

Plug-and-Play Image Restoration (Part 1)

Arthur Leclaire

Joint work with Samuel Hurault and Nicolas Papadakis

MVA Generative Modeling
February 17th, 2026

Goals for this Session

- We will introduce Plug-and-Play (PnP) methods to solve inverse problems.
- We will give tools for **convergence analysis of PnP methods**
based on **fixed point theory** (with *averaged* operators) or **optimization**.
- We will discuss the practical setup of such PnP algorithms.

Outline

Plug-and-Play Algorithms

Convergence by Fixed Point Theory

Plug-and-Play imaging in practice

Image Inverse Problems

Find x_0 from observation $y = Ax_0 + \xi$

- $y \in \mathbb{R}^m$ observation
- $x_0 \in \mathbb{R}^n$ unknown input
- $A \in \mathbb{R}^{m \times n}$ degradation operator
- ξ random noise, often $\xi \sim \mathcal{N}(0, \nu^2 \text{Id})$

Image Inverse Problems

Find x_0 from observation $y = Ax_0 + \xi$

- $y \in \mathbb{R}^m$ observation
- $x_0 \in \mathbb{R}^n$ unknown input
- $A \in \mathbb{R}^{m \times n}$ degradation operator
- ξ random noise, often $\xi \sim \mathcal{N}(0, \nu^2 \text{Id})$

Denoising:

Image Inverse Problems

Find x_0 from observation $y = Ax_0 + \xi$

- $y \in \mathbb{R}^m$ observation
- $x_0 \in \mathbb{R}^n$ unknown input
- $A \in \mathbb{R}^{m \times n}$ degradation operator
- ξ random noise, often $\xi \sim \mathcal{N}(0, \nu^2 \text{Id})$

Deblurring:

Image Inverse Problems

Find x_0 from observation $y = Ax_0 + \xi$

- $y \in \mathbb{R}^m$ observation
- $x_0 \in \mathbb{R}^n$ unknown input
- $A \in \mathbb{R}^{m \times n}$ degradation operator
- ξ random noise, often $\xi \sim \mathcal{N}(0, \nu^2 \text{Id})$

Super-resolution:

$$\text{Butterfly Image} = \left(\text{Blur Kernel} \otimes \text{Butterfly Image} \right) \downarrow s + \text{Noise}$$

Image Inverse Problems

Find x_0 from observation $y = Ax_0 + \xi$

- $y \in \mathbb{R}^m$ observation
- $x_0 \in \mathbb{R}^n$ unknown input
- $A \in \mathbb{R}^{m \times n}$ degradation operator
- ξ random noise, often $\xi \sim \mathcal{N}(0, \nu^2 \text{Id})$

Inpainting:

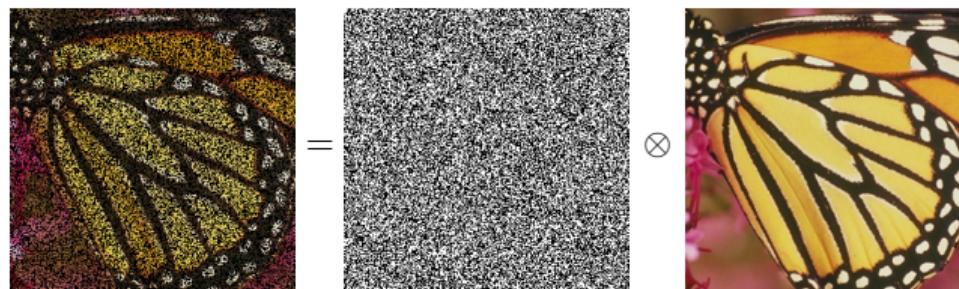


Image Inverse Problems

Find x_0 from observation $y = Ax_0 + \xi$

- $y \in \mathbb{R}^m$ observation
- $x_0 \in \mathbb{R}^n$ unknown input
- $A \in \mathbb{R}^{m \times n}$ degradation operator
- ξ random noise, often $\xi \sim \mathcal{N}(0, \nu^2 \text{Id})$

Compressed Sensing: e.g. Magnetic Resonance Imaging (MRI)

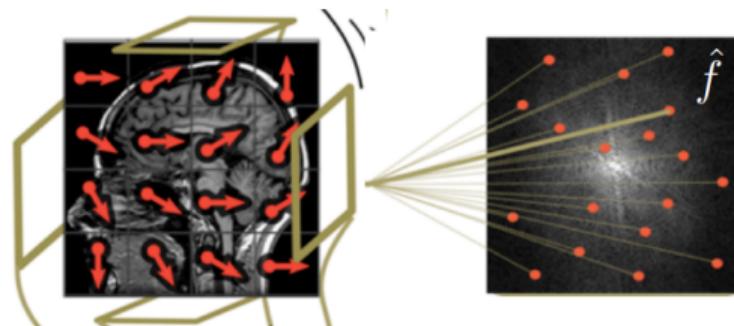


Image Inverse Problems

Find x_0 from observation $y \sim p(y|x_0)$

- $y \in \mathbb{R}^m$ observation
- $x_0 \in \mathbb{R}^n$ unknown input
- $p(y|x)$ forward model

Computed Tomography:

Maximum A-Posteriori

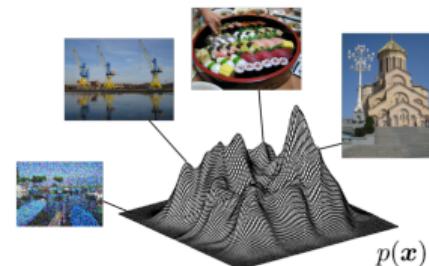
Find x from observation $y \sim p(y|x)$ with an a-priori $p(x)$ on the solution

$$\underset{x \in \mathbb{R}^n}{\text{Argmax}} p(x|y) = \underset{x \in \mathbb{R}^n}{\text{Argmax}} \frac{p(y|x)p(x)}{p(y)} = \underset{x \in \mathbb{R}^n}{\text{Argmin}} -\log p(y|x) - \log p(x)$$

Maximum A-Posteriori

$$x^* \in \underset{x \in \mathbb{R}^n}{\text{Argmin}} f(x) + \lambda g(x)$$

$$\iff \underset{x \in \mathbb{R}^n}{\text{Argmin}} \quad \begin{array}{c} \text{data-fidelity} \\ f(x) = -\log p(y|x) \end{array} + \begin{array}{c} \text{regularization} \\ g(x) \propto -\log p(x) \end{array}$$



A variety of data-fidelity terms f

- Assuming Gaussian noise model $\xi \sim \mathcal{N}(0, \nu^2 \text{Id})$,

$$f(x) = -\log p(y|x) = \frac{1}{2\nu^2} \|Ax - y\|^2$$

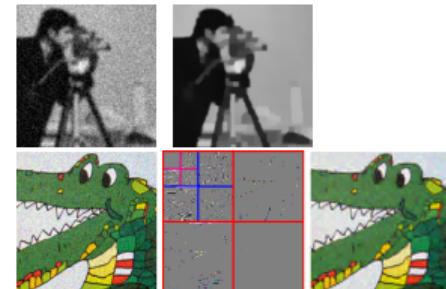
→ *convex and smooth f, non-strongly convex in general*

- Less regular cases
 - Noiseless case: $f(x) = \mathbb{1}_{\{x \mid Ax=y\}}$ → *non-smooth f*
 - Laplace / Poisson noise model → *non-smooth f*
 - Phase retrieval → *non-convex f*
- More complex non-linear modeling of real complex physical systems
(e.g. X-ray computed tomography, electron-microscopy...) (Kamilov et al., 2017).

A variety of explicit image priors

Design an explicit regularization on image features:

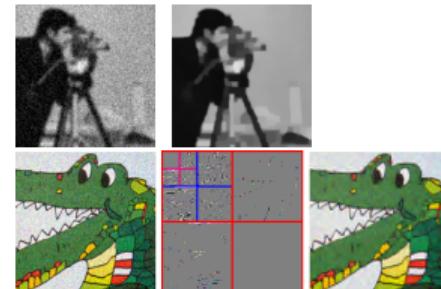
- Total variation (Rudin et al., 1992)
- Fourier spectrum (Ruderman, 1994)
- Wavelet sparsity (Mallat, 2009)



A variety of explicit image priors

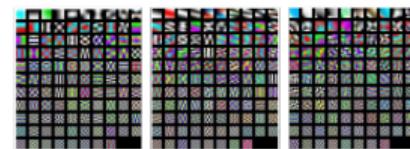
Design an explicit regularization on image features:

- Total variation (Rudin et al., 1992)
- Fourier spectrum (Ruderman, 1994)
- Wavelet sparsity (Mallat, 2009)



Learn an explicit prior on patches:

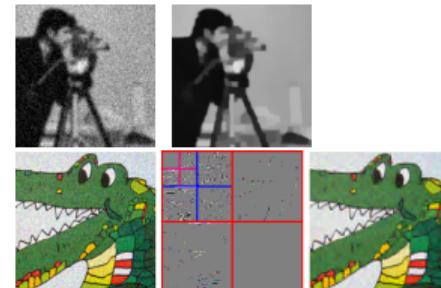
- Dictionary learning (Elad and Aharon, 2006), (Mairal et al., 2008)
- Gaussian mixture models (Yu et al., 2011), (Zoran and Weiss, 2011)



A variety of explicit image priors

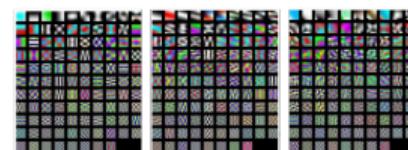
Design an explicit regularization on image features:

- Total variation (Rudin et al., 1992)
- Fourier spectrum (Ruderman, 1994)
- Wavelet sparsity (Mallat, 2009)



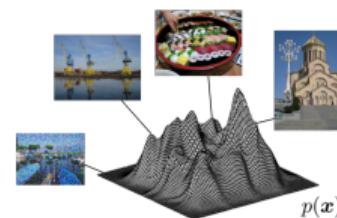
Learn an explicit prior on patches:

- Dictionary learning (Elad and Aharon, 2006), (Mairal et al., 2008)
- Gaussian mixture models (Yu et al., 2011), (Zoran and Weiss, 2011)



Learn an explicit deep prior on full images (generative models):

- Variational Auto-encoders (Kingma and Welling, 2019)
- Normalizing flows (Rezende and Mohamed, 2015)
- Score-based/Diffusion models (Song et al., 2021)



Plug-and-Play motivations

$$\text{Find } x^* \in \underset{x \in \mathbb{R}^n}{\text{Argmin}} \text{ Data-fidelity}(x) + \text{Regularization}(x)$$

- **Decouple** data-fidelity and regularization via splitting algorithms
(Combettes and Pesquet, 2011), (Zoran and Weiss, 2011)
- ✓ **Image Denoising** is relatively easy and well understood.
 - State-of-the art denoisers **without explicit prior**
Filtering methods (Dabov et al., 2007), (Lebrun et al., 2013)
Deep denoisers (Zhang et al., 2017b,a), (Song et al., 2021)
 - Denoising is taking a step towards the manifold of clean images: **implicit prior**

We will alternate between

1. Taking a denoising step
2. Enforcing data-fidelity

First-order optimization algorithms

$$\text{Find } x^* \in \underset{x \in \mathbb{R}^n}{\text{Argmin}} F(x)$$

- **Gradient Descent**

$$x_{k+1} = (\text{Id} - \tau \nabla F)(x_k) \quad \text{i.e.} \quad x_{k+1} = x_k - \tau \nabla F(x_k)$$

- **Proximal Point Algorithm**

$$x_{k+1} \in \text{Prox}_{\tau F}(x_k) \quad \text{i.e.} \quad x_{k+1} + \tau \nabla F(x_{k+1}) = x_k$$

$$\text{where } \text{Prox}_F(x) := \underset{z \in \mathbb{R}^n}{\text{Argmin}} \frac{1}{2} \|z - x\|^2 + F(z)$$

Warning: Computing Prox_F (uniquely) requires some conditions on F , and is sometimes difficult.

Proximal Splitting

(Bauschke and Combettes, 2011)

$$\text{Find } x^* \in \underset{x \in \mathbb{R}^n}{\text{Argmin}} f(x) + g(x)$$

- Gradient Descent (GD)

$$x_{k+1} = (\text{Id} - \tau(\nabla f + \nabla g))(x_k)$$

- Proximal Gradient Descent (PGD, ISTA)

$$x_{k+1} = \text{Prox}_{\tau g} \circ (\text{Id} - \tau \nabla f)(x_k)$$

- Half Quadratic Splitting (HQS)

$$x_{k+1} = \text{Prox}_{\tau g} \circ \text{Prox}_{\tau f}(x_k)$$

does not target $f + g$

- Douglas-Rashford Splitting (DRS) / ADMM

$$x_{k+1} = \left(\frac{1}{2} \text{Id} + \frac{1}{2} (2 \text{Prox}_{\tau g} - \text{Id}) \circ (2 \text{Prox}_{\tau f} - \text{Id}) \right) (x_k) \quad \text{and} \quad \tilde{x}_k = \text{Prox}_{\tau f}(x_k)$$

Denoising prior

Find x from observation $y = x + \xi$

- Input distribution $p(x)$.
- Gaussian noise $\xi \sim \mathcal{N}(0, \sigma^2 \text{Id})$.
- Noisy observation y with density $p_\sigma(y)$ where $p_\sigma = p * \mathcal{N}(0, \sigma^2 \text{Id})$.

MAP estimator

$$D_\sigma^{\text{MAP}}(y) = \underset{x}{\text{Argmax}} \, p(x|y)$$

MMSE estimator

$$D_\sigma^{\text{MMSE}}(y) = \mathbb{E}_{x \sim p(x|y)}[x]$$

Denoising prior

Find x from observation $y = x + \xi$

- Input distribution $p(x)$.
- Gaussian noise $\xi \sim \mathcal{N}(0, \sigma^2 \text{Id})$.
- Noisy observation y with density $p_\sigma(y)$ where $p_\sigma = p * \mathcal{N}(0, \sigma^2 \text{Id})$.

MAP estimator

$$D_\sigma^{\text{MAP}}(y) = \underset{x}{\text{Argmax}} \, p(x|y)$$

MMSE estimator

$$D_\sigma^{\text{MMSE}}(y) = \mathbb{E}_{x \sim p(x|y)}[x]$$

$$\begin{aligned} \underset{x}{\text{Argmax}} \, p(x|y) &= \underset{x \in \mathbb{R}^n}{\text{Argmax}} \frac{p(y|x)p(x)}{p(y)} \\ &= \underset{x \in \mathbb{R}^n}{\text{Argmin}} -\log p(y|x) - \log p(x) \\ &= \underset{x \in \mathbb{R}^n}{\text{Argmin}} \frac{1}{2\sigma^2} \|x - y\|^2 - \log p(x) = \text{Prox}_{-\sigma^2 \log p}(y) \end{aligned}$$

Denoising prior

Find x from observation $y = x + \xi$

- Input distribution $p(x)$.
- Gaussian noise $\xi \sim \mathcal{N}(0, \sigma^2 \text{Id})$.
- Noisy observation y with density $p_\sigma(y)$ where $p_\sigma = p * \mathcal{N}(0, \sigma^2 \text{Id})$.

MAP estimator

$$D_\sigma^{\text{MAP}}(y) = \underset{x}{\text{Argmax}} \, p(x|y)$$

MMSE estimator

$$D_\sigma^{\text{MMSE}}(y) = \mathbb{E}_{x \sim p(x|y)}[x]$$

Bayes formula:

$$D_\sigma^{\text{MAP}} = \text{Prox}_{-\sigma^2 \log p}$$

Tweedie formula:

$$D_\sigma^{\text{MMSE}} = \text{Id} - \nabla(-\sigma^2 \log p_\sigma)$$

A denoiser is related to an **implicit prior**

PnP and RED algorithms

Find $x^* \in \operatorname{Argmin} f(x) + \lambda g(x)$ with $f = -\log p(y|.)$ and $g \propto -\log p$

$$\left\{ \begin{array}{ll} \text{GD} & : x_{k+1} = (\text{Id} - \tau(\nabla f + \lambda \nabla g))(x_k) \\ \text{HQS} & : x_{k+1} = \text{Prox}_{\tau \lambda g} \circ \text{Prox}_{\tau f}(x_k) \\ \text{PGD} & : x_{k+1} = \text{Prox}_{\tau \lambda g} \circ (\text{Id} - \tau \nabla f)(x_k) \\ \text{DRS} & : x_{k+1} = \frac{1}{2} \text{Id} + \frac{1}{2} (2 \text{Prox}_{\tau \lambda g} - \text{Id}) \circ (2 \text{Prox}_{\tau f} - \text{Id})(x_k) \end{array} \right.$$

PnP and RED algorithms

Find $x^* \in \operatorname{Argmin} f(x) + \lambda g(x)$ with $f = -\log p(y|.)$ and $g \propto -\log p$

$$\left\{ \begin{array}{ll} \text{GD} & : x_{k+1} = (\text{Id} - \tau(\nabla f + \lambda \nabla g))(x_k) \\ \text{HQS} & : x_{k+1} = \text{Prox}_{\tau \lambda g} \circ \text{Prox}_{\tau f}(x_k) \\ \text{PGD} & : x_{k+1} = \text{Prox}_{\tau \lambda g} \circ (\text{Id} - \tau \nabla f)(x_k) \\ \text{DRS} & : x_{k+1} = \frac{1}{2} \text{Id} + \frac{1}{2} (2 \text{Prox}_{\tau \lambda g} - \text{Id}) \circ (2 \text{Prox}_{\tau f} - \text{Id})(x_k) \end{array} \right.$$

MAP denoiser

$$D_\sigma(y) = \text{Prox}_{-\sigma^2 \log p}(y)$$

MMSE denoiser

$$D_\sigma(y) = (\text{Id} + \sigma^2 \nabla \log p_\sigma)(y)$$

PnP and RED algorithms

Find $x^* \in \text{Argmin } f(x) + \lambda g(x)$ with $f = -\log p(y|.)$ and $g \propto -\log p$

$$\begin{cases} \text{GD} & : x_{k+1} = (\text{Id} - \tau(\nabla f + \lambda \nabla g))(x_k) \\ \text{HQS} & : x_{k+1} = \text{Prox}_{\tau \lambda g} \circ \text{Prox}_{\tau f}(x_k) \\ \text{PGD} & : x_{k+1} = \text{Prox}_{\tau \lambda g} \circ (\text{Id} - \tau \nabla f)(x_k) \\ \text{DRS} & : x_{k+1} = \frac{1}{2} \text{Id} + \frac{1}{2} (2 \text{Prox}_{\tau \lambda g} - \text{Id}) \circ (2 \text{Prox}_{\tau f} - \text{Id})(x_k) \end{cases}$$

MAP denoiser

$$D_\sigma(y) = \text{Prox}_{-\sigma^2 \log p}(y)$$

MMSE denoiser

$$D_\sigma(y) = (\text{Id} + \sigma^2 \nabla \log p_\sigma)(y)$$

Plug-and-play (PnP)
(Venkatakrishnan et al., 2013)

$$\text{Prox}_{\tau \lambda g} \longrightarrow D_\sigma$$

Regularization by denoising (RED)
(Romano et al., 2017)

$$\text{Id} - \nabla g \longrightarrow D_\sigma$$

PnP and RED algorithms

$$\left\{ \begin{array}{ll} \text{GD} & : x_{k+1} = (\text{Id} - \tau(\nabla f + \lambda \nabla g))(x_k) \\ \text{HQS} & : x_{k+1} = \text{Prox}_{\tau \lambda g} \circ \text{Prox}_{\tau f}(x_k) \\ \text{PGD} & : x_{k+1} = \text{Prox}_{\tau \lambda g} \circ (\text{Id} - \tau \nabla f)(x_k) \\ \text{DRS} & : x_{k+1} = \frac{1}{2} \text{Id} + \frac{1}{2} (2 \text{Prox}_{\tau \lambda g} - \text{Id}) \circ (2 \text{Prox}_{\tau f} - \text{Id})(x_k) \end{array} \right.$$

MAP denoiser

$$D_\sigma(y) = \text{Prox}_{-\sigma^2 \log p}(y)$$

MMSE denoiser

$$D_\sigma(y) = (\text{Id} + \sigma^2 \nabla \log p_\sigma)(y)$$

PnP algorithms

(Venkatakrishnan et al., 2013)

$$\text{Prox}_{\tau \lambda g} \longrightarrow D_\sigma$$

RED algorithms

(Romano et al., 2017)

$$\text{Id} - \nabla g \longrightarrow D_\sigma$$

$$\left\{ \begin{array}{ll} \text{PnP-HQS} & : x_{k+1} = D_\sigma \circ \text{Prox}_{\tau f}(x_k) \\ \text{PnP-PGD} & : x_{k+1} = D_\sigma \circ (\text{Id} - \tau \nabla f)(x_k) \\ \text{PnP-DRS} & : x_{k+1} = \frac{1}{2} \text{Id} + \frac{1}{2} (2D_\sigma - \text{Id}) \circ (2 \text{Prox}_{\tau f} - \text{Id})(x_k) \end{array} \right.$$

PnP and RED algorithms

$$\left\{ \begin{array}{ll} \text{GD} & : x_{k+1} = (\text{Id} - \tau(\nabla f + \lambda \nabla g))(x_k) \\ \text{HQS} & : x_{k+1} = \text{Prox}_{\tau \lambda g} \circ \text{Prox}_{\tau f}(x_k) \\ \text{PGD} & : x_{k+1} = \text{Prox}_{\tau \lambda f} \circ (\text{Id} - \tau \nabla g)(x_k) \\ \text{DRS} & : x_{k+1} = \frac{1}{2} \text{Id} + \frac{1}{2} (2 \text{Prox}_{\tau \lambda g} - \text{Id}) \circ (2 \text{Prox}_{\tau f} - \text{Id})(x_k) \end{array} \right.$$

MAP denoiser

$$D_\sigma(y) = \text{Prox}_{-\sigma^2 \log p}(y)$$

MMSE denoiser

$$D_\sigma(y) = (\text{Id} + \sigma^2 \nabla \log p_\sigma)(y)$$

PnP algorithms

(Venkatakrishnan et al., 2013)

$$\text{Prox}_{\tau \lambda g} \longrightarrow D_\sigma$$

RED algorithms

(Romano et al., 2017)

$$\text{Id} - \nabla g \longrightarrow D_\sigma$$

$$\left\{ \begin{array}{ll} \text{RED-GD} & : x_{k+1} = (\tau \lambda D_\sigma + (1 - \tau \lambda) \text{Id} - \tau \nabla f)(x_k) \\ \text{RED-PGD} & : x_{k+1} = \text{Prox}_{\tau f} \circ (\tau \lambda D_\sigma + (1 - \tau \lambda) \text{Id})(x_k) \end{array} \right.$$

What about convergence?

⚠ But in practice, $D_\sigma \neq \text{Prox}_{\tau g}$, $D_\sigma \neq \text{Id} - \nabla g$...

Goal: Find minimal conditions on D_σ to get back convergence guarantees.

Outline

Plug-and-Play Algorithms

Convergence by Fixed Point Theory

Plug-and-Play imaging in practice

PnP Convergence by Fixed Point

The previous PnP algorithms can be written as

$$x_{k+1} = T_{PnP}(x_k)$$

with $T_{PnP} = \begin{cases} T_{HQS} &= D_\sigma \circ \text{Prox}_{\tau f} \\ T_{PGD} &= D_\sigma \circ (\text{Id} - \tau \nabla f) \\ T_{DRS} &= \frac{1}{2} \text{Id} + \frac{1}{2}(2D_\sigma - \text{Id}) \circ (2 \text{Prox}_{\tau f} - \text{Id}) \end{cases}$

Goal: Show that $x_k \rightarrow x^* \in \text{Fix}(T_{PnP})$.

where we used the notation

$$\text{Fix}(T) = \{ x \in \mathbf{R}^n \mid T(x) = x \}.$$

Reminder: Averaged operators

(Bauschke and Combettes, 2011)

Let $T : \mathbf{R}^n \rightarrow \mathbf{R}^n$. We will consider \mathbf{R}^n equipped with **the Euclidean norm**.

Definition

We say that T is nonexpansive if it is 1-Lipschitz.

Definition

T is **θ -averaged** (with $\theta \in (0, 1)$) if there exists a nonexpansive $R : \mathbf{R}^n \rightarrow \mathbf{R}^n$ such that

$$T = \theta R + (1 - \theta) \text{Id}.$$

- “ T θ -averaged” is equivalent to “ $(1 - \frac{1}{\theta}) \text{Id} + \frac{1}{\theta} T$ nonexpansive”, and also to

$$\forall x, y \in \mathbf{R}^n, \|T(x) - T(y)\|^2 + \frac{1 - \theta}{\theta} \|(\text{Id} - T)(x) - (\text{Id} - T)(y)\|^2 \leq \|x - y\|^2.$$

- T is θ -averaged $\implies T$ is nonexpansive.
- T is $\frac{1}{2}$ -averaged $\iff T$ is firmly nonexpansive.

Composition of Averaged operators

Proposition

Let T be θ -averaged and $\alpha \in [0, 1]$. Then

- $\alpha T + (1 - \alpha)\text{Id}$ is $\alpha\theta$ -averaged.
- T is θ' -averaged for any $\theta' \in [\theta, 1]$.

Remark: If T is L -Lipschitz with $L < 1$, then T is $\frac{L+1}{2}$ -averaged.

Proposition (Combettes and Yamada, 2015)

Let T_1 be θ_1 -averaged and T_2 be θ_2 -averaged, with any $\theta_1, \theta_2 \in (0, 1)$.

Then $T_1 \circ T_2$ is θ -averaged with $\theta = \frac{\theta_1 + \theta_2 - 2\theta_1\theta_2}{1 - \theta_1\theta_2} \in (0, 1)$.

Proximity operator of Convex Functions

Let $\Gamma_0(\mathbf{R}^n)$ be the set of $f : \mathbf{R}^n \rightarrow \mathbf{R} \cup \{+\infty\}$ that are convex, l.s.c., and proper (i.e. $f \not\equiv +\infty$).

For $f : \mathbf{R}^n \rightarrow \mathbf{R} \cup \{+\infty\}$, and $x \in \mathbf{R}^n$, we define the subgradient

$$\partial f(x) = \{ v \in \mathbf{R}^n \mid \forall z \in \mathbf{R}^n, f(z) \geq f(x) + \langle v, z - x \rangle \}.$$

It is easy to see that the subgradient of a proper function f is monotone, that is,

$$\forall x_1, x_2 \in \mathbf{R}^n, \forall v_1 \in \partial f(x_1), \forall v_2 \in \partial f(x_2), \quad \langle v_1 - v_2, x_1 - x_2 \rangle \geq 0.$$

Proposition

For $f \in \Gamma_0(\mathbf{R}^n)$, for any $x \in \mathbf{R}^n$, we can uniquely define

$$\text{Prox}_f(x) = \underset{z \in \mathbf{R}^n}{\text{Argmin}} f(z) + \frac{1}{2} \|z - x\|^2.$$

The point $p = \text{Prox}_f(x)$ is characterized by $x - p \in \partial f(p)$.

Consequence: If $f \in \Gamma_0(\mathbf{R}^n)$, then Prox_f is $\frac{1}{2}$ -averaged (i.e. firmly nonexpansive).

Exercise (Important for next practical Session)

Exercise: (solve it for practical session of next week!)

Let $f(x) = \frac{1}{2} \|Ax - y\|^2$ where $A \in \mathbb{R}^{p \times n}$ is a linear operator. Let $\tau > 0$.

- Find an explicit expression of $\text{Prox}_{\tau f}$.
- Suppose that A is the periodic convolution with a kernel k : $Ax = k * x$. How can you compute $\text{Prox}_{\tau f}$ in practice?

Argmin and Fixed Points

Proposition

Let $f, g : \mathbf{R}^n \rightarrow \mathbf{R} \cup \{+\infty\}$ be convex proper l.s.c. with f differentiable, and let $\tau > 0$. Then

$$\text{Argmin}(f + g) = \text{Fix} \left(\text{Prox}_{\tau g} \circ (\text{Id} - \tau \nabla f) \right).$$

Argmin and Fixed Points

Proposition

Let $f, g : \mathbf{R}^n \rightarrow \mathbf{R} \cup \{+\infty\}$ be convex proper l.s.c. with f differentiable, and let $\tau > 0$. Then

$$\text{Argmin}(f + g) = \text{Fix}(\text{Prox}_{\tau g} \circ (\text{Id} - \tau \nabla f)).$$

Proof.

$$\begin{aligned} x \in \text{Argmin}(f + g) &\iff 0 \in \nabla f(x) + \partial g(x) \\ &\iff -\tau \nabla f(x) \in \partial \tau g(x) \\ &\iff x \in \text{Prox}_{\tau g}(x - \tau \nabla f(x)). \end{aligned}$$

□

In order to minimize $f + g$, it is thus relevant to study the convergence of the sequence

$$x_{k+1} = \text{Prox}_{\tau g}(x_k - \tau \nabla f(x_k)).$$

Reflected Proxy Operator

We define

$$R\text{Prox}_f = 2\text{Prox}_f - \text{Id}.$$

Then, Prox_f is $\frac{1}{2}$ -averaged if and only if $R\text{Prox}_f$ is 1-Lipschitz.

Proposition

Let $f, g \in \Gamma_0(\mathbf{R}^n)$ and let $\tau > 0$. Then

$$\text{Argmin}(f + g) = \text{Prox}_{\tau f} \left(\text{Fix} (R\text{Prox}_{\tau g} \circ R\text{Prox}_{\tau f}) \right).$$

Reflected Proxy Operator

We define

$$\text{RProx}_f = 2 \text{Prox}_f - \text{Id}.$$

Then, Prox_f is $\frac{1}{2}$ -averaged if and only if RProx_f is 1-Lipschitz.

Proposition

Let $f, g \in \Gamma_0(\mathbf{R}^n)$ and let $\tau > 0$. Then

$$\text{Argmin}(f + g) = \text{Prox}_{\tau f} \left(\text{Fix} \left(\text{RProx}_{\tau g} \circ \text{RProx}_{\tau f} \right) \right).$$

If $f, g \in \Gamma_0(\mathbf{R}^n)$, then $\frac{1}{2} \text{Id} + \frac{1}{2} \text{RProx}_{\tau g} \circ \text{RProx}_{\tau f}$ is $\frac{1}{2}$ -averaged.

Reflected Proxy Operator

We define

$$\text{RProx}_f = 2 \text{Prox}_f - \text{Id}.$$

Then, Prox_f is $\frac{1}{2}$ -averaged if and only if RProx_f is 1-Lipschitz.

Proposition

Let $f, g \in \Gamma_0(\mathbf{R}^n)$ and let $\tau > 0$. Then

$$\text{Argmin}(f + g) = \text{Prox}_{\tau f} \left(\text{Fix} \left(\text{RProx}_{\tau g} \circ \text{RProx}_{\tau f} \right) \right).$$

If $f, g \in \Gamma_0(\mathbf{R}^n)$, then $\frac{1}{2} \text{Id} + \frac{1}{2} \text{RProx}_{\tau g} \circ \text{RProx}_{\tau f}$ is $\frac{1}{2}$ -averaged.

In order to minimize $f + g$, it is thus relevant to study the convergence of the iterative sequence

$$x_{k+1} = \left(\frac{1}{2} \text{Id} + \frac{1}{2} \text{RProx}_{\tau g} \circ \text{RProx}_{\tau f} \right)(x_k) \quad \text{and set} \quad \tilde{x}_k = \text{Prox}_{\tau f}(x_k).$$

PnP convergence via averaged operator theory

PnP algorithms:

$$x_{k+1} = T_{PnP}(x_k)$$

$$\text{with } T_{PnP} = \begin{cases} T_{HQS} & = D_\sigma \circ \text{Prox}_{\tau f} \\ T_{PGD} & = D_\sigma \circ (\text{Id} - \tau \nabla f) \\ T_{DRS} & = \frac{1}{2} \text{Id} + \frac{1}{2} (2D_\sigma - \text{Id}) \circ (2 \text{Prox}_{\tau f} - \text{Id}) \end{cases}$$

Theorem

Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be convex, differentiable with ∇f L -Lipschitz, and D_σ be θ -averaged, $\theta \in (0, 1)$. Assume that the iterated operator **has** a fixed point.

- **PnP-HQS** converges towards a fixed point of T_{HQS} .
- If $\tau L < 2$, **PnP-PGD** converges towards a fixed point of T_{PGD} .
- If $\theta \leq 1/2$, **PnP-DRS** converges towards a fixed point of T_{DRS} .

PnP convergence via averaged operator theory

PnP algorithms:

$$x_{k+1} = T_{PnP}(x_k)$$

with $T_{PnP} = \begin{cases} T_{HQS} & = D_\sigma \circ \text{Prox}_{\tau f} \\ T_{PGD} & = D_\sigma \circ (\text{Id} - \tau \nabla f) \\ T_{DRS} & = \frac{1}{2} \text{Id} + \frac{1}{2} (2D_\sigma - \text{Id}) \circ (2 \text{Prox}_{\tau f} - \text{Id}) \end{cases}$

Theorem

Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be convex, differentiable with ∇f L -Lipschitz, and D_σ be θ -averaged, $\theta \in (0, 1)$. Assume that the iterated operator **has** a fixed point.

- **PnP-HQS** converges towards a fixed point of T_{HQS} .
- If $\tau L < 2$, **PnP-PGD** converges towards a fixed point of T_{PGD} .
- If $\theta \leq 1/2$, **PnP-DRS** converges towards a fixed point of T_{DRS} .

Remark:

- ✗ Does not extend to **nonconvex** data-fidelity terms f .
- If f is L -smooth and **strongly convex**, for $\tau L < 2$, $\text{Id} - \tau \nabla f$ is contractive (Ryu et al., 2019)
→ allows to relax the denoiser hypothesis for D_σ $(1 + \epsilon)$ -Lipschitz.

Outline

Plug-and-Play Algorithms

Convergence by Fixed Point Theory

Plug-and-Play imaging in practice

Which denoiser to use?

- One can use off-the-shelf denoisers: BM3D (Dabov et al., 2007), NLBayes (Lebrun et al., 2013), ...
- One can also use denoisers given as neural networks.
- Such a deep denoiser is trained to approximate the MMSE:

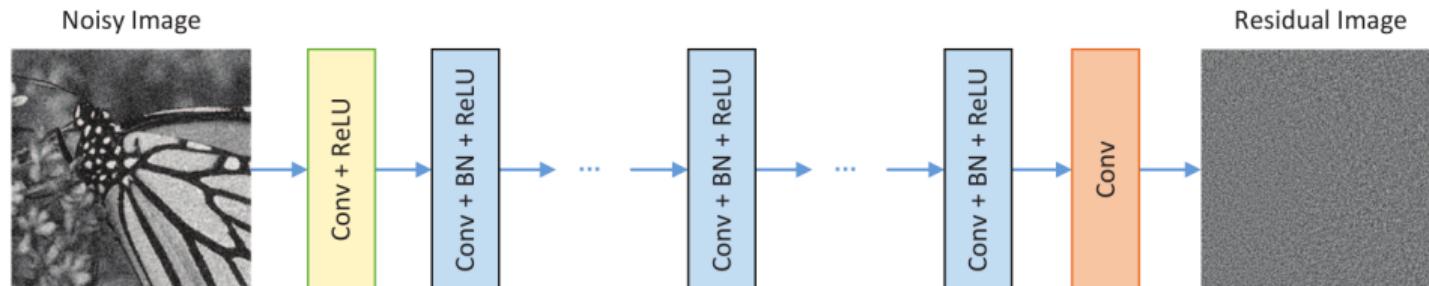
$$\underset{\text{Param}(D_\sigma)}{\text{Argmin}} \mathbb{E}_{x \sim p_X, \xi \sim \mathcal{N}(0, \sigma^2 \text{Id})} \left[\|D_\sigma(x + \xi) - x\|^2 \right]$$

where p_X is a data distribution of clean images.

- For training, L^1 loss (instead of squared L^2 loss) sometimes gives better results.
- For certain denoising architectures, the noise level σ is given as input.
 Δ In PnP, the denoising strength σ may be different from the noise level of the input!

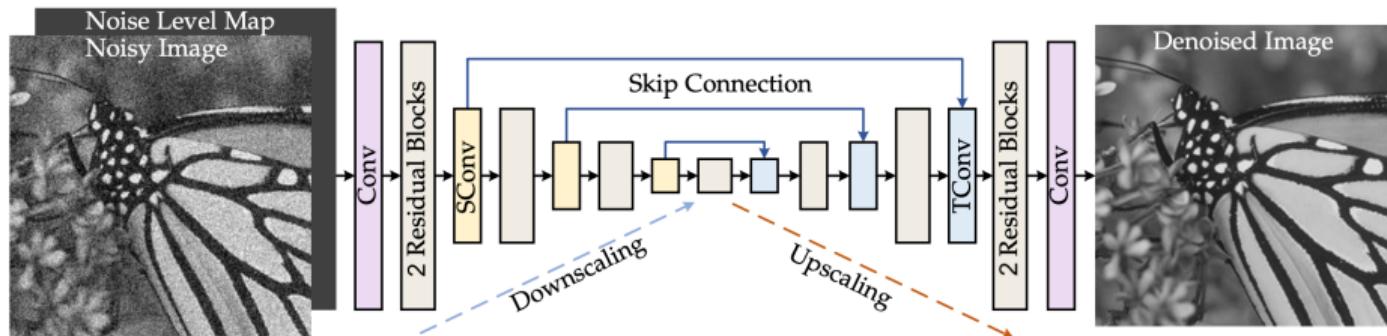
DnCNN (Zhang et al., 2017a)

- DnCNN is a deep convolutional neural network for denoising (Zhang et al., 2017a).
- It is based on residual learning: $D(x) = x + R(x)$ where R is the network.
- R has 20 layers of hidden dimension 64 (3×3 convolutions, BatchNorm, ReLU)
- It is trained on noise levels $\sigma \in [0, 50]$ and can be applied blindly (without σ).



DRUNet (Zhang et al., 2021)

- DRUNet is a deep convolutional neural network for denoising (Zhang et al., 2021).
- It is a UNet that includes residual blocks, convolutions (bias-free!), and skip connections.
- The UNet has 4 “scales” of dimensions 64, 128, 256, 512.
- It is trained on noise levels $\sigma \in [0, 50]$ and take a noise level map as input.
- Zhang et al. (2021) propose to do PnP image restoration with this denoising prior (DPIR).



How to build averaged deep denoisers ?

- Weight clipping or Spectral normalization (Miyato et al., 2018), (Ryu et al., 2019)
✗ Lipschitz constant $\ll 1$ for large networks
- Or we can penalize a Lipschitz constant in the training loss:

$$\underset{\text{Param}(D_\sigma)}{\text{Argmin}} \mathbb{E}_{x \sim p_X, \xi \sim \mathcal{N}(0, \sigma^2 \text{Id})} \left[\|D_\sigma(x + \xi) - x\|^2 \right] + \mu \text{Lip}(D_\sigma).$$

- Convolutional Proximal Neural Networks (Hertrich et al., 2021)
- Firmly nonexpansive denoisers (Terris et al., 2020)
- Deep spline neural networks (Goujon et al., 2023)
- $D_\sigma = \text{Id} - \nabla g_\sigma$ with g_σ Input Convex Neural Network (ICNN) (Meunier et al., 2022)

Non-expansiveness can harm denoising performance.

Nonexpansive convolutional neural networks (Pesquet et al., 2021)

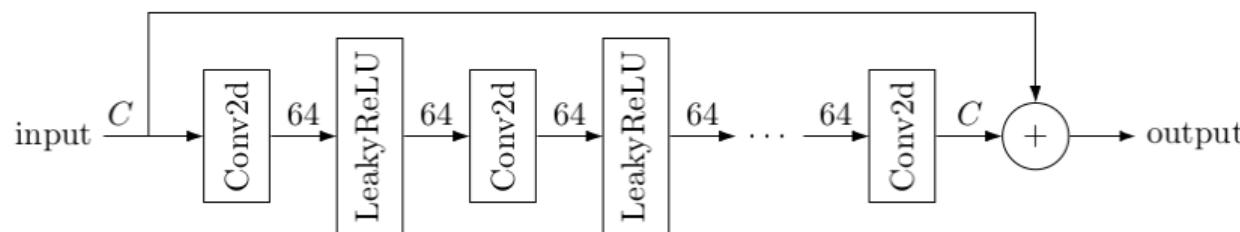
Idea:

- Build a nonexpansive convolutional neural network (CNN)

$$D = T_M \circ \dots \circ T_1 \quad \text{with} \quad T_m(x) = R_m(W_m x + b_m)$$

where R_m is an (averaged) activation function, W_m a convolution, and b_m a bias.

- We want to have $D = \frac{\text{Id}+Q}{2}$ with Q nonexpansive.
- During training, the Lipschitz constant of $2D - \text{Id}$ is penalized.



Convolution proximal neural networks (Hertrich et al., 2021)

Idea: Build a convolutional proximal neural network (cPNN)

$$\Phi_u = T_M \circ \dots \circ T_1 \quad \text{with} \quad T_m(x) = W_m^T \sigma_m(W_m x + b_m)$$

where $u = (W_m, \sigma_m, b_m)_{1 \leq m \leq M}$ is a collection of parameters.

The linear operators W_m (or W_m^T) are convolutions lying in a Stiefel manifold

$$\text{St}(d, n) = \{ W \in \mathbb{R}^{n \times d} \mid W^T W = \text{Id} \}.$$

The resulting denoiser is then $D = \text{Id} - \gamma \Phi_u$.

- Ideally, Φ_u is a composition of M firmly non-expansive operators, thus averaged.
- In practice, W_m is a convolution with limited filter length.
- Condition $W_m \in \text{St}$ is approximated with a term $\|W_m^T W_m - \text{Id}\|_F^2$ in the learning cost.
- Φ_u is verified in practice to be t -averaged with t close to $\frac{1}{2}$.

Deep Spline Neural Networks (Goujon et al., 2023)

Idea: Approximate the proximal operator of a convex-ridge regularizer

$$R(x) = \sum_{p=1}^P \sum_i \psi_p(h_p * x(i))$$

where h_p are convolution kernels, and ψ_p are particular \mathcal{C}^1 convex functions.

Given a noisy z ,

$$\text{Prox}_{\lambda R}(z) = \underset{x \in \mathbb{R}^n}{\text{Argmin}} \frac{1}{2} \|x - z\|^2 + \lambda R(x)$$

is approximated with t iterations of the gradient-step

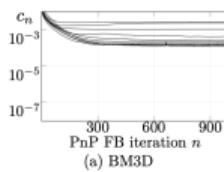
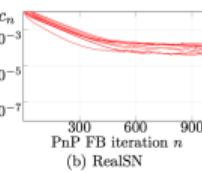
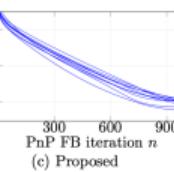
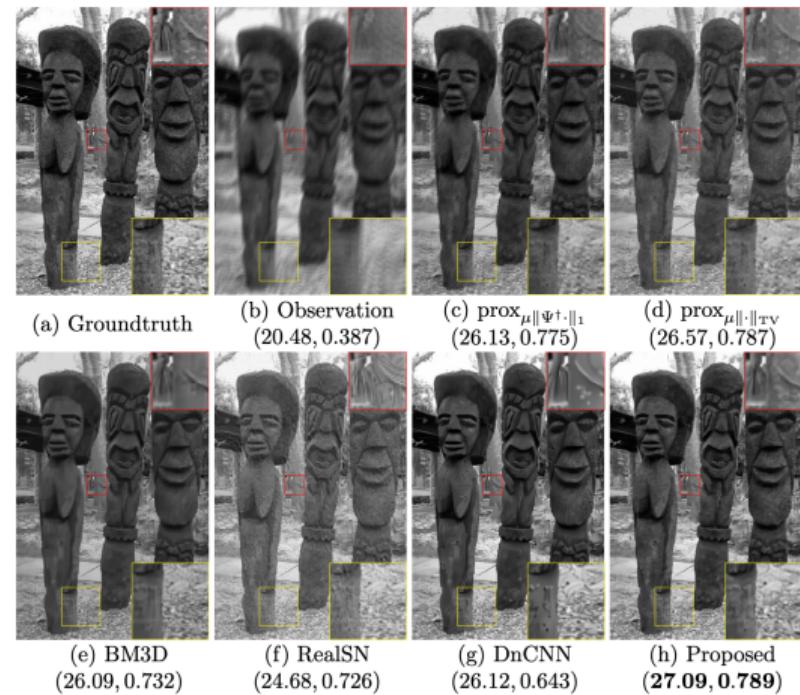
$$x \mapsto x - \alpha((x - z) + \lambda \nabla R(x)).$$

The output after t iterations is denoted by $T_{R,\lambda,\alpha}^t(z)$.

- $T_{R,\lambda,\alpha}^t$ approximates the prox of a convex function
- Linear spline parameterization of ψ_p justified by a density result

Example for Image Deblurring (Pesquet et al., 2021)

- PnP-PGD (aka Forward-Backward)
- Denoiser: Adapted DnCNN
- Below, evolution of $r_k = \frac{\|x_k - x_{k-1}\|}{\|x_0\|}$



Take-home Messages

- Convergence by fixed point relies on a particular kind of non-expansiveness.
- For now, we cannot constrain non-expansiveness exactly in practice.
Instead we penalize some Lipschitz constant when training the denoiser.
- This way, PnP methods lead to very good restoration results.
- Once learned a denoiser, it can be used to address many other inverse problems.
- PnP algorithms are (surprisingly) stable **as soon as parameters are properly adjusted**.
- Numerical control can be improved by relying on explicit minimization (see next session).

References I

Bauschke, H. H. and Combettes, P. L. (2011). *Convex Analysis and Monotone Operator Theory in Hilbert Spaces*. Springer.

Combettes, P. L. and Pesquet, J.-C. (2011). Proximal splitting methods in signal processing. In *Fixed-Point Algorithms for Inverse Problems in Science and Engineering*, pages 185–212. Springer.

Combettes, P. L. and Yamada, I. (2015). Compositions and convex combinations of averaged nonexpansive operators. *Journal of Mathematical Analysis and Applications*, 425(1):55–70.

Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. O. (2007). Image denoising by sparse 3-d transform-domain collaborative filtering. *IEEE Trans. Image Processing*, 16(8):2080–2095.

Elad, M. and Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. *IEEE Transactions on Image Processing*, 15(12):3736–3745.

Goujon, A., Neumayer, S., Bohra, P., Ducotterd, S., and Unser, M. (2023). A neural-network-based convex regularizer for inverse problems. *IEEE Transactions on Computational Imaging*.

Hertrich, J., Neumayer, S., and Steidl, G. (2021). Convolutional proximal neural networks and plug-and-play algorithms. *Linear Algebra and its Applications*, 631:203–234.

Kamilov, U. S., Mansour, H., and Wohlberg, B. (2017). A plug-and-play priors approach for solving nonlinear imaging inverse problems. *IEEE Signal Processing Letters*, 24(12):1872–1876.

References II

Kingma, D. P. and Welling, M. (2019). An introduction to variational autoencoders. *arXiv preprint arXiv:1906.02691*.

Lebrun, M., Buades, A., and Morel, J. (2013). A nonlocal Bayesian image denoising algorithm. *SIAM Journal on Imaging Sciences*, 6(3):1665–1688.

Mairal, J., Elad, M., and Sapiro, G. (2008). Sparse representation for color image restoration. *IEEE Transactions on Image Processing*, 17(1).

Mallat, S. (2009). *A Wavelet Tour of Signal Processing, The Sparse Way*. Academic Press, Elsevier, 3rd edition edition.

Meunier, L., Delattre, B. J., Araujo, A., and Allauzen, A. (2022). A dynamical system perspective for Lipschitz neural networks. In *International Conference on Machine Learning*, pages 15484–15500. PMLR.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. (2018). Spectral Normalization for Generative Adversarial Networks. In *Proceedings of the 6th International Conference on Learning Representations, ICLR*.

Pesquet, J.-C., Repetti, A., Terris, M., and Wiaux, Y. (2021). Learning maximally monotone operators for image recovery. *SIAM Journal on Imaging Sciences*, 14(3):1206–1237.

References III

Rezende, D. J. and Mohamed, S. (2015). Variational inference with normalizing flows. In Bach, F. R. and Blei, D. M., editors, *Proceedings of the 32nd International Conference on Machine Learning*, volume 37, pages 1530–1538. JMLR.org.

Romano, Y., Elad, M., and Milanfar, P. (2017). The little engine that could: Regularization by denoising (RED). *SIAM Journal on Imaging Sciences*, 10(4):1804–1844.

Ruderman, D. L. (1994). The statistics of natural images. *Network: computation in neural systems*, 5(4):517.

Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. *Physica D: nonlinear phenomena*, 60(1-4):259–268.

Ryu, E., Liu, J., Wang, S., Chen, X., Wang, Z., and Yin, W. (2019). Plug-and-play methods provably converge with properly trained denoisers. In *International Conference on Machine Learning*, pages 5546–5557. PMLR.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. (2021). Score-based generative modeling through stochastic differential equations. In *9th International Conference on Learning Representations, ICLR 2021*. OpenReview.net.

References IV

Terris, M., Repetti, A., Pesquet, J.-C., and Wiaux, Y. (2020). Building firmly nonexpansive convolutional neural networks. In *ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 8658–8662. IEEE.

Venkatakrishnan, S. V., Bouman, C. A., and Wohlberg, B. (2013). Plug-and-play priors for model based reconstruction. In *2013 IEEE Global Conference on Signal and Information Processing*, pages 945–948. IEEE.

Yu, G., Sapiro, G., and Mallat, S. (2011). Solving inverse problems with piecewise linear estimators: From gaussian mixture models to structured sparsity. *IEEE Transactions on Image Processing*, 21(5):2481–2499.

Zhang, K., Li, Y., Zuo, W., Zhang, L., Van Gool, L., and Timofte, R. (2021). Plug-and-play image restoration with deep denoiser prior. *IEEE Transactions on Pattern Analysis and Machine Intelligence*.

Zhang, K., Zuo, W., Chen, Y., Meng, D., and Zhang, L. (2017a). Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. *IEEE Transactions on Image Processing*, 26(7):3142–3155.

Zhang, K., Zuo, W., Gu, S., and Zhang, L. (2017b). Learning deep cnn denoiser prior for image restoration. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 3929–3938.

References V

Zoran, D. and Weiss, Y. (2011). From learning models of natural image patches to whole image restoration. In *2011 International Conference on Computer Vision*, pages 479–486. IEEE.