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Introduction

• A RAW image is acquired from the scene, and is affected by
• blur (from defocus or motion)
• sampling with the CCD sensor (which produces noise)
• quantization (on discrete graylevel/color values)

• Going from the RAW image to the output RGB image involves several steps:

RAW demosaicking 
white balance 

chroma denoise

conversion to sRGB 
dynamic range 
 compression

dehazing 
global tone map  

and gamma

sharpening 
hue, saturation 

dithering  
+quantization

also denoising, compression, lens correction etc…
• In the two next sessions, we will discuss the steps related to graylevel/color transforms.
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Plan

Histograms and Contrast Changes
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Contrast Change

• Our Human Visual System (HVS) is quite robust to increasing transformations of the gray levels.
• One can thus look for graylevel transformations that increase perceived quality while not

changing the geometric content.
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Local Perception and Optical Illusions

Our visual perception is strongly guided by our sensitivity to local contrasts. (Kanisza, 1980)

[CheckerShadow Illusion, Edward H. Adelson]
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Negative Image

However, our HVS does not compensate easily for decreasing contrast changes.
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Image Histogram

Let u : Ω → R be an image defined on a rectangle Ω with M × N pixels.

Definition
The histogram of u is the probability distribution on R defined by

hu =
1
|Ω|

∑
x∈Ω

δu(x).

Remarks:
• hu is the probability distribution of u(X ) where X ∼ U(Ω).
• If u has values in A = {a1, . . . , aK} (e.g. {0, . . . , 255}), one can write

hu =
K∑

k=0

pkδak where pk =
1
|Ω|

∣∣{ x ∈ Ω | u(x) = ak }
∣∣ = P(u(X ) = ak ).
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Cumulative Histogram

Definition
The cumulative histogram of u is the fonction Hu : R → [0, 1] defined by

∀t ∈ R, Hu(t) =
∫ t

−∞
hu(s)ds =

1
|Ω| |{ x ∈ Ω | u(x) ⩽ t }|.

grey level

Hu

•
•
•

•
•
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Cumulative Histogram

Definition
The cumulative histogram of u is the fonction Hu : R → [0, 1] defined by

∀t ∈ R, Hu(t) =
∫ t

−∞
hu(s)ds =

1
|Ω| |{ x ∈ Ω | u(x) ⩽ t }|.

• By definition, Hu is the cumulative distribution function (c.d.f.) of the graylevel distribution hu of u.
• We have H ′

u = hu in the distribution sense (i.e. Hu is a primitive of hu).

• If u takes |Ω| distinct values, then for x ∈ Ω, |Ω|Hu(u(x)) is the rank of u(x) among all u values.
• Hu(u(x)) can be understood as the “normalized rank” of u(x).
• We have

u(x) < u(y) =⇒ Hu(u(x)) < Hu(u(y))
u(x) ≤ u(y) =⇒ Hu(u(x)) ≤ Hu(u(y))

and therefore
u(x) ≤ u(y) ⇐⇒ Hu(u(x)) ≤ Hu(u(y)).
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Example of Image Histogram

Here is an example of histogram and cumulative histogram for an 8-bit image of size 796 × 572.

u hu Hu

Looking at the histogram allows you to see the proportions of dark or light areas in the image.
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Contrast Change

Definition
• A contrast change is a non-decreasing function g : R → R.
• Applying a contrast change to the image u consists in computing the image

g ◦ u(x) = g(u(x)).

This modified image is sometimes denoted (abusively) by g(u).

Proposition
• If g : R → R is continous and increasing, then Hg◦u = Hu ◦ g−1.
• If g : R → R is increasing, then

∀x ∈ Ω, Hg◦u(g ◦ u(x)) = Hu(u(x)).

REMARK: If g is only non-decreasing, there may exists values ak , aℓ of u such that g(ak ) = g(aℓ).
In this case, after contrast change g, the areas of values ak , aℓ are fused (information loss).
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Simple Contrast Changes

There are several explicit contrast changes that are often helpful:
• Affine contrast change

m + σ × u − mean(u)
std(u)

allows to prescribe the mean and standard deviation to m and σ.

• Logarithmic change
log(1 + u)

helps to display images u ≥ 0 with very large range (e.g. Fourier modulus).

• Piecewise affine functions may help to rescale more precisely some part of the image dynamics.
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Generalized Inverse

Let µ be a probability distribution with cumulative distribution function (cdf) Fµ.

Definition
The generalized inverse of Fµ (also called “quantile function”) is defined by

F−
µ (α) = inf{ t ∈ R | Fµ(t) ⩾ α } (α ∈ ]0, 1[) .

Proposition
The generalized inverse satisfies

∀t ∈ R, ∀α ∈ ]0, 1[, α ⩽ Fµ(t) ⇐⇒ F−
µ (α) ⩽ t .

In other words,
∀α ∈ ]0, 1[, { t ∈ R | Fµ(t) ⩾ α } = [F−

µ (α),+∞[ ,

and thus, the inf of the definition is actually a min.

CONSEQUENCE: If U is a random variable uniform on [0, 1], then F−
µ (U) has cdf equal to Fµ.

REMARK: One can also show that for any t ∈ R, Fµ ◦ F−1
µ (t) ≥ t and F−1

µ ◦ Fµ(t) ≤ t .
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Histogram Specification

Let u : Ω → R an image defined on a M × N rectangle Ω.
Let µ be a probability distribution on R.

QUESTION: How to design a contrast change g such that the histogram hg◦u is close to µ?

There are several ways to measure how close two distributions are.

Proposition
Assume that µ has an increasing cdf Fµ. Let us consider g ◦ u with

g = F−
µ ◦ Hu.

Then Hg◦u and Fµ coincide on the values of g ◦ u.

EXERCISE: Suppose that u has histogram hu = 1
4δ1 +

1
2δ2 +

1
4δ3, and let µ = U(0, 1).

Compute the histogram of the image g ◦ u introduced in the proposition.
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Histogram Specification: other choices

There exist other choices for g such that hg◦u and µ are “close”.

Assume that u has values {a1, . . . , aK} and Fµ is increasing. Let g be a contrast change such that

g(ak ) = F−1
µ ◦

(
Hu(ak ) + Hu(ak−1)

2

)
.

Then one can show (see L. Moisan’s course), that any such contrast change solves

Argmin
g

∫
R
|Hg◦u(t)− Fµ(t)|2dt .

We would find yet another explicit formula if we tried to solve

Argmin
g

∫ 1

0
|H−

g◦u(s)− F−1
µ (s)|2ds.

Remark: Of course, we cannot ask g ◦ u to have exactly distribution µ.
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Histogram Equalization

Let u : Ω → R defined on a discrete rectangle Ω.

Definition
Performing an histogram equalization of u consists in finding a contrast change g such that hg◦u is
“close” to the uniform distribution U(0, 1).

• A standard way to perform histogram equalization is to use the contrast change g = Hu .
• This is justified by the fact that

∀t ∈ R, HHu◦u(t) ≤ t

with equality at any t that can be written t = Hu(u(x)).
In this sense, the cumulative distribution function of Hu ◦ u is close to the one of U(0, 1).
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Algorithm for Histogram Equalization

To perform histogram equalization in practice:

• Order the pixel values u(x) keeping the ranks r(x) ∈ {0, . . . , |Ω| − 1}.

• At each pixel x , replace the value u(x) by the normalized rank
r(x)
|Ω| ∈ [0, 1].

• You may apply a normalization to go back to a desired range. (for example, ×255)

NB: If two pixels x , y are ex-aequo, you can either put the same rank or disambiguate arbitrarily.
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Example of Histogram Equalization
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Information Loss

Before equalization:

After equalization:
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Increasing quantization noise

Histogram equalization sometimes amplifies noise in the image.

Original image Equalized image
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Motivation: Image Comparison

Images taken by Lionel Moisan.
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Motivations

Comparing two images is easier after color/histogram equalization.

Correcting or transforming the radiometry or colors of an image or a set of images
• compute a color palette that is common to N images
• correcting flicker effects in films
• color palette specification (for example: day to night effect)

This requires a kind of distance or interpolation between graylevel/color distributions.
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“Les déblais et les remblais”...

Optimal transport has been introduced by Gaspard Monge in his
Mémoire sur la Théorie des Déblais et des Remblais (1784)
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Optimal Transport (see G. Peyré’s or Villani’s books)

For µ, ν probability measures on Rd , let

OT(µ, ν) = min
T

∫
Rd

c(x ,T (x))dµ(x)

where T should send µ onto ν.

COLOR TRANSFER SHAPE INTERPOLATION
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Two OT formulations (see (Santambrogio, 2015))

Let µ, ν two probability distributions supported in X ,Y ⊂ Rd .
Let c : X × Y → R a function (called the ground cost).

OPTIMAL TRANSPORT COST WITH MONGE FORMULATION:

OT(µ, ν) = min
T♯µ=ν

∫
Rd

c(x ,T (x))dµ(x) (OT-Monge)

where T ♯µ(A) = µ(T−1(A)) for all A.
A solution of (OT-Monge) is called an optimal transport map from µ to ν.

NB: There exist singular cases of this problem. For some (µ, ν) there is no T such that T ♯µ = ν.
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Two OT formulations (see (Santambrogio, 2015))

Let µ, ν two probability distributions supported in X ,Y ⊂ Rd .
Let c : X × Y → R a function (called the ground cost).

OPTIMAL TRANSPORT COST WITH KANTOROVICH FORMULATION:

W (µ, ν) = inf
π∈Π(µ,ν)

∫
X×Y

c(x , y) dπ(x , y) (OT-Kanto)

where Π(µ, ν) is the set of distributions π on X × Y with marginals µ, ν.
A solution of (OT-Kanto) is called an optimal transport plan for (µ, ν).

NB: If T solves (OT-Monge), then the law of (X ,T (X )) (with X ∼ µ) solves (OT-Kanto).
Also, under weak regularity assumptions on µ, OT(µ, ν) = W (µ, ν) (Santambrogio, 2015).
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Metric Properties

For c(x , y) = ∥x − y∥p, p ∈ [1,∞), the p-Wasserstein cost is defined by

Wp(µ, ν) = inf
π∈Π(µ,ν)

∫
X×Y

∥x − y∥p dπ(x , y).

Theorem (See e.g. Chap 6 of (Villani, 2009))
Let Pp the set of probability measures µ on Rd such that

∫
∥x∥pdµ(x) < ∞.

• W
1
p

p is a distance on Pp.

• µn
Wp−−−→

n→∞
µ if and only if

{
∀φ ∈ Cb(Rd),

∫
φdµn →

∫
φdµ∫

∥x∥pdµn(x) →
∫
∥x∥pdµ(x)

.
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How to interpolate between histograms?
Image Histogram Cumulative histogram

m1

h1
H1

m2

h2
H2

m1
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How to interpolate between histograms?
Image Histogram Cumulative histogram

m1

h1
H1

m2

h2
H2

m

h
H
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Optimal Transport - 1D case
Let µ, ν two probability distributions on R and c : R × R → R lower bounded.
Recall that Fµ is the cumulative distribution of µ.

Proposition
Suppose that µ has no atom. Then T = F−

ν ◦ Fµ satisfies T♯µ = ν.

Theorem (See e.g. in (Santambrogio, 2015))
Suppose that c(x , y) = h(x − y) with h : R → R strictly convex. Then

• (F−
µ ,F−

ν )♯U(0, 1) is an optimal transport plan for (µ, ν).
• If µ is atomless, then T = F−

ν ◦ Fµ is an optimal transport map from µ to ν.

Consequence: The theorem gives an expression of the OT cost

W (µ, ν) =

∫ 1

0
h(F−

µ (t)− F−
ν (t))dt .

In particular, the W 1/2
2 distance is the L2 distance between the inverse cdf of µ and ν.

Remark: One main practical issue is that we usually work with discrete histograms.
−→ Thus we have to deal with ex-aequo values.
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Kantorovich Barycenter

The Kantorovich barycenter of L probability distributions (ν1, . . . , νL) on Rd with weights (ρ1, . . . , ρL)
such that

∑
ℓ ρℓ = 1 is defined by

Argmin
µ

L∑
l=1

ρlW (µ, ν l)2

where the minimum goes over all probability distributions µ on Rd .

Definition
Let u, v two images defined on a discrete rectangle Ω.
The midway histogram associated to u, v is the distribution hmidway whose inverse cdf is

H−
midway =

H−
u + H−

v

2
.

• This definition makes sense because H−
midway is a piecewise constant left-continuous function.

• The midway histogram solves the W2 isobarycenter problem.
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Example of Midway Histogram

graylevel

Hu

Hv
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Midway Equalization
(Delon, 2004b)

The midway equalization consists in applying respectively to images u and v the contrast changes

H−
midway ◦ Hu and H−

midway ◦ Hv

Since H−
u ◦ Hu ◦ u = u, this is equivalent to applying the contrast changes

gu =
1
2
(Id + H−

v ◦ Hu) and gv =
1
2
(Id + H−

u ◦ Hv ).

• Then images gu(u), gv (v) have quasi-identical distributions, close to hmidway .
• In practice, we can use an approximate formula based on ranking (faster to implement).
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Example of Midway Equalization

u v
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Example of Midway Equalization

gu(u) gv (v)
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Action on the Level Sets

During midway equalization, the gray levels with same rank in the two images are averaged.

Median level sets between the two images (71 in first image, and 155 in second image).
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Examples of Midway Equalization

Before midway equalization
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Examples of Midway Equalization

After midway equalization
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Examples of Midway Equalization
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Examples of Midway Equalization

After midway equalization
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Application to satellite images
(Delon, 2004a)

Before midway equalization
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Application to satellite images
(Delon, 2004a)

After midway equalization
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Application en imagerie médicale
(Angelini et al., 2007)
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Mid-way Online Demo
(Guillemot and Delon, 2016)

http://www.ipol.im/pub/art/2016/140/

http://www.ipol.im/pub/art/2016/140/
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Midway Video Equalization
(Delon, 2005; Sánchez, 2017)

• Midway equalization can be generalized to K frames of a film.
• It is helpful to correct “flicker” artifacts (for example in old movies).

Before Correction After Correction

Differences between consecutive frames of a film
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Gamma Correction

Old screens called CRT (for cathode-ray tube) had a non-linear behavior (for electronic reasons).

If v is the input signal (with values in [0, 1]), it can be approximately modeled by a power-law

u = vγ , with γ ≈ 2.2.

This make images appear darker than they are:



46/59

Histograms and Contrast Changes Optimal Transport and Histograms Related Topics

Gamma Correction

Some acquisition devices (cameras, scanner) apply the so-called Gamma correction:

v = v
1
γ

real with 1/2.2 ≈ 0.45.

Most CCD (charged-couple device) sensors use this, and then use a uniform quantization.

In addition to compensate the non-linearity, it helps to better respect the Human perception:
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Dehazing

Graylevel or Color Images may be affected by haze (or fog effects):
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Dehazing
(He et al., 2010)

An image (with C channels) containing haze can be modeled as

u(x) = r(x)t(x) + a(1 − t(x))

where
• u(x) ∈ RC is the observed intensity
• r(x) ∈ RC is the scene radiance (same shape as u)
• t(x) ∈ [0, 1] is the medium transmission : proportion of light that reaches the camera

It depends on the depth of the observed point.
• a ∈ RC is the global atmospheric light
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Dehazing

Dehazing would consist in estimating r , t , a from u.

He et al. introduced the dark channel prior

d(x) = min
y∈Nx , c∈{r,g,b}

uc(y)

where Nx is a 15 × 15 neighborhood of x .

Gist: “on haze-free outdoor images: in most of the non-sky patches, at least one color channel has
very low intensity at some pixels.”

Dehazing method:
• estimate atmospheric light a from the values of u in the 0.1% brightest pixels of d .
• the transmission is estimated by t̂(x) = 1 −miny∈Nx , c∈{r,g,b}

uc (x)
ac

.
• the radiance is recovered by

r̂(x) =
u(x)− a

max(̂t(x), t0)
+ a.
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Dehazing

Examples of dark channels (b) computed from images (a).



51/59

Histograms and Contrast Changes Optimal Transport and Histograms Related Topics

Dehazing

Input Images
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Dehazing

Dehazed Images
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Dehazing

By-product: Estimated Depth − log t̂(x)
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Dynamic range and Human adaptation

The Human visual system (HVS) can adapt to a large dynamic range.

condition illumination (cd/m2)
star 10−3

Moon 10−1

artificial light 102

white sheet under sun light 104

sun light at noon 1010

• HVS is sensitive to 10 orders of magnitude (5 in a fixed scene).
• Numerical sensors : 4 orders of magnitude for best sensors (otherwise, 3)
• Screens : 2 or 3 orders of magnitude
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Example of a Saturated Image

The sensor capicity is limited. See the course of Y. Gousseau on HDR imaging.
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Quantization

Storage/transmission require that images be encoded into normalized finite value ranges.

Exemples :
• Numerical camera: 12 bits images (or 8 bits after Gamma correction)
• Satellite image: 12 bits (4096 levels)
• Color images: 24 bits (8 for each channel).
• HVS: adapts to the ambiant light (but does not exceed 6 or 7 bits)

Quantization operator Let us consider values (qk )k=0,...K−1 and bins (tk )k=0,...K with

t0 ≤ q0 ≤ t1 ≤ q1 ≤ . . . qK−1 ≤ tK .

The quantization operator Q is defined by Q(λ) = qi if ti ≤ λ < ti+1.
The quantized image is then obtained as Q ◦ u : Ω → {q0, . . . qp−1}.
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Simple Quantization Methods

Uniform quantization:

Take Y = {0, . . . 255} and some integer K that divides 256, and set

tk = i
256
K

, i = 0, . . . ,K and qk =
tk + tk+1

2
= (k +

1
2
)
256
K

.

Histogram-based quantization:

Set tk = H−
u ( k

p ) and qk (for example) the mean of the u values between [tk , tk+1].

→ This is equivalent to perform uniform quantization after histogram equalization.

Lloyd-Max quantization:

Set (tk , qk ) with an iterative algorithm that minimizes

MSQE =
K−1∑
k=0

∑
x|u(x)∈[tk ,tk+1[

hk (u(x)− qk )
2.
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Quantization Examples

Uniform quantization
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Quantization Examples

Histogram-based quantization
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Quantization Examples

Lloyd-Max quantization
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Dithering

• Dithering is a stochastic technique to improve the rendering of the image after quantization.
• Principle is to add independent noise values (depending on the graylevel) before quantization.
• It has been used (for a very long time!) for printing pictures in newspapers!
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Take-home Messages

SUMMARY AND COMMENTS:
• Histograms and Cumulative histograms represent the radiometry of an image.
• There are many solutions to perform contrast changes over images.
• Some of them optimize a criterion on cdf or inverse cdf.
• Optimal transport in 1D can be expressed with explicit formulae based on cdf.
• 1D optimal transport helps to design contrast changes or midway equalization.
• Various applications are related to contrast changes (e.g. flicker reduction, quantization, ...)

THANK YOU FOR YOUR ATTENTION!
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