

Plug-and-Play Image Restoration (Part 2)

Arthur Leclaire

Joint work with Samuel Hurault and Nicolas Papadakis

MVA Generative Modeling
February 17th, 2026

Short Flash-back

- Plug-and-Play framework ([Venkatakrishnan et al., 2013](#)) (ADMM with non-deep denoisers)
- ([Chan et al., 2016](#)) PnP-ADMM with BM3D
Convergence for stepsize $\tau \rightarrow 0$ and a “bounded” denoiser (i.e. $\|D_\sigma(x) - x\|^2 \leq C\sigma^2$)

Short Flash-back

- Plug-and-Play framework ([Venkatakrishnan et al., 2013](#)) (ADMM with non-deep denoisers)
- ([Chan et al., 2016](#)) PnP-ADMM with BM3D
Convergence for stepsize $\tau \rightarrow 0$ and a “bounded” denoiser (i.e. $\|D_\sigma(x) - x\|^2 \leq C\sigma^2$)
- REdularization by Denoising ([Romano et al., 2017](#)) (GD/PGD/HQS with non-deep denoisers)
Analysis with two hypotheses on D_σ : local homogeneity, and $\forall x, \|JD_\sigma(x)\| \leq 1$.
- Clarifications on RED ([Reehorst and Schniter, 2018](#)) (D_σ should have symmetric Jacobian)
- RED-PRO reformulates as a convex minimization problem on $\text{Fix}(D_\sigma)$ ([Cohen et al., 2021b](#))

Short Flash-back

- Plug-and-Play framework (Venkatakrishnan et al., 2013) (ADMM with non-deep denoisers)
- (Chan et al., 2016) PnP-ADMM with BM3D
Convergence for stepsize $\tau \rightarrow 0$ and a “bounded” denoiser (i.e. $\|D_\sigma(x) - x\|^2 \leq C\sigma^2$)
- REdularization by Denoising (Romano et al., 2017) (GD/PGD/HQS with non-deep denoisers)
Analysis with two hypotheses on D_σ : local homogeneity, and $\forall x, \|JD_\sigma(x)\| \leq 1$.
- Clarifications on RED (Reehorst and Schniter, 2018) (D_σ should have symmetric Jacobian)
- RED-PRO reformulates as a convex minimization problem on $\text{Fix}(D_\sigma)$ (Cohen et al., 2021b)
- PnP (PGD/ADMM/DRS) with Lipschitz denoisers (Ryu et al., 2019)
Convergence by contractive fixed point for with $\text{Id} - D_\sigma$ ε -Lipschitz.

Short Flash-back

- Plug-and-Play framework ([Venkatakrishnan et al., 2013](#)) (ADMM with non-deep denoisers)
- ([Chan et al., 2016](#)) PnP-ADMM with BM3D
Convergence for stepsize $\tau \rightarrow 0$ and a “bounded” denoiser (i.e. $\|D_\sigma(x) - x\|^2 \leq C\sigma^2$)
- REdularization by Denoising ([Romano et al., 2017](#)) (GD/PGD/HQS with non-deep denoisers)
Analysis with two hypotheses on D_σ : local homogeneity, and $\forall x, \|JD_\sigma(x)\| \leq 1$.
- Clarifications on RED ([Reehorst and Schniter, 2018](#)) (D_σ should have symmetric Jacobian)
- RED-PRO reformulates as a convex minimization problem on $\text{Fix}(D_\sigma)$ ([Cohen et al., 2021b](#))
- PnP (PGD/ADMM/DRS) with Lipschitz denoisers ([Ryu et al., 2019](#))
Convergence by contractive fixed point for with $\text{Id} - D_\sigma$ ε -Lipschitz.
- Convergent PnP with true MMSE denoiser ([Xu et al., 2020](#)) (MMSE is a non-convex prox)
- Convergence for firmly nonexpansive D_σ ([Sun et al., 2021](#)), ([Pesquet et al., 2021](#))

Short Flash-back

- Plug-and-Play framework (Venkatakrishnan et al., 2013) (ADMM with non-deep denoisers)
- (Chan et al., 2016) PnP-ADMM with BM3D
Convergence for stepsize $\tau \rightarrow 0$ and a “bounded” denoiser (i.e. $\|D_\sigma(x) - x\|^2 \leq C\sigma^2$)
- REdularization by Denoising (Romano et al., 2017) (GD/PGD/HQS with non-deep denoisers)
Analysis with two hypotheses on D_σ : local homogeneity, and $\forall x, \|JD_\sigma(x)\| \leq 1$.
- Clarifications on RED (Reehorst and Schniter, 2018) (D_σ should have symmetric Jacobian)
- RED-PRO reformulates as a convex minimization problem on $\text{Fix}(D_\sigma)$ (Cohen et al., 2021b)
- PnP (PGD/ADMM/DRS) with Lipschitz denoisers (Ryu et al., 2019)
Convergence by contractive fixed point for with $\text{Id} - D_\sigma$ ε -Lipschitz.
- Convergent PnP with true MMSE denoiser (Xu et al., 2020) (MMSE is a non-convex prox)
- Convergence for firmly nonexpansive D_σ (Sun et al., 2021), (Pesquet et al., 2021)
- Convergence for gradient-step denoiser (Hurault et al., 2021), (Cohen et al., 2021a)
- and several other contributions... see the review (Kamilov et al., 2023)

Goals for this Session

- ⚠ In practice, *a priori*, there is no g_σ such that $D_\sigma = \text{Prox}_{\tau g_\sigma}$ or $D_\sigma = \text{Id} - \nabla g_\sigma$...
- We will construct a deep denoiser for which there actually *is* such an explicit g_σ .
- We will formulate convergence results with **non-convex optimization** on $f + \lambda g_\sigma$.
- We will see when D_σ can be formulated as a non-convex prox.
- We will discuss training, and connections with score-matching.

Outline

Convergence by Non-Convex Optimization

Gradient-Step and Proximal Denoisers

Further Topics

Proximal Gradient Descent (non-convex case)

We say that $f : \mathbf{R}^n \rightarrow \mathbf{R} \cup \{+\infty\}$ is proper if f is not $+\infty$ everywhere.

Definition

For $f : \mathbf{R}^n \rightarrow \mathbf{R} \cup \{+\infty\}$, for any $x \in \mathbf{R}^n$, we define the point-to-set map Prox_f by

$$\text{Prox}_f(x) = \underset{z \in \mathbb{R}^n}{\text{Argmin}} f(z) + \frac{1}{2} \|z - x\|^2.$$

One can see that $\text{Prox}_f(x)$ is non-empty as soon as f is l.s.c. with $\inf f > -\infty$ and f proper.

Let $f, g : \mathbf{R}^n \rightarrow \mathbf{R} \cup \{+\infty\}$ be proper l.s.c. and lower-bounded. Suppose that f is differentiable.

In order to minimize $F = f + g$, we consider the **proximal gradient descent** (PGD) algorithm

$$x_{k+1} \in \text{Prox}_{\tau g}(x_k - \tau \nabla f(x_k)).$$

where $\tau > 0$ is a step size.

Convergence of PGD for non-convex functions

Theorem (e.g. Attouch et al. 2013)

Let $f, g : \mathbb{R}^n \rightarrow \mathbb{R} \cup \{+\infty\}$ be proper, l.s.c., bounded from below. Let $F = f + g$. Assume that f is differentiable with ∇f being L_f -Lipschitz. Suppose $\tau < \frac{1}{L_f}$.

Then the PGD sequence $x_{k+1} \in \text{Prox}_{\tau g}(x_k - \tau \nabla f(x_k))$, satisfies

1. $F(x_k)$ is non-increasing, and thus converges.
2. $\sum_{k=0}^{\infty} \|x_{k+1} - x_k\|^2 < \infty$ and $\min_{k < K} \|x_{k+1} - x_k\| = O(\frac{1}{\sqrt{K}})$.
3. The cluster points of (x_k) are critical points of F . (see precise definition later)

Convergence Proof of PGD

In order to prove (i), we need to prove a descent inequality. The definition of x_{k+1} gives

$$x_{k+1} \in \operatorname{Argmin}_x g(x) + \langle x - x_k, \nabla f(x_k) \rangle + \frac{1}{2\tau} \|x - x_k\|^2.$$

In particular,

$$f(x_k) + g(x_{k+1}) + \langle x_{k+1} - x_k, \nabla f(x_k) \rangle + \frac{1}{2\tau} \|x_{k+1} - x_k\|^2 \leq f(x_k) + g(x_k) = F(x_k).$$

Since f has L_f -Lipschitz gradient, the descent lemma gives

$$f(x_{k+1}) \leq f(x_k) + \langle x_{k+1} - x_k, \nabla f(x_k) \rangle + \frac{L_f}{2} \|x_{k+1} - x_k\|^2.$$

Therefore, $f(x_k) + \langle x_{k+1} - x_k, \nabla f(x_k) \rangle + \frac{1}{2\tau} \|x_{k+1} - x_k\|^2 \geq f(x_{k+1}) + \left(\frac{1}{2\tau} - \frac{L_f}{2} \right) \|x_{k+1} - x_k\|^2,$

and finally $F(x_{k+1}) + \left(\frac{1}{2\tau} - \frac{L_f}{2} \right) \|x_{k+1} - x_k\|^2 \leq F(x_k).$

Convergence Proof of PGD

The last inequality gives that for $\tau < \frac{1}{L_f}$, $F(x_k)$ is non-increasing.

Since $\inf F > -\infty$, we obtain $F(x_k) \rightarrow \ell \in \mathbf{R}$.

Summing the previous inequality also gives that

$$\left(\frac{1}{2\tau} - \frac{L_f}{2}\right) \sum_{k=0}^{K-1} \|x_{k+1} - x_k\|^2 \leq \sum_{k=0}^{K-1} F(x_k) - F(x_{k+1}) = F(x_0) - F(x_K) \leq F(x_0) - \ell.$$

It gives that $C = \sum_{k=0}^{\infty} \|x_{k+1} - x_k\|^2 < \infty$, and also

$$\min_{k < K} \|x_{k+1} - x_k\|^2 \leq \frac{1}{K} \sum_{k=0}^{K-1} \|x_{k+1} - x_k\|^2 \leq \frac{C}{K}.$$

Limiting Subdifferential

The last part relies on a notion of critical point for non-convex functions (Attouch et al., 2013).

For $f : \mathbf{R}^n \rightarrow \mathbf{R} \cup \{+\infty\}$ and $x \in \mathbf{R}^n$ such that $f(x) < \infty$, we define the Fréchet subdifferential by

$$\hat{\partial}f(x) = \left\{ v \in \mathbf{R}^n \mid \liminf_{y \rightarrow x} \frac{f(y) - f(x) - \langle v, y - x \rangle}{\|y - x\|} \geq 0 \right\},$$

and the limiting subdifferential as

$$\partial^{\lim} f(x) = \{ v \in \mathbf{R}^n \mid \exists (x_k), (v_k), v_k \in \hat{\partial}f(x_k), x_k \rightarrow x, f(x_k) \rightarrow f(x) \}.$$

Then one can show that (see (Rockafellar and Wets, 2009))

- $\partial f(x) \subset \hat{\partial}f(x) \subset \partial^{\lim} f(x)$
- if x is a local minimizer of f , then $0 \in \hat{\partial}f(x)$
- if f is \mathcal{C}^1 and $g(x) < +\infty$, then $\partial^{\lim}(f + g)(x) = \nabla f(x) + \partial^{\lim}g(x)$.
- if $x_k \rightarrow x$, $v_k \rightarrow v$, $v_k \in \partial^{\lim} f(x_k)$, and $f(x_k) \rightarrow f(x)$, then $v \in \partial^{\lim} f(x)$. (“ $\partial^{\lim} f(x)$ is closed”)
- if f is proper l.s.c., $z \in \text{Prox}_f(x) \Rightarrow x - z \in \partial^{\lim} f(z)$.

We say that x is a **critical point** of f if $0 \in \partial^{\lim} f(x)$.

Convergence Proof of PGD

We can now end the proof. Thanks to the characterization of $\text{Prox}_{\tau g}$, we have

$$v_k := \frac{x_k - x_{k-1}}{\tau} - \nabla f(x_k) \in \partial^{\lim} g(x_k).$$

If (x_{k_i}) is a subsequence that converges to a x , $\nabla f(x_{k_i}) \rightarrow \nabla f(x)$.

Since $\|x_{k+1} - x_k\| \rightarrow 0$, we deduce that $v_{k_i} \rightarrow -\nabla f(x)$.

Since g is l.s.c., we have $\liminf g(x_{k_i}) \geq g(x)$.

And again, with the optimality condition of x_{k+1} ,

$$g(x_{k_i}) + \langle x_{k_i} - x_{k_i-1}, \nabla f(x_{k_i-1}) \rangle + \frac{1}{2\tau} \|x_{k_i} - x_{k_i-1}\|^2 \leq g(x) + \langle x - x_{k_i-1}, \nabla f(x_{k_i-1}) \rangle + \frac{1}{2\tau} \|x - x_{k_i-1}\|^2$$

Since x_{k_i-1} also tends to x , we get $\limsup g(x_{k_i}) \leq g(x)$, and thus $g(x_{k_i}) \rightarrow g(x)$.

By the fact that “ $\partial^{\lim} g(x)$ is closed”, we get $-\nabla f(x) \in \partial^{\lim} g(x)$, and thus $0 \in \partial^{\lim} F(x)$.

The Kurdyka-Łojasiewicz property (Attouch et al., 2010)

In order to get convergence of the iterates, we need a technical assumption.

Definition (Kurdyka-Łojasiewicz (KŁ) property)

(a) A function $f : \mathbb{R}^n \rightarrow \mathbb{R} \cup \{+\infty\}$ is said to have the Kurdyka-Łojasiewicz property at $x^* \in \text{dom}(f)$ if there exists $\eta \in (0, +\infty)$, a neighborhood U of x^* and a continuous concave function $\psi : [0, \eta) \rightarrow \mathbb{R}_+$ such that $\psi(0) = 0$, ψ is \mathcal{C}^1 with $\psi' > 0$ on $(0, \eta)$, and $\forall x \in U \cap [f(x^*) < f < f(x^*) + \eta]$, the Kurdyka-Łojasiewicz inequality holds:

$$\psi'(f(x) - f(x^*)) \text{dist}(0, \partial^{\lim} f(x)) \geq 1.$$

(b) Proper lower semicontinuous functions which satisfy the Kurdyka-Łojasiewicz inequality at each point of $\text{dom}(\partial^{\lim} f)$ are called KŁ functions.

Theorem (Attouch et al. 2013)

Let $f, g : \mathbb{R}^n \rightarrow \mathbb{R} \cup \{+\infty\}$ be proper, l.s.c., lower bounded. Let $F = f + g$.

Assume that f is differentiable with ∇f being L_f -Lipschitz and that F is KŁ. Assume $\tau < \frac{1}{L_f}$.

Suppose also that the PGD iterates (x_k) are bounded.

Then (x_k) converges to a critical point of F .

Summary: Convergence of nonconvex proximal splitting algorithms

The same kind of techniques applies to the Douglas-Rachford algorithm. Recall the algorithms:

- **PGD** : $x_{k+1} \in \text{Prox}_{\tau f} \circ (\text{Id} - \tau \nabla g)$
- **DRS** : $x_{k+1} \in \frac{1}{2} \text{Id} + \frac{1}{2} (2 \text{Prox}_{\tau f} - \text{Id}) \circ (2 \text{Prox}_{\tau g} - \text{Id})$

Goal: Show that $x_k \rightarrow x^* \in \{x \in \mathbf{R}^n \mid 0 \in \partial^{\lim} f(x) + \nabla g(x)\}$.

Suppose

- f, g are proper and g has L -Lipschitz gradient
- $f + g$ is coercive and bounded from below.
- f and g verify the Kurdyka-Łojasiewicz (KŁ) property.

Then, for $\begin{cases} \text{(PGD)} \quad \tau L < 1 \quad (\text{Attouch et al., 2013}) \\ \text{(DRS)} \quad \tau L < 1/2 \quad (\text{Themelis and Patrinos, 2020}) \end{cases}$

and as soon as (x_k) is bounded, it converges towards a critical point of $f + g$.

Backtracking

What if we don't know the Lipschitz constant at stake?

For example, we have shown that the PGD update $T_\tau(x_k)$ satisfies a descent lemma

$$\forall \tau < \frac{1}{L_f}, \quad F(x_k) - F(T_\tau(x_k)) \geq \left(\frac{1}{2\tau} - \frac{L_f}{2} \right) \|T_\tau(x_k) - x_k\|^2.$$

For parameters $\gamma \in (0, \frac{1}{2})$, $\eta \in [0, 1)$, the backtracking procedure consists in

while $F(x_k) - F(T_\tau(x_k)) < \frac{\gamma}{\tau} \|T_\tau(x_k) - x_k\|^2$ **do** $\tau \leftarrow \eta\tau$.

Since this last inequality is not true for $\tau < \frac{1-2\gamma}{L_f}$, the backtracking loop stops in finite time.

It is possible to show that the convergence guarantees still hold with backtracking.

Outline

Convergence by Non-Convex Optimization

Gradient-Step and Proximal Denoisers

Further Topics

The Gradient-Step Denoiser

- (Romano et al., 2017) If D_σ has **symmetric Jacobian**, then

$$D_\sigma = \text{Id} - \nabla g_\sigma \text{ with } g_\sigma(x) = \frac{1}{2} \langle x, x - D_\sigma(x) \rangle$$

✗ Not verified by common denoisers (Reehorst and Schniter, 2018).

- (Hurault et al., 2021), (Cohen et al., 2021a) “**Gradient Step**” (**GS**) Denoiser:

$$D_\sigma = \text{Id} - \nabla g_\sigma \text{ with } g_\sigma(x) = \frac{1}{2} \|x - N_\sigma(x)\|^2$$

where $N_\sigma : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is a \mathcal{C}^1 neural network (smoothed DRUNet (Zhang et al., 2021))

- The denoiser can be written

$$D_\sigma(x) = N_\sigma(x) + J_{N_\sigma}(x)^T(x - N_\sigma(x)).$$

- A composition of functions with bounded Lipschitz differentials has Lipschitz differential.
- g_σ satisfies the KŁ property (as soon as activations are subanalytic).

Connection with Score-Matching

- The denoiser is trained on a data distribution p_X of clean images by

$$\underset{\text{Param}(D_\sigma)}{\text{Argmin}} \mathbb{E}_{x \sim p_X, \xi \sim \mathcal{N}(0, \sigma^2 \text{Id})} \left[\|D_\sigma(x + \xi) - x\|^2 \right].$$

- Writing $p_\sigma = p_X * \mathcal{N}(0, \sigma^2 \text{Id})$, this is actually equivalent to

$$\underset{\text{Param}(D_\sigma)}{\text{Argmin}} \mathbb{E}_{y \sim p_\sigma} \left[\|D_\sigma(y) - D_\sigma^{\text{MMSE}}(y)\|^2 \right]$$

or, thanks to Tweedie formula, to

$$\underset{\text{Param}(D_\sigma)}{\text{Argmin}} \mathbb{E}_{y \sim p_\sigma} \left[\|D_\sigma(y) - y - \sigma^2 \nabla \log p_\sigma(y)\|^2 \right]$$

i.e. $\underset{\text{Param}(D_\sigma)}{\text{Argmin}} \mathbb{E}_{y \sim p_\sigma} \left[\|\nabla g_\sigma(y) + \sigma^2 \nabla \log p_\sigma(y)\|^2 \right]$

- Therefore, $\sigma^{-2} \nabla g_\sigma$ is designed to approximate $-\nabla \log p_\sigma$ (called **the Stein score**)

Convergence of GS-PnP (Hurault et al., 2021)

Let $\lambda > 0$. We here target minima of $F = f + \lambda g_\sigma$.

For $\tau > 0$, consider

$$x_{k+1} = \text{Prox}_{\tau f} \circ (\tau \lambda D_\sigma + (1 - \tau \lambda) \text{Id})(x_k)$$

with gradient-step denoiser $D_\sigma = \text{Id} - \nabla g_\sigma$.

Theorem

Let $f : \mathbb{R}^n \rightarrow \mathbb{R} \cup \{+\infty\}$ and $g_\sigma : \mathbb{R}^n \rightarrow \mathbb{R}$ be proper lower semicontinuous functions.

Let $\lambda > 0$, $F = f + \lambda g_\sigma$. Suppose that

- g_σ is differentiable with L -Lipschitz gradient,
- F is bounded from below and satisfies the Kurdyka-Łojasiewicz property.

Then, for $\tau < \frac{1}{\lambda L}$,

- $(F(x_k))$ is non-increasing and converges,
- If (x_k) is bounded, then it converges to a critical point of F .

Remark: It is possible to modify the regularization g_σ to ensure that $\lim_{\|x\| \rightarrow \infty} F(x) = +\infty$.

Characterization of Proximal Operators

- (Moreau, 1965)

If $D_\sigma = \partial h_\sigma$ with h_σ convex and D_σ is nonexpansive,
then $\exists \phi_\sigma : \mathbb{R}^n \rightarrow \mathbb{R}$ convex such that $D_\sigma = \text{Prox}_{\phi_\sigma}$.
 \times Hard to enforce both conditions at the same time

- (Gribonval and Nikolova, 2020)

If $D_\sigma = \partial h_\sigma$ with h_σ convex and D_σ is nonexpansive,
then $\exists \phi_\sigma : \mathbb{R}^n \rightarrow \mathbb{R}$ convex such that $D_\sigma = \text{Prox}_{\phi_\sigma}$.

→ **Proximal denoiser** (Hurault et al., 2022)

$$D_\sigma = \text{Id} - \nabla g_\sigma = \nabla h_\sigma \text{ with } h_\sigma(x) = \frac{\|x\|^2}{2} - g_\sigma(x)$$

∇g_σ L -Lipschitz with $L < 1 \Rightarrow \exists \phi_\sigma \frac{L}{L+1}$ -weakly convex s.t. $D_\sigma = \text{Prox}_{\phi_\sigma}$

$\times D_\sigma = \text{Prox}_{\phi_\sigma}$ restricts the stepsize $\tau = 1$.

NB: ϕ is α -weakly convex if $\phi + \alpha \frac{\|\cdot\|^2}{2}$ is convex.

Gradient-Step and Proximal Denoisers

Theorem (Hurault et al. 2022)

Let $g_\sigma : \mathbb{R}^n \rightarrow \mathbb{R}$ a \mathcal{C}^{k+1} function with $k \geq 1$ and ∇g_σ L -Lipschitz with $L < 1$. Let

$$D_\sigma = \text{Id} - \nabla g_\sigma = \nabla h_\sigma \quad \text{with} \quad h_\sigma(x) = \frac{\|x\|^2}{2} - g_\sigma(x)$$

Then

- (i) h_σ is $(1 - L)$ -strongly convex and $\forall x \in \mathbb{R}^n$, $J_{D_\sigma}(x)$ is positive definite
- (ii) D_σ is injective, $\text{Im}(D_\sigma)$ is open and, $\forall x \in \mathbb{R}^n$, $D_\sigma(x) = \text{Prox}_{\phi_\sigma}(x)$, with

$$\phi_\sigma(x) \propto \begin{cases} g_\sigma(D_\sigma^{-1}(x)) - \frac{1}{2} \|D_\sigma^{-1}(x) - x\|^2 & \text{if } x \in \text{Im}(D_\sigma), \\ +\infty & \text{otherwise,} \end{cases} \quad (1)$$

- (iii) ϕ_σ is $\frac{L}{L+1}$ weakly convex.

Training the Gradient-step and Proximal denoisers

Training loss: GS-Denoiser - Prox-Denoiser

$$\underset{\text{Param}(D_\sigma)}{\text{Argmin}} \mathbb{E}_{x, \xi_\sigma} \left[\|D_\sigma(x + \xi_\sigma) - x\|^2 + \mu \max(\|\nabla^2 g_\sigma(x + \xi_\sigma)\|_S, 1 - \epsilon) \right]$$

$\sigma(./255)$	5	15	25
DRUNet	40.19	33.89	31.25
GS-Denoiser	40.26	33.90	31.26
Prox-Denoiser	40.12	33.60	30.82

Table: Denoising PSNR on the CBSD68 dataset

$\sigma(./255)$	5	15	25
GS-DRUNet	1.26	1.96	3.27
Prox-DRUNet	0.92	0.99	0.96

Table: $\max_x \|\nabla^2 g_\sigma(x)\|_S$ on the CBSD68 dataset

Convergence of Prox-PNP-PGD (Hurault et al., 2022)

Let $\lambda > 0$. We here target minima of $F = f + \lambda \phi_\sigma$.

$$\begin{cases} z_{k+1} = x_k - \frac{1}{\lambda} \nabla f(x_k) \\ x_{k+1} = D_\sigma(z_{k+1}) \end{cases} \quad \text{with} \quad D_\sigma = \text{Id} - \nabla g_\sigma = \text{Prox}_{\phi_\sigma}.$$

For $\lambda > 0$, let $F = f + \lambda \phi_\sigma$.

Theorem

Let $f, g_\sigma : \mathbb{R}^n \rightarrow \mathbb{R} \cup \{+\infty\}$ be proper lower semicontinuous functions, bounded from below. Suppose that

- f is differentiable with L_f -Lipschitz gradient,
- g_σ is \mathcal{C}^2 with L -Lipschitz gradient and $L < 1$,
- F is bounded from below and satisfies the Kurdyka-Łojasiewicz property.

Then, for $\lambda > L$,

- $(F(x_k))$ is non-increasing and converges,
- If (x_k) is bounded, it converges to a critical point of F .

Convergence of Prox-PNP-DRS1 (Hurault et al., 2022)

Let $\lambda > 0$. We here target minima of $F = f + \lambda \phi_\sigma$.

$$\begin{cases} y_{k+1} = \text{Prox}_{\frac{1}{\lambda}f}(x_k) \\ z_{k+1} = D_\sigma(2y_{k+1} - x_k) \\ x_{k+1} = x_k + (z_{k+1} - y_{k+1}) \end{cases} \quad \text{with} \quad D_\sigma = \text{Id} - \nabla g_\sigma = \text{Prox}_{\phi_\sigma}.$$

Let $\lambda > 0$, and $F_{\lambda,\sigma}^{DR,1}(x_{k-1}) = \phi_\sigma(z_k) + \frac{1}{\lambda}f(y_k) + \langle y_k - x_{k-1}, y_k - z_k \rangle + \frac{1}{2}\|y_k - z_k\|^2$.

Theorem

Let $f, g_\sigma : \mathbb{R}^n \rightarrow \mathbb{R} \cup \{+\infty\}$ be proper lower semicontinuous functions, bounded from below. Suppose that

- f is convex, differentiable with L_f -Lipschitz gradient
- g_σ is C^2 with L -Lipschitz gradient and $L < 1$,
- F is bounded from below and satisfies the Kurdyka-Łojasiewicz property.

Then, for $\lambda > L$,

- $(F_{\lambda,\sigma}^{DR,1}(x_k))$ is non-increasing and converges,
- If (x_k) is bounded, it converges to a critical point of F .

Convergence of Prox-PNP-DRS2 (Hurault et al., 2022)

Let $\lambda > 0$. We here target minima of $F = f + \lambda\phi_\sigma$.

$$\begin{cases} y_{k+1} = D_\sigma(x_k) \\ z_{k+1} = \text{Prox}_{\frac{1}{\lambda}f}(2y_{k+1} - x_k) \quad \text{with} \quad D_\sigma = \text{Id} - \nabla g_\sigma = \text{Prox}_{\phi_\sigma} \\ x_{k+1} = x_k + (z_{k+1} - y_{k+1}) \end{cases}$$

Let $\lambda > 0$, and $F_{\lambda,\sigma}^{DR,2}(x_{k-1}) = \phi_\sigma(y_k) + \frac{1}{\lambda}f(z_k) + \langle y_k - x_{k-1}, y_k - z_k \rangle + \frac{1}{2}\|y_k - z_k\|^2$.

Theorem

Let $f, g_\sigma : \mathbb{R}^n \rightarrow \mathbb{R} \cup \{+\infty\}$ be proper lower semicontinuous functions, bounded from below.

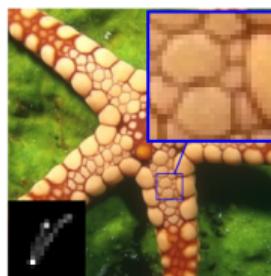
Suppose that

- $\text{Im}(D_\sigma)$ is convex
- g_σ is \mathcal{C}^2 with L -Lipschitz gradient and $L < \frac{1}{2}$
- F is bounded from below and satisfies the Kurdyka-Łojasiewicz property.

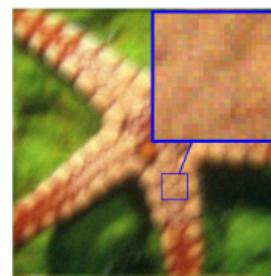
Then, for any $\lambda > 0$,

- $(F_{\lambda,\sigma}^{DR,2}(x_k))$ is non-increasing and converges,
- If (x_k) is bounded, it converges to a critical point of F .

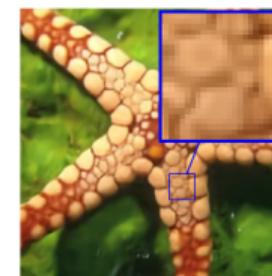
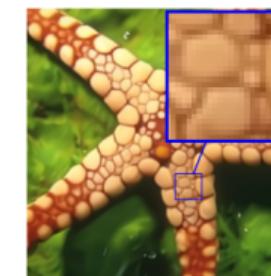
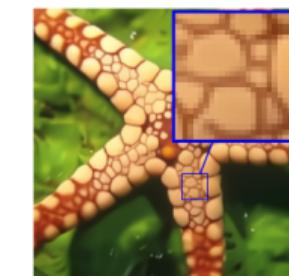
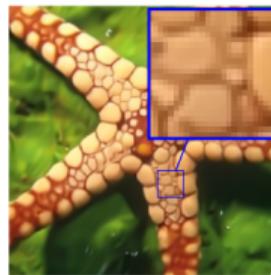
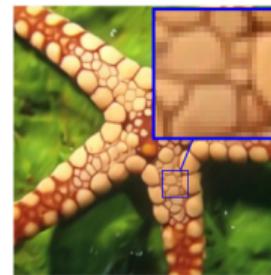
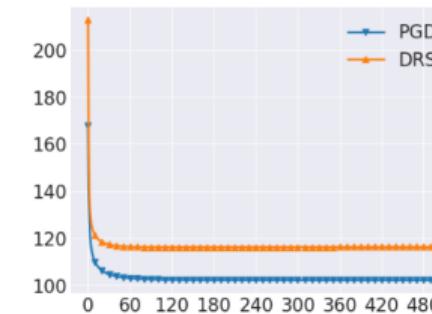
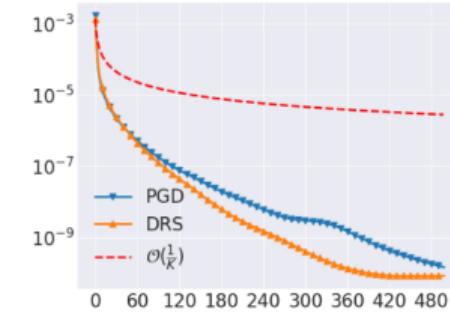
Deblurring Example (Hurault et al., 2022)

Deblurring with motion kernel and Gaussian noise std $\nu = 0.03$ 

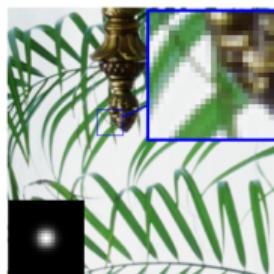
(a) Clean



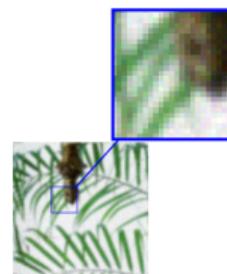
(b) Observed

(c) IRCNN
(28.66dB)(d) DPIR
(29.76dB)(e) GSPnP-HQS
(29.90dB)(f) Prox-PnP-PGD
(29.41dB)(g) Prox-PnP-DRS
(29.65dB)(h) $F_{\lambda, \sigma}(x_k)$ (i) $\min_{i \leq k} \|x_{i+1} - x_i\|^2$

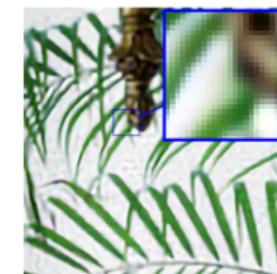
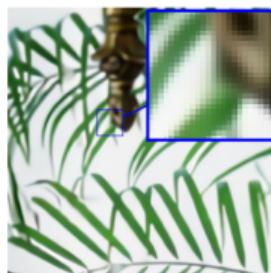
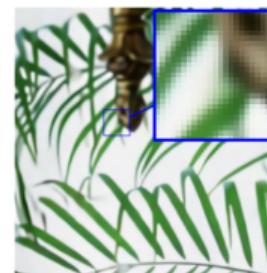
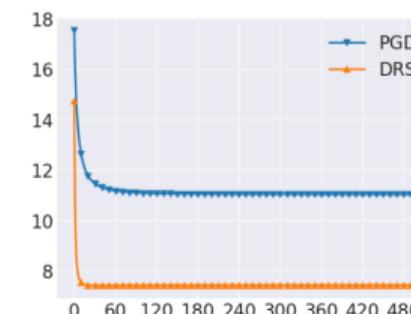
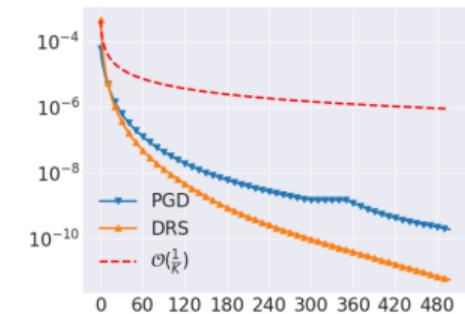
Super-resolution Example (Hurault et al., 2022)

Super-resolution with scale 2, Gaussian blur kernel and Gaussian noise std $\nu = 0.01$ 

(a) Clean

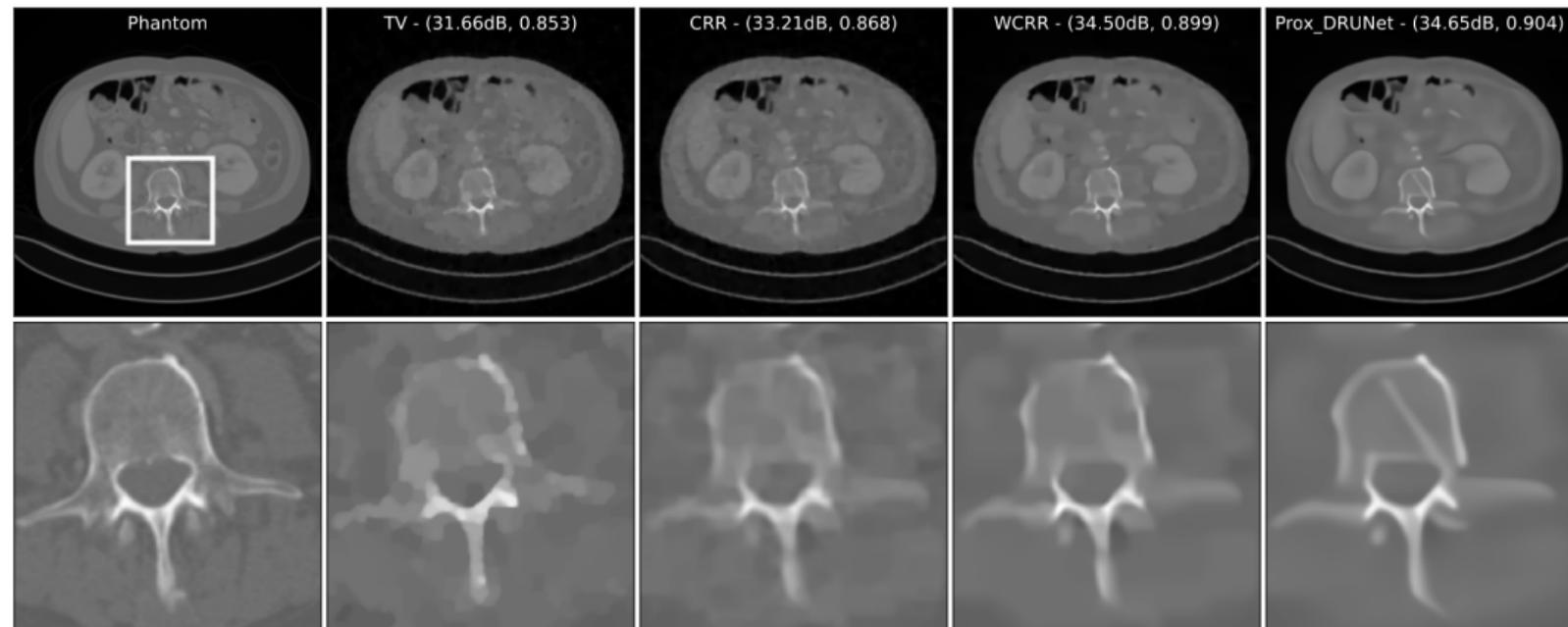


(b) Observed

(c) IRCNN
(22.82dB)(d) DPIR
(23.97dB)(e) GSPnP-HQS
(24.81dB)(f) Prox-PnP-PGD
(23.96dB)(g) Prox-PnP-DRS
(24.36dB)(h) $F_{\lambda, \sigma(x_k)}$ (i) $\min_{i < k} \|x_{i+1} - x_i\|^2$

One example of wrong reconstruction

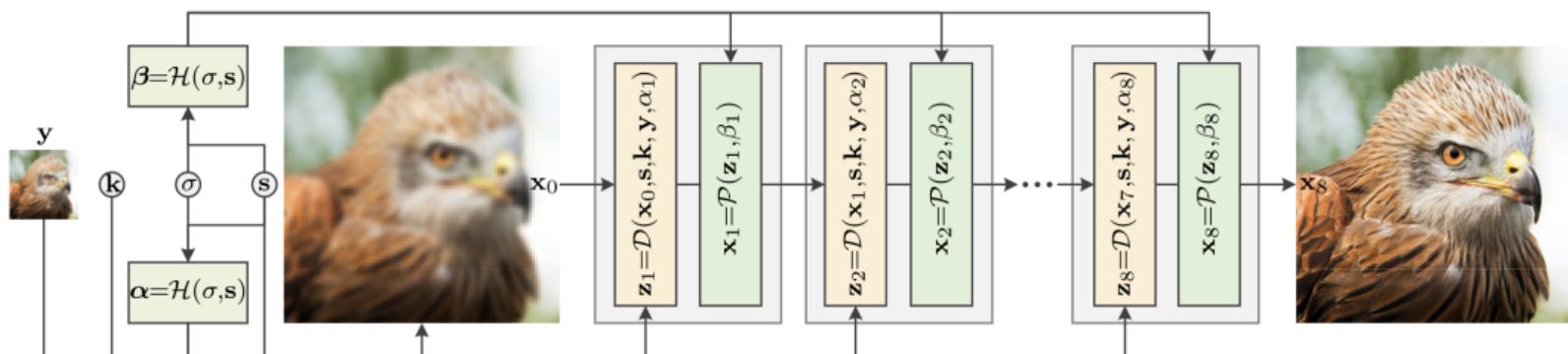
Of course, deep or generative priors can sometimes lead to wrong reconstructions:



(Source: Figure 4.2 from [\(Goujon et al., 2024\)](#))

PnP Algorithm Unrolling (Zhang et al., 2020; Repetti et al., 2022)

- Algorithm unrolling consists in training end-to-end several steps of an iterative algorithm.
- The number of steps is fixed, and all blocks (and parameters) are learnable.
- The training is done in a supervised way for a given inverse problem.



USRNet for super-resolution (Figure from (Zhang et al., 2020))

Outline

Convergence by Non-Convex Optimization

Gradient-Step and Proximal Denoisers

Further Topics

Further Topics

- Weakly-convex regularizations (Goujon et al., 2024; Shumaylov et al., 2024)
- Unrolling plug-and-play algorithms (Zhang et al., 2020; Repetti et al., 2022)
- Plug-and-Play posterior sampling (Laumont et al., 2022; Renaud et al., 2025a)
- Plug-and-Play adapted to more complex data-fidelity (Laroche et al., 2023)
- Stochastic plug-and-play regularizations (Renaud et al., 2024, 2025b)

- In the next course session, you will discover “diffusion models”.
- They are generative models based on the MMSE denoiser $D_\sigma^{\text{MMSE}} = \text{Id} + \sigma^2 \nabla \log p_\sigma$.
- Diffusion-based restoration algorithms can be seen as PnP algorithms with $\sigma \rightarrow 0$.

Take-home Messages

- Using appropriate denoisers can make Plug-and-Play algorithms more stable.
- Gradient-step Denoisers allow to recover an explicit minimization problem.
- This helps to recover precise numerical control, and improves stability.
- With backtracking, we don't even have to know the Lipschitz constant of the regularization.
- However, in practice, parameters should be adjusted to avoid bad local minima.
- Visual results can be further improved by tuning the strategy on σ .

Finally, a little bit of advertisement...

- S. Hurault's thesis on PnP algorithms: <https://www.theses.fr/2023BORD0336>
- A nice short document on gradient descent by Robert Gower:
https://perso.telecom-paristech.fr/rgower/pdf/M2_statistique_optimisation/grad_conv.pdf
See also the handbook (Garrigos and Gower, 2023).
- Recap on first-order optimization: (Dossal et al., 2024)
- Imaging in Paris seminar: <https://imaging-in-paris.github.io/>
- Python/Pytorch library for Plug-and-Play Imaging:

<https://deepinv.github.io/>

Main contributors: S. Hurault, J. Tachella, M. Terris

THANK YOU FOR YOUR ATTENTION!

References I

Attouch, H., Bolte, J., Redont, P., and Soubeyran, A. (2010). Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the kurdyka-Łojasiewicz inequality. *Mathematics of operations research*, 35(2):438–457.

Attouch, H., Bolte, J., and Svaiter, B. F. (2013). Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized gauss–seidel methods. *Mathematical Programming*, 137(1-2):91–129.

Chan, S. H., Wang, X., and Elgendi, O. A. (2016). Plug-and-play ADMM for image restoration: Fixed-point convergence and applications. *IEEE Transactions on Computational Imaging*, 3(1):84–98.

Cohen, R., Blau, Y., Freedman, D., and Rivlin, E. (2021a). It has potential: Gradient-driven denoisers for convergent solutions to inverse problems. *Advances in Neural Information Processing Systems*, 34.

Cohen, R., Elad, M., and Milanfar, P. (2021b). Regularization by denoising via fixed-point projection (RED-PRO). *SIAM Journal on Imaging Sciences*, 14(3):1374–1406.

Dossal, C., Hurault, S., and Papadakis, N. (2024). Optimization with first order algorithms.

Garrigos, G. and Gower, R. M. (2023). Handbook of convergence theorems for (stochastic) gradient methods.

References II

Goujon, A., Neumayer, S., and Unser, M. (2024). Learning weakly convex regularizers for convergent image-reconstruction algorithms. *SIAM Journal on Imaging Sciences*, 17(1):91–115.

Gribonval, R. and Nikolova, M. (2020). A characterization of proximity operators. *Journal of Mathematical Imaging and Vision*, 62(6):773–789.

Hurault, S., Leclaire, A., and Papadakis, N. (2021). Gradient step denoiser for convergent plug-and-play. In *International Conference on Learning Representations*.

Hurault, S., Leclaire, A., and Papadakis, N. (2022). Proximal denoiser for convergent plug-and-play optimization with nonconvex regularization. In *International Conference on Machine Learning*, pages 9483–9505. PMLR.

Kamilov, U. S., Bouman, C. A., Buzzard, G. T., and Wohlberg, B. (2023). Plug-and-play methods for integrating physical and learned models in computational imaging: Theory, algorithms, and applications. *IEEE Signal Processing Magazine*, 40(1):85–97.

Laroche, C., Almansa, A., Coupeté, E., and Tassano, M. (2023). Provably convergent plug & play linearized admm, applied to deblurring spatially varying kernels. In *Proceedings of ICASSP*, pages 1–5. IEEE.

References III

Laumont, R., Bortoli, V. D., Almansa, A., Delon, J., Durmus, A., and Pereyra, M. (2022). Bayesian imaging using plug & play priors: when langevin meets tweedie. *SIAM Journal on Imaging Sciences*, 15(2):701–737.

Moreau, J.-J. (1965). Proximité et dualité dans un espace hilbertien. *Bulletin de la Société Mathématique de France*, 93:273–299.

Pesquet, J.-C., Repetti, A., Terris, M., and Wiaux, Y. (2021). Learning maximally monotone operators for image recovery. *SIAM Journal on Imaging Sciences*, 14(3):1206–1237.

Reehorst, E. T. and Schniter, P. (2018). Regularization by denoising: Clarifications and new interpretations. *IEEE transactions on computational imaging*, 5(1):52–67.

Renaud, M., de Bortoli, V., Leclaire, A., and Papadakis, N. (2025a). From stability of langevin diffusion to convergence of proximal mcmc for non-log-concave sampling. In *Proceedings of NeurIPS*.

Renaud, M., Hermant, J., and Papadakis, N. (2025b). Convergence Analysis of a Proximal Stochastic Denoising Regularization Algorithm. In Bubba, T. A., Gaburro, R., Gazzola, S., Papafitsoros, K., Pereyra, M., and Schönlieb, C.-B., editors, *Scale Space and Variational Methods in Computer Vision*, pages 17–29, Cham. Springer Nature Switzerland.

References IV

Renaud, M., Prost, J., Leclaire, A., and Papadakis, N. (2024). Plug-and-play image restoration with stochastic denoising regularization. In *Proceedings of ICML*.

Repetti, A., Terris, M., Wiaux, Y., and Pesquet, J.-C. (2022). Dual forward-backward unfolded network for flexible plug-and-play. In *2022 30th European Signal Processing Conference (EUSIPCO)*, pages 957–961. IEEE.

Rockafellar, R. T. and Wets, R. J.-B. (2009). *Variational analysis*, volume 317. Springer Science & Business Media.

Romano, Y., Elad, M., and Milanfar, P. (2017). The little engine that could: Regularization by denoising (RED). *SIAM Journal on Imaging Sciences*, 10(4):1804–1844.

Ryu, E., Liu, J., Wang, S., Chen, X., Wang, Z., and Yin, W. (2019). Plug-and-play methods provably converge with properly trained denoisers. In *International Conference on Machine Learning*, pages 5546–5557. PMLR.

Shumaylov, Z., Budd, J., Mukherjee, S., and Schönlieb, C.-B. (2024). Weakly convex regularisers for inverse problems: convergence of critical points and primal-dual optimisation. In *Proceedings of the 41st International Conference on Machine Learning*, pages 45286–45314.

Sun, Y., Wu, Z., Xu, X., Wohlberg, B., and Kamilov, U. S. (2021). Scalable plug-and-play admm with convergence guarantees. *IEEE Transactions on Computational Imaging*, 7:849–863.

References V

Themelis, A. and Patrinos, P. (2020). Douglas–rachford splitting and ADMM for nonconvex optimization: Tight convergence results. *SIAM Journal on Optimization*, 30(1):149–181.

Venkatakrishnan, S. V., Bouman, C. A., and Wohlberg, B. (2013). Plug-and-play priors for model based reconstruction. In *2013 IEEE Global Conference on Signal and Information Processing*, pages 945–948. IEEE.

Xu, X., Sun, Y., Liu, J., Wohlberg, B., and Kamilov, U. S. (2020). Provable convergence of plug-and-play priors with mmse denoisers. *arXiv preprint arXiv:2005.07685*.

Zhang, K., Gool, L. V., and Timofte, R. (2020). Deep unfolding network for image super-resolution. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 3217–3226.

Zhang, K., Li, Y., Zuo, W., Zhang, L., Van Gool, L., and Timofte, R. (2021). Plug-and-play image restoration with deep denoiser prior. *IEEE Transactions on Pattern Analysis and Machine Intelligence*.