Plug-and-Play Algorithms Convergence by Fixed Point Theory Plug-and-Play imaging in practice
000000000000 000000000 000000000

Plug-and-Play Image Restoration (Part 1)

Arthur Leclaire
Joint work with Samuel Hurault and Nicolas Papadakis

TELECOM

ST

N2 1P PARIS

MVA Generative Modeling
February 17th, 2026

1/33



Goals for this Session

® We will introduce Plug-and-Play (PnP) methods to solve inverse problems.

* We will give tools for convergence analysis of PnP methods
based on fixed point theory (with averaged operators) or optimization.

* We will discuss the practical setup of such PnP algorithms.
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Image Inverse Problems

[ Find xo from observation y = Axp + & ]

e y ¢ R™ observation

® xo € R” unknown input

* A c R™" degradation operator

e ¢ random noise, often ¢ ~ A(0, ?1d)

4/33



Plug-and-Play Algorithms Convergence by Fixed Point Theory
000000000000 000000000

Image Inverse Problems

Find xo from observation y = Axp + &

® y € R" observation

® xo € R” unknown input

A € R™" degradation operator

e ¢ random noise, often ¢ ~ A(0, ?1d)

Denoising:

Plug-and-Play imaging in practice

000000000

4/33



Plug-and-Play Algorithms Convergence by Fixed Point Theory
000000000000 000000000

Image Inverse Problems

Find xo from observation y = Axp + &

® y € R" observation

® xo € R” unknown input

A € R™" degradation operator

e ¢ random noise, often ¢ ~ A(0, ?1d)

Deblurring:

Plug-and-Play imaging in practice
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Image Inverse Problems

[ Find xo from observation y = Axp + &

® y € R” observation

® xo € R” unknown input

A € R™" degradation operator

e ¢ random noise, often ¢ ~ A(0, ?1d)

Super-resolution:

Plug-and-Play imaging in practice
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Image Inverse Problems

Find xo from observation y = Axp + &

e y ¢ R™ observation

® xo € R” unknown input

* A c R™" degradation operator

e ¢ random noise, often ¢ ~ A(0, ?1d)

Inpainting:
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Image Inverse Problems

[ Find xo from observation y = Axp + & ]

e y ¢ R™ observation

® xo € R” unknown input

* A c R™" degradation operator

e ¢ random noise, often ¢ ~ A(0, ?1d)

Compressed Sensing: e.g. Magnetic Resonance Imaging (MRI)

\
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Image Inverse Problems

[ Find xo from observation y ~ p(y|xo) ]

® y ¢ R™ observation
® xo € R"” unknown input
® p(y|x) forward model

Computed Tomography:
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Maximum A-Posteriori

[ Find x from observation y ~ p(y|x) with an a-priori p(x) on the solution ]

Argmax p(x|y) = Argmax PYIX)P(x) = Argmin — log p(y|x) — log p(x)

X€ERN XERN ( ) XERN

Maximum A-Posteriori

Xx* € Argmin f(x) + X g(x)

X€ERN

< Argmin data-fidelity regularization

XERN

+
f(x) = —log p(y|x) g(x) oc —log p(x)
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Fixed Point Theory

A variety of data-fidelity terms f

e Assuming Gaussian noise model & ~ A/(0, /2Id),

1
(x) = ~log p(y1x) = 5 5 1 Ax — |

— convex and smooth f, non-strongly convex in general

® |ess regular cases
- Noiseless case: f(x) = 14 | ax—y} — non-smooth f
- Laplace / Poisson noise model ~ — non-smooth f
- Phase retrieval — non-convex f

® More complex non-linear modeling of real complex physical systems

(e.g. X-ray computed tomography, electron-microscopy...) (Kamilov et al., 2017).

aging in practice
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A variety of explicit image priors

Design an explicit regularization on image features:
® Total variation (Rudin et al., 1992)
® Fourier spectrum (Ruderman, 1994)
® Wavelet sparsity (Mallat, 2009)
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A variety of explicit image priors

Design an explicit regularization on image features:
® Total variation (Rudin et al., 1992)
® Fourier spectrum (Ruderman, 1994)
® Wavelet sparsity (Mallat, 2009)

Learn an explicit prior on patches:
® Dictionary learning (Elad and Aharon, 2006), (Mairal et al., 2008)
® Gaussian mixture models (Yu et al., 2011), (Zoran and Weiss, 2011)
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A variety of explicit image priors

Design an explicit regularization on image features:
® Total variation (Rudin et al., 1992)
® Fourier spectrum (Ruderman, 1994)
® Wavelet sparsity (Mallat, 2009)

Learn an explicit prior on patches:
® Dictionary learning (Elad and Aharon, 2006), (Mairal et al., 2008)
® Gaussian mixture models (Yu et al., 2011), (Zoran and Weiss, 2011)

Learn an explicit deep prior on full images (generative models):
® Variational Auto-encoders (Kingma and Welling, 2019)

® Normalizing flows (Rezende and Mohamed, 2015)
® Score-based/Diffusion models (Song et al., 2021)
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Plug-and-Play motivations

Find x* € Argmin Data-fidelity(x) + Regularization(x)
XERN

* Decouple data-fidelity and regularization via splitting algorithms
(Combettes and Pesquet, 2011), (Zoran and Weiss, 2011)
v Image Denoising is relatively easy and well understood.

— State-of-the art denoisers without explicit prior
Filtering methods (Dabov et al., 2007), (Lebrun et al., 2013)
Deep denoisers (Zhang et al., 2017b,a), (Song et al., 2021)
— Denoising is taking a step towards the manifold of clean images: implicit prior

We will alternate between
1. Taking a denoising step
2. Enforcing data-fidelity
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First-order optimization algorithms

Find x* € Argmin F(x)

XERN

e Gradient Descent
Xk+1 = (ld — TVF)(Xk) i.e. Xk+1 = Xk — TVF(X;()
* Proximal Point Algorithm

Xkt1 € Prox-£(Xk) i.€. Xirt + TVF(Xkr1) = Xk

where Proxg(x) := Argmin 1||z — x| + F(2)
zERN 2

Warning: Computing Proxg (uniquely) requires some conditions on F, and is sometimes difficult.
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Proximal Splitting
(Bauschke and Combettes, 2011)

Find x* € Argmin f(x) + g(x)

XERN

e Gradient Descent (GD)
X1 = (|d — T(Vf—F Vg))(xk)

® Proximal Gradient Descent (PGD, ISTA)
Xk+1 = Prox-g o(ld — 7V F)(xk)

¢ Half Quadratic Splitting (HQS)

Xk+1 = Prox-g o Prox,¢(Xk) @ does not target f + g
¢ Douglas-Rashford Splitting (DRS) / ADMM

Xkp1 = (%ld + %(2 Prox,q —Id) o (2 Prox.f fld)) (xx) and Xk = Prox.¢(Xk)

10/33



Plug-and-Play Algorithms Convergence by Fixed Point Theory Plug-and-Play imaging in practice
0O0000000e000 000000000 000000000

Denoising prior

[ Find x from observation y = x + ¢ ]

® |nput distribution p(x).
* Gaussian noise ¢ ~ N(0, o21d).
* Noisy observation y with density p, (y) where p, = p * N(0, o21d).

MAP estimator MMSE estimator
MAP _
D*(y) = Argmax p(xly) DYSE(y) = By piai ]
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Denoising prior

[ Find x from observation y = x + ¢

® |nput distribution p(x).
* Gaussian noise ¢ ~ N(0, o21d).
* Noisy observation y with density p, (y) where p, = p * N(0, o21d).

MAP estimator MMSE estimator
MAP _
D" (y) = Argmax p(x]y) DYSE(y) = By piai ]
p(y|x)p(x)
Argmax p(x|y) = Argmax ———~ "7
gx p( |y) fiR" p(y)
= Argmin — log p(y|x) — log p(x)

XERN

-1 2
= Argmin 55 X = I log p(x) = Prox_20;(y)

Plug-and-Play imaging in practice
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Denoising prior

Plug-and-Play imaging in practice
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[ Find x from observation y = x + ¢

® |nput distribution p(x).
* Gaussian noise ¢ ~ N(0, o21d).

* Noisy observation y with density p, (y) where p, = p * N(0, o21d).

MAP estimator
D (y) = Argmax p(x|y)

N

MMSE estimator
DY (y) = Exwptuiy) [X]

Bayes formula:

MAP
D™ = Prox_,2 44

Tweedie formula:
DMVSE — Id — V(—0? log ps)

A denoiser is related to an implicit prior
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PnP and RED algorithms

Find x* € Argmin f(x) + Ag(x) with f = —logp(y|.) and g x — log p

GD D Xiepr = (Id = 7(VF+ AVQ)) (Xk)

HQS  : Xk11 = Prox,ag o Prox,(Xk)

PGD  Xk1 = PrOX-,-)\g O(|d — TVf)(Xk)

DRS  : Xki1 = 3ld 4+ 3(2Prox-ag —Id) o (2 Prox,s —Id)(xk)
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PnP and RED algorithms

Find x* € Argmin f(x) + Ag(x) with f = —log p(y|.) and g o< — log p

GD D Xiepr = (Id = 7(VF+ AVQ)) (Xk)

HQS  : Xk41 = Prox,ag o Prox.¢(Xk)

PGD  Xk1 = PrOX-,-)\g O(|d — TVf)(Xk)

DRS  : Xki1 = 3ld 4+ 3(2Prox-ag —Id) o (2 Prox,s —Id)(xk)

MAP denoiser MMSE denoiser
Dy (y) = Prox_,2 0 p(¥) D, (y) = (Id+ 0°V log p;)(¥)
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PnP and RED algorithms

Find x* € Argmin f(x) + Ag(x)

with f = —logp(y|.) and g x — log p

GD D Xiepr = (Id = 7(VF+ AVQ)) (Xk)

HQS  : Xk41 = Prox,ag o Prox.¢(Xk)

PGD  Xk1 = PrOX-,-)\g O(|d — TVf)(Xk)

DRS  : Xki1 = 3ld 4+ 3(2Prox-ag —Id) o (2 Prox,s —Id)(xk)

MAP denoiser
Df"(y) = PFOX_G.z Iogp(y)

Plug-and-play (PnP)
(Venkatakrishnan et al., 2013)

Prox:xg — Ds

\——————————————————————————————————————————————
————

=

MMSE denoiser
D, (y) = (Id+ 0°V log p;)(¥)

\
’

Regularization by denoising (RED)
(Romano et al., 2017)

ld— Vg — D,

Plug-and-Play imaging in practice
000000000
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PnP and RED algorithms

GD t X1 = (Id — 7(VF+ AV Q) (x«)

HQS  : Xk41 = Prox,ag o Prox.¢(Xk)

PGD  : Xkt1 = Prox;ago(ld — 7V£)(xk)

DRS  : Xei1 = 3ld + (2 Prox-ag —Id) o (2 Prox,¢ —Id)(xk)
MAP denoiser

DO’(y) = PI’OX_gz Iogp(y)

(Venkatakrishnan et al.

PnP algorithms
,2013)

Prox-ag — Ds

PnP-PGD

PnP-HQS
PnP-DRS

 Xk1 = D[, o) PI’OX-,-f(Xk)
P Xk+1 = D, o (|d — TVf)(Xk)
 Xie1 = 21d + 3(2D, — Id) o (2 Prox,; —Id)(xc)
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PnP and RED algorithms

GD $ X1 = (Id = 7(VF+ AVQ)) (xk)

HQS  : Xk41 = Prox,ag o Prox.¢(Xk)

PGD  : Xk41 = Prox,aro(ld — 7V g)(Xk)

DRS X1 = %Id + %(2 Prox,xg —Id) o (2 Prox,r —Id)(x«)

MMSE denoiser
D, (y) = (Id+ 0°V log p; )(¥)

RED algorithms
(Romano et al., 2017)

Id— Vg — D,

\. J

RED-GD tXkt1 = (TADy + (1 — 7A)Id — 7V F) (Xk)
RED-PGD  : Xx41 = Prox,so(7ADs + (1 — 7A)Id)(Xk)
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What about convergence?

/N Butin practice, D, # Prox.g , D, #Id — Vg...

Goal: Find minimal conditions on D, to get back convergence guarantees. ]
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Outline

Convergence by Fixed Point Theory
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PnP Convergence by Fixed Point

The previous PnP algorithms can be written as
Xir1 = Tpnp(Xk)

Thos = Do o Prox,¢
with  Tppp = ¢ Teap = Do o (Id — 7VF)
Tors = 3ld+ 1(2D, — Id) o (2 Prox, —Id)

Goal: Show that xx — x™ € Fix(Tpnp). ]

where we used the notation
Fix(T)={xe€R"| T(x)=x}.

16/33



Convergence by Fixed Point Theory
00®000000

Reminder: Averaged operators
(Bauschke and Combettes, 2011)
Let T : R" — R". We will consider R" equipped with the Euclidean norm.
Definition
We say that T is nonexpansive if it is 1-Lipschitz.
Definition
T is 0-averaged (with 6 € (0, 1)) if there exists a nonexpansive R : R” — R" such that

T=6R+(1—0)ld.

e “T 9-averaged” is equivalent to “(1 — 3)Id + 5 T nonexpansive”, and also to

1-90

vx,y € R | T(x) = TW)IF + — %100~ T)(x) — (19 - Y < lx - ¥

e T is 0-averaged = T is nonexpansive.
e Tis %-averaged <= T is firmly nonexpansive.
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Composition of Averaged operators

Proposition

Let T be 6-averaged and o € [0, 1]. Then
® oT + (1 — a)ld is af-averaged.
e T js@'-averaged for any ¢’ € [6,1).

Remark: If T is L-Lipschitz with L < 1, then T is L%‘-averaged.

Proposition (Combettes and Yamada, 2015)

Let Ty be 01-averaged and T be 0,-averaged, with any 61,6, € (0,1).
Then Ty o T, is -averaged with § = %42 20% ¢ (0,1).
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Proximity operator of Convex Functions
Let I'o(R™) be the set of f : R” — R U {+o00} that are convex, |.s.c., and proper (i.e. f £ +oo).
For f: R” — RU {400}, and x € R", we define the subgradient
of(x)={veR"|vVvzeR", f(z) = f(x)+ (v,z— x) }.
It is easy to see that the subgradient of a proper function f is monotone, that is,
Vx1, % € R",Vvy € 0f(x1),Vv € 0f(x2), (V1 — Vo,x1 — X2) > 0.

Proposition
For f € To(R"), for any x € R", we can uniquely define

Prox:(x) = Argmin f(z) + %Hz — x|

zeR"

The point p = Prox¢(x) is characterized by x — p € 9f(p).
Consequence: If f € [5(R"), then Prox; is %—averaged (i.e. firmly nonexpansive).
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Exercise (Important for next practical Session)

Exercise: (solve it for practical session of next week!)

Let f(x) = 3||Ax — y||® where A € RP*" is a linear operator. Let 7 > 0.
® Find an explicit expression of Prox..

® Suppose that A is the periodic convolution with a kernel k: Ax = k * x.
How can you compute Prox. in practice?
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Argmin and Fixed Points

Proposition
Letf,g:R" — RU {+oco} be convex proper I.s.c. with f differentiable, and let > 0. Then

Argmin(f + g) = Fix ( Proxg o(ld — 7Vf)).
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Argmin and Fixed Points

Proposition
Letf,g:R" — RU {+oco} be convex proper I.s.c. with f differentiable, and let > 0. Then

Argmin(f + g) = Fix ( Proxg o(ld — 7Vf)).

Proof.

x € Argmin(f + g) <= 0 € Vf(x) + 9g(x)
<— —7VIf(x) € 9rg(x)
<> X € Prox.¢(x — 7V{(x)).

In order to minimize f + g, it is thus relevant to study the convergence of the sequence
Xk+1 = PI‘OXTg(Xk — TVf(Xk)).
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Reflected Proxity Operator

We define
RProxs = 2 Proxs —Id.

Then, Prox; is %-averaged if and only if RProx; is 1-Lipschitz.
Proposition
Letf,g € To(R") and let > 0. Then

Argmin(f 4+ g) = Prox.¢ (Fix ( RProx-g o RProx ))
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Reflected Proxity Operator

We define
RProxs = 2 Proxs —Id.

Then, Prox; is %-averaged if and only if RProx; is 1-Lipschitz.
Proposition
Letf,g € To(R") and let > 0. Then

Argmin(f 4+ g) = Prox.¢ (Fix ( RProx-g o RProx ))

If f,g € To(R"), then 11d + } RProx,4 o RProx. is }-averaged.
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Reflected Proxity Operator

We define
RProxs = 2 Proxs —Id.

Then, Prox; is %-averaged if and only if RProx; is 1-Lipschitz.
Proposition
Letf,g € To(R") and let > 0. Then

Argmin(f 4+ g) = Prox,¢ ( Fix ( RProx,g o RProx,f) |.
g

If f,g € To(R"), then 11d + } RProx,4 o RProx. is }-averaged.

In order to minimize f + g, it is thus relevant to study the convergence of the iterative sequence

Xkl = (%Id —+ % RProx.g o RProfo>(Xk) and set  Xx = Prox,(Xk)-
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PnP convergence via averaged operator theory

PnP algorithms: Xkt1 = Tpnp(Xk)

Thos = Do o Prox,¢
with Tenp = § Teap = Do o (Id — 7V)
Tons = 310+ 1(2D, ~1d) o (2 Prox,—Id)
Theorem

Let f : R” — R be convex, differentiable with Vf L-Lipschitz, and D, be 0-averaged, 6 € (0,1).
Assume that the iterated operator has a fixed point.

® PnP-HQS converges towards a fixed point of Tygs.
e |fTL < 2, PnP-PGD converges towards a fixed point of Tpgp.
® |[fo < 1/2, PnP-DRS converges towards a fixed point of Tpgs.
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PnP convergence via averaged operator theory

PnP algorithms: Xkt1 = Tpnp(Xk)

Thos = Do o Prox,¢
with Tenp = § Teap = Do o (Id — 7V)
Tons = 310+ 1(2D, ~1d) o (2 Prox,—Id)
Theorem

Let f : R” — R be convex, differentiable with Vf L-Lipschitz, and D, be 0-averaged, 6 € (0,1).
Assume that the iterated operator has a fixed point.

® PnP-HQS converges towards a fixed point of Tygs.
e |fTL < 2, PnP-PGD converges towards a fixed point of Tpgp.
® |[fo < 1/2, PnP-DRS converges towards a fixed point of Tpgs.

Remark:
X Does not extend to nonconvex data-fidelity terms f.
e |f fis L-smooth and strongly convex, for 7L < 2, Id — 7V f is contractive (Ryu et al., 2019)
— allows to relax the denoiser hypothesis for D, (1 + ¢)-Lipschitz.
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Plug-and-Play imaging in practice
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Which denoiser to use?

® One can use off-the-shelf denoisers: BM3D (Dabov et al., 2007), NLBayes (Lebrun et al., 2013), ...
® One can also use denoisers given as neural networks.

® Such a deep denoiser is trained to approximate the MMSE:

: 2
ArgMIN E, _p, ¢ xr(0,0210 1o (X + €) = x|
Param(D )

where py is a data distribution of clean images.

e For training, L' loss (instead of squared L2 loss) sometimes gives better results.
® For certain denoising architectures, the noise level o is given as input.
A\ In PnP, the denoising strength o may be different from the noise level of the input!
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DnCNN (Zhang et al., 2017a)

DnCNN is a deep convolutional neural network for denoising (Zhang et al., 2017a).
It is based on residual learning: D(x) = x + R(x) where R is the network.

R has 20 layers of hidden dimension 64 (3 x 3 convolutions, BatchNorm, ReLU)
® |tis trained on noise levels o € [0,50] and can be applied blindly (without o).

Noisy Image

Residual Image

=)
o)
% &
: z
‘; o
2 +
5
S 2
<]
o

Conv + BN + RelLU
Conv + BN + RelLU

26/33



Plug-and-Play Algorithms Convergence by Fixed Point Theory Plug-and-Play imaging in practice
000000000000 000000000 000@00000

DRUNet (Zhang et al., 2021)

DRUNEet is a deep convolutional neural network for denoising (Zhang et al., 2021).

It is a UNet that includes residual blocks, convolutions (bias-free!), and skip connections.
The UNet has 4 “scales” of dimensions 64, 128,256, 512.

e |tis trained on noise levels o € [0,50] and take a noise level map as input.

Zhang et al. (2021) propose to do PnP image restoration with this denoising prior (DPIR).

Noise Level Map D o T
Noisy Image Denoised Image
Skip Connection

2
g
)
—~
]
g
9
@0
3
R~
o~

2 Residual Blocks
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How to build averaged deep denoisers ?

® Weight clipping or Spectral normalization (Miyato et al., 2018), (Ryu et al., 2019)
X Lipschitz constant <« 1 for large networks

® Or we can penalize a Lipschitz constant in the training loss:

AGIMIN B, x0.0210 || Da (X + €) = X|°] + Lip(D,).
Param(D, )

e Convolutional Proximal Neural Networks (Hertrich et al., 2021)

* Firmly nonexpansive denoisers (Terris et al., 2020)

® Deep spline neural networks (Goujon et al., 2023)

* D, =Id — Vg, with g, Input Convex Neural Network (ICNN) (Meunier et al., 2022)

@ Non-expansiveness can harm denoising performance.
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Nonexpansive convolutional neural networks (Pesquet et al., 2021)

Idea:

® Build a nonexpansive convolutional neural network (CNN)

D=Tyo 0T With Tm(x)= Rmn(Wnx + bm)

where Rp, is an (averaged) activation function, W,, a convolution, and b, a bias.
* We want to have D = 4@ with Q nonexpansive.

¢ During training, the Lipschitz constant of 2D — Id is penalized.

al
-

input

output

] ]
= =
5] <
& &
Z Z
o w
@ @
— —
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Convolution proximal neural networks (Hertrich et al., 2021)

Idea: Build a convolutional proximal neural network (cPNN)
®y=Tyo---oTy with Tu(x) = W] om(Wnx + bm)

where u = (W, om, bm)1<m<m is a collection of parameters.
The linear operators Wi, (or W;l) are convolutions lying in a Stiefel manifold

St(d,n)={WeR™ | WW=1Id}.

The resulting denoiser is then D = Id — v®,,.
® |deally, ®, is a composition of M firmly non-expansive operators, thus averaged.
® |n practice, Wy, is a convolution with limited filter length.
e Condition Wi, € St is approximated with a term || W, W,, — Id||Z in the learning cost.
* o, is verified in practice to be t-averaged with ¢ close to 3.
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Deep Spline Neural Networks (Goujon et al., 2023)

Idea: Approximate the proximal operator of a convex-ridge regularizer
P
R(X) =D > tp(ho*x(0))
p=1 i

where h, are convolution kernels, and 1), are particular C' convex functions.
Given a noisy z,

Proxag(z) = Argmin %Hx — Z|? + AR(x)

xR

is approximated with t iterations of the gradient-step
x = x —a((x — z) + AVR(x)).

The output after t iterations is denoted by T , ,(2).
* T .o @approximates the prox of a convex function
¢ Linear spline parameterization of ¢, justified by a density result
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Example for Image Deblurring (Pesquet et al., 2021)

® PnP-PGD (aka Forward-Backward)
® Denoiser: Adapted DnCNN

. X — Xy f 2 4 2
« Below, evolution of r, = kX1l (b) Observation  (c) proxy g1,
%ol (20.48,0.387) (26.13,0.775).
U PRl

300600 900 300 600 900 300 600 O
PnP FB iteration n PnP FB iteration n PuP FB iteration n
(a) BM3D (b) RealSN (¢) Proposed

(c) BM3D (f) RealSN
(26.09,0.732) (24.68,0.726)

(g) DnCNN
(26.12,0.643)

(27.09,0.789)

Plug-and-Play imaging in practice
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(d) Prox, .z,
(26.57,0.787)
!

(h) Proposed
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Take-home Messages

Convergence by fixed point relies on a particular kind of non-expansiveness.

For now, we cannot constrain non-expansiveness exactly in practice.
Instead we penalize some Lipschitz constant when training the denoiser.

This way, PnP methods lead to very good restoration results.
Once learned a denoiser, it can be used to address many other inverse problems.
PnP algorithms are (surprisingly) stable as soon as parameters are properly adjusted.

Numerical control can be improved by relying on explicit minimization (see next session).
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