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Today

* We will discuss imaging inverse problems.

* We will recall classical (simple) tools for solving inverse problems.
In particular we will recall simple regularization techniques (Tychonov, smoothTV)

* We will discuss quantitative evaluation of image restoration.
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Inverse problem with additive noise:
v=Au +w
where
* Uy € R? s the clean image to recover
e A:RY—R"
® w is a noise

In many cases, the degradation operator .4 can be approximated with a linear operator A,
and the noise model w is assumed to be Gaussian.

But, there are also inverse problems with non-linear A and non-Gaussian noise (e.g. Poisson noise).

4/35



Imaging Inverse Problems

00@000000000000

Application
Denoising [58]
Deconvolution
[58,59]

Superresolution
[60,61]

Inpainting [62]
Compressive
Sensing [63,64]

MRI [3]

Computed tomog-
raphy [58]

Phase Re-
trieval [67-70]

A(x)=hxz
A=S5B
A=8

A = SFor A =
Gaussian or Bernoulli
ensemble

A=SFD
A=R
Alw) = |Azf*

1 is the identity matrix

h is a known blur kernel and * denotes convo-
lution. When h is unknown the reconstruction
problem is known as blind deconvolution.

S is a subsampling operator (identity matrix
with missing rows) and B is a blurring operator
cooresponding to convolution with a blur kernel
S is a diagonal matrix where S; ; = 1 for the pix-
els that are sampled and S;; = 0 for the pixels
that are not.

S'is a subsampling operator (identity matrix with
missing rows) and F* discrete Fourier transform
matrix.

S is a subsampling operator (identity matrix with
missing rows), F' is the discrete Fourier trans-
form matrix, and D is a diagonal matrix rep-
resenting a spatial domain multiplication with
the coil sensitivity map (assuming a single coil
aquisition with Cartesian sampling in a SENSE
framework [65]).

Ris the discrete Radon transform [66].

|| denotes the absolute value, the square is taken

ise, and A is a (p ially pl
valued) measurement matrix that depends on the
application. The measurement matrix A is often
a variation on a discrete Fourier transform ma-
trix.

(source: [Ongie et al., 2020])
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Gaussian denoising

Let’s start with the case A = Id, i.e. image denoising:
v=uy+w where w~ N(0,0°ld).
We want to estimate v, from a single realization of v...

— We need to add some prior knowledge on the solution (e.g. regularity assumption).
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Deblurring
® A spatially invariant blur can be modeled by a Isotropic blur  Motion blur
convolution operator Au = k x u
e Several types of blur exist (motion, defocus)
L]

Non-blind deblurring consists in recovering up from
V=KsxuUy+ w.

* We won't tackle blind deblurring here.

Original Blurred

Example of motion blur
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Super-Resolution

Super-résolution consists in finding another version of v at higher resolution.

This is an inverse problem corresponding to the subsampling operator with stride s € N*:
uis(x, y) = u(sx, sy).

In practice, we often apply an (anti-aliasing) filter before subsampling.

With prefiltering, we obtain the operator

Au = (k * U)¢S.

Super-resolution consists in recovering up from
v=(k*xu)s+w.

The degraded image v is defined on a subgrid of stride s.
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Inpainting

Inpainting consists in filling missing regions in images

The degradation operator then writes

Au=ul,

where w C Q is the set of known pixels and Q2 \ w the mask.
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Inverse problem

We wish to recover up from
v =Au + w.

The problem is said ill-posed when A is not invertible or with unstable inverse.

Example : For deblurring, Au = k = u, we can invert A directly in Fourier domain:
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Inverse problem

We wish to recover up from
v =Au + w.

The problem is said ill-posed when A is not invertible or with unstable inverse.

Example : For deblurring, Au = k = u, we can invert A directly in Fourier domain:

u=r" (%) =F! (00 + %) —  but noise explodes !
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Inverse problem

We wish to recover up from
v =Au + w.

The problem is said ill-posed when A is not invertible or with unstable inverse.

Example : For deblurring, Au = k = u, we can invert A directly in Fourier domain:
u=r" (%) =F' (Uo + %) —»  but noise explodes !

When the problem is ill-posed, there may be multiple solutions or erroneous solutions.

It is thus useful to adopt an a priori on the solution, e.g. imposing some kind of regularity.
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Image Restoration by Optimization

We will therefore try to solve
1
F(u) = 5llAu— v + AR(v)
where R(u) imposes some kind of regularity of u, and XA > 0 is a parameter.

The problem Argmin F(u) is very high-dimensional, and we need efficient algorithms.
ueR®

Simple (nearly useless) regularization: Consider R(u) = guuu’;‘. Then uy € Argming is given by
AT(Auy —v)+Aur =0 ie. uy=(ATA+A)'Alv

Example: for denoising (A = Id),
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Image Restoration by Optimization

We will therefore try to solve
1
F(u) = 5llAu— v + AR(v)
where R(u) imposes some kind of regularity of u, and XA > 0 is a parameter.

The problem Argmin F(u) is very high-dimensional, and we need efficient algorithms.
ueR®

Simple (nearly useless) regularization: Consider R(u) = 3||u||3. Then ux € Argmin, is given by
AT(Auy —v)+Aur =0 ie. uy=(ATA+A)'Alv

Example: for denoising (A = Id), it just divides all values by 1 + ...

For differentiable F, we can always consider simple gradient descent.
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If Au = k * u (periodic convolution), then ATu =
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Image Restoration by Optimization

We will therefore try to solve
1
F(u) = 5llAu— v + AR(v)
where R(u) imposes some kind of regularity of u, and XA > 0 is a parameter.

The problem Argmin F(u) is very high-dimensional, and we need efficient algorithms.
ueR®

Simple (nearly useless) regularization: Consider R(u) = 3||u||3. Then ux € Argmin, is given by
AT(Auy —v)+Aur =0 ie. uy=(ATA+A)'Alv

Example: for denoising (A = Id), it just divides all values by 1 + ...

For differentiable F, we can always consider simple gradient descent.

Example: The gradient of f(u) = ||Au — v||3 is Vf(u) = AT(Au — v).

If Au = k = u (periodic convolution), then ATu = k * u with k(x) = k(—x).
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The Steepest Descent

https://mathinsight.org/directional_derivative_gradient_introduction
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Descent Lemma

Let f : R — R be differentiable with L-Lipschitz gradient. Then, for any x, y € R,
f(y) = f(x) + /01 Vix+tly —x))-(y —x)dt
=f(X)+ VX)) (y —x) + /01 (VH(x + t(y — x)) = V(X)) - (y — x)dt
<HX)+ VX)) - (y —x) + /O1 [VH(x + t(y — x)) = VI)[lly — x|[at
< F(x) + VH(X) - (y — x) + /01 Lt|ly — x|at
<100+ V1) - (v~ x) + Sy xI°
Consequence: If we choose 7 € [0, ], then

f(x — TVE(x)) < f(x) — 7(1 - %L

JIVFIP < (x).
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Gradient Descent

We consider here the gradient descent method:
Xnt1 = Xn — TaVI(Xn) ,

where 7, > 0 is a sequence of step sizes.
® For 7, = 7 constant, we speak of fixed step size.
* We speak of optimal step size if, at each iteration n, we choose

7n € Argmin f(xp, — tVf(Xp)).
teR

The descent lemma gives that for f differentiable with L-Lipschitz gradient and 7 < %

f(Xn1) < f(xn)

Thus, if f is lower bounded, f(x,) converges.
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Convexity and Minimum

The function f : R — R is convex if for all x, y € RY,

Vie (0,1), f((1—-tx+1ty) <1 —Df(x)+t(y).

It is said strictly convex if the inequality is strict.

If f is convex and differentiable, one can show that for any x, y € RY,
Hy) = F(x) + VF(x) - (y - x).
Consequence : If f is convex and differentiable, then
x € Argminf <= Vf(x)=0.

The argmin is unique as soon as f is strictly convex.
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Strong Convexity

We say that f is a-convex (with o € R) if f — || - || is convex.

When a > 0, we say that f is strongly convex.

Remark : The convexity and the gradient Lipschitz constant can be read on the Hessian:

If A, B € R%*? are symmetric, we write A = B if A — B if semi-definite positive, i.e.
vxeRY, Ax-x>Bx-x.

For f : R — R of class %2,

Vfis L-Lipschitziff vx € RY, —Lld < V2f(x) < LId.
i.e. Vx the eigenvalues of V2f(x) have moduli < L.

fis a-convex iff Vx € R?, V2f(x) = ald
i.e. Vx the eigenvalues of V2f(x) are all > a.
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erse Problems s for Inverse Problems

Convergence Guarantees, Convex Case

Theorem
Let f : R — R be convex differentiable with Vf L-Lipschitz. Assume that Argminf is non-empty.
LetT € (0, %), xo € R? and (x,) the sequence defined by

Xnp1 = Xn — TVI(Xn) .
Then (x») converges towards an element of Argmin f.

Theorem
Let f : R? — R be differentiable and o:-strongly convex with L-Lipschitz gradient.
Then there exists a unique x.. € Argminf, and forr < 7 < 1, we have

Ixn = x||* < (1 = 70)" I x0 — x.|°.
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Optimization for Inverse Problems

To solve the inverse problem v = Auy + w, we can thus minimize
F(u) = f(u) + g(u)

with f(u) = 1||Au — v||? and g(u) = AR(u), A > 0.

Consider here R(u) = ||Bul|3 with B € RP*?, F is convex and differentiable.

Solutions are characterized by VF(u) =0 i.e. A"(Au—v)+2\B"Bu=0.

Also, we can minimize F by gradient descent with 7 < 2 where L = |[ATA+2)\B'B].

* For Au = k*u, ATAu = F ' (|k[*D).
If |k| <1, it follows that || AT A|| < 1.
® For Au=1,u, ATA=A? = Aand ||A|| = 1.
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Optimization for Inverse Problems

To solve the inverse problem v = Auy + w, we can thus minimize
F(u) = f(u) + 9(v)
with f(u) = 1||Au — v||? and g(u) = AR(u), A > 0.
Consider here R(u) = ||Bul|3 with B € RP*?, F is convex and differentiable.
Solutions are characterized by VF(u) =0 i.e. A"(Au—v)+2\B"Bu=0.

Also, we can minimize F by gradient descent with 7 < 2 where L = |[ATA+2)\B'B].

* For Au = k*u, ATAu = F ' (|k[*D).
If |k| <1, it follows that || AT A|| < 1.
® For Au=1,u, ATA=A? = Aand ||A|| = 1.

Good news: By automatic differentiation you need only coding F(u)...

But !'in order to avoid instability problems, you'd better know what F does...
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Let us start with zero regularization!

Consider here ]
f(u) = 5l Au - v,

* We have an orthogonal decomposition R? = K @ K+ with K = Ker[A] and KT = Im[A"]
® Therefore Argmingy f is non-empty and we can define

ATv=min |uls.
ueArgmin f

It defines a linear operator A", called Moore-Penrose pseudo-inverse.
® The Moore-Penrose pseudo-inverse has a zero component in Ker[A].
e Acr: KT — Im(A) is invertible. Thus A* = Al 1P (with P the orthogonal projection on Im(AT)).
e Actually, one can show that ATv = IimAHO(ATA +AN)TTATY.
e Gradient descent on f(u) converges to A" v, as soon as initialization has null component on K.
e But Atv is generally a bad solution for inverse problems because of bad conditioning.
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Explicit Regularizations

We define the discrete derivatives of u by

Vu(x,y):(a1u(x’y)) avec {8‘U(X’y)_d1*U(X»,V)—U(X+1,y)—u(x,y)

d2U(X, y) Qou(x,y) = dexu(x,y) =u(x,y +1) — u(x, y)

We define Tychonov regularization by

IVullz =D VUl = > [01u(x)[ + [d2u(x) .

xXeQ xeQ

We define the total variation by

TV(u) = [Vulls = Y IVu)l =) \/|31 u(x)|? + [Geu(x)[?.

xeQ xeQ
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Back to denoising

Let us minimize

1
F(u) = gllu—vI[* + AR(u)
where R is a regularization and A > 0.

Consider first Tychonov regularization R(u) = || Vul|3.
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Back to denoising

Let us minimize ;
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where R is a regularization and A > 0.

Consider first Tychonov regularization R(u) = || Vul|3.

We have VR(u) = 2V'Vu.
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Let us minimize ;
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where R is a regularization and A > 0.

Consider first Tychonov regularization R(u) = || Vul|3.
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Back to denoising

Let us minimize ;

F(u) = gllu—vI[* + AR(u)
where R is a regularization and A > 0.
Consider first Tychonov regularization R(u) = || Vul|3.

We have VR(u) = 2V’ Vu. As F is convex,
ueArgminF <= VFU) =0 <= u—v+2\V'Vu=0 < u=(/+2\V'V) v
Forp: Q — R2, V'pis given by

Vp(x,y) = pi(x = 1,¥) = pi(X,y) + p2(x,y — 1) — pa(X, y).

Actually, div(p) := —V ' p s a discrete divergence and Au := —V' Vu is a discrete Laplacian.
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Explicit Solution: Wiener filtering

Theorem
Letv € C® and A > 0. The function F : C* — R, defined by

1
vuecC?, F(u)= sllu— V3 + N Vull?

has a minimum attained at a unique u. € C%, which is given in Fourier domain:

0 S (S19
Qe L(60 =0 T
where L(¢,¢) = a1 (&, Q)P + |a(&, Q)P = 4 (sin® (55) + sin® (%5))-

Remarks:

® di, d: are the kernel derivatives, e.g. di = 6(_1,0) — d(0,0)- SO L is the kernel of —A filter.

® The theorem adapts for deblurring with Tychonov regularization:

 KEQUEQ)
k(6P +20 L&)

V(§7C) € Qv a*(&ac) =

verse Problems
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Link with an evolution model

The gradient descent on
1
F(u) = 5lu—viiz + AIVullz

writes as
Unt1 — Un = —7(Un — V) + 2ATAU, .

The sequence (un) converges to u. as soon as 7 < £ with L = ||/ + 2AVIV| =1+ 16X
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Link with an evolution model

The gradient descent on
1
F(u) = 5llu— VI3 + X[ VulB

writes as
Unt1 — Un = —7(Un — V) + 2ATAU, .

The sequence (un) converges to u. as soon as 7 < £ with L = ||/ + 2AV'V| =14 16A.

If we drop the data-fidelity... then gradient descent on u — ||Vu||2 gives
Uni1 — Up = 27AUp

This is a discretization of the heat equation 0;u = cAu with initial condition .
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Smoothed Total Variation

What if we want to minimize ]
Fu) = 5llu = VI +ATV(u).

Problem: The total variation is not differentiable.

A simple solution: consider a smoothed variant: For ¢ > 0, let

TVo(u)= > \/52 + 1u(x, y)2 + dau(x, y)? .

(x,y)eQ

VTV.(u) = VT(VU> .
e+ ||Vuli3

One can see that

And one can show that VTV. is &-Lipschitz.
We can thus minimize F by gradient descent with 7 < H%
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Denoising Examples

Noisy Tychonov denoising TV, denoising
PSNR = 19.93 PSNR = 25.89 PSNR = 27.21
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Projected Gradient Descent
Imagine that we want to constrain the solution into a convex closed set C ¢ RY:

Argmin F(u)
ueC

For that, we can use the orthogonal projection pc : R — C.

Theorem

Let f : R? — R be convex differentiable such that Vf is L-Lipschitz.

Let C c RY be a closed convex set. Assume that Argmin,, f is non-empty.
Fort € (0,2), xo € RY, let (xn) be defined by

Xn1 = Po(Xn — TVI(Xn)) .

Then (x») converges to an element of Argmin, f.

Example : For inpainting, we can deal with the noiseless problem v = Au.
In this case, we can perform constrained minimization of only the regularization term:

min R(u).

v=Au
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Proximal Operator

Definition (see e.g. the book [Bauschke, Combettes, 2011)
] Soit g : R? — R. On définit I'opérateur proximal de g par

Proxg(u) = Argmin 1Hu —z|5+9(z) cR?.
zeRd 2

Proposition

Letg:R? — RU {+oc} al.s.c. convex function such that g # +occ. Then
* Proxg(U) is single-valued, and thus defines a point Proxg(u) € RC.
* [f besides g is differentiable, then p = Proxq(u) satisfies

p = Proxg(u) & u=(ld+Vg)(p).

Example

e If g = 1c the indicator function of C ¢ RY convex, then Proxg is the orthogonal projection on C.
* If f(u) = 3||Au — v||3, then Prox,(u) = 7(Id + TATA)'ATu

for Inverse Problems
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Proximal Gradient Descent

In order to minimize F = f + g, one can use the proximal gradient descent (PGD) algorithm:

Uny1 = Proxg(Uun — 7V (Un)) ,
where 7 > 0 is a fixed step size.

Theorem

Let f : R? — R be a convex differentiable function with L;-Lipschitz gradient.
Letg:R% — R\ {+0oo} be convex I.s.c. such that g # +ooc.

Assume that F = f + g attains its infimum at some point in RY. Assume 7 < L%

Then the sequence (un) given by the PGD algorithm converges to some u. € Argmin F.

Remarks:
® This theorem applies even for non-differentiable (or even non continuous) g.
® |t generalizes the projected gradient descent algorithm.
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Iterative Thresholding

Let B € R%*? be an orthogonal matrix.
Let g € {0,1} and define R(u) = A||Bul|q for any u € R.
Let us define
VteR, hoa(t) =155 and hix(t) =sgn(t)([t] — A)+ .

We then extend hq,» to vector by applying it component-wise.

Theorem
For u € RY, we define T, u € R? by

Tou= B hgx(Bu) .
Then Tun € Proxxg(u).

In order to minimize ]
F(u) = 5llAu = VI3 + A|Bul;

we can thus use the following PGD algorithm (known as lterative Soft-Tresholding):
Uit = T (Un — 7V F(Un)) -

In order to solve image restoration problems, one can take B to be the Fourier/wavelet basis.
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Euclidean metrics

Given two images u and v of size M x N with graylevels between 0 and 255.
Denote Q = {0,...,M —1} x {0,..., N — 1} the pixel domain

Mean Square Error |:
MSE(u, v) = i S (u(x) — v(x))?

XeQ
Root Mean Square Error |:

RMSE(u, v) = (/\/1//\/ > (u(x) - V(X))2> é

xeQ
Peak Signal to Noise Ratio 7:

MAX

F’SNF{(U7 V) = 20|0g10 (W(uv)

) (where MAX = 255)

Useful for inverse problems such as denoising.
Not ideal when one hopes to generate new content.
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Structural similarity index measure (SSIM 1) [Wang et al., 2004]

Between patches:
e Given two patches x, y (typically of size 8x8 or 11x11 with a Gaussian windowing)

(2pxpty + €1)(20xy + C2)

SSIM(x, y) =
)=+ 12 +e)(o? + o + o)

€[-1,1]

with:

1x the pixel sample mean of x

uy the pixel sample mean of y

o2 the variance of x

% the variance of y

oxy the covariance of x and y

¢y = (kiL)?, ¢ = (koL)? two variables to stabilize the division with weak denominator, with the range
L =2550r1and k; = 0.01 and k, = 0.03 by default.

® SSIM(x, y) is the product of three terms:

Luminance Contrast Structure
_ 2pxpy+cy _ 2oxoy+C _ oxyte/2
I(x,y) = s c(x,y) = oZrottos s(x,y) = oxoy+Ca/2

33/35



Metrics for Inverse Problems
00000

Structural similarity index measure (SSIM 1) [Wang et al., 2004]

Between images:
e Given two images u and v of size M x N with graylevels between 0 and 255, define the
Mean-SSIM by averaging over all patches:
(M)SSIM(u, v) = mean({SSIM(Px(u), Px(v)), X+ w C 2})

where Py(u) is the restriction of u on the patch x + w.
® There are also multiscale variants.
® SSIM is not a distance, its range is [—1,1].
® SSIM is closer to a perceptual distance, especially regarding local textures.
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LPIPS | [zhang et al., 2018]

LPIPS: Learned Perceptual Image Patch Similarity
® Previous works on texture synthesis [Gatys et al., 2015] and style transfer [Gatys et al., 2016]

® [Johnson et al., 2016] have shown the importance of the VGG [Simonyan and Zisserman, 2015]
features for perceptual similarity between images.
® This means that intermediate features of classification CNN are useful in their own: “a good
feature is a good feature. Features that are good at semantic tasks are also good at
self-supervised and unsupervised tasks, and also provide good models of both human
perceptual behavior and macaque neural activity.”
LPIPS model: Define a perceptual distance between 64 x64 patches by computing a Euclidean
norm between features:

LPIPS(u, up) = > —Zum@ — F'(wo)i)ll2

layers ¢

where for each layer ¢, the neural response F*(u) is weighted by channel weights w;, € R¢ that are
learned to reproduce human evaluation of distortion between patches.
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