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Short Flash-back

® Plug-and-Play framework (Venkatakrishnan et al., 2013) (ADMM with non-deep denoisers)

® (Chan et al., 2016) PnP-ADMM with BM3D
Convergence for stepsize 7 — 0 and a “bounded" denoiser (i.e. ||D,(x) — x||? < Co?)
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Goals for this Session

A\ In practice, a priori, there is no g, such that D, = Prox,g, of D, =1d — Vg,...
We will construct a deep denoiser for which there actually is such an explicit g. .

We will formulate convergence results with non-convex optimization on f + \g..
We will see when D, can be formulated as a non-convex prox.

We will discuss training, and connections with score-matching.
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Outline

Convergence by Non-Convex Optimization
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Proximal Gradient Descent (non-convex case)

We say that f : R” — R U {+o0} is proper if f is not +oo everywhere.
Definition
For f: R" — RU {+o0}, for any x € R", we define the point-to-set map Prox; by

Prox¢(x) = Argmin f(z) + 1||z — x|%.
zeRM 2
One can see that Prox¢(x) is non-empty as soon as f is |l.s.c. with inf f > —oo and f proper.
Let f,g: R" — R U {+oco} be proper l.s.c. and lower-bounded. Suppose that f is differentiable.

In order to minimize F = f + g, we consider the proximal gradient descent (PGD) algorithm
Xk+1 € PI’OXTg(Xk — 7'V)((Xk))7

where 7 > 0 is a step size.
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Further Topics

Convergence of PGD for non-convex functions

Theorem (e.g. Attouch et al. 2013)
Letf,g:R" — RU {+oco} be proper, I.s.c., bounded from below. Let F = f + g.
Assume that f is differentiable with V f being Ls-Lipschitz. Suppose T < Ll,
Then the PGD sequence X1 € Prox,q(Xx — TV (X)), satisfies

1. F(x«) is non-increasing, and thus converges.

2. Yi20 Xkt — Xkl[? < oo and mink<k [|Xer1 — Xkl = O(Jx)-
3. The cluster points of (xx) are critical points of F. (see precise definition later)
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Convergence Proof of PGD
In order to prove (i), we need to prove a descent inequality. The definition of xx1 gives
Xev1 € Argming(x) + (x = i, V() + 217 Ix — x|
In particular,
f(xk) + 9(Xe41) + (X1 — X, VI(XK)) + 217|\Xk+1 — Xk < (%) + 9(xe) = F ().
Since f has Ls-Lipschitz gradient, the descent lemma gives
k1) < FO) + (tker — X VF0)) + 3 — 2

1 1L
Therefore, (i) + (Xt = Xk, V(X)) + o[ Xkt — xkl|? = f(Xkr1) + (E - 5’) 1 Xks1 — xk|1?,

and finally  F(Xk41) + (l — 5

o 2) X1 — Xill® < F(x)-
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Convergence Proof of PGD

The last inequality gives that for 7 < { F(xx) is non-increasing.
Since inf F > —oo, we obtain F(xx) — ¢ € R.
Summing the previous inequality also gives that

K—1 K—1
1 L
(2~ 5 ) X0 s =l < X2 FOx) = Fltar) = F(30) — ) < F0) 1
k=0 k=0

It gives that C = >";°, || Xk+1 — Xk||* < oo, and also

1 K—1 C
. 2 2

< — — < .
i s = xkll” < KZH s = xll” < e
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Limiting Subdifferential

The last part relies on a notion of critical point for non-convex functions (Attouch et al., 2013).

For f: R" — RU {400} and x € R" such that f(x) < oo, we define the Fréchet subdifferential by

Hf(x) = { vER'| liminf f(y)’flﬁ’;)_*y(“"’y*” 20},

and the limiting subdifferential as

" f(x) = { v e R" | 3(x), (Vk), vk € F(xx), Xk — X, F(xk) = f(x) }.

Then one can show that (see (Rockafellar and Wets, 2009))

df(x) c Hf(x) C 9"™f(x)

if x is a local minimizer of f, then 0 € Hf(x)

if fis €' and g(x) < 400, then 3" (f 4 g)(x) = VF(x) + 8"™g(x).

if Xk — X, vk — v, vk € 0"™f(xx), and f(xx) — f(x), then v € 8"™f(x). (“0"™f(x) is closed”)
if f is proper |.s.c., z € Prox/(x) = x —z € 3"f(2).

We say that x is a critical point of f if 0 € "™f(x).
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Convergence Proof of PGD

We can now end the proof. Thanks to the characterization of Prox.4, we have
Xk — Xk— im
Vi = % — Vi(x) € 9™ g(xc).

If (xx,) is a subsequence that converges to a x, Vf(xx) — Vf(x).
Since || xk+1 — Xk|| — 0, we deduce that vy, — —Vf(x).

Since g is I.s.c., we have liminf g(xx) > g(x).
And again, with the optimality condition of xi1,

1 1
9(Xi) + (X, — Xi—1, VF(Xi—1)) + ZHXK,- — Xig—1]I” < g(x) + (X = Xig—1, VF(Xig—1)) + ?THX — X112
Since xk,_1 also tends to x, we get limsup g(xx,) < g(x), and thus g(xx) — g(x).

By the fact that “9"™g(x) is closed”, we get —Vf(x) € 8"™g(x), and thus 0 € " F(x).
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The Kurdyka-tojasiewicz property (Attouch et al., 2010)
In order to get convergence of the iterates, we need a technical assumption.
Definition (Kurdyka-tojasiewicz (KL) property)

(@) Afunction f: R” — R U {400} is said to have the Kurdyka-tojasiewicz property at
x* € dom(f) if there exists n € (0, +o0), a neighborhood U of x* and a continuous concave
function 1 : [0,7) — R, such that 4(0) = 0, + is C' with ¢/’ > 0 on (0,7), and
Vx € UN[f(x*) < f < f(x*) + n)], the Kurdyka-tojasiewicz inequality holds:

W' (F(x) — f(x™))dist(0, 0™ f(x)) > 1.

(b) Proper lower semicontinuous functions which satisfy the Kurdyka-tojasiewicz inequality at each
point of dom(d"™f) are called Kt functions.

Theorem (Attouch et al. 2013)
Letf,g:R" — R U {+oco} be proper, |.s.c., lower bounded. Let F = f + g.
Assume that f is differentiable with V f being L¢-Lipschitz and that F is Kt. Assume T < Ll/

Suppose also that the PGD iterates (xx) are bounded.
Then (xx) converges to a critical point of F.
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Summary: Convergence of nonconvex proximal splitting algorithms

The same kind of techniques applies to the Douglas-Rachford algorithm. Recall the algorithms:
® PGD : Xit1 € Prox,fo(ld — 7Vg)
® DRS : Xk41 € 3ld + (2 Prox,s —Id) o (2 Prox-g —Id)

Goal: Show that xx — x* € {x € R" | 0 € 8"™f(x) + Vg(x)}. ]

Suppose
- f, g are proper and g has L-Lipschitz gradient
- f+ g is coercive and bounded from below.
- f and g verify the Kurdyka-tojasiewicz (KL) property.

(PGD) 7L <1 (Attouch et al., 2013)

Then, for { (DRS) 7L < 1/2 (Themelis and Patrinos, 2020)

and as soon as (xx) is bounded, it converges towards a critical point of f + g.
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Backtracking

What if we don’t know the Lipschitz constant at stake?
For example, we have shown that the PGD update T, (xx) satisfies a descent lemma

1 1 L 2
V< o PO = F(T(x0) 2 (E - 5) 1T () = xill™

For parameters ~ € (0, %), n € [0, 1), the backtracking procedure consists in
while F(x) — F(T-(x)) < %HTT(X;() —x|? do T« .

Since this last inequality is not true for 7 < 112”, the backtracking loop stops in finite time.

It is possible to show that the convergence guarantees still hold with backtracking.
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Gradient-Step and Proximal Denoisers
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The Gradient-Step Denoiser

(Romano et al., 2017) If D, has symmetric Jacobian, then

D, =1d - Vg, with g,(x) = %(x,x — D, (x))

X Not verified by common denoisers (Reehorst and Schniter, 2018).
(Hurault et al., 2021), (Cohen et al., 2021a) “Gradient Step" (GS) Denoiser:

D, =1d—vVg, with g,(x)= %Hx — N, ()2

where N, : R" — R" is a C' neural network (smoothed DRUNet (Zhang et al., 2021))
The denoiser can be written

D (x) = No (%) + I, (X)T (X = Ny ().

A composition of functions with bounded Lipschitz differentials has Lipschitz differential.
9. satisfies the KL property (as soon as activations are subanalytic).

Further Topics
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Connection with Score-Matching

® The denoiser is trained on a data distribution px of clean images by

. 2
ATgMin E, _p, ¢ xr0.0%10 || Do (x + €) = x[°].
Param(D, )

* Writing p, = px * N(0, 6Id), this is actually equivalent to

Argmin £, [[|0(y) — DI () ]

Param(D. )

or, thanks to Tweedie formula, to

Argmin By, [[| D, (y) — ¥ = 0°V log ps (y) ]
Param(D, )

ie.  Argmin Eyp, [|IVGs () + 0V log pa (¥)II]
Param(D, )

e Therefore, 02V g, is designed to approximate —V log p, (called the Stein score)
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Convergence of GS-PnP (Hurault et al., 2021)

Let A > 0. We here target minima of F = f + Ag..
For 7 > 0, consider
X1 = Prox.so(TADs + (1 — 7A)Id)(xk)

with gradient-step denoiser D, = Id — Vg,.

Theorem

Letf:R" - RU{+oc0} and g, : R" — R be proper lower semicontinous functions.
Let\ >0, F = f+ \g,. Suppose that

® g, is differentiable with L-Lipschitz gradient,

® F s bounded from below and satisfies the Kurdyka-tojasiewicz property.
Then, for T < 4,

® (F(x«)) is non-increasing and converges,

® |f(xk) is bounded, then it converges to a critical point of F.

Remark: It is possible to modify the regularization g. to ensure that limx o F(X) = +o00.
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Characterization of Proximal Operators

® (Moreau, 1965)
If D, = dh, with h, convex and D,, is nonexpansive,
then 3¢, : R” — R convex such that D, = Prox,, .
X Hard too enforce both conditions at the same time

® (Gribonval and Nikolova, 2020)

If D, = Oh, with h, convex and-D—is-ronexpansive,

then 3¢, : R” — R eenvex such that D, = Prox,,, .

— Proximal denoiser (Hurault et al., 2022)

2
D, =1d — Vg, = Vh, with h,(x) = @ — g-(x)

Vg, L-Lipschitz with L < 1 = ¢, ?ﬂ-weakly convex s.t. D, = Proxy,,

X Dy = Proxg,, restricts the stepsize 7 = 1.

NB: ¢ is a-weakly convex if ¢ + a% is convex.
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Gradient-Step and Proximal Denoisers

Theorem (Hurault et al. 2022)
Letg, : R" — R aC**" function with k > 1 and Vg, L-Lipschitz with L < 1. Let

2
D, =1d - Vg, = Vh, with h,(x) = @ — g-(x)

Then
(i) ho is (1 — L)-strongly convex andVx € R", Jp, (x) is positive definite

(i) Dy is injective, Im(D.) is open and, Vx € R", D(x) = Proxe,, (x), with

9o(Ds7"(x))) = 31105 (x) — x| if x € Im(D),
Po(X) ox { +00 ’ otherwise, M

(ii)) ¢ is = weakly convex.
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Training the Gradient-step and Proximal denoisers

Training loss: GS-Denoiser - Prox-Denoiser

Argmin Ex.e, [[|D. (x + &) — X|[* + pmax(| Vg (x + &)[ls, 1 €)]

Param(D, )
o(./255) 5 15 25 o(./255) 5 5 o5
DRUNet 4019 33.89  31.25 GS-DRUNet  1.26 1.96 3.27
GS-Denoiser 40.26 33.90 31.26 Prox.DRUNet  0.92 099 0.96
Prox-Denoiser ~ 40.12  33.60  30.82 ' ' ’

. 2
Table: Denoising PSNR on the CBSD68 dataset Table: maxy [|V*go (x)l|s on the CBSD6S dataset

Further Topics
e}
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Convergence of Prox-PNP-PGD (Hurault et al., 2022)
Let A > 0. We here target minima of F = f 4+ A¢s.

— _ 1
{ Zieet =X — xVIX)  ith D, = 1d - Vg, = Prox,, .

X1 = Do (Zk41)
For A >0, let F =f+ \po.

Theorem

Letf,g, : R" — R U {+o0} be proper lower semicontinous functions, bounded from below.
Suppose that

® f js differentiable with Ls-Lipschitz gradient,

® g, is C2 with L-Lipschitz gradient and L < 1,

® [ js bounded from below and satisfies the Kurdyka-tojasiewicz property.
Then, for A > L,

® (F(xx)) is non-increasing and converges,

® |f(xx) is bounded, it converges to a critical point of F.

21/31



Gradient-Step and Proximal Denoisers
00000000800000

Convergence of Prox-PNP-DRS1 (Hurault et al., 2022)

Let A > 0. We here target minima of F = f + A\¢,.
Vi1 = Prox s ()
Zki1 = Do (2Yki1 — Xk) with Dy =Id — Vg, = Proxg_ .
X1 = Xk + (Zk+1 — Vi)

Let A > 0, and FY" (xe—1) = 6o (2k) + 1 1(0) + Wk — Xe—1, Yk — 2&) + 511y — k1.

Theorem

Letf, g, : R" — RU {400} be proper lower semicontinous functions, bounded from below.
Suppose that

® f s convex, differentiable with L¢-Lipschitz gradient

® g, is C? with L-Lipschitz gradient and L < 1,

® F is bounded from below and satisfies the Kurdyka-t.ojasiewicz property.
Then, for A > L,

. (Ff":';’1 (xx)) is non-increasing and converges,

® |f(xx) is bounded, it converges to a critical point of F.
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Convergence of Prox-PNP-DRS2 (Hurault et al., 2022)

Let A > 0. We here target minima of F = f + A\¢,.

Vi1 = Do (Xk)
Zki1 = PYOX%f(2}/k+1 — Xk) with D, =1d — Vg, = Proxy, .
Xkt = Xk + (Zka1 — Yia1)

Let A > 0, and FY72(Xk—1) = b0 (V) + 2 F(2k) + (Vi — Xk—1, Yk — 2) + 3lIvk — 2%

Theorem

Letf,g, : R" — R U {+o0} be proper lower semicontinous functions, bounded from below.
Suppose that

® Im(D,) is convex
® go is C2 with L-Lipschitz gradient and L < }

® F is bounded from below and satisfies the Kurdyka-tojasiewicz property.
Then, forany A\ > 0,

° (F )?:?7’2( Xk)) is non-increasing and converges,

® If(xx) is bounded, it converges to a critical point of F.
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Deblurring Example (Hurault et al., 2022)
Deblurring with motion kernel and Gaussian noise std v = 0.03

(b) Observed (c) IRCNN (d) DPIR (e) GSPnP-HQS
(28.66dB) (29.76dB) (29.90dB)
—— PGD 107
200 —— DRS
180 107°
160
1077
140
120 107°
(f) Prox-PnP-PGD (g) Prox-PnP-DRS 10 0 60 120 180 240 300 360 420 480 0 60 120 180 240 300 360 420 480
(29.41dB) (29.65dB) (h) Fo(ak) () min; < ||xip1 — z1||2

24/31



Convergence by Non-Convex Optimization Gradient-Step and Proximal Denoisers Further Topics
0000000000 00000000000e00 (e]e)

Super-resolution Example (Hurault et al., 2022)
Super-resolution with scale 2, Gaussian blur kernel and Gaussian noise std v = 0.01

AN

(b) Observed (c) IRCNN (d) DPIR (e) GSPnP-HQS
(22.82dB) (23.97dB) (24.81dB)
18
—— PGD 107§
16 —ors s
1 1006 Y el
12 107%
PGD
10 10-10 —— DRS
8 ——o%)
() Prox-PnP-PGD () Prox-PnP-DRS 0 60 120 180 240 300 360 420 480 0 60 120 180 240 300 360 420 480
(23.96dB) (24.36dB) (1) Fx o(zy) (i) mini<g ||Zip1 — 2|2
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One example of wrong reconstruction

Further Topics
e}

Of course, deep or generative priors can sometimes lead to wrong reconstructions:

TV - (31.66dB, 0.853)

CRR - (33.21dB, 0.868)

WCRR - (34.50dB, 0.899)

Prox_DRUNet - (34.65dB, 0.904)

n
Y

(Source: Figure 4.2 from (Goujon et al., 2024))

)
L.r
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PnP Algorithm Unrolling (zhang et al., 2020; Repetti et al., 2022)

¢ Algorithm unrolling consists in training end-to-end several steps of an iterative algorithm.
® The number of steps is fixed, and all blocks (and parameters) are learnable.
® The training is done in a supervised way for a given inverse problem.

Q
QU
)
&
a
Il
&
»

xs="P(zs,53)

| |
USRNet for super-resolution (Figure from (Zhang et al., 2020))
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Further Topics

® Weakly-convex regularizations (Goujon et al., 2024; Shumaylov et al., 2024)

® Unrolling plug-and-play algorithms (Zhang et al., 2020; Repetti et al., 2022)

® Plug-and-Play posterior sampling (Laumont et al., 2022; Renaud et al., 2025a)
® Plug-and-Play adapted to more complex data-fidelity (Laroche et al., 2023)
® Stochastic plug-and-play regularizations (Renaud et al., 2024, 2025b)

® In the next course session, you will discover “diffusion models”.
* They are generative models based on the MMSE denoiser DYMSE = |d + 52V log p,.
¢ Diffusion-based restoration algorithms can be seen as PnP algorithms with with o — 0.
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Take-home Messages

Using appropriate denoisers can make Plug-and-Play algorithms more stable.
Gradient-step Denoisers allow to recover an explicit minimization problem.

This helps to recover precise numerical control, and improves stability.

With backtracking, we don’t even have to know the Lipschitz constant of the regularization.
However, in practice, parameters should be adjusted to avoid bad local minima.

Visual results can be further improved by tuning the strategy on o.

[ Je]
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Finally, a little bit of advertisement...

S. Hurault’s thesis on PnP algorithms: https://www.theses.fr/2023BORD0336

A nice short document on gradient descent by Robert Gower:
https://perso.telecom-paristech.fr/rgower/pdf/M2_statistique_optimisation/grad_conv.pdf

See also the handbook (Garrigos and Gower, 2023).

Recap on first-order optimization: (Dossal et al., 2024)

Imaging in Paris seminar: https://imaging-in-paris.github.io/
Python/Pytorch library for Plug-and-Play Imaging:

D
7/20%@

https://deepinv.github.io/
Main contributors: S. Hurault, J. Tachella, M. Terris

THANK YOU FOR YOUR ATTENTION!

oe
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