Convergence by Fixed Point Theory

PnP in practice

Plug-and-Play Image Restoration

Arthur Leclaire

Joint work with Samuel Hurault and Nicolas Papadakis

MVA Generative Modeling February, 27th, 2024

- We will introduce Plug-and-Play (PnP) methods to solve inverse problems
- We will give tools for convergence analysis of PnP methods based, today, on fixed point theory of *averaged* operators
- We will discuss the practical setup of such PnP algorithms

PnP in practice

Plan

Plug-and-Play Algorithms

Convergence by Fixed Point Theory

PnP in practice

3/35

Find x_0 from observation $y = Ax_0 + \xi$

- $y \in \mathbb{R}^m$ observation
- $x_0 \in \mathbb{R}^n$ unknown input
- $A \in \mathbb{R}^{m \times n}$ degradation operator
- ξ random noise, often $\xi \sim \mathcal{N}(\mathbf{0}, \nu^2 \mathrm{Id}_m)$

Find x_0 from observation $y = Ax_0 + \xi$

- $y \in \mathbb{R}^m$ observation
- $x_0 \in \mathbb{R}^n$ unknown input
- $A \in \mathbb{R}^{m \times n}$ degradation operator
- ξ random noise, often $\xi \sim \mathcal{N}(\mathbf{0}, \nu^2 \mathrm{Id}_m)$

Denoising:

Find x_0 from observation $y = Ax_0 + \xi$

- $y \in \mathbb{R}^m$ observation
- $x_0 \in \mathbb{R}^n$ unknown input
- $A \in \mathbb{R}^{m \times n}$ degradation operator
- ξ random noise, often $\xi \sim \mathcal{N}(\mathbf{0}, \nu^2 \mathrm{Id}_m)$

Deblurring:

Find x_0 from observation $y = Ax_0 + \xi$

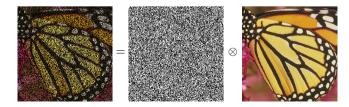
- $y \in \mathbb{R}^m$ observation
- $x_0 \in \mathbb{R}^n$ unknown input
- $A \in \mathbb{R}^{m \times n}$ degradation operator
- ξ random noise, often $\xi \sim \mathcal{N}(\mathbf{0}, \nu^2 \mathrm{Id}_m)$

Super-resolution:

Find x_0 from observation $y = Ax_0 + \xi$

- $y \in \mathbb{R}^m$ observation
- $x_0 \in \mathbb{R}^n$ unknown input
- $A \in \mathbb{R}^{m \times n}$ degradation operator
- ξ random noise, often $\xi \sim \mathcal{N}(\mathbf{0}, \nu^2 \mathrm{Id}_m)$

Inpainting:



Find x_0 from observation $y = Ax_0 + \xi$

- $y \in \mathbb{R}^m$ observation
- $x_0 \in \mathbb{R}^n$ unknown input
- $A \in \mathbb{R}^{m \times n}$ degradation operator
- ξ random noise, often $\xi \sim \mathcal{N}(\mathbf{0}, \nu^2 \mathrm{Id}_m)$

Compressed Sensing: e.g. Magnetic Resonance Imaging (MRI)

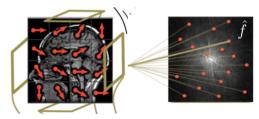


Image Inverse Problems

Find x_0 from observation $y \sim p(y|x_0)$

- $y \in \mathbb{R}^m$ observation
- $x_0 \in \mathbb{R}^n$ unknown input
- p(y|x) forward model

Computed Tomography:

Maximum A-Posteriori

PnP in practice

Find *x* from observation $y \sim p(y|x)$ with an a-priori p(x) on the solution

$$\operatorname{Argmax}_{x \in \mathbb{R}^n} p(x|y) = \operatorname{Argmax}_{x \in \mathbb{R}^n} \frac{p(y|x)p(x)}{p(y)} = \operatorname{Argmin}_{x \in \mathbb{R}^n} - \log p(y|x) - \log p(x)$$

Maximum A-Posteriori

$$x^* \in \underset{x \in \mathbb{R}^n}{\operatorname{Argmin}} \frac{f(x)}{f(x)} + \lambda \frac{g(x)}{g(x)}$$

$$\iff \operatorname{Argmin}_{x \in \mathbb{R}^n} \begin{array}{c} \operatorname{data-fidelity} \\ f(x) = -\log p(y|x) \end{array} + \begin{array}{c} \operatorname{regularization} \\ g(x) \propto -\log p(x) \end{array}$$

 $p(\boldsymbol{x})$

PnP in practice

A variety of data-fidelity terms f

• Assuming Gaussian noise model $\xi \sim \mathcal{N}(\mathbf{0}, \nu^2 \mathrm{Id})$,

$$f(x) = -\log p(y|x) = \frac{1}{2\nu^2} ||Ax - y||^2$$

- \rightarrow convex and smooth f, non-strongly convex in general
- Less regular cases
 - Noiseless case: $f(x) = i_{\{x \mid Ax=y\}} \rightarrow \text{non-smooth } f$
 - Laplace / Poisson noise model \rightarrow *non-smooth* f
 - Phase retrieval \rightarrow non-convex f
- More complex non-linear modeling of real complex physical systems (e.g. X-ray computed tomography, electron-microscopy...)

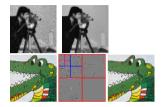
Convergence by Fixed Point Theory

PnP in practice

A variety of explicit image priors

Design an explicit regularization on image features:

- Total variation (Rudin et al., 1992)
- Fourier spectrum (Ruderman, 1994)
- Wavelet sparsity (Mallat, 2009)



Convergence by Fixed Point Theory

PnP in practice

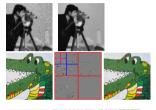
A variety of explicit image priors

Design an explicit regularization on image features:

- Total variation (Rudin et al., 1992)
- Fourier spectrum (Ruderman, 1994)
- Wavelet sparsity (Mallat, 2009)

Learn an explicit prior on patches:

- Dictionary learning (Elad and Aharon, 2006), (Mairal et al., 2008)
- Gaussian mixture models (Yu et al., 2011), (Zoran and Weiss, 2011)



Convergence by Fixed Point Theory

PnP in practice

A variety of explicit image priors

Design an explicit regularization on image features:

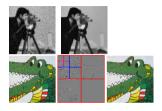
- Total variation (Rudin et al., 1992)
- Fourier spectrum (Ruderman, 1994)
- Wavelet sparsity (Mallat, 2009)

Learn an explicit prior on patches:

- Dictionary learning (Elad and Aharon, 2006), (Mairal et al., 2008)
- Gaussian mixture models (Yu et al., 2011), (Zoran and Weiss, 2011)

Learn an explicit deep prior on full images (generative models):

- Variational Auto-encoders (Kingma and Welling, 2019)
- Normalizing flows (Rezende and Mohamed, 2015)
- Score-based/Diffusion models (Song et al., 2021)



Plug-and-Play motivations

Find $x^* \in \operatorname{Argmin}_{x \in \mathbb{R}^n} \operatorname{Data-fidelity}(x) + \operatorname{Regularization}(x)$

- **Decouple** data-fidelity and regularization via splitting algorithms (Combettes and Pesquet, 2011), (Zoran and Weiss, 2011)
- ✓ Image Denoising is relatively easy and well-understood.
 - → State-of-the art denoisers without explicit prior Filtering methods Dabov et al. (2007), Lebrun et al. (2013) Deep denoisers Zhang et al. (2017b,a), Song et al. (2021)
 - ightarrow Denoising is taking a step towards the manifold of clean images: implicit prior

We will alternate between

- 1. Taking a denoising step
- 2. Enforcing data-fidelity

First order optimization algorithms

Find $x^* \in \operatorname{Argmin}_{x \in \mathbb{R}^n} F(x)$

Gradient Descent

$$x_{k+1} = (\mathsf{Id} - \tau \nabla F)(x_k)$$
 i.e. $x_{k+1} = x_k - \tau \nabla F(x_k)$

Proximal Point Algorithm

$$x_{k+1} \in \operatorname{Prox}_{\tau F}(x_k)$$
 i.e. $x_{k+1} + \tau \nabla F(x_{k+1}) = x_k$
where $\operatorname{Prox}_F(y) := \operatorname{Argmin}_{x \in \mathbb{R}^n} \frac{1}{2} ||x - y||^2 + F(x)$

Warning: Computing $Prox_F$ (uniquely) requires some conditions on F, and is sometimes difficult.

Convergence by Fixed Point Theory

PnP in practice

Proximal Splitting (Bauschke and Combettes, 2011)

Find $x^* \in \operatorname{Argmin}_{x \in \mathbb{R}^n} f(x) + g(x)$

2

• Gradient Descent (GD)

$$\mathbf{x}_{k+1} = (\mathsf{Id} - \tau(\nabla f + \nabla g))(\mathbf{x}_k)$$

Proximal Gradient Descent (PGD, ISTA)

$$x_{k+1} = \operatorname{Prox}_{\tau g} \circ (\operatorname{Id} - \tau \nabla f)(x_k)$$

Half Quadratic Splitting (HQS)

$$x_{k+1} = \operatorname{Prox}_{\tau g} \circ \operatorname{Prox}_{\tau f}(x_k)$$
 $\textcircled{2}$ does not target $f + g$

Douglas-Rashford Splitting (DRS) / ADMM

$$x_{k+1} = \left(\frac{1}{2}\mathsf{Id} + \frac{1}{2}(2\operatorname{Prox}_{\tau g} - \mathsf{Id}) \circ (2\operatorname{Prox}_{\tau f} - \mathsf{Id})\right)(x_k) \quad \text{and} \quad \tilde{x}_k = \operatorname{Prox}_{\tau f}(x_k)$$

Denoising prior

Find *x* from observation $y = x + \xi$

- Input distribution p(x).
- Gaussian noise $\xi \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathrm{Id})$.
- Noisy observation y with density $p_{\sigma}(y)$ where $p_{\sigma} = p * \mathcal{N}(0, \sigma^2 \text{Id})$.

$\begin{array}{l} \textbf{MAP estimator} \\ D^{\text{MAP}}_{\sigma}(y) = \operatorname*{Argmax}_{x} p(x|y) \end{array}$

MMSE estimator

$$D^{ ext{MMSE}}_{\sigma}(y) = \mathbb{E}_{x \sim p(x|y)}[x]$$

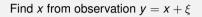
Denoising prior

Find *x* from observation $y = x + \xi$

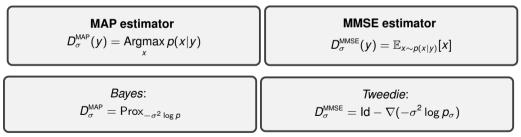
- Input distribution p(x).
- Gaussian noise $\xi \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathrm{Id})$.
- Noisy observation y with density $p_{\sigma}(y)$ where $p_{\sigma} = p * \mathcal{N}(0, \sigma^2 \text{Id})$.

 $MAP \text{ estimator} \\ D_{\sigma}^{MAP}(y) = \underset{x}{\operatorname{Argmax}} p(x|y) \\ D_{\sigma}^{MMSE}(y) = \mathbb{E}_{x \sim p(x|y)}[x]$

$$\operatorname{Argmax}_{x} p(x|y) = \operatorname{Argmax}_{x \in \mathbb{R}^{n}} \frac{p(y|x)p(x)}{p(y)}$$
$$= \operatorname{Argmin}_{x \in \mathbb{R}^{n}} -\log p(y|x) - \log p(x)$$
$$= \operatorname{Argmin}_{x \in \mathbb{R}^{n}} \frac{1}{2\sigma^{2}} ||x - y||^{2} - \log p(x) = \operatorname{Prox}_{-\sigma^{2} \log p}(y)$$



- Input distribution p(x).
- Gaussian noise $\xi \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathsf{Id})$.
- Noisy observation y with density p_σ(y) where p_σ = p * N(0, σ²Id).



A denoiser is related to an implicit prior

PnP and RED algorithms

$$\begin{cases} \mathsf{GD} &: x_{k+1} = (\mathsf{Id} - \tau(\nabla f + \lambda \nabla g))(x_k) \\ \mathsf{HQS} &: x_{k+1} = \mathsf{Prox}_{\tau \lambda g} \circ \mathsf{Prox}_{\tau f}(x_k) \\ \mathsf{PGD} &: x_{k+1} = \mathsf{Prox}_{\tau \lambda g} \circ (\mathsf{Id} - \tau \nabla f)(x_k) \\ \mathsf{DRS} &: x_{k+1} = \frac{1}{2}\mathsf{Id} + \frac{1}{2}(2\operatorname{Prox}_{\tau \lambda g} - \mathsf{Id}) \circ (2\operatorname{Prox}_{\tau f} - \mathsf{Id})(x_k) \end{cases}$$

PnP and RED algorithms

Find $x^* \in \operatorname{Argmin} f(x) + \lambda g(x)$ with $f = -\log p(y|.)$ and $g \propto -\log p$

$$\begin{cases} \mathsf{GD} &: x_{k+1} = (\mathsf{Id} - \tau(\nabla f + \lambda \nabla g))(x_k) \\ \mathsf{HQS} &: x_{k+1} = \mathsf{Prox}_{\tau\lambda g} \circ \mathsf{Prox}_{\tau f}(x_k) \\ \mathsf{PGD} &: x_{k+1} = \mathsf{Prox}_{\tau\lambda g} \circ (\mathsf{Id} - \tau \nabla f)(x_k) \\ \mathsf{DRS} &: x_{k+1} = \frac{1}{2}\mathsf{Id} + \frac{1}{2}(2\operatorname{Prox}_{\tau\lambda g} - \mathsf{Id}) \circ (2\operatorname{Prox}_{\tau f} - \mathsf{Id})(x_k) \end{cases}$$

MAP denoiser

 $D_{\sigma}(y) = \operatorname{Prox}_{-\sigma^2 \log p}(y)$

MMSE denoiser

$$D_{\sigma}(y) = (\mathsf{Id} + \sigma^2 \nabla \log p_{\sigma})(y)$$

PnP and RED algorithms

Find $x^* \in \operatorname{Argmin} f(x) + \lambda g(x)$	with $\mathit{f} = -\log \mathit{p}(\mathit{y} .)$ and $\mathit{g} \propto -\log \mathit{p}$
--	--

$$\begin{cases} \mathsf{GD} &: x_{k+1} = (\mathsf{Id} - \tau(\nabla f + \lambda \nabla g))(x_k) \\ \mathsf{HQS} &: x_{k+1} = \mathsf{Prox}_{\tau\lambda g} \circ \mathsf{Prox}_{\tau f}(x_k) \\ \mathsf{PGD} &: x_{k+1} = \mathsf{Prox}_{\tau\lambda g} \circ (\mathsf{Id} - \tau \nabla f)(x_k) \\ \mathsf{DRS} &: x_{k+1} = \frac{1}{2}\mathsf{Id} + \frac{1}{2}(2\operatorname{Prox}_{\tau\lambda g} - \mathsf{Id}) \circ (2\operatorname{Prox}_{\tau f} - \mathsf{Id})(x_k) \end{cases}$$

PnP in practice

PnP and RED algorithms

$$\begin{cases} GD & : x_{k+1} = (\operatorname{Id} - \tau(\nabla f + \lambda \nabla g))(x_k) \\ HQS & : x_{k+1} = \operatorname{Prox}_{\tau\lambda g} \circ \operatorname{Prox}_{\tau f}(x_k) \\ PGD & : x_{k+1} = \operatorname{Prox}_{\tau\lambda g} \circ (\operatorname{Id} - \tau \nabla f)(x_k) \\ DRS & : x_{k+1} = \frac{1}{2}\operatorname{Id} + \frac{1}{2}(2\operatorname{Prox}_{\tau\lambda g} - \operatorname{Id}) \circ (2\operatorname{Prox}_{\tau f} - \operatorname{Id})(x_k) \end{cases}$$

$$\begin{cases} \mathsf{PnP-HQS} &: x_{k+1} = D_{\sigma} \circ \mathsf{Prox}_{\tau f}(x_k) \\ \mathsf{PnP-PGD} &: x_{k+1} = D_{\sigma} \circ (\mathsf{Id} - \tau \nabla f)(x_k) \\ \mathsf{PnP-DRS} &: x_{k+1} = \frac{1}{2}\mathsf{Id} + \frac{1}{2}(2D_{\sigma} - \mathsf{Id}) \circ (2\operatorname{Prox}_{\tau f} - \mathsf{Id})(x_k) \end{cases}$$

PnP in practice

PnP and RED algorithms

 $\begin{cases} GD & : x_{k+1} = (\operatorname{Id} - \tau(\nabla f + \lambda \nabla g))(x_k) \\ HQS & : x_{k+1} = \operatorname{Prox}_{\tau\lambda g} \circ \operatorname{Prox}_{\tau f}(x_k) \\ PGD & : x_{k+1} = \operatorname{Prox}_{\tau\lambda f} \circ (\operatorname{Id} - \tau \nabla g)(x_k) \\ DRS & : x_{k+1} = \frac{1}{2}\operatorname{Id} + \frac{1}{2}(2\operatorname{Prox}_{\tau\lambda g} - \operatorname{Id}) \circ (2\operatorname{Prox}_{\tau f} - \operatorname{Id})(x_k) \end{cases}$

 $\begin{cases} \mathsf{RED-GD} & : x_{k+1} = (\tau \lambda D_{\sigma} + (1 - \tau \lambda) \mathsf{Id} - \tau \nabla f)(x_k) \\ \mathsf{RED-PGD} & : x_{k+1} = \mathsf{Prox}_{\tau f} \circ (\tau \lambda D_{\sigma} + (1 - \tau \lambda) \mathsf{Id})(x_k) \end{cases}$

Convergence by Fixed Point Theory

PnP in practice

What about convergence?

Goal: Find minimal conditions on D_{σ} to get back convergence guarantees.

PnP in practice

Plan

Plug-and-Play Algorithms

Convergence by Fixed Point Theory

PnP in practice

Convergence by Fixed Point Theory

PnP in practice

PnP Convergence by Fixed Point

The previous PnP algorithms can be written as

$$x_{k+1} = T_{PnP}(x_k)$$

with
$$T_{PnP} = \begin{cases} T_{HQS} = D_{\sigma} \circ \operatorname{Prox}_{\tau f} \\ T_{PGD} = D_{\sigma} \circ (\operatorname{Id} - \tau \nabla f) \\ T_{DRS} = \frac{1}{2} \operatorname{Id} + \frac{1}{2} (2D_{\sigma} - \operatorname{Id}) \circ (2 \operatorname{Prox}_{\tau f} - \operatorname{Id}) \end{cases}$$

Goal: Show that $x_k \to x^* \in Fix(T_{PnP})$.

PnP in practice

Averaged operator theory (Bauschke and Combettes, 2011)

Let $T : \mathbf{R}^n \to \mathbf{R}^n$. We will consider \mathbf{R}^n equipped with the Euclidean norm.

Definition

We say that T is nonexpansive if it is 1-Lipschitz.

Definition

T is θ -averaged (with $\theta \in (0, 1)$) if there exists a nonexpansive $R : \mathbf{R}^n \to \mathbf{R}^n$ such that

 $T = \theta R + (1 - \theta) \mathsf{Id}.$

• "T θ -averaged" is equivalent to " $(1 - \frac{1}{\theta})Id + \frac{1}{\theta}T$ nonexpansive", and also to

$$\forall x,y \in \mathbf{R}^n, \ \|\mathcal{T}(x) - \mathcal{T}(y)\|^2 + \frac{1-\theta}{\theta} \|(\mathsf{Id} - \mathcal{T})(x) - (\mathsf{Id} - \mathcal{T})(y)\|^2 \leq \|x - y\|^2.$$

- *T* is θ -averaged \implies *T* is nonexpansive.
- T is $\frac{1}{2}$ -averaged \iff T is firmly nonexpansive.

PnP in practice

Composition of Averaged operators

Proposition

Let T be θ -averaged and $\alpha \in [0, 1]$. Then

- $\alpha T + (1 \alpha)$ ld is $\alpha \theta$ -averaged.
- T is θ' -averaged for any $\theta' \in [\theta, 1]$.

Remark: If *T* is *L*-Lipschitz with L < 1, then *T* is $\frac{L+1}{2}$ -averaged.

Proposition (Combettes and Yamada, 2015)

Let T_1 be θ_1 -averaged and T_2 be θ_2 -averaged, with any $\theta_1, \theta_2 \in (0, 1)$. Then $T_1 \circ T_2$ is θ -averaged with $\theta = \frac{\theta_1 + \theta_2 - 2\theta_1 \theta_2}{1 - \theta_1 \theta_2} \in (0, 1)$.

PnP in practice

Fixed Point Theorem for Averaged Operators

Theorem (Krasnosel'skii-Mann)

Let $T : \mathbf{R}^n \to \mathbf{R}^n$ be a θ -averaged operator such that $Fix(T) \neq \emptyset$. Then the sequence $x_{k+1} = T(x_k)$ converges to a fixed point of T.

Sketch of proof (See (Bauschke and Combettes, 2011) or C. Dossal's lecture notes).

Write $T = \theta R + (1 - \theta)$ Id with R 1-Lipschitz and Fix(R) = Fix(T). For $y \in Fix(T)$,

•
$$||x_{n+1} - y||^2 \leq ||x_n - y||^2 - \theta(1 - \theta) ||Rx_n - x_n||^2$$

•
$$\sum_{n\in\mathbb{N}} \theta(1-\theta) \| Rx_n - x_n \|^2 \leq \| x_0 - y \|^2$$

•
$$||Rx_{n+1} - x_{n+1}|| = ||Rx_{n+1} - Rx_n + (1 - \theta)(Rx_n - x_n)|| \leq ||Rx_n - x_n||.$$

- Since $(||x_n y||)$ is non-increasing, there is a converging subsequence $x_{n_k} \to x$
- $Rx_n x_n \rightarrow 0$ and thus $Rx_{n_k} \rightarrow x$, and also to Tx, thus Rx = x.
- Taking y = x, we get that $||x_n x||$ is non-increasing with a subsequence converging to 0.

Remark: The theorem does not apply to T = -Id of course...

Proximity operator of Convex Functions

Let $\Gamma_0(\mathbf{R}^n)$ be the set of $f : \mathbf{R}^n \to \mathbf{R} \cup \{+\infty\}$ that are convex, l.s.c., and proper (i.e. $f \neq +\infty$). For $f : \mathbf{R}^n \to \mathbf{R} \cup \{+\infty\}$, and $x \in \mathbf{R}^n$, we define the subgradient

$$\partial f(x) = \{ v \in \mathbf{R}^n \mid \forall z \in \mathbf{R}^n, f(z) \ge f(x) + \langle v, z - x \rangle \}.$$

It is easy to see that the subgradient of a proper function *f* is monotone, that is,

$$\forall x_1, x_2 \in \mathbf{R}^n, \forall v_1 \in \partial f(x_1), \forall v_2 \in \partial f(x_2), \quad \langle v_1 - v_2, x_1 - x_2 \rangle \ge 0.$$

Proposition

For $f \in \Gamma_0(\mathbf{R}^n)$, for any $x \in \mathbf{R}^n$, we can uniquely define

$$\operatorname{Prox}_{f}(x) = \operatorname{Argmin}_{z \in \mathbf{R}^{n}} f(z) + \frac{1}{2} \|z - x\|^{2}.$$

The point $p = Prox_f(x)$ is characterized by $x - p \in \partial f(p)$.

Consequence: If $f \in \Gamma_0(\mathbf{R}^n)$, then Prox_f is $\frac{1}{2}$ -averaged (i.e. firmly nonexpansive).

Gradient-step of Convex Functions

Proposition

If $f : \mathbb{R}^n \to \mathbb{R}$ is convex, differentiable with L-Lipschitz gradient. Then, for $\tau \in (0, \frac{2}{L})$, $\mathrm{Id} - \tau \nabla f$ is $\frac{\tau L}{2}$ -averaged.

The proof relies on the observation that $Id - \frac{2}{I}\nabla f$ is 1-Lipschitz, which is equivalent to

$$orall x, z \in \mathbf{R}^n, \quad rac{1}{L} \|
abla f(x) -
abla f(z) \|^2 \leqslant \langle
abla f(x) -
abla f(z), x - z
angle.$$

(We sometimes say that ∇f is $\frac{1}{L}$ -co-coercive, which is equivalent to $\frac{1}{L}\nabla f$ firmly nonexpansive.)

Consequence: Convergence of gradient descent for convex functions if there is as solution.

Remark: Under the same hypotheses, we can show that $Prox_{\tau f}$ is $\frac{\tau L}{2(1+\tau L)}$ -averaged for any $\tau > 0$.

Argmin and Fixed Points

Proposition

Let $f, g : \mathbf{R}^n \to \mathbf{R} \cup \{+\infty\}$ be proper l.s.c. with f differentiable, and let $\tau > 0$. Then

 $\operatorname{Argmin}(f+g) = \operatorname{Fix} (\operatorname{Prox}_{\tau g} \circ (\operatorname{Id} - \tau \nabla f)).$

Argmin and Fixed Points

Proposition

Let $f, g : \mathbf{R}^n \to \mathbf{R} \cup \{+\infty\}$ be proper l.s.c. with f differentiable, and let $\tau > 0$. Then

$$\operatorname{Argmin}(f+g) = \operatorname{Fix} (\operatorname{Prox}_{\tau g} \circ (\operatorname{Id} - \tau \nabla f)).$$

Proof.

$$\begin{aligned} x \in \operatorname{Argmin}(f+g) &\iff 0 \in \nabla f(x) + \partial g(x) \\ &\iff -\tau \nabla f(x) \in \partial \tau g(x) \\ &\iff x \in \operatorname{Prox}_{\tau g}(x - \tau \nabla f(x)) \end{aligned}$$

In order to minimize f + g, it is thus relevant to study the convergence of the iterative sequence

$$x_{k+1} = \operatorname{Prox}_{\tau g}(x_k - \tau \nabla f(x_k)).$$

PnP in practice

Reflected Proxity Operator

We define

 $\operatorname{RProx}_{f} = 2 \operatorname{Prox}_{f} - \operatorname{Id}.$

Then, $Prox_f$ is $\frac{1}{2}$ -averaged if and only if $RProx_f$ is 1-Lipschitz.

Proposition

Let $f, g \in \Gamma_0(\mathbf{R}^n)$ and let $\tau > 0$. Then

$$\operatorname{Argmin}(f+g) = \operatorname{Prox}_{\tau f} \left(\operatorname{Fix} \left(\operatorname{RProx}_{\tau g} \circ \operatorname{RProx}_{\tau f} \right) \right).$$

PnP in practice

Reflected Proxity Operator

We define

 $\operatorname{RProx}_{f} = 2 \operatorname{Prox}_{f} - \operatorname{Id}.$

Then, $Prox_f$ is $\frac{1}{2}$ -averaged if and only if $RProx_f$ is 1-Lipschitz.

Proposition

Let $f, g \in \Gamma_0(\mathbf{R}^n)$ and let $\tau > 0$. Then

$$\operatorname{Argmin}(f+g) = \operatorname{Prox}_{\tau f} \left(\operatorname{Fix} \left(\operatorname{RProx}_{\tau g} \circ \operatorname{RProx}_{\tau f} \right) \right).$$

If $f, g \in \Gamma_0(\mathbf{R}^n)$, then $\frac{1}{2}$ Id $+ \frac{1}{2}$ RProx_{τg} \circ RProx_{τf} is $\frac{1}{2}$ -averaged.

PnP in practice

Reflected Proxity Operator

We define

 $\operatorname{RProx}_{f} = 2 \operatorname{Prox}_{f} - \operatorname{Id}.$

Then, $Prox_f$ is $\frac{1}{2}$ -averaged if and only if $RProx_f$ is 1-Lipschitz.

Proposition

Let $f, g \in \Gamma_0(\mathbf{R}^n)$ and let $\tau > 0$. Then

$$\operatorname{Argmin}(f+g) = \operatorname{Prox}_{\tau f} \Big(\operatorname{Fix} \big(\operatorname{RProx}_{\tau g} \circ \operatorname{RProx}_{\tau f} \big) \Big).$$

If $f, g \in \Gamma_0(\mathbf{R}^n)$, then $\frac{1}{2}$ Id $+ \frac{1}{2}$ RProx_{τg} \circ RProx_{τf} is $\frac{1}{2}$ -averaged.

In order to minimize f + g, it is thus relevant to study the convergence of the iterative sequence

$$x_{k+1} = \left(\frac{1}{2}\operatorname{Id} + \frac{1}{2}\operatorname{RProx}_{\tau g} \circ \operatorname{RProx}_{\tau f}\right)(x_k)$$
 and set $\tilde{x}_k = \operatorname{Prox}_{\tau f}(x_k)$.

PnP in practice

Averaged operator theory for PnP convergence

PnP algorithms:

$$x_{k+1} = T_{PnP}(x_k)$$

with
$$T_{PnP} = \begin{cases} T_{HQS} = D_{\sigma} \circ \operatorname{Prox}_{\tau f} \\ T_{PGD} = D_{\sigma} \circ (\operatorname{Id} - \tau \nabla f) \\ T_{DRS} = \frac{1}{2}\operatorname{Id} + \frac{1}{2}(2D_{\sigma} - \operatorname{Id}) \circ (2\operatorname{Prox}_{\tau f} - \operatorname{Id}) \end{cases}$$

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex, differentiable with ∇f L-Lipschitz, and D_{σ} be θ -averaged, $\theta \in (0, 1)$. Assume that the iterated operator **has** a fixed point.

- PnP-HQS converges towards a fixed point of T_{HQS}.
- If $\tau L < 2$, **PnP-PGD** converges towards a fixed point of T_{PGD} .
- If $\theta \leq 1/2$, **PnP-DRS** converges towards a fixed point of T_{DRS} .

PnP in practice

Averaged operator theory for PnP convergence

PnP algorithms:

$$x_{k+1} = T_{PnP}(x_k)$$

with
$$T_{PnP} = \begin{cases} T_{HQS} = D_{\sigma} \circ \operatorname{Prox}_{\tau f} \\ T_{PGD} = D_{\sigma} \circ (\operatorname{Id} - \tau \nabla f) \\ T_{DRS} = \frac{1}{2}\operatorname{Id} + \frac{1}{2}(2D_{\sigma} - \operatorname{Id}) \circ (2\operatorname{Prox}_{\tau f} - \operatorname{Id}) \end{cases}$$

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex, differentiable with ∇f L-Lipschitz, and D_σ be θ -averaged, $\theta \in (0, 1)$. Assume that the iterated operator **has** a fixed point.

- **PnP-HQS** converges towards a fixed point of T_{HQS}.
- If $\tau L < 2$, **PnP-PGD** converges towards a fixed point of T_{PGD} .
- If $\theta \leq 1/2$, **PnP-DRS** converges towards a fixed point of T_{DRS} .

Remark:

- X Does not extend to **nonconvex** data-fidelity terms *f*.
- If f is L-smooth and strongly convex, for $\tau L < 2$, Id $-\tau \nabla f$ is contractive (Ryu et al., 2019)
 - ightarrow allows to relax the denoiser hypothesis for D_σ (1 + ϵ)-Lipschitz.

PnP in practice

Plan

Plug-and-Play Algorithms

Convergence by Fixed Point Theory

PnP in practice

Which denoiser to use?

- One can use off-the-shelf denoisers: BM3D (Dabov et al., 2007), NLBayes (Lebrun et al., 2013), ...
- One can also use denoisers given as neural networks.
- Such a deep denoiser is trained to approximate the MMSE:

$$\operatorname{Argmin}_{\operatorname{Param}(D_{\sigma})} \mathbb{E}_{x \sim p_{X}, \xi \sim \mathcal{N}(0, \sigma^{2} \operatorname{Id})} \Big[\|D_{\sigma}(x + \xi) - x\|^{2} \Big]$$

where p_X is a data distribution of clean images.

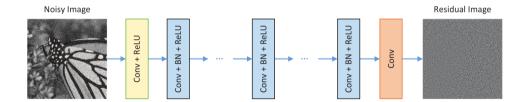
- For training, L¹ loss (instead of squared L² loss) sometimes gives better results.
- For certain denoising architectures, the noise level *σ* is given as input.
 ▲ In PnP, the denoising strength *σ* may be different from the noise level of the input!

Plug-and-Play Algorithms

Convergence by Fixed Point Theory

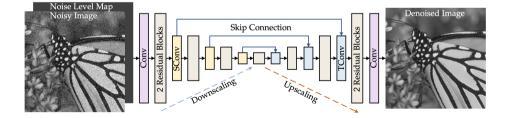
DnCNN (Zhang et al., 2017a)

- DnCNN is a deep convolutional neural network for denoising (Zhang et al., 2017a).
- It is based on residual learning: D(x) = x + R(x) where R is the network.
- *R* has 20 layers of hidden dimension 64 (3 × 3 convolutions, BatchNorm, ReLU)
- It is trained on noise levels $\sigma \in [0, 50]$ and can be applied blindly (without σ).



DRUNet (Zhang et al., 2021)

- DRUNet is a deep convolutional neural network for denoising (Zhang et al., 2021).
- It is a UNet that includes residual blocks, convolutions (bias-free!), and skip connections.
- The UNet has 4 "scales" of dimensions 64, 128, 256, 512.
- It is trained on noise levels $\sigma \in [0, 50]$ and take a noise level map as input.
- Zhang et al. (2021) propose to do PnP image restoration with this denoising prior (DPIR).



Plug-and-Play Algorithms

Convergence by Fixed Point Theory

PnP in practice

How to build averaged deep denoisers ?

How to build averaged deep denoisers ?

- Or we can penalize a Lipschitz constant in the training loss:

$$\operatorname*{Argmin}_{\operatorname{Param}(D_{\sigma})} \mathbb{E}_{x \sim p_{X}, \xi \sim \mathcal{N}(0, \sigma^{2} \operatorname{Id})} \Big[\| D_{\sigma}(x + \xi) - x \|^{2} \Big] + \mu \operatorname{Lip}(D_{\sigma}).$$

- Convolutional Proximal Neural Networks (Hertrich et al., 2021)
- Firmly nonexpansive denoisers (Terris et al., 2020)
- Deep spline neural networks (Goujon et al., 2023)
- $D_{\sigma} = Id \nabla g_{\sigma}$ with g_{σ} Input Convex Neural Network (ICNN) (Meunier et al., 2022)
- Ś

Non-expansiveness can harm denoising performance.

Nonexpansive convolutional neural networks (Pesquet et al., 2021)

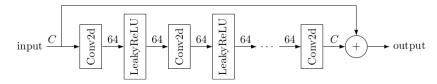
Idea:

Build a nonexpansive convolutional neural network (CNN)

$$D = T_M \circ \cdots \circ T_1$$
 with $T_m(x) = R_m(W_m x + b_m)$

where R_m is an (averaged) activation function, W_m a convolution, and b_m a bias.

- We want to have $D = \frac{|d+Q|}{2}$ with Q nonexpansive.
- During training, the Lipschitz constant of 2D Id is penalized.



Convolution proximal neural networks (Hertrich et al., 2021)

Idea: Build a convolutional proximal neural network (cPNN)

$$\Phi_u = T_M \circ \cdots \circ T_1$$
 with $T_m(x) = W_m^T \sigma_m(W_m x + b_m)$

where $u = (W_m, \sigma_m, b_m)_{1 \le m \le M}$ is a collection of parameters. The linear operators W_m (or W_m^T) are convolutions lying in a Stiefel manifold

$$\mathsf{St}(d,n) = \{ W \in \mathbf{R}^{n \times d} \mid W^T W = \mathsf{Id} \}.$$

The resulting denoiser is then $D = Id - \gamma \Phi_u$.

- Ideally, Φ_u is a composition of *M* firmly non-expansive operators, thus averaged.
- In practice, W_m is a convolution with limited filter length.
- Condition $W_m \in St$ is approximated with a term $||W_m^T W_m Id||_F^2$ in the learning cost.
- Φ_u is verified in practice to be *t*-averaged with *t* close to $\frac{1}{2}$.

Deep Spline Neural Networks (Goujon et al., 2023)

Idea: Approximate the proximal operator of a convex-ridge regularizer

$$R(x) = \sum_{p=1}^{P} \sum_{i} \psi_p(h_p * x(i))$$

where h_p are convolution kernels, and ψ_p are particular C^1 convex functions.

Given a noisy z,

$$\operatorname{Prox}_{\lambda R}(z) = \operatorname{Argmin}_{x \in \mathbf{R}^n} \frac{1}{2} \|x - z\|^2 + \lambda R(x)$$

is approximated with t iterations of the gradient-step

$$x \mapsto x - \alpha((x - z) + \lambda \nabla R(x)).$$

The output after *t* iterations is denoted by $T_{R,\lambda,\alpha}^t(z)$.

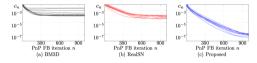
- $T_{B,\lambda,\alpha}^t$ approximates the prox of a convex function
- Linear spline parameterization of ψ_p justified by a density result

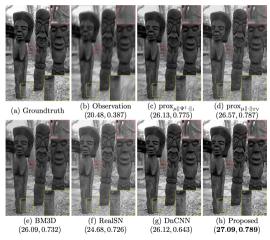
Plug-and-Play Algorithms

Convergence by Fixed Point Theory

Example for Image Deblurring (Pesquet et al., 2021)

- PnP-PGD (aka Forward-Backward)
- Denoiser: Adapted DnCNN
- Below, evolution of $c_n = \frac{\|x_n x_{n-1}\|}{\|x_0\|}$





Take-home Messages

- Convergence by fixed point relies on a particular kind of non-expansiveness.
- For now, we cannot enforce non-expansiveness exactly in practice. Instead we penalize some Lipschitz constant when training the denoiser.
- In that way, PnP methods lead to very good restoration results.
- Once learned a denoiser, it can be used to address many other inverse problems.
- PnP algorithms are (surprisingly) stable as soon as parameters are properly adjusted.
- Numerical control can be improved by relying on explicit minimization (see next week)
- Visual results can be further improved by tuning the strategy on σ (\rightarrow diffusion models)

Et avant le TP, une petite page de publicité...

- S. Hurault's thesis on PnP algorithms: https://www.theses.fr/2023BORD0336
- A nice document on gradient descent by Robert Gower:

 $\label{eq:linear} \verb|https://perso.telecom-paristech.fr/rgower/pdf/M2_statistique_optimisation/grad_conv.pdf See also the handbook (Garrigos and Gower, 2023) or C. Dossal's lecture notes.$

- Imaging in Paris seminar: https://imaging-in-paris.github.io/
- M2 internship on PnP methods for Hyperspectral Unmixing (with C. Kervazo and yours truly)
- Python/Pytorch library for Plug-and-Play Imaging:

https://deepinv.github.io/ Main contributors: S. Hurault, J. Tachella, M. Terris

THANK YOU FOR YOUR ATTENTION!

References I

- Bauschke, H. H. and Combettes, P. L. (2011). *Convex Analysis and Monotone Operator Theory in Hilbert Spaces*. Springer.
- Combettes, P. L. and Pesquet, J.-C. (2011). Proximal splitting methods in signal processing. In *Fixed-Point Algorithms for Inverse Problems in Science and Engineering*, pages 185–212. Springer.
- Combettes, P. L. and Yamada, I. (2015). Compositions and convex combinations of averaged nonexpansive operators. *Journal of Mathematical Analysis and Applications*, 425(1):55–70.
- Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. O. (2007). Image denoising by sparse 3-d transform-domain collaborative filtering. *IEEE Trans. Image Processing*, 16(8):2080–2095.
- Elad, M. and Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. *IEEE Transactions on Image Processing*, 15(12):3736–3745.
- Garrigos, G. and Gower, R. M. (2023). Handbook of convergence theorems for (stochastic) gradient methods.
- Goujon, A., Neumayer, S., Bohra, P., Ducotterd, S., and Unser, M. (2023). A neural-network-based convex regularizer for inverse problems. *IEEE Transactions on Computational Imaging*.
- Hertrich, J., Neumayer, S., and Steidl, G. (2021). Convolutional proximal neural networks and plug-and-play algorithms. *Linear Algebra and its Applications*, 631:203–234.

References II

- Kingma, D. P. and Welling, M. (2019). An introduction to variational autoencoders. *arXiv preprint arXiv:1906.02691*.
- Lebrun, M., Buades, A., and Morel, J. (2013). A nonlocal Bayesian image denoising algorithm. *SIAM Journal on Imaging Sciences*, 6(3):1665–1688.
- Mairal, J., Elad, M., and Sapiro, G. (2008). Sparse representation for color image restoration. *IEEE Transactions on Image Processing*, 17(1).
- Mallat, S. (2009). A Wavelet Tour of Signal Processing, The Sparse Way. Academic Press, Elsevier, 3rd edition edition.
- Meunier, L., Delattre, B. J., Araujo, A., and Allauzen, A. (2022). A dynamical system perspective for Lipschitz neural networks. In *International Conference on Machine Learning*, pages 15484–15500. PMLR.
- Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. (2018). Spectral Normalization for Generative Adversarial Networks. In *Proceedings of the 6th International Conference on Learning Representations, ICLR.*
- Pesquet, J.-C., Repetti, A., Terris, M., and Wiaux, Y. (2021). Learning maximally monotone operators for image recovery. *SIAM Journal on Imaging Sciences*, 14(3):1206–1237.

References III

- Rezende, D. J. and Mohamed, S. (2015). Variational inference with normalizing flows. In Bach, F. R. and Blei, D. M., editors, *Proceedings of the 32nd International Conference on Machine Learning*, volume 37, pages 1530–1538. JMLR.org.
- Romano, Y., Elad, M., and Milanfar, P. (2017). The little engine that could: Regularization by denoising (RED). *SIAM Journal on Imaging Sciences*, 10(4):1804–1844.
- Ruderman, D. L. (1994). The statistics of natural images. *Network: computation in neural systems*, 5(4):517.
- Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. *Physica D: nonlinear phenomena*, 60(1-4):259–268.
- Ryu, E., Liu, J., Wang, S., Chen, X., Wang, Z., and Yin, W. (2019). Plug-and-play methods provably converge with properly trained denoisers. In *International Conference on Machine Learning*, pages 5546–5557. PMLR.
- Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. (2021). Score-based generative modeling through stochastic differential equations. In *9th International Conference on Learning Representations, ICLR 2021*. OpenReview.net.

References IV

- Terris, M., Repetti, A., Pesquet, J.-C., and Wiaux, Y. (2020). Building firmly nonexpansive convolutional neural networks. In *ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 8658–8662. IEEE.
- Venkatakrishnan, S. V., Bouman, C. A., and Wohlberg, B. (2013). Plug-and-play priors for model based reconstruction. In 2013 IEEE Global Conference on Signal and Information Processing, pages 945–948. IEEE.
- Yu, G., Sapiro, G., and Mallat, S. (2011). Solving inverse problems with piecewise linear estimators: From gaussian mixture models to structured sparsity. *IEEE Transactions on Image Processing*, 21(5):2481–2499.
- Zhang, K., Li, Y., Zuo, W., Zhang, L., Van Gool, L., and Timofte, R. (2021). Plug-and-play image restoration with deep denoiser prior. *IEEE Transactions on Pattern Analysis and Machine Intelligence*.
- Zhang, K., Zuo, W., Chen, Y., Meng, D., and Zhang, L. (2017a). Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. *IEEE Transactions on Image Processing*, 26(7):3142–3155.
- Zhang, K., Zuo, W., Gu, S., and Zhang, L. (2017b). Learning deep cnn denoiser prior for image restoration. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 3929–3938.

References V

Zoran, D. and Weiss, Y. (2011). From learning models of natural image patches to whole image restoration. In *2011 International Conference on Computer Vision*, pages 479–486. IEEE.