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Convergence by Non-Convex Optimization Gradient-Step and Proximal Denoisers Further Topics

Short Flash-back

• Plug-and-Play framework (Venkatakrishnan et al., 2013) (ADMM with non-deep denoisers)
• (Chan et al., 2016) PnP-ADMM with BM3D

Convergence for stepsize τ → 0 and a “bounded" denoiser (i.e. ∥Dσ(x)− x∥2 ⩽ Cσ2)

• REgularization by Denoising (Romano et al., 2017) (GD/PGD/HQS with non-deep denoisers)
Analysis with two hypotheses on Dσ: local homogeneity, and ∀x , ∥JDσ(x)∥ ⩽ 1.

• Clarifications on RED (Reehorst and Schniter, 2018) (Dσ should have symmetric Jacobian)
• RED-PRO reformulates as a convex minimization problem on Fix(Dσ) (Cohen et al., 2021b)

• PnP (PGD/ADMM/DRS) with Lipschitz denoisers (Ryu et al., 2019)
Convergence by contractive fixed point for with Id− Dσ ε-Lipschitz.

• Convergent PnP with true MMSE denoiser (Xu et al., 2020) (MMSE is a non-convex prox)
• Convergence for firmly nonexpansive Dσ (Sun et al., 2021), (Pesquet et al., 2021)

• Convergence for gradient-step denoiser (Hurault et al., 2021), (Cohen et al., 2021a)

• and several other contributions... see the review (Kamilov et al., 2023)
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Goals for this Session

• !△ In practice, a priori, there is no gσ such that Dσ = Proxτgσ or Dσ = Id−∇gσ...
• We will construct a deep denoiser for which there actually is such an explicit gσ.
• We will formulate convergence results with non-convex optimization on f + λgσ.
• We will see when Dσ can be formulated as a non-convex prox.
• We will discuss training, and connections with score-matching.
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Proximal Gradient Descent (non-convex case)

We say that f : Rn → R ∪ {+∞} is proper if f is not +∞ everywhere.

Definition
For f : Rn → R ∪ {+∞}, for any x ∈ Rn, we define the point-to-set map Proxf by

Proxf (x) = Argmin
z∈Rn

f (z) +
1
2
∥z − x∥2.

One can see that Proxf (x) is non-empty as soon as f is l.s.c. with inf f > −∞ and f proper.

Let f , g : Rn → R ∪ {+∞} be proper l.s.c. and lower-bounded. Suppose that f is differentiable.

In order to minimize F = f + g, we consider the proximal gradient descent (PGD) algorithm

xk+1 ∈ Proxτg(xk − τ∇f (xk )),

where τ > 0 is a step size.



6/31

Convergence by Non-Convex Optimization Gradient-Step and Proximal Denoisers Further Topics

Convergence of PGD for non-convex functions

Theorem (e.g. Attouch et al. 2013)
Let f , g : Rn → R ∪ {+∞} be proper, l.s.c., bounded from below. Let F = f + g.
Assume that f is differentiable with ∇f being Lf -Lipschitz. Suppose τ < 1

Lf
.

Then the PGD sequence xk+1 ∈ Proxτg(xk − τ∇f (xk )), satisfies

1. F (xk ) is non-increasing, and thus converges.

2.
∑∞

k=0 ∥xk+1 − xk∥2 <∞ and mink<K ∥xk+1 − xk∥ = O( 1√
K
).

3. The cluster points of (xk ) are critical points of F . (see precise definition later)
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Convergence Proof of PGD

In order to prove (i), we need to prove a descent inequality. The definition of xk+1 gives

xk+1 ∈ Argmin
x

g(x) + ⟨x − xk ,∇f (xk )⟩+
1

2τ
∥x − xk∥2.

In particular,

f (xk ) + g(xk+1) + ⟨xk+1 − xk ,∇f (xk )⟩+
1

2τ
∥xk+1 − xk∥2 ⩽ f (xk ) + g(xk ) = F (xk ).

Since f has Lf -Lipschitz gradient, the descent lemma gives

f (xk+1) ⩽ f (xk ) + ⟨xk+1 − xk ,∇f (xk )⟩+
Lf

2
∥xk+1 − xk∥2.

Therefore, f (xk ) + ⟨xk+1 − xk ,∇f (xk )⟩+
1

2τ
∥xk+1 − xk∥2 ⩾ f (xk+1) +

(
1

2τ
− Lf

2

)
∥xk+1 − xk∥2,

and finally F (xk+1) +

(
1

2τ
− Lf

2

)
∥xk+1 − xk∥2 ⩽ F (xk ).
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Convergence Proof of PGD

The last inequality gives that for τ < 1
L , F (xk ) is non-increasing.

Since inf F > −∞, we obtain F (xk )→ ℓ ∈ R.
Summing the previous inequality also gives that(

1
2τ
− Lf

2

) K−1∑
k=0

∥xk+1 − xk∥2 ⩽
K−1∑
k=0

F (xk )− F (xk+1) = F (x0)− F (xK ) ⩽ F (x0)− ℓ.

It gives that C =
∑∞

k=0 ∥xk+1 − xk∥2 <∞, and also

min
k<K
∥xk+1 − xk∥2 ⩽

1
K

K−1∑
k=0

∥xk+1 − xk∥2 ⩽
C
K
.
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Limiting Subdifferential

The last part relies on a notion of critical point for non-convex functions (Attouch et al., 2013).

For f : Rn → R ∪ {+∞} and x ∈ Rn such that f (x) <∞, we define the Fréchet subdifferential by

∂̂f (x) =
{

v ∈ Rn | lim inf
y→x

f (y)− f (x)− ⟨v , y − x⟩
∥x − y∥ ⩾ 0

}
,

and the limiting subdifferential as

∂ limf (x) = { v ∈ Rn | ∃(xk ), (vk ), vk ∈ ∂̂f (xk ), xk → x , f (xk )→ f (x) }.

Then one can show that (see (Rockafellar and Wets, 2009))
• ∂f (x) ⊂ ∂̂f (x) ⊂ ∂ limf (x)
• if x is a local minimizer of f , then 0 ∈ ∂̂f (x)
• if f is C 1 and g(x) < +∞, then ∂ lim(f + g)(x) = ∇f (x) + ∂ limg(x).
• if xk → x , vk → v , vk ∈ ∂ limf (xk ), and f (xk )→ f (x), then v ∈ ∂ limf (x). (“∂ limf (x) is closed”)
• if f is proper l.s.c., z ∈ Proxf (x) ⇒ x − z ∈ ∂ limf (z).

We say that x is a critical point of f if 0 ∈ ∂ limf (x).
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Convergence Proof of PGD

We can now end the proof. Thanks to the characterization of Proxτg , we have

vk :=
xk − xk−1

τ
−∇f (xk ) ∈ ∂ limg(xk ).

If (xki ) is a subsequence that converges to a x , ∇f (xki )→ ∇f (x).
Since ∥xk+1 − xk∥ → 0, we deduce that vki → −∇f (x).

Since g is l.s.c., we have lim inf g(xki ) ⩾ g(x).
And again, with the optimality condition of xk+1,

g(xki ) + ⟨xki − xki−1,∇f (xki−1)⟩+
1

2τ
∥xki − xki−1∥2 ⩽ g(x) + ⟨x − xki−1,∇f (xki−1)⟩+

1
2τ
∥x − xki−1∥2

Since xki−1 also tends to x , we get lim sup g(xki ) ⩽ g(x), and thus g(xki )→ g(x).

By the fact that “∂ limg(x) is closed”, we get −∇f (x) ∈ ∂ limg(x), and thus 0 ∈ ∂ limF (x).
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The Kurdyka-Łojasiewicz property (Attouch et al., 2010)

In order to get convergence of the iterates, we need a technical assumption.

Definition (Kurdyka-Łojasiewicz (KŁ) property)

(a) A function f : Rn −→ R ∪ {+∞} is said to have the Kurdyka-Łojasiewicz property at
x∗ ∈ dom(f ) if there exists η ∈ (0,+∞), a neighborhood U of x∗ and a continuous concave
function ψ : [0, η) −→ R+ such that ψ(0) = 0, ψ is C1 with ψ′ > 0 on (0, η), and
∀x ∈ U ∩ [f (x∗) < f < f (x∗) + η], the Kurdyka-Łojasiewicz inequality holds:

ψ′(f (x)− f (x∗))dist(0, ∂ limf (x)) ≥ 1.

(b) Proper lower semicontinuous functions which satisfy the Kurdyka-Łojasiewicz inequality at each
point of dom(∂ limf ) are called KŁ functions.

Theorem (Attouch et al. 2013)
Let f , g : Rn → R ∪ {+∞} be proper, l.s.c., lower bounded. Let F = f + g.
Assume that f is differentiable with ∇f being Lf -Lipschitz and that F is KŁ. Assume τ < 1

Lf
.

Suppose also that the PGD iterates (xk ) are bounded.
Then (xk ) converges to a critical point of F .
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Summary: Convergence of nonconvex proximal splitting algorithms

The same kind of techniques applies to the Douglas-Rachford algorithm. Recall the algorithms:
• PGD : xk+1 ∈ Proxτ f ◦(Id− τ∇g)
• DRS : xk+1 ∈ 1

2 Id + 1
2 (2Proxτ f −Id) ◦ (2Proxτg −Id)

Goal: Show that xk → x∗ ∈ {x ∈ Rn | 0 ∈ ∂ limf (x) +∇g(x)}.

Suppose

- f , g are proper and g has L-Lipschitz gradient

- f + g is coercive and bounded from below.

- f and g verify the Kurdyka-Łojasiewicz (KŁ) property.

Then, for
{

(PGD) τL < 1 (Attouch et al., 2013)
(DRS) τL < 1/2 (Themelis and Patrinos, 2020)

and as soon as (xk ) is bounded, it converges towards a critical point of f + g.
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Backtracking

What if we don’t know the Lipschitz constant at stake?
For example, we have shown that the PGD update Tτ (xk ) satisfies a descent lemma

∀τ < 1
Lf
, F (xk )− F (Tτ (xk )) ⩾

(
1

2τ
− Lf

2

)
∥Tτ (xk )− xk∥2.

For parameters γ ∈ (0, 1
2 ), η ∈ [0, 1), the backtracking procedure consists in

while F (xk )− F (Tτ (xk )) <
γ

τ
∥Tτ (xk )− xk∥2 do τ ← ητ.

Since this last inequality is not true for τ < 1−2γ
L , the backtracking loop stops in finite time.

It is possible to show that the convergence guarantees still hold with backtracking.
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The Gradient-Step Denoiser

• (Romano et al., 2017) If Dσ has symmetric Jacobian, then

Dσ = Id−∇gσ with gσ(x) =
1
2
⟨x , x − Dσ(x)⟩

✗ Not verified by common denoisers (Reehorst and Schniter, 2018).
• (Hurault et al., 2021), (Cohen et al., 2021a) “Gradient Step" (GS) Denoiser:

Dσ = Id−∇gσ with gσ(x) =
1
2
∥x − Nσ(x)∥2

where Nσ : Rn → Rn is a C1 neural network (smoothed DRUNet (Zhang et al., 2021))
• The denoiser can be written

Dσ(x) = Nσ(x) + JNσ (x)
T (x − Nσ(x)).

• A composition of functions with bounded Lipschitz differentials has Lipschitz differential.
• gσ satisfies the KŁ property (as soon as activations are subanalytic).
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Connection with Score-Matching

• The denoiser is trained on a data distribution pX of clean images by

Argmin
Param(Dσ)

Ex∼pX ,ξ∼N (0,σ2Id)

[
∥Dσ(x + ξ)− x∥2

]
.

• Writing pσ = pX ∗ N (0, σ2Id), this is actually equivalent to

Argmin
Param(Dσ)

Ey∼pσ

[
∥Dσ(y)− DMMSE

σ (y)∥2
]

or, thanks to Tweedie formula, to

Argmin
Param(Dσ)

Ey∼pσ

[
∥Dσ(y)− y − σ2∇ log pσ(y)∥2

]
i.e. Argmin

Param(Dσ)

Ey∼pσ

[
∥∇gσ(y) + σ2∇ log pσ(y)∥2

]
• Therefore, σ−2∇gσ is designed to approximate −∇ log pσ (called the Stein score)
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Convergence of GS-PnP (Hurault et al., 2021)

Let λ > 0. We here target minima of F = f + λgσ.
For τ > 0, consider

xk+1 = Proxτ f ◦(τλDσ + (1− τλ)Id)(xk )

with gradient-step denoiser Dσ = Id−∇gσ.

Theorem
Let f : Rn → R ∪ {+∞} and gσ : Rn → R be proper lower semicontinous functions.
Let λ > 0, F = f + λgσ. Suppose that
• gσ is differentiable with L-Lipschitz gradient,
• F is bounded from below and satisfies the Kurdyka-Łojasiewicz property.

Then, for τ < 1
λL ,

• (F (xk )) is non-increasing and converges,
• If (xk ) is bounded, then it converges to a critical point of F .

Remark: It is possible to modify the regularization gσ to ensure that lim∥x∥→∞ F (x) = +∞.
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Characterization of Proximal Operators

• (Moreau, 1965)
If Dσ = ∂hσ with hσ convex and Dσ is nonexpansive,
then ∃ϕσ : Rn → R convex such that Dσ = Proxϕσ .
✗ Hard too enforce both conditions at the same time

• (Gribonval and Nikolova, 2020)
If Dσ = ∂hσ with hσ convex and Dσ is nonexpansive,
then ∃ϕσ : Rn → R convex such that Dσ = Proxϕσ .

→ Proximal denoiser (Hurault et al., 2022)

Dσ = Id−∇gσ = ∇hσ with hσ(x) =
∥x∥2

2
− gσ(x)

∇gσ L-Lipschitz with L < 1⇒ ∃ϕσ
L

L+1 -weakly convex s.t. Dσ = Proxϕσ

✗ Dσ = Proxϕσ restricts the stepsize τ = 1.

NB: ϕ is α-weakly convex if ϕ+ α ∥·∥2

2 is convex.
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Gradient-Step and Proximal Denoisers

Theorem (Hurault et al. 2022)
Let gσ : Rn → R a Ck+1 function with k ≥ 1 and ∇gσ L-Lipschitz with L < 1. Let

Dσ = Id−∇gσ = ∇hσ with hσ(x) =
∥x∥2

2
− gσ(x)

Then

(i) hσ is (1− L)-strongly convex and ∀x ∈ Rn, JDσ (x) is positive definite

(ii) Dσ is injective, Im(Dσ) is open and, ∀x ∈ Rn, Dσ(x)=Proxϕσ (x), with

ϕσ(x) ∝
{

gσ(Dσ
−1(x)))− 1

2∥Dσ
−1(x)− x∥2 if x ∈ Im(Dσ),

+∞ otherwise,
(1)

(iii) ϕσ is L
L+1 weakly convex.
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Training the Gradient-step and Proximal denoisers

Training loss: GS-Denoiser - Prox-Denoiser

Argmin
Param(Dσ)

Ex,ξσ

[
∥Dσ(x + ξσ)− x∥2 + µmax(∥∇2gσ(x + ξσ)∥S , 1− ϵ)

]
σ(./255) 5 15 25

DRUNet 40.19 33.89 31.25
GS-Denoiser 40.26 33.90 31.26

Prox-Denoiser 40.12 33.60 30.82

Table: Denoising PSNR on the CBSD68 dataset

σ(./255) 5 15 25

GS-DRUNet 1.26 1.96 3.27
Prox-DRUNet 0.92 0.99 0.96

Table: maxx ∥∇2gσ(x)∥S on the CBSD68 dataset
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Convergence of Prox-PNP-PGD (Hurault et al., 2022)

Let λ > 0. We here target minima of F = f + λϕσ.{
zk+1 = xk − 1

λ
∇f (xk )

xk+1 = Dσ(zk+1)
with Dσ = Id−∇gσ = Proxϕσ .

For λ > 0, let F = f + λϕσ.

Theorem
Let f , gσ : Rn → R ∪ {+∞} be proper lower semicontinous functions, bounded from below.
Suppose that

• f is differentiable with Lf -Lipschitz gradient,
• gσ is C2 with L-Lipschitz gradient and L < 1,
• F is bounded from below and satisfies the Kurdyka-Łojasiewicz property.

Then, for λ > L,
• (F (xk )) is non-increasing and converges,
• If (xk ) is bounded, it converges to a critical point of F .
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Convergence of Prox-PNP-DRS1 (Hurault et al., 2022)

Let λ > 0. We here target minima of F = f + λϕσ.
yk+1 = Prox 1

λ
f (xk )

zk+1 = Dσ(2yk+1 − xk )
xk+1 = xk + (zk+1 − yk+1)

with Dσ = Id −∇gσ = Proxϕσ .

Let λ > 0, and F DR,1
λ,σ (xk−1) = ϕσ(zk ) +

1
λ

f (yk ) + ⟨yk − xk−1, yk − zk ⟩+ 1
2∥yk − zk∥2.

Theorem
Let f , gσ : Rn → R ∪ {+∞} be proper lower semicontinous functions, bounded from below.
Suppose that

• f is convex, differentiable with Lf -Lipschitz gradient
• gσ is C2 with L-Lipschitz gradient and L < 1,
• F is bounded from below and satisfies the Kurdyka-Łojasiewicz property.

Then, for λ > L,
• (F DR,1

λ,σ (xk )) is non-increasing and converges,

• If (xk ) is bounded, it converges to a critical point of F .
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Convergence of Prox-PNP-DRS2 (Hurault et al., 2022)

Let λ > 0. We here target minima of F = f + λϕσ.
yk+1 = Dσ(xk )
zk+1 = Prox 1

λ
f (2yk+1 − xk )

xk+1 = xk + (zk+1 − yk+1)

with Dσ = Id−∇gσ = Proxϕσ .

Let λ > 0, and F DR,2
λ,σ (xk−1) = ϕσ(yk ) +

1
λ

f (zk ) + ⟨yk − xk−1, yk − zk ⟩+ 1
2∥yk − zk∥2.

Theorem
Let f , gσ : Rn → R ∪ {+∞} be proper lower semicontinous functions, bounded from below.
Suppose that

• Im(Dσ) is convex

• gσ is C2 with L-Lipschitz gradient and L < 1
2

• F is bounded from below and satisfies the Kurdyka-Łojasiewicz property.
Then, for any λ > 0,

• (F DR,2
λ,σ (xk )) is non-increasing and converges,

• If (xk ) is bounded, it converges to a critical point of F .
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Deblurring Example (Hurault et al., 2022)
Deblurring with motion kernel and Gaussian noise std ν = 0.03
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Super-resolution Example (Hurault et al., 2022)
Super-resolution with scale 2, Gaussian blur kernel and Gaussian noise std ν = 0.01
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One example of wrong reconstruction

Of course, deep or generative priors can sometimes lead to wrong reconstructions:

(Source: Figure 4.2 from (Goujon et al., 2024))
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PnP Algorithm Unrolling (Zhang et al., 2020; Repetti et al., 2022)

• Algorithm unrolling consists in training end-to-end several steps of an iterative algorithm.
• The number of steps is fixed, and all blocks (and parameters) are learnable.
• The training is done in a supervised way for a given inverse problem.

USRNet for super-resolution (Figure from (Zhang et al., 2020))
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Outline

Convergence by Non-Convex Optimization

Gradient-Step and Proximal Denoisers

Further Topics
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Further Topics

• Weakly-convex regularizations (Goujon et al., 2024; Shumaylov et al., 2024)

• Unrolling plug-and-play algorithms (Zhang et al., 2020; Repetti et al., 2022)

• Plug-and-Play posterior sampling (Laumont et al., 2022; Renaud et al., 2025a)

• Plug-and-Play adapted to more complex data-fidelity (Laroche et al., 2023)

• Stochastic plug-and-play regularizations (Renaud et al., 2024, 2025b)

• In the next course session, you will discover “diffusion models”.
• They are generative models based on the MMSE denoiser DMMSE

σ = Id + σ2∇ log pσ.
• Diffusion-based restoration algorithms can be seen as PnP algorithms with with σ → 0.
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Take-home Messages

• Using appropriate denoisers can make Plug-and-Play algorithms more stable.
• Gradient-step Denoisers allow to recover an explicit minimization problem.
• This helps to recover precise numerical control, and improves stability.
• With backtracking, we don’t even have to know the Lipschitz constant of the regularization.
• However, in practice, parameters should be adjusted to avoid bad local minima.
• Visual results can be further improved by tuning the strategy on σ.
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Finally, a little bit of advertisement...

• S. Hurault’s thesis on PnP algorithms: https://www.theses.fr/2023BORD0336
• A nice short document on gradient descent by Robert Gower:

https://perso.telecom-paristech.fr/rgower/pdf/M2_statistique_optimisation/grad_conv.pdf

See also the handbook (Garrigos and Gower, 2023).
• Recap on first-order optimization: (Dossal et al., 2024)
• Imaging in Paris seminar: https://imaging-in-paris.github.io/

• Python/Pytorch library for Plug-and-Play Imaging:

https://deepinv.github.io/
Main contributors: S. Hurault, J. Tachella, M. Terris

THANK YOU FOR YOUR ATTENTION!

https://www.theses.fr/2023BORD0336
https://perso.telecom-paristech.fr/rgower/pdf/M2_statistique_optimisation/grad_conv.pdf
https://imaging-in-paris.github.io/
https://deepinv.github.io/
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