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Today

We will discuss imaging inverse problems.

We will recall classical (simple) tools for solving inverse problems.
In particular we will recall simple regularization techniques (Tychonov, smoothTV)

We will discuss quantitative evaluation of image restoration.
We will see how to use generative models to solve inverse problems.
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Inverse problem with additive noise:
v=Au +w
where
* o € R? s the clean image to recover
e A:R?—>R"
® wis anoise

In many cases, the degradation operator .4 can be approximated with a linear operator A,
and the noise model w is assumed to be Gaussian.

But, there are also inverse problems with non-linear .A and non-Gaussian noise (e.g. Poisson noise).
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Metric

for Inverse Problems

Application
Denoising [58]
Deconvolution
[58.59]

Superresolution
[60,61]

Inpainting [62]
Compressive
Sensing [63,64]

MRI [3]

Computed tomog-
raphy [58]

Phase Re-
trieval [67-70]

A

A(@)=hxz
A=SB

A=S

A SF or A
Gaussian or Bernoulli
ensemble

A=S8FD

A=R

Alz) = |A[?

Notes

1 is the identity matrix

h is a known blur kernel and * denotes convo-
lution. When h is unknown the reconstruction
problem is known as blind deconvolution.

S is a subsampling operator (identity matrix
with missing rows) and B is a blurring operator
cooresponding to convolution with a blur kernel
S'is a diagonal matrix where S; ; = 1 for the pix-
els that are sampled and S;; = 0 for the pixels
that are not.

S is a subsampling operator (identity matrix with
missing rows) and F discrete Fourier transform
matrix.

S is a subsampling operator (identity matrix with
missing rows), F is the discrete Fourier trans-
form matrix, and D is a diagonal matrix rep-
resenting a spatial domain multiplication with
the coil sensitivity map (assuming a single coil
aquisition with Cartesian sampling in a SENSE
framework [65]).

R is the discrete Radon transform [66].

|| denotes the absolute value, the square is taken

1 ise, and A is a (] ia pl
valued) measurement matrix that depends on the
application. The measurement matrix A is often
a variation on a discrete Fourier transform ma-
trix.

oration v

rativ

(source: [Ongie et al., 2020])

Priors
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Gaussian denoising

Let’s start with the case A = Id, i.e. image denoising:
v=u+w where w~ N(0,0%).

We want to estimate v, from a single realization of v... need for some image model.
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Deblurring
e A spatially invariant blur can be modeled by a Isotropic blur  Motion blur
convolution operator Au = k x u
® Several types of blur exist (motion, defocus)
[ ]

Non-blind deblurring consists in recovering v from
V=KxUy+ w.

¢ We won't tackle blind deblurring here.

Original Blurred

Example of motion blur
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Super-Resolution

Super-résolution consists in finding another version of v at higher resolution.

This is an inverse problem corresponding to the subsampling operator with stride s € N*:
uis(x, y) = u(sx, sy).

In practice, we often apply an (anti-aliasing) filter before subsampling.

With prefiltering, we obtain the operator

Au = (k*u)s.

Super-resolution consists in recovering up from
v=(kxu)s+w.

The degraded image v is defined on a subgrid of stride s.

8/48



Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors
0000008000000 00000000000 00000 000000000000 0000

Inpainting

Inpainting consists in filling missing regions in images

The degradation operator then writes

Au=ul,

where w C Q is the set of known pixels and Q \ w the mask.
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Inverse problem

We wish to recover up from
v =Au + w.

The problem is said ill-posed when A is not invertible or with unstable inverse.

Example : For deblurring, Au = k * u, we can invert A directly in Fourier domain:
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Inverse problem

We wish to recover up from
v =Au + w.

The problem is said ill-posed when A is not invertible or with unstable inverse.

Example : For deblurring, Au = k * u, we can invert A directly in Fourier domain:

u=F" <%) =F (00 + %) —  but noise explodes !
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Inverse problem

We wish to recover up from
v =Au + w.

The problem is said ill-posed when A is not invertible or with unstable inverse.

Example : For deblurring, Au = k * u, we can invert A directly in Fourier domain:
u=r" <%) =7 (00 + %) —  but noise explodes !

When the problem is ill-posed, there may be multiple solutions or erroneous solutions.

It is thus useful to adopt an a priori on the solution, e.g. imposing some kind of regularity.
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Image Restoration by Optimization

We will therefore try to solve
1
F(u) = 5llAu = vIl5 + AR(u)

where R(u) imposes some kind of regularity of u, and A > 0 is a parameter.

The problem Argmin F(u) is very high-dimensional, and we need efficient algorithms.
ueR®

Simple (nearly useless) regularization: Consider R(u) = %Hu“%. Then uy € Argming is given by
AT(Auy —v)+ Ay =0 ie. uy=(ATA+A)'ATY

Example: for denoising (A = Id),
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Image Restoration by Optimization

We will therefore try to solve
1
F(u) = 5llAu = vIl5 + AR(u)
where R(u) imposes some kind of regularity of u, and A > 0 is a parameter.

The problem Argmin F(u) is very high-dimensional, and we need efficient algorithms.
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Simple (nearly useless) regularization: Consider R(u) = %Hu“%. Then uy € Argming is given by

AT(Auy —v)+ Ay =0 ie. uy=(ATA+A)'ATY
Example: for denoising (A = Id), it just divides all values by 1 + ...
For differentiable F, we can always consider simple gradient descent.
Example: The gradient of f(u) = 3||Au — y|3 is Vf(u) = AT(Au — y).

If Au = k * u (periodic convolution), then ATu = k % u with k(x) = k(—x).
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The Steepest Descent

https://mathinsight.org/directional_derivative_gradient_introduction
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Descent Lemma

Let f : R — R be differentiable with L-Lipschitz gradient. Then, for any x, y € R,
) =100+ [ V10t tty = x0)- - Xt
=f(X)+ VFix)-(y —x) + /01 (VH(x + t(y — x)) = V(X)) - (y — x)dt
<HX)+ VEHx) - (y —x) + /01 [VH(x + t(y — x)) = VIX)]l[ly — x||dt
< F(X) + VHx) - (y — x) + /01 Lt|ly — x||?dt
< 1)+ VHx) - (v = x) + gy — %I
Consequence: If we choose 7 € [0, ), then

f(x — TV(x)) < f(x) — T(1 - %L

JIVFIP < f(x).
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Gradient Descent

We consider here the gradient descent method:
Xnt1 = Xn — TaVI(Xn) ,

where 7, > 0 is a sequence of step sizes.
® For 7, = 7 constant, we speak of fixed step size.
* We speak of optimal step size if, at each iteration n, we choose
Tn € Argmin f(xp, — tVF(xn)).

teR

The descent lemma gives that for f differentiable with L-Lipschitz gradient and 7 < %

f(Xn1) < f(Xn)

Thus, if f is lower bounded, f(x,) converges.
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Convexity and Minimum

The function f : R — Ris convex if for all x, y € RY,
Vte (0,1), f((1—t)x+ty) < — Hf(x)+ ty).
It is said strictly convex if the inequality is strict.
If f is convex and differentiable, one can show that for any x, y € R?,
f(y) = f(x) + VI(x) - (y — x).
Consequence : If f is convex and differentiable, then
x € Argminf <<= Vf(x)=0.

The argmin is unique as soon as f is strictly convex.
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Strong Convexity

We say that f is a-convex (with o > 0) if f — & - ||* is convex.

When « > 0, we say that f is strongly convex.

Remark : The convexity and the gradient Lipschitz constant can be read on the Hessian.
If A, B € R°? are symmetric, we write A = B if A— B if semi-definite positive, i.e.

Vx € Rd, Ax-x > Bx - x.
For f : R — R of class %2,

Vfis L-lipschitz iff vx € RY, —Lld < V?f(x) < LId.
i.e. Vx the eigenvalues of V2f(x) have modulus < L.

f is a-convex iff V2f > «ald
i.e. Vx the eigenvalues of V2f(x) are all > a.
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Convergence Guarantees, Convex Case

Theorem

Let f : R? — R be convex differentiable with V f L-Lipschitz. Assume that Argmin f is non-empty.
Let € (0,2), xo € RY and (x,) the sequence defined by

Xnt1 = Xnp — TVI(Xn) .
Then (x») converges towards an element of Argmin f.

Theorem

Let f : R? — R be differentiable and o-strongly convex with L-Lipschitz gradient.
Then there exists a unique x. € Argminf, and forr < 7 < 1, we have

Ixn = x|[* < (1 = 70)" [ x0 — x-1°.

1 Generative Priors
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Optimization for Inverse Problems

To solve the inverse problem v = Auy + w, we can thus minimize
F(u) = f(u) + g(u)

with f(u) = 1||Au — v||® and g(u) = AR(u), A > 0.

For a regularization R(u) = ||Bul|3, F is convex and differentiable.

We can thus minimize F by gradient descent with 7 < 2 where L = |[ATA+ 2\B'B||.

* For Au= k+u, ATAu= F~'(|k[*D).
If |k| <1, it follows that [ AT A|| < 1.
® ForAu=1,u, ATA=A? = Aet ||A| = 1.
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Optimization for Inverse Problems

To solve the inverse problem v = Auy + w, we can thus minimize
F(u) = f(u) + g(u)

with f(u) = 1||Au — v||® and g(u) = AR(u), A > 0.

For a regularization R(u) = ||Bul|3, F is convex and differentiable.

We can thus minimize F by gradient descent with 7 < 2 where L = |[ATA+ 2\B'B||.

* For Au= k+u, ATAu= F~'(|k[*D).
If |k| <1, it follows that [ AT A|| < 1.
® ForAu=1,u, ATA=A? = Aet ||A| = 1.

Good news: By automatic differentiation you need only coding F(u)...

But !'in order to avoid instability problems, you'd better know what F does...
(for example, useful to have an idea of the Lipschitz constant of F)
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Let us start with zero regularization!

Consider here ]
(u) = 5llAu— v

* We have an orthogonal decomposition R? = K @ K* with K = Ker[A] and K" = Im[A’]
® Therefore Argmingq f is non-empty and we can define

Atv= min |ul5.
ucArgmin f

It defines a linear operator A™, called Moore-Penrose pseudo-inverse.

The Moore-Penrose pseudo-inverse has a zero component in Ker[A].

® A : KT = Im(A) is invertible. Thus A* = A;}P (with P the orthogonal projection on Im(A)).
e Actually, one can show that A" v = limy_,o(ATA+ )" 'ATv.

® But A'v is generally a bad solution for inverse problems because of bad conditioning.
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Explicit Regularizations

We define the discrete derivatives of u by

_ (Oru(x.y) du(x.y) = di = u(x,y) = u(x +1,y) = u(x, y)
vulxy) = (32U(X7 }’)) avee {82u(x, y)=dxu(x,y)=u(x,y+1) —u(x,y)

We define Tychonov regularization by

IVullz =D [IVu)I* = > [8iu(x)* + [dau(x)[.

xeQ xeQ

We define the total variation by

TV(U) = [[Vulls = > IVux)| = > \/|31 u(x)|? + [Geu(x)[2.

xeQ XEQ
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Back to denoising

Let us minimize ]
F(u) = 5llu - v|? + AR(u)

where R is a regularization and A > 0.

Consider first Tychonov regularization R(u) = || Vul|3.
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Back to denoising

Let us minimize ]
F(u) = llu— VI + AR()

where R is a regularization and A > 0.
Consider first Tychonov regularization R(u) = || Vul|3.

We have VR(u) = 2V’ V.
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F(u) = llu— VI + AR()
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ueArgmnF <« VF(U)=0 <= U—-v+2\V'Vu=0 <= u=(/+2\V'V) v
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Back to denoising

Let us minimize ]
F(u) = llu— VI + AR()

where R is a regularization and A > 0.
Consider first Tychonov regularization R(u) = || Vul|3.

We have VR(u) = 2V'Vu. As F is convex,
ueArgmnF <« VF(U)=0 <= U—-v+2\V'Vu=0 <= u=(/+2\V'V) v
Forp: Q — R2, V'pis given by

Vp(x,y) = pi(x = 1,¥) = pi(X,y) + p2(x,y — 1) — pa(x, y).

Actually, div(p) := —VTpis a discrete divergence and Au := —V'Vu is a discrete Laplacian.
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Explicit Solution: Wiener filtering

Theorem
Letv € C® and A > 0. The function F : C* — R, defined by

]
vuecC”, F(u)= sllu— vz + IVl

has a minimum attained at a unique u. € C%, which is given in Fourier domain:

(£, )
1+2XL(¢,0)
where L(€,¢) = [1(&,¢)? + |d(€,¢) 2 = 4 (sin? (Z£) + sin? (5%)).

Remarks:
* d, d are the kernel derivatives, e.g. di = §(_1,0) — d0,0)- S0 L is the kernel of —A filter.
® The theorem adapts for deblurring with Tychonov regularization:

k(£ Q& Q)

V£7C EQ? a* ac =
(& (&) k(& Q)2 + 21 L(¢,¢)
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Link with an evolution model

The gradient descent on
1
Flu) = 3llu~ v[E+ AVl

writes as
Uni1 — Un = —7(Un — V) + 2ATAU, .

The sequence (un) converges to u, as soon as 7 < 2 with L = ||/ + 2AV' V|| = 1 + 16).
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Link with an evolution model

The gradient descent on
1
Flu) = 3llu~ v[E+ AVl

writes as
Uni1 — Un = —7(Un — V) + 2ATAU, .

The sequence (un) converges to u, as soon as 7 < 2 with L = ||/ + 2AV' V|| = 1 + 16).

If we drop the data-fidelity... then gradient descent on u — ||Vu||3 gives
Uns1 — Up = 27AUp

This is a discretization of the heat equation 6;u = cAu with initial condition .
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Smoothed Total Variation

What if we want to minimize ]
F(u) = gllu = vIg + ATV(u).

Problem: The total variation is not differentiable.

A simple solution: Consider a smoothed variant: For e > 0, let

TV(u)= 3 /e +anulx.y)2 +dau(x, y)2

(x,y)eQ

VTV. () = vT<V“> .
Ve + vl
And one can show that VTV. is £-Lipschitz.

We can thus minimize F by gradient descent with 7 < —2.
1+82

One can see that
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Denoising Examples

Noisy Tychonov denoising TV. denoising
PSNR = 19.93 PSNR = 25.89 PSNR = 27.21
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Projected Gradient Descent
Imagine that we want to constrain the solution into a convex closed set C c RY:

Argmin F(u)

ueC

For that, we can use the orthogonal projection p¢ : R — C.

Theorem
Let f : R — R be convex differentiable such that Vf is L-Lipschitz.
Let C C RY be a closed convex set. Assume that Argmin, f is non-empty.
Fort € (0,2), xo € R, let (x) be defined by
Xny1 = Pc(Xn — TVI(Xn)) .

Then (x») converges to an element of Argmin f.

Example : For inpainting, we can deal with the noiseless problem v = Au.
In this case, we can perform constrained minimization of only the regularization term:

i )
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Euclidean metrics

Given two images u and v of size M x N with graylevels between 0 and 255.
Denote Q = {0,...,M —1} x {0,..., N — 1} the pixel domain
Mean Square Error |:
MSE = ﬁ Xezn(u(x) —v(x))?
Root Mean Square Error |

RMSE — <M1N S (u(x) — v(x))2>

xXeQ

Peak Signal to Noise Ratio 7:

PSNR = 20 log;, (%)

Useful for inverse problems such as denoising.
Not ideal when one hopes to generate new content.
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Structural similarity index measure (SSIM 1) [wang et al., 2004]

Between patches:
® Given two patches x, y (typically of size 8x8 or 11x11 with a Gaussian windowing)

(2pxpry + €1)(20x + C2)

SSIM(x, y) =
N =12+ e)(oF+ oF + )

€[-1,1]

with:

ux the pixel sample mean of x

uy the pixel sample mean of y

a2 the variance of x

o2 the variance of y

oxy the covariance of x and y

¢ = (kjL)?, c» = (koL)? two variables to stabilize the division with weak denominator, with the range
L =2550r1and ki = 0.01 and k> = 0.03 by default.

® SSIM(x, y) is the product of three terms:

Luminance Contrast Structure
_ 2pxpy+oy __ 2oxoyte _ chy+02/2
I(x,y) = ey s c(x,y) = Zrotto s(x,y) = oxoy1Co/2
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Structural similarity index measure (SSIM 1) [wang et al., 2004]

Between images:
e Given two images u and v of size M x N with gray-level between 0 and L = 255, define the
Mean-SSIM by averaging over all patches:
(M)SSIM(u, v) = mean({SSIM(Px(u), Px(v)), X+ w C Q})

where Py(u) is the restriction of u on the patch x + w.
® There are also multiscale variants.
e SSIM is not a distance, its range is [-1, 1].
® SSIM is closer to a perceptual distance, especially regarding local textures.
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LPIPS | [zhang et al., 2018]

LPIPS: Learned Perceptual Image Patch Similarity
® Previous works on texture synthesis [Gatys et al., 2015] and style transfer [Gatys et al., 2016]
® have shown the importance of the VGG [Simonyan and Zisserman, 2015] features for perceptual
similarity between images.
® This means that intermediate features of classification CNN are useful in their own: “a good
feature is a good feature. Features that are good at semantic tasks are also good at
self-supervised and unsupervised tasks, and also provide good models of both human
perceptual behavior and macaque neural activity.”
LPIPS model: Define a perceptual distance between 64 x64 patches by computing a Euclidean
norm between features:

|
dix, %)= Y WZHW@(VZ(X)/'J— V4 (x0))i,13
i

layers ¢

where for each layer the channel weights w; are learned to reproduce human evaluation of distortion
between patches.

31/48



Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors
000000000000 00O000O00O00000 00000 ®000000000000000

Plan

Restoration with Generative Priors
Generative Priors
Deep learning for Inverse Problems

32/48



00000 0@00000000000000

Metrics for Inverse Problems Restoration with Generative Priors

Generative prior for inverse problems in imaging

® Instead of computing an explicit regularization R, one can add a constraint
. 2
min [ Ax — y|
where ¥ c R% is a “low-dimensional” model [Candes et al., 2006, Bourrier et al., 2014].
® Adopting a generative prior consists in considering the model
¥ = {G(2),z € R"}

parameterized by a pre-trained generative network.
® We then solve the inverse problem by computing

%= G(2) where 2 e Argmin||A(G(2)) - y|?.

zEeRk

This can be seen as a “pseudo-inverse” with a “manifold constraint”.
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Relation with GAN inversion

Generative priors demonstrated to be effective for compressed sensing [Bora et al., 2017].
Denoising with a generative prior amounts to solving

in |G(z) — y|%
min [|G(z) = ¥
This can be reformulated as GAN inversion: finding the latent code z such that y = G(z).
GANSs are less appropriate for that than VAE or normalizing flows.

Adopting a generative prior implicitly assumes that the GAN inversion is effective.

Recovery guarantees can be formulated with hypotheses on A and G [Bora et al., 2017].
In practice, Bora et al. also add a latent regularization | z||?.

But GANs may suffer from mode collapse, or limited generator capacity.
Only works when the generator is learned on appropriate data (related to the observation).
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Deep Image Prior [Ulyanov et al., 2018]

“Image statistics are implicitly captured by the structure of CNN”
Fix a random latent code z and “fine-tune” the parameters of the network:

min [|AGs (2) — y I

Results highly depend on the chosen architecture for Gy.
Ulyanov et al. chose a U-Net architecture with skip connections with millions of parameters,
and z, x = Gy(z) with same spatial dimension.

Convergence guarantee: descent lemma as soon as function has Lipschitz gradient.

Iterating too much conducts to fit also the noise!
— Regularization by early stopping the optimization algorithm...

Same technique also used with SinGAN [Shaham et al., 2019] for image editing or restoration.
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Deep Image Prior [Ulyanov et al., 2018]

Metrics for Inverse Problems
00000

4x super-resolution

Baby Bird Butterfly Head Woman Avg.
No prior 30.16 27.67 19.82 20.98 25.18 26.56
Bicubic 31.78 30.2 22,13 31.34 26.75 28.44
TV prior 31.21 30.43 24.38 31.34 28.85
Glasner et al. 32.24 31.10 22.36 31.69 28.84
Ours 31.49  31.80 26.23 31.04 29.89
LapSRN 33.55 33.76 27.28 32.62
SRResNet-MSE ~ 33.66 35.10 28.41 32.73

8 x super-resolution

Baby Bird Butterfly Head Woman Avg.
No prior 26.28  24.03 17.64 27.94 21.37 23.45
Bicubic 27.28  25.28 17.74 28.82 22,74 24.37
TV prior  27.93  25.82 18.40 23.36 24.87
SelfExSR  28.45  26.48 18.80 24.05 25.42
Qurs 28.28 27.09 20.02 24.50 25.88
LapSRN 28.88  27.10 19.97 29.76 24.79 26.10

Restoration with Generative Priors

000@e000000000000
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Metrics for Inverse Problems Restoration with Generative Priors

U-Net and Skip Connections

A U-net can be trained to produce an image aligned with the input image.
Combine images processed at different scales.
Skip connections for residual learning [Kim et al., 2016]

U-nets were used for several imaging tasks:

- Segmentation [Ronneberger et al., 2015]

- Denoising, inverse problems: [Kim et al., 2016], [Ongie et al., 2020], DRUNet [Zhang et al., 2021]
- Image to image translation: Pix2Pix [Isola et al., 2017]

Multi-resolution combinations already at the core of wavelet processing [Mallat, 1989]...

4 4
— Ayt o2 Asz"
D, f
T 2 put one zero between each sample
. keep cne sample out of two

: convolve with fiter X
: convolve with filter X . muliplication by 2
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U-Net and Skip Connections

Skip connections: learn y = x + N(x) instead of y = N(x).

(source: [Kim et al., 2016])
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FBP (sparse views)

Restoration with Generative Priors

Metrics for Inverse Problems
0000@00000000000

00000

U-Net and Skip Connections

Subsampled Sinogram Skip connection
64 64 64 « # of channels 12864 64 1
U-net
N N N NN NNCR
spatial dimension :512x 512
-
64° 128128 256 128 129
N E -~
256 x 256
28 256 236 3x3conv.+BN
> +RelU
128x 128 2x 2 max pooling
256" 512 512 1024 512 512 skip connection
and concatenation
64x64[ -l - ] * 3x3up-conv2.
+ BN+ RelU
- 1x1conv.

32x32
x (source: [Jin et al., 2017])
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Deep Generative Priors
e Acting both on network parameters 0 and latent code z improves restoration
min [|AGo(2) - y/I
e ... especially if we adopt a more appropriate loss £
min £(AGa(2). )
® In order to have more photo-realistic results, one can

- include a term evaluating the quality of deep features (VGQG)
- exploit the discriminator used for training G (with a few adaptations)

(a) Target (b) Zhu etal. [37]  (c)Bauetal.[S] (d) Perceptual loss (e) Discriminator ~(f) Discriminator
+ progressive

(source: [Pan et al., 2022])

Restoration with Generative Priors
00000@0000000000
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Super-Resolution with GANs (SRGAN) [Ledig et al., 2017]

Goal: From couples of training images (x4, x:7) (high-res, low-res), train a feed-forward network G
to predict the HR from LR:

N
. LR HR
min ; L(Gog(x57), x77).

Actually, the SRGAN loss has an adversarial formulation, which includes a “content loss”:
N

rr91in r'r;'axz Iog DGD(X,';'R) + |og(1 - DQD(GGG(X,I;R))) + )\ﬁcontent(Geg(Xrl;R)z X#R)
G D n=1

Content loss between the VGG feature tensors of x57 = Gy (x"?) and x"" at a layer ¢:

Lontert (x>, x™) = VGG (x™") — VGG" (x")I2

® Force images to have similar high level feature tensors (closer to perceptual similarity)
® Training by alternating gradient-based updates of 6, 0p.
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Restoration with Generative Priors
00000

0000000800000000
Super-Resolution with GANs (SRGAN) [Ledig et al., 2017]
Generator Network B residual blocks
A
k9n64s1 "k3n64s1  k3n64s1 ' k3n64s1 k3n256s1 k9n3s1
o~
N
3
é . |SR
g f
&
skip connection
Discriminator Network k3n128s2 k3n256s2 k3n512s2
k3n64s1  k3n64s2 k3n128s1 k3n256s1 k3n512s1
& |HR
3 = Sl=1E |
i3 f =1m
4 < Sty 2
a 3 E @l o ; ISR

Architecture of Generator and Discriminator Network with corresponding kernel size (k), number of feature maps
(n) and stride (s) indicated for each convolutional layer.
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Super-Resolution with GANs (SRGAN) [Ledig et al., 2017]

SRResNet SRGAN-MSE SRGAN-VGG22 SRGAN-VGG54 original HR image

x4 upsampling (16 x more pixels)

SRResNet: generator trained only with MSE (no adversarial loss)
SRGAN-MSE: generator and discriminator with MSE content loss,

SRGAN-VGG22:generator and discriminator with VGG22 content loss,
SRGAN-VGG54:generator and discriminator with VGG54 content loss.
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Super-Resolution with GANs (SRGAN) [Ledig et al., 2017]

bicubic SRResNet SRGAN original
(21.59dB/0.6423) (23.53dB/0.7832) 21.15dB/0.6868)

/

® Even though some details are lost, they are replaced by “fake” but photo-realistic objects
e Of course, SRResNet achieves better PSNR, but is blurrier.
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Metrics for Inverse Problems
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Restoration with Generative Priors
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Deep learning techniques for inverse problems in imaging [Ongie et al., 2020]

¢ One can simply solve y = Ax + w by training a network X = N(y)...
® This is supervised learning given a training set D = {(Xn, ¥n), i =1,...,N}.

® Many possible architectures: denoising auto-encoders, U-Nets, unrolled optimization,...

y_

approximate
inverse

deep CNN with skip connection

A~_1

[ jta] A

Fig. 7. When an approximate inverse A~ of the forward model is known, a
common approach in the supervised setting is to train a deep CNN to remove
noise and artifacts from an initial reconstruction obtained by applying A~!
to the measurements.

(

source: [Ongie et al., 2020])
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Image-to-image translation

Pix2pix: Image-to-Image Translation with Conditional Adversarial Nets [Isola et al., 2017]

Labels to Street Scene Labels to Facade BW to Color

input output
____ Edges to Photo
N\

input output input output output

¢ Training using a set of image pairs (x;, ¥i)
® GAN conditioned on input image x to produce y = G(x).
® Opens the way for new creative tools
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Image-to-image translation

e

fake

Figure 2: Training a conditional GAN to map edges—photo. The
discriminator, D, learns to classify between fake (synthesized by
the generator) and real {edge, photo} tuples. The generator, G,
learns to fool the discriminator. Unlike an unconditional GAN,
both the generator and discriminator observe the input edge map.
(source: From [Isola et al., 2017])
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Conditional GANs

Conditional GANs: Train the generator and the discriminator by passing a class information:
¢ Generator: Generate a fake “3”.
¢ Discriminator: Is it a real or a fake “3"?

Unconditional training:

mlnmax og Dy, og(1 — Do, (Gog
S logDoy(x)+ 3 log(1 — Doy(Gog(2)))

XEDregl Z2E€Drand
fake
Class conditional training:
min 6 max 6p Z log Do, (X, C) + Z log(1 — De,(Gos(2, €), C))
(x,6)€Dreal (2,6)€Drang

fake

Needs a distribution model for drawing ¢ to generate Gy,(z, ¢).
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Conditional GANs: image-to-image translation

(source: From [Isola et al., 2017])
Architecture details:

¢ Generator: U-net architecture

e Discriminator applied to each 70 x 70 patch and spatially averaged

® Both are fully convolutional so after training, larger images can be generated

* No latent code z in the generator, but randomness thanks to dropout in the network.
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Conditional GANs: image-to-image translation

(source: From [Isola et al., 2017])

min max log Do, (¥, X) + log(1 — Dep(Gag(X), X)) + || Gog(X) |l
(xy)ep fake fake

The discriminator looks at generated patches while the ¢4 loss is global.
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Pix2Pix results

Input _Ground truth

L1 cGAN L1+ cGAN
B 5

===l
Figure 4: Different losses induce different quality of results. Each column shows results trained under a different loss. Please see
https://phillipi.github.io/pix2pix/ for additional examples.

(source: From [Isola et al., 2017])
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“Style transfer” with weak optimal transport [Korotin et al., 2023]

Weak optimal transport allows for style transfer with y = T(x, z) and z truly stochastic.

(source: [Korotin et al., 2023])
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Take-home Messages

We have seen optimization methods for solving imaging inverse problems.
This can be adapted to use a generative prior (related to GAN inversion).
Generative priors are useful for tasks where one has access to very few measurements.

Such deep prior may hallucinate details. Use with care in scientific context.
Crucial need for uncertainty quantization!

For explicit regularizations based on deep denoisers, see courses on Plug-and-Play imaging.

THANK YOU FOR YOUR ATTENTION!
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