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Today

• We will introduce Plug-and-Play (PnP) methods to solve inverse problems
• We will give tools for convergence analysis of PnP methods

based, today, on fixed point theory of averaged operators
• We will discuss the practical setup of such PnP algorithms
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Image Inverse Problems

Find x0 from observation y = Ax0 + ξ

• y ∈ Rm observation
• x0 ∈ Rn unknown input
• A ∈ Rm×n degradation operator
• ξ random noise, often ξ ∼ N (0, ν2Idm)
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Image Inverse Problems

Find x0 from observation y = Ax0 + ξ
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Image Inverse Problems

Find x0 from observation y = Ax0 + ξ

• y ∈ Rm observation
• x0 ∈ Rn unknown input
• A ∈ Rm×n degradation operator
• ξ random noise, often ξ ∼ N (0, ν2Idm)
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Image Inverse Problems

Find x0 from observation y = Ax0 + ξ

• y ∈ Rm observation
• x0 ∈ Rn unknown input
• A ∈ Rm×n degradation operator
• ξ random noise, often ξ ∼ N (0, ν2Idm)

Compressed Sensing: e.g. Magnetic Resonance Imaging (MRI)
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Image Inverse Problems

Find x0 from observation y ∼ p(y |x0)

• y ∈ Rm observation
• x0 ∈ Rn unknown input
• p(y |x) forward model

Computed Tomography:
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Maximum A-Posteriori

Find x from observation y ∼ p(y |x) with an a-priori p(x) on the solution

Argmax
x∈Rn

p(x |y) = Argmax
x∈Rn

p(y |x)p(x)
p(y)

= Argmin
x∈Rn

− log p(y |x)− log p(x)

Maximum A-Posteriori

x∗ ∈ Argmin
x∈Rn

f (x) + λ g(x)

⇐⇒ Argminx∈Rn
data-fidelity

+
regularization

f (x) = − log p(y |x) g(x) ∝ − log p(x)
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A variety of data-fidelity terms f

• Assuming Gaussian noise model ξ ∼ N (0, ν2Id),

f (x) = − log p(y |x) = 1
2ν2 ∥Ax − y∥2

→ convex and smooth f , non-strongly convex in general
• Less regular cases

- Noiseless case: f (x) = ı{x | Ax=y} → non-smooth f
- Laplace / Poisson noise model → non-smooth f
- Phase retrieval → non-convex f

• More complex non-linear modeling of real complex physical systems
(e.g. X-ray computed tomography, electron-microscopy...)
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A variety of explicit image priors

Design an explicit regularization on image features:
• Total variation (Rudin et al., 1992)
• Fourier spectrum (Ruderman, 1994)
• Wavelet sparsity (Mallat, 2009)

Learn an explicit prior on patches:
• Dictionary learning (Elad and Aharon, 2006), (Mairal et al., 2008)
• Gaussian mixture models (Yu et al., 2011), (Zoran and Weiss, 2011)

Learn an explicit deep prior on full images (generative models):
• Variational Auto-encoders (Kingma and Welling, 2019)
• Normalizing flows (Rezende and Mohamed, 2015)
• Score-based/Diffusion models (Song et al., 2021)
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Plug-and-Play motivations

Find x∗ ∈ Argminx∈Rn Data-fidelity(x) + Regularization(x)

• Decouple data-fidelity and regularization via splitting algorithms
(Combettes and Pesquet, 2011), (Zoran and Weiss, 2011)

✓ Image Denoising is relatively easy and well-understood.
→ State-of-the art denoisers without explicit prior

Filtering methods Dabov et al. (2007), Lebrun et al. (2013)
Deep denoisers Zhang et al. (2017b,a), Song et al. (2021)

→ Denoising is taking a step towards the manifold of clean images: implicit prior

We will alternate between

1. Taking a denoising step

2. Enforcing data-fidelity
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First order optimization algorithms

Find x∗ ∈ Argminx∈Rn F (x)

• Gradient Descent

xk+1 = (Id − τ∇F )(xk ) i.e. xk+1 = xk − τ∇F (xk )

• Proximal Point Algorithm

xk+1 ∈ ProxτF (xk ) i.e. xk+1 + τ∇F (xk+1) = xk

where ProxF (y) := Argmin
x∈Rn

1
2
||x − y ||2 + F (x)

Warning: Computing ProxF (uniquely) requires some conditions on F , and is sometimes difficult.
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Proximal Splitting
(Bauschke and Combettes, 2011)

Find x∗ ∈ Argminx∈Rn f (x) + g(x)

• Gradient Descent (GD)
xk+1 = (Id − τ(∇f +∇g))(xk )

• Proximal Gradient Descent (PGD, ISTA)

xk+1 = Proxτg ◦(Id − τ∇f )(xk )

• Half Quadratic Splitting (HQS)

xk+1 = Proxτg ◦Proxτ f (xk )
�

does not target f + g

• Douglas-Rashford Splitting (DRS) / ADMM

xk+1 =

(
1
2

Id +
1
2
(2Proxτg −Id) ◦ (2Proxτ f −Id)

)
(xk ) and x̃k = Proxτ f (xk )
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Denoising prior

Find x from observation y = x + ξ

• Input distribution p(x).
• Gaussian noise ξ ∼ N (0, σ2Id).
• Noisy observation y with density pσ(y) where pσ = p ∗ N (0, σ2Id).

MAP estimator
DMAP

σ (y) = Argmax
x

p(x |y)
MMSE estimator

DMMSE
σ (y) = Ex∼p(x|y)[x ]
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Denoising prior

Find x from observation y = x + ξ

• Input distribution p(x).
• Gaussian noise ξ ∼ N (0, σ2Id).
• Noisy observation y with density pσ(y) where pσ = p ∗ N (0, σ2Id).

MAP estimator
DMAP

σ (y) = Argmax
x

p(x |y)
MMSE estimator

DMMSE
σ (y) = Ex∼p(x|y)[x ]

Bayes:
DMAP

σ = Prox−σ2 log p

Tweedie:
DMMSE

σ = Id −∇(−σ2 log pσ)

A denoiser is related to an implicit prior
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PnP and RED algorithms

Find x∗ ∈ Argmin f (x) + λg(x) with f = − log p(y |.) and g ∝ − log p
GD : xk+1 = (Id − τ(∇f + λ∇g))(xk )
HQS : xk+1 = Proxτλg ◦Proxτ f (xk )
PGD : xk+1 = Proxτλg ◦(Id − τ∇f )(xk )
DRS : xk+1 = 1

2 Id + 1
2 (2Proxτλg −Id) ◦ (2Proxτ f −Id)(xk )

MAP denoiser

Dσ(y) = Prox−σ2 log p(y)

MMSE denoiser

Dσ(y) = (Id + σ2∇ log pσ)(y)

Plug-and-play (PnP)
(Venkatakrishnan et al., 2013)

Proxτλg −→ Dσ

Regularization by denoising (RED)
(Romano et al., 2017)

Id −∇g −→ Dσ
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MMSE denoiser

Dσ(y) = (Id + σ2∇ log pσ)(y)

RED algorithms
(Romano et al., 2017)
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PnP-HQS : xk+1 = Dσ ◦ Proxτ f (xk )
PnP-PGD : xk+1 = Dσ ◦ (Id − τ∇f )(xk )
PnP-DRS : xk+1 = 1

2 Id + 1
2 (2Dσ − Id) ◦ (2Proxτ f −Id)(xk )
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PnP and RED algorithms
GD : xk+1 = (Id − τ(∇f + λ∇g))(xk )
HQS : xk+1 = Proxτλg ◦Proxτ f (xk )
PGD : xk+1 = Proxτλf ◦(Id − τ∇g)(xk )
DRS : xk+1 = 1

2 Id + 1
2 (2Proxτλg −Id) ◦ (2Proxτ f −Id)(xk )

MAP denoiser

Dσ(y) = Prox−σ2 log p(y)

PnP algorithms
(Venkatakrishnan et al., 2013)

Proxτλg −→ Dσ

MMSE denoiser

Dσ(y) = (Id + σ2∇ log pσ)(y)

RED algorithms
(Romano et al., 2017)

Id −∇g −→ Dσ

{
RED-GD : xk+1 = (τλDσ + (1 − τλ)Id − τ∇f )(xk )
RED-PGD : xk+1 = Proxτ f ◦(τλDσ + (1 − τλ)Id)(xk )
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What about convergence?

!△ But in practice, Dσ ̸= Proxτg , Dσ ̸= Id −∇g...

Goal: Find minimal conditions on Dσ to get back convergence guarantees.
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Plan

Plug-and-Play Algorithms

Convergence by Fixed Point Theory

PnP in practice
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PnP Convergence by Fixed Point

The previous PnP algorithms can be written as

xk+1 = TPnP(xk )

with TPnP =


THQS = Dσ ◦ Proxτ f

TPGD = Dσ ◦ (Id − τ∇f )
TDRS = 1

2 Id + 1
2 (2Dσ − Id) ◦ (2Proxτ f −Id)

Goal: Show that xk → x∗ ∈ Fix(TPnP).
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Averaged operator theory
(Bauschke and Combettes, 2011)

Let T : Rn → Rn. We will consider Rn equipped with the Euclidean norm.

Definition
We say that T is nonexpansive if it is 1-Lipschitz.

Definition
T is θ-averaged (with θ ∈ (0, 1)) if there exists a nonexpansive R : Rn → Rn such that

T = θR + (1 − θ)Id.

• “T θ-averaged” is equivalent to “(1 − 1
θ
)Id + 1

θ
T nonexpansive”, and also to

∀x , y ∈ Rn, ∥T (x)− T (y)∥2 +
1 − θ

θ
∥(Id − T )(x)− (Id − T )(y)∥2 ≤ ∥x − y∥2.

• T is θ-averaged =⇒ T is nonexpansive.
• T is 1

2 -averaged ⇐⇒ T is firmly nonexpansive.



18/35

Plug-and-Play Algorithms Convergence by Fixed Point Theory PnP in practice

Composition of Averaged operators

Proposition
Let T be θ-averaged and α ∈ [0, 1]. Then

• αT + (1 − α)Id is αθ-averaged.
• T is θ′-averaged for any θ′ ∈ [θ, 1].

Remark: If T is L-Lipschitz with L < 1, then T is L+1
2 -averaged.

Proposition (Combettes and Yamada, 2015)
Let T1 be θ1-averaged and T2 be θ2-averaged, with any θ1, θ2 ∈ (0, 1).
Then T1 ◦ T2 is θ-averaged with θ = θ1+θ2−2θ1θ2

1−θ1θ2
∈ (0, 1).
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Fixed Point Theorem for Averaged Operators

Theorem (Krasnosel’skiı̆-Mann)
Let T : Rn → Rn be a θ-averaged operator such that Fix(T ) ̸= ∅.
Then the sequence xk+1 = T (xk ) converges to a fixed point of T .

Sketch of proof (See (Bauschke and Combettes, 2011) or C. Dossal’s lecture notes).
Write T = θR + (1 − θ)Id with R 1-Lipschitz and Fix(R) = Fix(T ). For y ∈ Fix(T ),

• ∥xn+1 − y∥2 ⩽ ∥xn − y∥2 − θ(1 − θ)∥Rxn − xn∥2

• ∑
n∈N θ(1 − θ)∥Rxn − xn∥2 ⩽ ∥x0 − y∥2

• ∥Rxn+1 − xn+1∥ = ∥Rxn+1 − Rxn + (1 − θ)(Rxn − xn)∥ ⩽ ∥Rxn − xn∥.
• Since (∥xn − y∥) is non-increasing, there is a converging subsequence xnk → x
• Rxn − xn → 0 and thus Rxnk → x , and also to Tx , thus Rx = x .
• Taking y = x , we get that ∥xn − x∥ is non-increasing with a subsequence converging to 0.

Remark: The theorem does not apply to T = −Id of course...
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Proximity operator of Convex Functions

Let Γ0(Rn) be the set of f : Rn → R ∪ {+∞} that are convex, l.s.c., and proper (i.e. f ̸≡ +∞).

For f : Rn → R ∪ {+∞}, and x ∈ Rn, we define the subgradient

∂f (x) = { v ∈ Rn | ∀z ∈ Rn, f (z) ⩾ f (x) + ⟨v , z − x⟩ }.

It is easy to see that the subgradient of a proper function f is monotone, that is,

∀x1, x2 ∈ Rn, ∀v1 ∈ ∂f (x1), ∀v2 ∈ ∂f (x2), ⟨v1 − v2, x1 − x2⟩ ⩾ 0.

Proposition
For f ∈ Γ0(Rn), for any x ∈ Rn, we can uniquely define

Proxf (x) = Argmin
z∈Rn

f (z) +
1
2
∥z − x∥2.

The point p = Proxf (x) is characterized by x − p ∈ ∂f (p).

Consequence: If f ∈ Γ0(Rn), then Proxf is 1
2 -averaged (i.e. firmly nonexpansive).



21/35

Plug-and-Play Algorithms Convergence by Fixed Point Theory PnP in practice

Gradient-step of Convex Functions

Proposition
If f : Rn → R is convex, differentiable with L-Lipschitz gradient.
Then, for τ ∈ (0, 2

L ), Id − τ∇f is τL
2 -averaged.

The proof relies on the observation that Id − 2
L∇f is 1-Lipschitz, which is equivalent to

∀x , z ∈ Rn,
1
L
∥∇f (x)−∇f (z)∥2 ⩽ ⟨∇f (x)−∇f (z), x − z⟩.

(We sometimes say that ∇f is 1
L -co-coercive, which is equivalent to 1

L∇f firmly nonexpansive.)

Consequence: Convergence of gradient descent for convex functions if there is as solution.

Remark: Under the same hypotheses, we can show that Proxτ f is τL
2(1+τL) -averaged for any τ > 0.
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Argmin and Fixed Points

Proposition
Let f , g : Rn → R ∪ {+∞} be proper l.s.c. with f differentiable, and let τ > 0. Then

Argmin(f + g) = Fix
(
Proxτg ◦(Id − τ∇f )

)
.

Proof.

x ∈ Argmin(f + g) ⇐⇒ 0 ∈ ∇f (x) + ∂g(x)

⇐⇒ −τ∇f (x) ∈ ∂τg(x)

⇐⇒ x ∈ Proxτg(x − τ∇f (x)).

In order to minimize f + g, it is thus relevant to study the convergence of the iterative sequence

xk+1 = Proxτg(xk − τ∇f (xk )).
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Reflected Proxity Operator

We define
RProxf = 2Proxf −Id.

Then, Proxf is 1
2 -averaged if and only if RProxf is 1-Lipschitz.

Proposition
Let f , g ∈ Γ0(Rn) and let τ > 0. Then

Argmin(f + g) = Proxτ f

(
Fix

(
RProxτg ◦RProxτ f

))
.

If f , g ∈ Γ0(Rn), then 1
2 Id + 1

2 RProxτg ◦RProxτ f is 1
2 -averaged.

In order to minimize f + g, it is thus relevant to study the convergence of the iterative sequence

xk+1 =
(1

2
Id +

1
2
RProxτg ◦RProxτ f

)
(xk ) and set x̃k = Proxτ f (xk ).
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Averaged operator theory for PnP convergence

PnP algorithms: xk+1 = TPnP(xk )

with TPnP =


THQS = Dσ ◦ Proxτ f

TPGD = Dσ ◦ (Id − τ∇f )
TDRS = 1

2 Id + 1
2 (2Dσ − Id) ◦ (2Proxτ f −Id)

Theorem
Let f : Rn → R be convex, differentiable with ∇f L-Lipschitz, and Dσ be θ-averaged, θ ∈ (0, 1).
Assume that the iterated operator has a fixed point.

• PnP-HQS converges towards a fixed point of THQS .
• If τL < 2, PnP-PGD converges towards a fixed point of TPGD .
• If θ ≤ 1/2, PnP-DRS converges towards a fixed point of TDRS .

Remark:
✗ Does not extend to nonconvex data-fidelity terms f .
• If f is L-smooth and strongly convex, for τL < 2, Id − τ∇f is contractive (Ryu et al., 2019)

→ allows to relax the denoiser hypothesis for Dσ (1 + ϵ)-Lipschitz.
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Which denoiser to use?

• One can use off-the-shelf denoisers: BM3D (Dabov et al., 2007), NLBayes (Lebrun et al., 2013), ...
• One can also use denoisers given as neural networks.
• Such a deep denoiser is trained to approximate the MMSE:

Argmin
Param(Dσ)

Ex∼pX ,ξ∼N (0,σ2Id)

[
∥Dσ(x + ξ)− x∥2

]
where pX is a data distribution of clean images.

• For training, L1 loss (instead of squared L2 loss) sometimes gives better results.
• For certain denoising architectures, the noise level σ is given as input.

!△ In PnP, the denoising strength σ may be different from the noise level of the input!
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DnCNN (Zhang et al., 2017a)

• DnCNN is a deep convolutional neural network for denoising (Zhang et al., 2017a).
• It is based on residual learning: D(x) = x + R(x) where R is the network.
• R has 20 layers of hidden dimension 64 (3 × 3 convolutions, BatchNorm, ReLU)
• It is trained on noise levels σ ∈ [0, 50] and can be applied blindly (without σ).
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DRUNet (Zhang et al., 2021)

• DRUNet is a deep convolutional neural network for denoising (Zhang et al., 2021).
• It is a UNet that includes residual blocks, convolutions (bias-free!), and skip connections.
• The UNet has 4 “scales” of dimensions 64, 128, 256, 512.
• It is trained on noise levels σ ∈ [0, 50] and take a noise level map as input.
• Zhang et al. (2021) propose to do PnP image restoration with this denoising prior (DPIR).
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How to build averaged deep denoisers ?

• Weight clipping or Spectral normalization (Miyato et al., 2018), (Ryu et al., 2019)
✗ Lipschitz constant ≪ 1 for large networks

• Or we can penalize a Lipschitz constant in the training loss:

Argmin
Param(Dσ)

Ex∼pX ,ξ∼N (0,σ2Id)

[
∥Dσ(x + ξ)− x∥2

]
+ µLip(Dσ).

• Convolutional Proximal Neural Networks (Hertrich et al., 2021)

• Firmly nonexpansive denoisers (Terris et al., 2020)

• Deep spline neural networks (Goujon et al., 2023)

• Dσ = Id −∇gσ with gσ Input Convex Neural Network (ICNN) (Meunier et al., 2022)

�

Non-expansiveness can harm denoising performance.
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Nonexpansive convolutional neural networks (Pesquet et al., 2021)

Idea:
• Build a nonexpansive convolutional neural network (CNN)

D = TM ◦ · · · ◦ T1 with Tm(x) = Rm(Wmx + bm)

where Rm is an (averaged) activation function, Wm a convolution, and bm a bias.
• We want to have D = Id+Q

2 with Q nonexpansive.
• During training, the Lipschitz constant of 2D − Id is penalized.
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Convolution proximal neural networks (Hertrich et al., 2021)

Idea: Build a convolutional proximal neural network (cPNN)

Φu = TM ◦ · · · ◦ T1 with Tm(x) = W T
mσm(Wmx + bm)

where u = (Wm, σm, bm)1≤m≤M is a collection of parameters.
The linear operators Wm (or W T

m ) are convolutions lying in a Stiefel manifold

St(d , n) = { W ∈ Rn×d | W T W = Id }.

The resulting denoiser is then D = Id − γΦu.

• Ideally, Φu is a composition of M firmly non-expansive operators, thus averaged.
• In practice, Wm is a convolution with limited filter length.
• Condition Wm ∈ St is approximated with a term ∥W T

m Wm − Id∥2
F in the learning cost.

• Φu is verified in practice to be t-averaged with t close to 1
2 .
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Deep Spline Neural Networks (Goujon et al., 2023)

Idea: Approximate the proximal operator of a convex-ridge regularizer

R(x) =
P∑

p=1

∑
i

ψp(hp ∗ x(i))

where hp are convolution kernels, and ψp are particular C1 convex functions.

Given a noisy z,

ProxλR(z) = Argmin
x∈Rn

1
2
∥x − z∥2 + λR(x)

is approximated with t iterations of the gradient-step

x 7→ x − α((x − z) + λ∇R(x)).

The output after t iterations is denoted by T t
R,λ,α(z).

• T t
R,λ,α approximates the prox of a convex function

• Linear spline parameterization of ψp justified by a density result
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Example for Image Deblurring (Pesquet et al., 2021)

• PnP-PGD (aka Forward-Backward)
• Denoiser: Adapted DnCNN

• Below, evolution of cn =
∥xn−xn−1∥

∥x0∥
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Take-home Messages

• Convergence by fixed point relies on a particular kind of non-expansiveness.
• For now, we cannot enforce non-expansiveness exactly in practice.

Instead we penalize some Lipschitz constant when training the denoiser.
• In that way, PnP methods lead to very good restoration results.
• Once learned a denoiser, it can be used to address many other inverse problems.
• PnP algorithms are (surprisingly) stable as soon as parameters are properly adjusted.
• Numerical control can be improved by relying on explicit minimization (see next week)
• Visual results can be further improved by tuning the strategy on σ (→ diffusion models)
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Et avant le TP, une petite page de publicité...

• S. Hurault’s thesis on PnP algorithms: https://www.theses.fr/2023BORD0336
• A nice document on gradient descent by Robert Gower:

https://perso.telecom-paristech.fr/rgower/pdf/M2_statistique_optimisation/grad_conv.pdf

See also the handbook (Garrigos and Gower, 2023) or C. Dossal’s lecture notes.
• Imaging in Paris seminar: https://imaging-in-paris.github.io/

• M2 internship on PnP methods for Hyperspectral Unmixing (with C. Kervazo and yours truly)
• Python/Pytorch library for Plug-and-Play Imaging:

https://deepinv.github.io/
Main contributors: S. Hurault, J. Tachella, M. Terris

THANK YOU FOR YOUR ATTENTION!

https://www.theses.fr/2023BORD0336
https://perso.telecom-paristech.fr/rgower/pdf/M2_statistique_optimisation/grad_conv.pdf
https://imaging-in-paris.github.io/
https://deepinv.github.io/
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