
Master MVA- Generative Modeling 2024

Assignment due for February 27th

You should answer the theoretical questions on paper. For the numerical part, you
should write a Jupyter notebook that you will deposit on the dropbox folder whose link
has been communicated by email.

Your notebook should include the output of the code cells and the file should be named as

YourFamilyName_dm2324.ipynb

Consider two probability measures µ, ν on Rd
with supports X , Y respectively.

We assume that X is compact and that Y is finite, Y = {y1, . . . , yJ}.
Let q = (ν({yj}))1≤j≤J ∈ RJ

.

Let c : X × Y → R be continuous. For any y ∈ Y , let cy = c(·, y) be the function x 7→ c(x, y).
We assume that the groundcost c satisfies the assumption

∀y, z ∈ Y, ∀t ∈ R, µ((cy − cz)−1({t})) = 0. (GC)

For any v ∈ RJ
, we define the c-transform vc : X → R by vc(x) = minj(c(x, yj) − vj), and we set

H(v) =
∫

X
vc(x)dµ(x) +

J∑
j=1

vjqj .

For v ∈ RJ
, we also define the open Laguerre cells

Lj(v) = { x ∈ X | ∀k ̸= j, c(x, yj) − vj < c(x, yk) − vk }.

Part A: Semi-dual Optimal Transport

1. Explain (briefly) the relation between H and the optimal transport cost W (µ, ν).
2. Let fi : RJ → R, i ∈ I be a collection of convex functions.

a. Is sup
i∈I

fi convex? concave? (Justify with a proof, or give a counter-example).

b. Deduce that H is a concave function.

3. For any v ∈ RJ
, let m(v) = (µ(Lj(v)))1≤j≤J ∈ RJ

. We denote by ⟨·, ·⟩ the Euclidean product.

The goal of this question is to show that H is C 1
. We will admit that, since H is concave, it is

sufficient to show that there exists a continuous selection of supergradients.

a. Prove that ∀u, v ∈ RJ , H(u) ⩽ H(v) + ⟨q − m(v), u − v⟩.
b. Show that m : RJ → R is a continuous function.

c. Assume that v ∈ RJ
is such that m(v) = q. What can be said about H(v)?

4. Here, we use the Averaged Stochastic Gradient Descent (ASGD) algorithm to minimize −H .

a. Write the pseudo-code of the ASGD algorithm. Explain the required gradient computation.

b. Is the convergence of ASGD guaranteed in this case, in terms of the values of H?

(Justify briefly, with a reference.)



Part B: Semi-discrete WGAN

In this numerical part, we consider the quadratic cost c(x, y) = ∥x − y∥2
2 on Rd

.

5. Here d = 2. Let Θ := (R2)2
. For θ = (a, b) ∈ Θ, we define gθ : [0, 1] → R2

by

∀z ∈ [0, 1], gθ(z) = za + (1 − z)b.

We denote by µθ the distribution of gθ(Z) where Z is uniform in [0, 1].
Consider also the ν = 1

2δy1 + 1
2δy2 with y1 = (−1, 0) and y2 = (1, 0).

The above function H related to (µθ, ν) will be denoted by Hθ .

The goal of this question is to numerically solve min
θ∈Θ

W (µθ, ν).
a. Can you guess a solution θ of this problem?

b. For a fixed θ ∈ Θ, implement in Python the ASGD algorithm that approaches v ∈ Argmax Hθ .

c. Compare your ASGD algorithm with the PyTorch implementation of ASGD.

d. In Python, implement an algorithm that approaches the minimum of θ → W (µθ, ν).
e. Illustrate the behavior of the algorithm by displaying the configurations obtained along the

algorithm (by drawing samples ofµθ). Is the behavior stable if you vary the optimization parameters?

f. Is there some configuration of µθ for which the optimization of v may be singular?

6. The goal of this last question is to learn a generative model µθ for the MNIST dataset.

You may download the MNIST dataset as in Practical Session 3. If you need, you may work on a

subsampled version of MNIST (e.g. with 6000 points, 600 for each class).

a. Adapt the algorithm of the previous question in order to learn a generative model for MNIST.

b. For a fixed configuration of µθ , illustrate the behavior of ASGD to estimate W (µθ, ν).
c. Can you propose a better parameterization of the dual variable v for which the learning would

be faster?


