Rd , Ax · x ≥ Bx · x .

For f : Rd → R of class C 2,

∇f is L-Lipschitz iff ∀x ∈ Rd , −LId ⪯ ∇2f (x) ⪯ LId.
i.e. ∀x the eigenvalues of ∇2f (x) have moduli ≤ L.

f is α-convex iff ∀x ∈ Rd , ∇2f (x) ⪰ αId
i.e. ∀x the eigenvalues of ∇2f (x) are all ≥ α.
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Convergence Guarantees, Convex Case

Theorem
Let f : Rd → R be convex differentiable with ∇f L-Lipschitz. Assume that Argmin f is non-empty.
Let τ ∈ (0, 2

L ), x0 ∈ Rd and (xn) the sequence defined by

xn+1 = xn − τ∇f (xn) .

Then (xn) converges towards an element of Argmin f .

Theorem
Let f : Rd → R be differentiable and α-strongly convex with L-Lipschitz gradient.
Then there exists a unique x∗ ∈ Argmin f , and for τ < 1

L ⩽ 1
α

, we have

∥xn − x∗∥2 ⩽ (1 − τα)n∥x0 − x∗∥2.
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Optimization for Inverse Problems

To solve the inverse problem v = Au0 + w , we can thus minimize

F (u) = f (u) + g(u)

with f (u) = 1
2∥Au − v∥2 and g(u) = λR(u), λ > 0.

Consider here R(u) = ∥Bu∥2
2 with B ∈ Rp×d , F is convex and differentiable.

Solutions are characterized by ∇F (u) = 0 i.e. AT (Au − v) + 2λBT Bu = 0.

Also, we can minimize F by gradient descent with τ < 2
L where L = ∥AT A + 2λBT B∥.

• For Au = k ∗ u, AT Au = F−1(|k̂ |2û).
If |k̂ | ≤ 1, it follows that ∥AT A∥ ≤ 1.

• For Au = 1ωu, AT A = A2 = A and ∥A∥ = 1.

Good news: By automatic differentiation you need only coding F (u)...

But ! in order to avoid instability problems, you’d better know what F does...
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Let us start with zero regularization!

Consider here
f (u) =

1
2
∥Au − v∥2.

• We have an orthogonal decomposition Rd = K ⊕ K⊥ with K = Ker[A] and K T = Im[AT ]

• Therefore ArgminRd f is non-empty and we can define

A+v = min
u∈Argmin f

∥u∥2
2.

It defines a linear operator A+, called Moore-Penrose pseudo-inverse.
• The Moore-Penrose pseudo-inverse has a zero component in Ker[A].
• AK T : K T → Im(A) is invertible. Thus A+ = A−1

K T P (with P the orthogonal projection on Im(AT )).

• Actually, one can show that A+v = limλ→0(AT A + λI)−1AT v .
• Gradient descent on f (u) converges to A+v , as soon as initialization has null component on K .
• But A+v is generally a bad solution for inverse problems because of bad conditioning.



21/35

Imaging Inverse Problems Optimization for Inverse Problems Metrics for Inverse Problems

Explicit Regularizations

We define the discrete derivatives of u by

∇u(x , y) =
(
∂1u(x , y)
∂2u(x , y)

)
avec

{
∂1u(x , y) = d1 ∗ u(x , y) = u(x + 1, y)− u(x , y)
∂2u(x , y) = d2 ∗ u(x , y) = u(x , y + 1)− u(x , y)

.

We define Tychonov regularization by

∥∇u∥2
2 =

∑
x∈Ω

∥∇u(x)∥2 =
∑
x∈Ω

|∂1u(x)|2 + |∂2u(x)|2.

We define the total variation by

TV(u) = ∥∇u∥1 =
∑
x∈Ω

∥∇u(x)∥ =
∑
x∈Ω

√
|∂1u(x)|2 + |∂2u(x)|2.
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Back to denoising

Let us minimize
F (u) =

1
2
∥u − v∥2 + λR(u)

where R is a regularization and λ > 0.

Consider first Tychonov regularization R(u) = ∥∇u∥2
2.

We have ∇R(u) = 2∇T∇u. As F is convex,

u ∈ Argmin F ⇐⇒ ∇F (u) = 0 ⇐⇒ u − v + 2λ∇T∇u = 0 ⇐⇒ u = (I + 2λ∇T∇)−1v

For p : Ω → R2, ∇T p is given by

∇T p(x , y) = p1(x − 1, y)− p1(x , y) + p2(x , y − 1)− p2(x , y).

Actually, div(p) := −∇T p is a discrete divergence and ∆u := −∇T∇u is a discrete Laplacian.
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Explicit Solution: Wiener filtering

Theorem
Let v ∈ CΩ and λ > 0. The function F : CΩ → R+ defined by

∀u ∈ CΩ, F (u) =
1
2
∥u − v∥2

2 + λ∥∇u∥2
2

has a minimum attained at a unique u∗ ∈ CΩ, which is given in Fourier domain:

∀(ξ, ζ) ∈ Ω, û∗(ξ, ζ) =
v̂(ξ, ζ)

1 + 2λ L̂(ξ, ζ)

where L̂(ξ, ζ) = |d̂1(ξ, ζ)|2 + |d̂2(ξ, ζ)|2 = 4
(
sin2 (πξ

M

)
+ sin2 (πζ

N

))
.

Remarks:
• d1, d2 are the kernel derivatives, e.g. d1 = δ(−1,0) − δ(0,0). So L̂ is the kernel of −∆ filter.
• The theorem adapts for deblurring with Tychonov regularization:

∀(ξ, ζ) ∈ Ω, û∗(ξ, ζ) =
k̂(ξ, ζ)v̂(ξ, ζ)

|k̂(ξ, ζ)|2 + 2λ L̂(ξ, ζ)
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Link with an evolution model

The gradient descent on

F (u) =
1
2
∥u − v∥2

2 + λ∥∇u∥2
2

writes as
un+1 − un = −τ(un − v) + 2λτ∆un .

The sequence (un) converges to u∗ as soon as τ < 2
L with L = ∥I + 2λ∇T∇∥ = 1 + 16λ.

If we drop the data-fidelity... then gradient descent on u 7→ ∥∇u∥2
2 gives

un+1 − un = 2τ∆un

This is a discretization of the heat equation ∂tu = c∆u with initial condition u0.
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Smoothed Total Variation

What if we want to minimize
F (u) =

1
2
∥u − v∥2

2 + λTV(u).

Problem: The total variation is not differentiable.

A simple solution: consider a smoothed variant: For ε > 0, let

TVε(u) =
∑

(x,y)∈Ω

√
ε2 + ∂1u(x , y)2 + ∂2u(x , y)2 .

One can see that

∇TVε(u) = ∇T

(
∇u√

ε2 + ∥∇u∥2
2

)
.

And one can show that ∇TVε is 8
ε
-Lipschitz.

We can thus minimize F by gradient descent with τ < 2
1+ 8λ

ε

.
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Denoising Examples

Noisy Tychonov denoising TVε denoising
PSNR = 19.93 PSNR = 25.89 PSNR = 27.21
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Projected Gradient Descent

Imagine that we want to constrain the solution into a convex closed set C ⊂ Rd :

Argmin
u∈C

F (u)

For that, we can use the orthogonal projection pC : Rd → C.

Theorem
Let f : Rd → R be convex differentiable such that ∇f is L-Lipschitz.
Let C ⊂ Rd be a closed convex set. Assume that ArgminC f is non-empty.
For τ ∈ (0, 2

L ), x0 ∈ Rd , let (xn) be defined by

xn+1 = pC(xn − τ∇f (xn)) .

Then (xn) converges to an element of ArgminC f .

Example : For inpainting, we can deal with the noiseless problem v = Au.
In this case, we can perform constrained minimization of only the regularization term:

min
v=Au

R(u).
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Proximal Operator

Definition (see e.g. the book [Bauschke, Combettes, 2011)
] Soit g : Rd → R. On définit l’opérateur proximal de g par

Proxg(u) = Argmin
z∈Rd

1
2
∥u − z∥2

2 + g(z) ⊂ Rd .

Proposition
Let g : Rd → R ∪ {+∞} a l.s.c. convex function such that g ̸≡ +∞. Then

• Proxg(u) is single-valued, and thus defines a point Proxg(u) ∈ Rd .
• If besides g is differentiable, then p = Proxg(u) satisfies

p = Proxg(u) ⇔ u = (Id +∇g)(p) .

Example
• If g = ıC the indicator function of C ⊂ Rd convex, then Proxg is the orthogonal projection on C.
• If f (u) = 1

2∥Au − v∥2
2, then Proxτ f (u) = τ(Id + τAT A)−1AT u
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Proximal Gradient Descent

In order to minimize F = f + g, one can use the proximal gradient descent (PGD) algorithm:

un+1 = Proxτg(un − τ∇f (un)) ,

where τ > 0 is a fixed step size.

Theorem
Let f : Rd → R be a convex differentiable function with Lf -Lipschitz gradient.
Let g : Rd → R \ {+∞} be convex l.s.c. such that g ̸≡ +∞.
Assume that F = f + g attains its infimum at some point in Rd . Assume τ < 2

Lf
.

Then the sequence (un) given by the PGD algorithm converges to some u∗ ∈ Argmin F.

Remarks:
• This theorem applies even for non-differentiable (or even non continuous) g.
• It generalizes the projected gradient descent algorithm.
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Iterative Thresholding

Let B ∈ Rd×d be an orthogonal matrix.
Let q ∈ {0, 1} and define R(u) = λ∥Bu∥q for any u ∈ Rd .
Let us define

∀t ∈ R, h0,λ(t) = t1|t|>
√

2λ and h1,λ(t) = sgn(t)(|t | − λ)+ .

We then extend hq,λ to vector by applying it component-wise.

Theorem
For u ∈ Rd , we define Tλ

q u ∈ Rd by
Tλ

q u = BT hq,λ(Bu) .

Then Tλ
q u ∈ ProxλR(u).

In order to minimize
F (u) =

1
2
∥Au − v∥2

2 + λ∥Bu∥1

we can thus use the following PGD algorithm (known as Iterative Soft-Tresholding):

un+1 = Tλ
1 (un − τ∇f (un)) .

In order to solve image restoration problems, one can take B to be the Fourier/wavelet basis.
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Plan

Imaging Inverse Problems

Optimization for Inverse Problems

Metrics for Inverse Problems
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Euclidean metrics

• Given two images u and v of size M × N with graylevels between 0 and 255.
• Denote Ω = {0, . . . ,M − 1} × {0, . . . ,N − 1} the pixel domain
• Mean Square Error ↓:

MSE(u, v) =
1

MN

∑
x∈Ω

(u(x)− v(x))2

• Root Mean Square Error ↓:

RMSE(u, v) =

(
1

MN

∑
x∈Ω

(u(x)− v(x))2

) 1
2

• Peak Signal to Noise Ratio ↑:

PSNR(u, v) = 20 log10

(
MAX

RMSE(u, v)

)
(where MAX = 255)

• Useful for inverse problems such as denoising.
• Not ideal when one hopes to generate new content.
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Structural similarity index measure (SSIM ↑) [Wang et al., 2004]

Between patches:
• Given two patches x , y (typically of size 8×8 or 11×11 with a Gaussian windowing)

SSIM(x , y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
∈ [−1, 1]

with:
• µx the pixel sample mean of x
• µy the pixel sample mean of y
• σ2

x the variance of x
• σ2

y the variance of y
• σxy the covariance of x and y
• c1 = (k1L)2, c2 = (k2L)2 two variables to stabilize the division with weak denominator, with the range

L = 255 or 1 and k1 = 0.01 and k2 = 0.03 by default.

• SSIM(x , y) is the product of three terms:

Luminance Contrast Structure
l(x , y) = 2µxµy+c1

µ2
x+µ2

y+c1
c(x , y) = 2σxσy+c2

σ2
x+σ2

y+c2
s(x , y) = σxy+c2/2

σxσy+c2/2
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Structural similarity index measure (SSIM ↑) [Wang et al., 2004]

Between images:
• Given two images u and v of size M × N with graylevels between 0 and 255, define the

Mean-SSIM by averaging over all patches:

(M)SSIM(u, v) = mean({SSIM(Px(u),Px(v)), x + ω ⊂ Ω})

where Px(u) is the restriction of u on the patch x + ω.
• There are also multiscale variants.
• SSIM is not a distance, its range is [−1, 1].
• SSIM is closer to a perceptual distance, especially regarding local textures.
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LPIPS ↓ [Zhang et al., 2018]

LPIPS: Learned Perceptual Image Patch Similarity
• Previous works on texture synthesis [Gatys et al., 2015] and style transfer [Gatys et al., 2016]

• [Johnson et al., 2016] have shown the importance of the VGG [Simonyan and Zisserman, 2015]
features for perceptual similarity between images.

• This means that intermediate features of classification CNN are useful in their own: “a good
feature is a good feature. Features that are good at semantic tasks are also good at
self-supervised and unsupervised tasks, and also provide good models of both human
perceptual behavior and macaque neural activity.”

LPIPS model: Define a perceptual distance between 64×64 patches by computing a Euclidean
norm between features:

LPIPS(u, u0)
2 =

∑
layers ℓ

1
HℓWℓ

∑
i,j

∥wℓ ⊙ (F ℓ(u)i,j − F ℓ(u0)i,j)∥2
2

where for each layer ℓ, the neural response F ℓ(u) is weighted by channel weights wℓ ∈ RCℓ that are
learned to reproduce human evaluation of distortion between patches.
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