
1/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Inverse Problems and Generative Models

Arthur Leclaire

MVA Generative Modeling
February, 6th, 2024



2/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Today

• We will discuss imaging inverse problems.
• We will recall classical (simple) tools for solving inverse problems.

In particular we will recall simple regularization techniques (Tychonov, smoothTV)
• We will discuss quantitative evaluation of image restoration.
• We will see how to use generative models to solve inverse problems.



3/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Plan

Inverse Problems
Imaging Inverse Problems
Gradient Descent
Optimization for Inverse Problems

Metrics for Inverse Problems

Restoration with Generative Priors
Generative Priors
Deep learning for Inverse Problems



4/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Inverse problem with additive noise:
v = Au0 + w

where
• u0 ∈ Rd is the clean image to recover
• A : Rd → Rm

• w is a noise

In many cases, the degradation operator A can be approximated with a linear operator A,
and the noise model w is assumed to be Gaussian.

But, there are also inverse problems with non-linear A and non-Gaussian noise (e.g. Poisson noise).



5/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Classical Inverse Problems
42 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 1, MAY 2020

TABLE I
EXAMPLES OF INVERSE PROBLEMS IN IMAGING

to noise (e.g., when the spectrum of A is not bounded below;
in the case where A is the linear operator A, this corresponds
to some eigenvalues of A�A being small).

In some settings, one might have prior knowledge about
which x are more likely; for instance, we might expect x to
be smooth, or be smooth away from edges and boundaries.
Such knowledge can be codified into a prior distribution for
x, leading to a maximum a posteriori (MAP) estimate

x̂MAP = arg max
x

p(x|y) = arg max
x

p(y|x)p(x)

= arg min
x

− ln p(y|x) − ln p(x).

For the special case of additive white Gaussian noise, the MAP
formulation leads to

arg min
x

1
2‖A(x) − y‖2

2 + r(x), (1)

where r(x) is proportional to the negative log-prior of x.
Examples of this framework include Tikhonov regulariza-
tion [54], sparsity regularization in some basis or frame [55],
[56], and total variation regularization [11], [57]. In some
settings, MAP estimation with underdetermined A(·) can be
considered an algorithmic procedure for choosing, among the
infinitely many values of x that satisfy y = A(x), the one that
is most likely under the prior.

While in principle MAP estimation can be used to solve
most image reconstruction problems, difficulties arise when

(1) the statistics of the noise are not known, (2) the distribu-
tion of the signal is not known or the log-likelihood does not
have a closed form, or (3) the forward operator is not known
or only partially known. In the last five years, machine learn-
ing has provided machinery to (partially) overcome many of
these issues. Variations on the aforementioned inverse problem
appear in a range of imaging settings. We highlight a few
prominent examples in Table I.

A. Supervised vs. Unsupervised Inversion

We start by explaining a central dichotomy in the litera-
ture and in our proposed taxonomy of approaches to inverse
problems. The first (and most well-known) family of deep
learning inversion methods use what we call supervised inver-
sions. The central idea is to create a matched dataset of ground
truth images x and corresponding measurements y, which can
be done by simulating (or physically implementing) the for-
ward operator on clean data, i.e., measure them. Subsequently,
one can train a network that takes in measurements y and
reconstructs the image x, i.e., learns an inverse mapping. Such
supervised methods typically perform very well, but are sen-
sitive to changes or uncertainty to the forward operator A. In
addition, a new network needs to be trained every time the
measurement process changes.

The second family of techniques we cover are unsuper-
vised, i.e., do not rely on a matched dataset of images x and
measurements y. In our taxonomy we separate unsupervised

Authorized licensed use limited to: CEA DAM. Downloaded on June 30,2021 at 07:30:38 UTC from IEEE Xplore.  Restrictions apply. 

(source: [Ongie et al., 2020])



6/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Gaussian denoising

Let’s start with the case A = Id, i.e. image denoising:

v = u0 + w where w ∼ N (0, σ2).

We want to estimate u0 from a single realization of v ... need for some image model.

u0 v



7/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Deblurring

• A spatially invariant blur can be modeled by a
convolution operator Au = k ∗ u

• Several types of blur exist (motion, defocus)
• Non-blind deblurring consists in recovering u0 from

v = k ∗ u0 + w .

• We won’t tackle blind deblurring here.

Isotropic blur Motion blur

Original Blurred

Example of motion blur



8/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Super-Resolution

Super-résolution consists in finding another version of v at higher resolution.

This is an inverse problem corresponding to the subsampling operator with stride s ∈ N∗:

u↓s(x , y) = u(sx , sy).

In practice, we often apply an (anti-aliasing) filter before subsampling.

With prefiltering, we obtain the operator

Au = (k ∗ u)↓s.

Super-resolution consists in recovering u0 from

v = (k ∗ u)↓s + w .

The degraded image v is defined on a subgrid of stride s.



9/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Inpainting

Inpainting consists in filling missing regions in images

The degradation operator then writes
Au = u1ω

where ω ⊂ Ω is the set of known pixels and Ω \ ω the mask.



10/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Inverse problem

We wish to recover u0 from
v = Au0 + w .

The problem is said ill-posed when A is not invertible or with unstable inverse.

Example : For deblurring, Au = k ∗ u, we can invert A directly in Fourier domain:

u = F−1
(

v̂
k̂

)
= F−1

(
û0 +

ŵ
k̂

)
−→ but noise explodes !

When the problem is ill-posed, there may be multiple solutions or erroneous solutions.

It is thus useful to adopt an a priori on the solution, e.g. imposing some kind of regularity.



10/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Inverse problem

We wish to recover u0 from
v = Au0 + w .

The problem is said ill-posed when A is not invertible or with unstable inverse.

Example : For deblurring, Au = k ∗ u, we can invert A directly in Fourier domain:

u = F−1
(

v̂
k̂

)
= F−1

(
û0 +

ŵ
k̂

)
−→ but noise explodes !

When the problem is ill-posed, there may be multiple solutions or erroneous solutions.

It is thus useful to adopt an a priori on the solution, e.g. imposing some kind of regularity.



10/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Inverse problem

We wish to recover u0 from
v = Au0 + w .

The problem is said ill-posed when A is not invertible or with unstable inverse.

Example : For deblurring, Au = k ∗ u, we can invert A directly in Fourier domain:

u = F−1
(

v̂
k̂

)
= F−1

(
û0 +

ŵ
k̂

)
−→ but noise explodes !

When the problem is ill-posed, there may be multiple solutions or erroneous solutions.

It is thus useful to adopt an a priori on the solution, e.g. imposing some kind of regularity.



11/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Image Restoration by Optimization

We will therefore try to solve

F (u) =
1
2
∥Au − v∥2

2 + λR(u)

where R(u) imposes some kind of regularity of u, and λ ≥ 0 is a parameter.

The problem Argmin
u∈RΩ

F (u) is very high-dimensional, and we need efficient algorithms.

Simple (nearly useless) regularization: Consider R(u) = λ
2 ∥u∥2

2. Then uλ ∈ ArgminF is given by

AT (Auλ − v) + λuλ = 0 i.e. uλ = (AT A + λI)−1AT v

Example: for denoising (A = Id),

it just divides all values by 1 + λ...

For differentiable F , we can always consider simple gradient descent.

Example: The gradient of f (u) = 1
2∥Au − y∥2

2 is ∇f (u) = AT (Au − y).

If Au = k ∗ u (periodic convolution), then AT u = k̃ ∗ u with k̃(x) = k(−x).



11/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Image Restoration by Optimization

We will therefore try to solve

F (u) =
1
2
∥Au − v∥2

2 + λR(u)

where R(u) imposes some kind of regularity of u, and λ ≥ 0 is a parameter.

The problem Argmin
u∈RΩ

F (u) is very high-dimensional, and we need efficient algorithms.

Simple (nearly useless) regularization: Consider R(u) = λ
2 ∥u∥2

2. Then uλ ∈ ArgminF is given by

AT (Auλ − v) + λuλ = 0 i.e. uλ = (AT A + λI)−1AT v

Example: for denoising (A = Id), it just divides all values by 1 + λ...

For differentiable F , we can always consider simple gradient descent.

Example: The gradient of f (u) = 1
2∥Au − y∥2

2 is ∇f (u) = AT (Au − y).

If Au = k ∗ u (periodic convolution), then AT u = k̃ ∗ u with k̃(x) = k(−x).



11/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Image Restoration by Optimization

We will therefore try to solve

F (u) =
1
2
∥Au − v∥2

2 + λR(u)

where R(u) imposes some kind of regularity of u, and λ ≥ 0 is a parameter.

The problem Argmin
u∈RΩ

F (u) is very high-dimensional, and we need efficient algorithms.

Simple (nearly useless) regularization: Consider R(u) = λ
2 ∥u∥2

2. Then uλ ∈ ArgminF is given by

AT (Auλ − v) + λuλ = 0 i.e. uλ = (AT A + λI)−1AT v

Example: for denoising (A = Id), it just divides all values by 1 + λ...

For differentiable F , we can always consider simple gradient descent.

Example: The gradient of f (u) = 1
2∥Au − y∥2

2 is

∇f (u) = AT (Au − y).

If Au = k ∗ u (periodic convolution), then AT u = k̃ ∗ u with k̃(x) = k(−x).



11/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Image Restoration by Optimization

We will therefore try to solve

F (u) =
1
2
∥Au − v∥2

2 + λR(u)

where R(u) imposes some kind of regularity of u, and λ ≥ 0 is a parameter.

The problem Argmin
u∈RΩ

F (u) is very high-dimensional, and we need efficient algorithms.

Simple (nearly useless) regularization: Consider R(u) = λ
2 ∥u∥2

2. Then uλ ∈ ArgminF is given by

AT (Auλ − v) + λuλ = 0 i.e. uλ = (AT A + λI)−1AT v

Example: for denoising (A = Id), it just divides all values by 1 + λ...

For differentiable F , we can always consider simple gradient descent.

Example: The gradient of f (u) = 1
2∥Au − y∥2

2 is ∇f (u) = AT (Au − y).

If Au = k ∗ u (periodic convolution), then AT u = k̃ ∗ u with k̃(x) = k(−x).



11/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Image Restoration by Optimization

We will therefore try to solve

F (u) =
1
2
∥Au − v∥2

2 + λR(u)

where R(u) imposes some kind of regularity of u, and λ ≥ 0 is a parameter.

The problem Argmin
u∈RΩ

F (u) is very high-dimensional, and we need efficient algorithms.

Simple (nearly useless) regularization: Consider R(u) = λ
2 ∥u∥2

2. Then uλ ∈ ArgminF is given by

AT (Auλ − v) + λuλ = 0 i.e. uλ = (AT A + λI)−1AT v

Example: for denoising (A = Id), it just divides all values by 1 + λ...

For differentiable F , we can always consider simple gradient descent.

Example: The gradient of f (u) = 1
2∥Au − y∥2

2 is ∇f (u) = AT (Au − y).

If Au = k ∗ u (periodic convolution), then AT u =

k̃ ∗ u with k̃(x) = k(−x).



11/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Image Restoration by Optimization

We will therefore try to solve

F (u) =
1
2
∥Au − v∥2

2 + λR(u)

where R(u) imposes some kind of regularity of u, and λ ≥ 0 is a parameter.

The problem Argmin
u∈RΩ

F (u) is very high-dimensional, and we need efficient algorithms.

Simple (nearly useless) regularization: Consider R(u) = λ
2 ∥u∥2

2. Then uλ ∈ ArgminF is given by

AT (Auλ − v) + λuλ = 0 i.e. uλ = (AT A + λI)−1AT v

Example: for denoising (A = Id), it just divides all values by 1 + λ...

For differentiable F , we can always consider simple gradient descent.

Example: The gradient of f (u) = 1
2∥Au − y∥2

2 is ∇f (u) = AT (Au − y).

If Au = k ∗ u (periodic convolution), then AT u = k̃ ∗ u with k̃(x) = k(−x).



12/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

The Steepest Descent

https://mathinsight.org/directional_derivative_gradient_introduction

https://mathinsight.org/directional_derivative_gradient_introduction


13/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Descent Lemma

Let f : Rd → R be differentiable with L-Lipschitz gradient. Then, for any x , y ∈ Rd ,

f (y) = f (x) +
∫ 1

0
∇f (x + t(y − x)) · (y − x)dt

= f (x) +∇f (x) · (y − x) +
∫ 1

0

(
∇f (x + t(y − x))−∇f (x)

)
· (y − x)dt

≤ f (x) +∇f (x) · (y − x) +
∫ 1

0
∥∇f (x + t(y − x))−∇f (x)∥∥y − x∥dt

≤ f (x) +∇f (x) · (y − x) +
∫ 1

0
Lt∥y − x∥2dt

≤ f (x) +∇f (x) · (y − x) +
L
2
∥y − x∥2.

Consequence: If we choose τ ∈ [0, 2
L ), then

f (x − τ∇f (x)) ≤ f (x)− τ
(

1 − τL
2

)
∥∇f (x)∥2 ≤ f (x).



14/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Gradient Descent

We consider here the gradient descent method:

xn+1 = xn − τn∇f (xn) ,

where τn > 0 is a sequence of step sizes.
• For τn = τ constant, we speak of fixed step size.
• We speak of optimal step size if, at each iteration n, we choose

τn ∈ Argmin
t∈R

f (xn − t∇f (xn)).

The descent lemma gives that for f differentiable with L-Lipschitz gradient and τ < 2
L ,

f (xn+1) ⩽ f (xn)

Thus, if f is lower bounded, f (xn) converges.



15/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Convexity and Minimum

The function f : Rd → R is convex if for all x , y ∈ Rd ,

∀t ∈ (0, 1), f ((1 − t)x + ty) ⩽ (1 − t)f (x) + tf (y).

It is said strictly convex if the inequality is strict.

If f is convex and differentiable, one can show that for any x , y ∈ Rd ,

f (y) ⩾ f (x) +∇f (x) · (y − x).

Consequence : If f is convex and differentiable, then

x ∈ Argmin f ⇐⇒ ∇f (x) = 0.

The argmin is unique as soon as f is strictly convex.



16/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Strong Convexity

We say that f is α-convex (with α > 0) if f − α
2 ∥ · ∥2 is convex.

When α > 0, we say that f is strongly convex.

Remark : The convexity and the gradient Lipschitz constant can be read on the Hessian.

If A,B ∈ Rd×d are symmetric, we write A ⪰ B if A − B if semi-definite positive, i.e.

∀x ∈ Rd , Ax · x ≥ Bx · x .

For f : Rd → R of class C 2,

∇f is L-lipschitz iff ∀x ∈ Rd , −LId ⪯ ∇2f (x) ⪯ LId.
i.e. ∀x the eigenvalues of ∇2f (x) have modulus ≤ L.

f is α-convex iff ∇2f ⪰ αId
i.e. ∀x the eigenvalues of ∇2f (x) are all ≥ α.



17/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Convergence Guarantees, Convex Case

Theorem
Let f : Rd → R be convex differentiable with ∇f L-Lipschitz. Assume that Argmin f is non-empty.
Let τ ∈ (0, 2

L ), x0 ∈ Rd and (xn) the sequence defined by

xn+1 = xn − τ∇f (xn) .

Then (xn) converges towards an element of Argmin f .

Theorem
Let f : Rd → R be differentiable and α-strongly convex with L-Lipschitz gradient.
Then there exists a unique x∗ ∈ Argmin f , and for τ < 1

L ⩽ 1
α

, we have

∥xn − x∗∥2 ⩽ (1 − τα)n∥x0 − x∗∥2.



18/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Optimization for Inverse Problems

To solve the inverse problem v = Au0 + w , we can thus minimize

F (u) = f (u) + g(u)

with f (u) = 1
2∥Au − v∥2 and g(u) = λR(u), λ > 0.

For a regularization R(u) = ∥Bu∥2
2, F is convex and differentiable.

We can thus minimize F by gradient descent with τ < 2
L where L = ∥AT A + 2λBT B∥.

• For Au = k ∗ u, AT Au = F−1(|k̂ |2û).
If |k̂ | ≤ 1, it follows that ∥AT A∥ ≤ 1.

• For Au = 1ωu, AT A = A2 = A et ∥A∥ = 1.

Good news: By automatic differentiation you need only coding F (u)...

But ! in order to avoid instability problems, you’d better know what F does...
(for example, useful to have an idea of the Lipschitz constant of F )



18/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Optimization for Inverse Problems

To solve the inverse problem v = Au0 + w , we can thus minimize

F (u) = f (u) + g(u)

with f (u) = 1
2∥Au − v∥2 and g(u) = λR(u), λ > 0.

For a regularization R(u) = ∥Bu∥2
2, F is convex and differentiable.

We can thus minimize F by gradient descent with τ < 2
L where L = ∥AT A + 2λBT B∥.

• For Au = k ∗ u, AT Au = F−1(|k̂ |2û).
If |k̂ | ≤ 1, it follows that ∥AT A∥ ≤ 1.

• For Au = 1ωu, AT A = A2 = A et ∥A∥ = 1.

Good news: By automatic differentiation you need only coding F (u)...

But ! in order to avoid instability problems, you’d better know what F does...
(for example, useful to have an idea of the Lipschitz constant of F )



18/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Optimization for Inverse Problems

To solve the inverse problem v = Au0 + w , we can thus minimize

F (u) = f (u) + g(u)

with f (u) = 1
2∥Au − v∥2 and g(u) = λR(u), λ > 0.

For a regularization R(u) = ∥Bu∥2
2, F is convex and differentiable.

We can thus minimize F by gradient descent with τ < 2
L where L = ∥AT A + 2λBT B∥.

• For Au = k ∗ u, AT Au = F−1(|k̂ |2û).
If |k̂ | ≤ 1, it follows that ∥AT A∥ ≤ 1.

• For Au = 1ωu, AT A = A2 = A et ∥A∥ = 1.

Good news: By automatic differentiation you need only coding F (u)...

But ! in order to avoid instability problems, you’d better know what F does...
(for example, useful to have an idea of the Lipschitz constant of F )



19/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Let us start with zero regularization!

Consider here
f (u) =

1
2
∥Au − v∥2.

• We have an orthogonal decomposition Rd = K ⊕ K⊥ with K = Ker[A] and K T = Im[AT ]

• Therefore ArgminRd f is non-empty and we can define

A+v = min
u∈Argmin f

∥u∥2
2.

It defines a linear operator A+, called Moore-Penrose pseudo-inverse.
• The Moore-Penrose pseudo-inverse has a zero component in Ker[A].
• AK T : K T → Im(A) is invertible. Thus A+ = A−1

K T P (with P the orthogonal projection on Im(A)).

• Actually, one can show that A+v = limλ→0(AT A + λI)−1AT v .
• But A+v is generally a bad solution for inverse problems because of bad conditioning.



20/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Explicit Regularizations

We define the discrete derivatives of u by

∇u(x , y) =
(
∂1u(x , y)
∂2u(x , y)

)
avec

{
∂1u(x , y) = d1 ∗ u(x , y) = u(x + 1, y)− u(x , y)
∂2u(x , y) = d2 ∗ u(x , y) = u(x , y + 1)− u(x , y)

.

We define Tychonov regularization by

∥∇u∥2
2 =

∑
x∈Ω

∥∇u(x)∥2 =
∑
x∈Ω

|∂1u(x)|2 + |∂2u(x)|2.

We define the total variation by

TV(u) = ∥∇u∥1 =
∑
x∈Ω

∥∇u(x)∥ =
∑
x∈Ω

√
|∂1u(x)|2 + |∂2u(x)|2.



21/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Back to denoising

Let us minimize
F (u) =

1
2
∥u − v∥2 + λR(u)

where R is a regularization and λ > 0.

Consider first Tychonov regularization R(u) = ∥∇u∥2
2.

We have ∇R(u) = 2∇T∇u. As F is convex,

u ∈ Argmin F ⇐⇒ ∇F (u) = 0 ⇐⇒ u − v + 2λ∇T∇u = 0 ⇐⇒ u = (I + 2λ∇T∇)−1v

For p : Ω → R2, ∇T p is given by

∇T p(x , y) = p1(x − 1, y)− p1(x , y) + p2(x , y − 1)− p2(x , y).

Actually, div(p) := −∇T p is a discrete divergence and ∆u := −∇T∇u is a discrete Laplacian.



21/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Back to denoising

Let us minimize
F (u) =

1
2
∥u − v∥2 + λR(u)

where R is a regularization and λ > 0.

Consider first Tychonov regularization R(u) = ∥∇u∥2
2.

We have ∇R(u) = 2∇T∇u.

As F is convex,

u ∈ Argmin F ⇐⇒ ∇F (u) = 0 ⇐⇒ u − v + 2λ∇T∇u = 0 ⇐⇒ u = (I + 2λ∇T∇)−1v

For p : Ω → R2, ∇T p is given by

∇T p(x , y) = p1(x − 1, y)− p1(x , y) + p2(x , y − 1)− p2(x , y).

Actually, div(p) := −∇T p is a discrete divergence and ∆u := −∇T∇u is a discrete Laplacian.



21/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Back to denoising

Let us minimize
F (u) =

1
2
∥u − v∥2 + λR(u)

where R is a regularization and λ > 0.

Consider first Tychonov regularization R(u) = ∥∇u∥2
2.

We have ∇R(u) = 2∇T∇u. As F is convex,

u ∈ Argmin F ⇐⇒ ∇F (u) = 0 ⇐⇒ u − v + 2λ∇T∇u = 0 ⇐⇒ u = (I + 2λ∇T∇)−1v

For p : Ω → R2, ∇T p is given by

∇T p(x , y) = p1(x − 1, y)− p1(x , y) + p2(x , y − 1)− p2(x , y).

Actually, div(p) := −∇T p is a discrete divergence and ∆u := −∇T∇u is a discrete Laplacian.



21/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Back to denoising

Let us minimize
F (u) =

1
2
∥u − v∥2 + λR(u)

where R is a regularization and λ > 0.

Consider first Tychonov regularization R(u) = ∥∇u∥2
2.

We have ∇R(u) = 2∇T∇u. As F is convex,

u ∈ Argmin F ⇐⇒ ∇F (u) = 0 ⇐⇒ u − v + 2λ∇T∇u = 0 ⇐⇒ u = (I + 2λ∇T∇)−1v

For p : Ω → R2, ∇T p is given by

∇T p(x , y) = p1(x − 1, y)− p1(x , y) + p2(x , y − 1)− p2(x , y).

Actually, div(p) := −∇T p is a discrete divergence and ∆u := −∇T∇u is a discrete Laplacian.



22/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Explicit Solution: Wiener filtering

Theorem
Let v ∈ CΩ and λ > 0. The function F : CΩ → R+ defined by

∀u ∈ CΩ, F (u) =
1
2
∥u − v∥2

2 + λ∥∇u∥2
2

has a minimum attained at a unique u∗ ∈ CΩ, which is given in Fourier domain:

∀(ξ, ζ) ∈ Ω, û∗(ξ, ζ) =
v̂(ξ, ζ)

1 + 2λ L̂(ξ, ζ)

where L̂(ξ, ζ) = |d̂1(ξ, ζ)|2 + |d̂2(ξ, ζ)|2 = 4
(
sin2 (πξ

M

)
+ sin2 (πζ

N

))
.

Remarks:
• d1, d2 are the kernel derivatives, e.g. d1 = δ(−1,0) − δ(0,0). So L̂ is the kernel of −∆ filter.
• The theorem adapts for deblurring with Tychonov regularization:

∀(ξ, ζ) ∈ Ω, û∗(ξ, ζ) =
k̂(ξ, ζ)v̂(ξ, ζ)

|k̂(ξ, ζ)|2 + 2λ L̂(ξ, ζ)



23/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Link with an evolution model

The gradient descent on

F (u) =
1
2
∥u − v∥2

2 + λ∥∇u∥2
2

writes as
un+1 − un = −τ(un − v) + 2λτ∆un .

The sequence (un) converges to u∗ as soon as τ < 2
L with L = ∥I + 2λ∇T∇∥ = 1 + 16λ.

If we drop the data-fidelity... then gradient descent on u 7→ ∥∇u∥2
2 gives

un+1 − un = 2τ∆un

This is a discretization of the heat equation ∂tu = c∆u with initial condition u0.



23/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Link with an evolution model

The gradient descent on

F (u) =
1
2
∥u − v∥2

2 + λ∥∇u∥2
2

writes as
un+1 − un = −τ(un − v) + 2λτ∆un .

The sequence (un) converges to u∗ as soon as τ < 2
L with L = ∥I + 2λ∇T∇∥ = 1 + 16λ.

If we drop the data-fidelity... then gradient descent on u 7→ ∥∇u∥2
2 gives

un+1 − un = 2τ∆un

This is a discretization of the heat equation ∂tu = c∆u with initial condition u0.



24/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Smoothed Total Variation

What if we want to minimize
F (u) =

1
2
∥u − v∥2

2 + λTV(u).

Problem: The total variation is not differentiable.

A simple solution: Consider a smoothed variant: For ε > 0, let

TVε(u) =
∑

(x,y)∈Ω

√
ε2 + ∂1u(x , y)2 + ∂2u(x , y)2 .

One can see that

∇TVε(u) = ∇T

(
∇u√

ε2 + ∥∇u∥2
2

)
.

And one can show that ∇TVε is 8
ε
-Lipschitz.

We can thus minimize F by gradient descent with τ < 2
1+ 8λ

ε

.



25/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Denoising Examples

Noisy Tychonov denoising TVε denoising
PSNR = 19.93 PSNR = 25.89 PSNR = 27.21



26/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Projected Gradient Descent

Imagine that we want to constrain the solution into a convex closed set C ⊂ Rd :

Argmin
u∈C

F (u)

For that, we can use the orthogonal projection pC : Rd → C.

Theorem
Let f : Rd → R be convex differentiable such that ∇f is L-Lipschitz.
Let C ⊂ Rd be a closed convex set. Assume that ArgminC f is non-empty.
For τ ∈ (0, 2

L ), x0 ∈ Rd , let (xn) be defined by

xn+1 = pC(xn − τ∇f (xn)) .

Then (xn) converges to an element of ArgminC f .

Example : For inpainting, we can deal with the noiseless problem v = Au.
In this case, we can perform constrained minimization of only the regularization term:

min
v=Au

R(u).



27/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Plan

Inverse Problems
Imaging Inverse Problems
Gradient Descent
Optimization for Inverse Problems

Metrics for Inverse Problems

Restoration with Generative Priors
Generative Priors
Deep learning for Inverse Problems



28/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Euclidean metrics

• Given two images u and v of size M × N with graylevels between 0 and 255.
• Denote Ω = {0, . . . ,M − 1} × {0, . . . ,N − 1} the pixel domain
• Mean Square Error ↓:

MSE =
1

MN

∑
x∈Ω

(u(x)− v(x))2

• Root Mean Square Error ↓:

RMSE =

(
1

MN

∑
x∈Ω

(u(x)− v(x))2

) 1
2

• Peak Signal to Noise Ratio ↑:

PSNR = 20 log10

(
255

RMSE

)
• Useful for inverse problems such as denoising.
• Not ideal when one hopes to generate new content.



29/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Structural similarity index measure (SSIM ↑) [Wang et al., 2004]

Between patches:
• Given two patches x , y (typically of size 8×8 or 11×11 with a Gaussian windowing)

SSIM(x , y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
∈ [−1, 1]

with:
• µx the pixel sample mean of x
• µy the pixel sample mean of y
• σ2

x the variance of x
• σ2

y the variance of y
• σxy the covariance of x and y
• c1 = (k1L)2, c2 = (k2L)2 two variables to stabilize the division with weak denominator, with the range

L = 255 or 1 and k1 = 0.01 and k2 = 0.03 by default.

• SSIM(x , y) is the product of three terms:

Luminance Contrast Structure
l(x , y) = 2µxµy+c1

µ2
x+µ2

y+c1
c(x , y) = 2σxσy+c2

σ2
x+σ2

y+c2
s(x , y) = σxy+c2/2

σxσy+c2/2



30/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Structural similarity index measure (SSIM ↑) [Wang et al., 2004]

Between images:
• Given two images u and v of size M × N with gray-level between 0 and L = 255, define the

Mean-SSIM by averaging over all patches:

(M)SSIM(u, v) = mean({SSIM(Px(u),Px(v)), x + ω ⊂ Ω})

where Px(u) is the restriction of u on the patch x + ω.
• There are also multiscale variants.
• SSIM is not a distance, its range is [−1, 1].
• SSIM is closer to a perceptual distance, especially regarding local textures.



31/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

LPIPS ↓ [Zhang et al., 2018]

LPIPS: Learned Perceptual Image Patch Similarity
• Previous works on texture synthesis [Gatys et al., 2015] and style transfer [Gatys et al., 2016]

• have shown the importance of the VGG [Simonyan and Zisserman, 2015] features for perceptual
similarity between images.

• This means that intermediate features of classification CNN are useful in their own: “a good
feature is a good feature. Features that are good at semantic tasks are also good at
self-supervised and unsupervised tasks, and also provide good models of both human
perceptual behavior and macaque neural activity.”

LPIPS model: Define a perceptual distance between 64×64 patches by computing a Euclidean
norm between features:

d(x , x0)
2 =

∑
layers ℓ

1
HℓWℓ

∑
i,j

∥wℓ ⊙ (V ℓ(x)i,j − V ℓ(x0))i,j∥2
2

where for each layer the channel weights wℓ are learned to reproduce human evaluation of distortion
between patches.



32/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Plan

Inverse Problems
Imaging Inverse Problems
Gradient Descent
Optimization for Inverse Problems

Metrics for Inverse Problems

Restoration with Generative Priors
Generative Priors
Deep learning for Inverse Problems



33/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Generative prior for inverse problems in imaging

• Instead of computing an explicit regularization R, one can add a constraint

min
x∈Σ

∥Ax − y∥2

where Σ ⊂ Rd is a “low-dimensional” model [Candes et al., 2006, Bourrier et al., 2014].
• Adopting a generative prior consists in considering the model

Σ = {G(z), z ∈ Rk}

parameterized by a pre-trained generative network.
• We then solve the inverse problem by computing

x̂ = G(ẑ) where ẑ ∈ Argmin
z∈Rk

∥A(G(z))− y∥2.

This can be seen as a “pseudo-inverse” with a “manifold constraint”.



34/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Relation with GAN inversion

• Generative priors demonstrated to be effective for compressed sensing [Bora et al., 2017].
• Denoising with a generative prior amounts to solving

min
z∈Rk

∥G(z)− y∥2.

This can be reformulated as GAN inversion: finding the latent code z such that y = G(z).
GANs are less appropriate for that than VAE or normalizing flows.

• Adopting a generative prior implicitly assumes that the GAN inversion is effective.
• Recovery guarantees can be formulated with hypotheses on A and G [Bora et al., 2017].

In practice, Bora et al. also add a latent regularization ∥z∥2.
• But GANs may suffer from mode collapse, or limited generator capacity.
• Only works when the generator is learned on appropriate data (related to the observation).



35/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Deep Image Prior [Ulyanov et al., 2018]

• “Image statistics are implicitly captured by the structure of CNN”
• Fix a random latent code z and “fine-tune” the parameters of the network:

min
θ

∥AGθ(z)− y∥2

• Results highly depend on the chosen architecture for Gθ.
Ulyanov et al. chose a U-Net architecture with skip connections with millions of parameters,
and z, x = Gθ(z) with same spatial dimension.

• Convergence guarantee: descent lemma as soon as function has Lipschitz gradient.
• Iterating too much conducts to fit also the noise!

→ Regularization by early stopping the optimization algorithm...
• Same technique also used with SinGAN [Shaham et al., 2019] for image editing or restoration.



35/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Deep Image Prior [Ulyanov et al., 2018]



36/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

U-Net and Skip Connections

• A U-net can be trained to produce an image aligned with the input image.
• Combine images processed at different scales.
• Skip connections for residual learning [Kim et al., 2016]

• U-nets were used for several imaging tasks:
· Segmentation [Ronneberger et al., 2015]
· Denoising, inverse problems: [Kim et al., 2016], [Ongie et al., 2020], DRUNet [Zhang et al., 2021]
· Image to image translation: Pix2Pix [Isola et al., 2017]

• Multi-resolution combinations already at the core of wavelet processing [Mallat, 1989]...



36/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

U-Net and Skip Connections

Skip connections: learn y = x + N(x) instead of y = N(x).

(source: [Kim et al., 2016])



36/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

U-Net and Skip Connections
JIN et al.: DEEP CNN FOR INVERSE PROBLEMS IN IMAGING 4513

Fig. 2. Architecture of the proposed deep convolutional network. This architecture comes from U-net [20] except the skip connection for residual learning.

CNN architecture. To this end, we base our CNN on the U-net
[20], which was originally designed for segmentation. For a
diagram of our modified U-net, see Figure 2. For pseudocode
of its operation, see the Appendix. There are several properties
of this architecture that recommend it for our purposes.

1) Multilevel Decomposition: The U-net employs a dyadic
scale decomposition based on max pooling, so that the effec-
tive filter size in the middle layers is larger than that of
the early and late layers. This is critical for our application
because the filters corresponding to H ∗H (and its inverse)
may have non-compact support, e.g. in CT. Thus, a CNN with
a small, fixed filter size may not be able to effectively invert
H ∗H . This decomposition also has a nice analog to the use
of multiresolution wavelets in iterative approaches.

2) Multichannel Filtering: U-net employs multichannel fil-
ters, such that there are multiple feature maps at each layer.
This is the standard approach in CNNs to increase the
expressive power of the network [16], [57]. The multiple
channels also have an analog in iterative methods: In the
ISTA formulation (2), we can think of the wavelet coefficient
vector a as being partitioned into different channels, with each
channel corresponding to one wavelet subband [51], [52]. Or,
in ADMM [54], the split variables can be viewed as channels.
The CNN architecture greatly generalizes this by allowing
filters to make arbitrary combinations of channels.

3) Residual Learning: As a refinement of the original
U-net, we add a skip connection [29] between input and
output, which means that the network actually learns the
difference between input and output. This approach mitigates
the vanishing gradient problem [39] during training. This

yields a noticeable increase in performance compared to the
same network without the skip connection.

4) Implementation Details: We made two additional mod-
ifications to U-net. First, we use zero-padding so that the
image size does not decrease after each convolution. Second,
we replaced the last layer with a convolutional layer which
reduces the 64 channels to a single output image. This is
necessary because the original U-net architecture results in
two channels: foreground and background.

C. Computational Complexity

The computational cost of the FBP is dominated by the back
projection, rather than the filtering. For an N × N image and
a M ×V sinogram, the cost of the back projection scales with
O(N2 MV ) in the worst case, though this can be reduced to
O(N2 V ) by considering a fixed-size discretization kernel (this
is the case with the implementation we use).

The basic operations in the CNN are convolutions, addi-
tions, application of the ReLU function, upsampling, down-
sampling, and local maximum filtering. The operation count
is dominated by the convolutions, which are performed in the
space domain because the kernel is small (3 × 3 in our case).
More specifically, for an N × N input, K × K filters, R filters
per layer, and L layers, the cost of evaluating the CNN grows
like O(N2 K 2 R2 L) [58]. The storage for the network is only
dependent on the size of the filters and biases. Therefore, this
can be summarized as O(L K 2 R2).

During training, the computation is dominated by the chain
rule calculations in the error-backpropagation algorithm. These
are essentially the same procedures as the forward (evaluation)

(source: [Jin et al., 2017])



37/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Deep Generative Priors

• Acting both on network parameters θ and latent code z improves restoration

min
z,θ

∥AGθ(z)− y∥2

• ... especially if we adopt a more appropriate loss L

min
z,θ

L(AGθ(z), y)

• In order to have more photo-realistic results, one can
· include a term evaluating the quality of deep features (VGG)
· exploit the discriminator used for training G (with a few adaptations)

(source: [Pan et al., 2022])



38/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Super-Resolution with GANs (SRGAN) [Ledig et al., 2017]

Goal: From couples of training images (xHR
n , xLR

n ) (high-res, low-res), train a feed-forward network G
to predict the HR from LR:

min
θG

N∑
n=1

L(GθG (x
LR
n ), xHR

n ).

Actually, the SRGAN loss has an adversarial formulation, which includes a “content loss”:

min
θG

max
θD

N∑
n=1

logDθD (x
HR
n ) + log(1 − DθD (GθG (x

LR
n ))) + λLcontent(GθG (x

LR
n ), xHR

n )

Content loss between the VGG feature tensors of xSR = GθG (x
LR) and xHR at a layer ℓ:

Lcontent(xSR, xHR) = ∥VGGℓ(xSR)− VGGℓ(xHR)∥2
2

• Force images to have similar high level feature tensors (closer to perceptual similarity)
• Training by alternating gradient-based updates of θG, θD .



39/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Super-Resolution with GANs (SRGAN) [Ledig et al., 2017]



40/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Super-Resolution with GANs (SRGAN) [Ledig et al., 2017]

×4 upsampling (16× more pixels)
• SRResNet: generator trained only with MSE (no adversarial loss)
• SRGAN-MSE: generator and discriminator with MSE content loss,
• SRGAN-VGG22:generator and discriminator with VGG22 content loss,
• SRGAN-VGG54:generator and discriminator with VGG54 content loss.



41/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Super-Resolution with GANs (SRGAN) [Ledig et al., 2017]

×4 upsampling (16× more pixels)

• Even though some details are lost, they are replaced by “fake” but photo-realistic objects
• Of course, SRResNet achieves better PSNR, but is blurrier.



42/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Deep learning techniques for inverse problems in imaging [Ongie et al., 2020]

• One can simply solve y = Ax + w by training a network x̂ = N(y)...
• This is supervised learning given a training set D = {(xn, yn), i = 1, . . . ,N}.
• Many possible architectures: denoising auto-encoders, U-Nets, unrolled optimization,...

ONGIE et al.: DEEP LEARNING TECHNIQUES FOR INVERSE PROBLEMS IN IMAGING 45

Fig. 7. When an approximate inverse Ã−1 of the forward model is known, a
common approach in the supervised setting is to train a deep CNN to remove
noise and artifacts from an initial reconstruction obtained by applying Ã−1

to the measurements.

measurements back to image domain and then train a neu-
ral network to remove artifacts from the resulting images.
The specific choice of Ã−1 will depend on the particular
inverse problem, but common choices include the adjoint A�
or psuedo-inverse A†, though one is not limited to these.
For example, in super-resolution a common choice of Ã−1 is
upsampling by bicubic interpolation [18]; in CT reconstruc-
tion, a common choice of Ã−1 is filtered back projection [98].
This approach can be viewed as learning a reconstruction
network whose first-layer weights are fixed and given by Ã−1.
In this case, it is often beneficial to use a residual (or “skip”)
connections in the reconstruction network, since the output
from the first layer is expected to be close to the output
of the network. More precisely, this approach structures the
reconstruction map fθ as

fθ (y) = gθ

(
Ã−1y

)
+ Ã−1y (2)

where gθ is a trainable neural network depending on parame-
ters θ ; see Figure 7 for an illustration. In this case, the network
gθ is interpreted as predicting the residual between the approx-
imate inverse and the reconstructed image. For example, in a
super-resolution context, the network gθ is predicts the miss-
ing high frequency content from a low-pass-filtered image.
Networks with more complicated hierarchical skip connec-
tions are also commonly used, including the U-net [99] and
architectures inspired by wavelet decompositions [79].

Inspired by iterative optimization approaches, unrolled
methods go further and incorporate A into multiple layers of
the reconstruction network, as illustrated in Figure 8. To moti-
vate this approach, consider the MAP formulation (1) where
the regularizer r(·) (or, equivalently, the negative log-prior) is
convex. A commonly-used algorithm for optimizing (1) in this
case is proximal gradient descent [100], whose iterations have
the form:

x(k+1) = P
(

x(k) − ηA�(
Ax(k) − y

))
(3)

where P(z):= arg minx{ 1
2‖x − z‖2 + r(x)} denotes the proxi-

mal operator corresponding to the regularizer r(·), and η is a
step-size parameter. Suppose that we take as our reconstruc-
tion network the Kth iterate of proximal gradient descent x(K)

starting from the initialization x(0) = 0. Then we can turn
this into a trainable reconstruction network by replacing all
instances of the proximal operator P(·) with a trainable deep
CNN Pθ (·) mapping from images to images. In this approach
the reconstruction network can be interpreted as learning a

proximal operator. Any other free parameters, such as the
step-size parameter η can also be learned in training.

The unrolling approach presented above was pioneered
in [101] in a sparse coding context. Unrolled versions of
(proximal) gradient descent for inverse problems in imag-
ing are investigated in [80], [102]–[104]. Other optimization
algorithms that have been investigated in an unrolling con-
text include the alternating directions method of multipliers
(ADMM) [19], primal-dual methods [83], half-quadratic split-
ting [105], [106], block coordinate descent [107]–[109],
alternating minimization [82], and approximate message pass-
ing [88], [110]. Beyond unrolling of optimization algorithms,
recent work [84] considers an unrolling strategy based on
a Neumann series approximation to the solution map of
Equation (1).

2) Train From y’s Only (Measurements Only): If both the
forward model A and the noise statistics are known, then
the measurements themselves can be used as a proxy for the
ground truth. In this case, it is possible to train reconstruction
networks similar to those in Section IV-A1 from the measure-
ments alone, with an approporiate modification of the training
loss function. This is known as self-supervision, and has been
studied in [87], [111] to learn autoencoders for estimating
images x� from noisy measurements y. Below we highlight
a self-supervised approach based on Stein’s Unbiased Risk
Estimator (SURE).

a) GSURE: In classical statistics, SURE [112] is a tech-
nique to compute the mean square error of a mean estimator,
without access to the ground truth. In order to understand how
it can be used in deep learning for inverse problems, consider
the denoising problem, where y = x� + ε. Given a parametric
class of estimators {fθ }θ∈� parameterized by θ ∈ �, SURE
estimates the mean square error of fθ given y as

Eε

[
1

n

∥∥x� − fθ (y)
∥∥2

]
= Eε

[
1

n
‖y − fθ (y)‖2

]

+ 2
σ 2

n
divy(fθ (y)) − σ 2,

where σ 2 is the variance of ε and divy(fθ (y)):= ∑n
i=1

∂fθ (y)
∂yi

.
Notice that computing the right-hand side of this equation does
not require knowledge of x�.

If the estimators are differentiable with respect to θ , then
we can use gradient descent to learn a good estimator (i.e.,
θ∗ are the parameters obtained by gradient descent, then the
estimate of x� is given by fθ∗(y)). This permits denoisers that
are learned using noisy measurements alone. SURE can be
generalized to other forward models A via GSURE [85], [113],
by minimizing the following functional with respect to θ :

Eε

[
1

n

∥∥PA
(
x� − fθ (y)

)∥∥2
]

= Eε

[
1

n

∥
∥PAx�

∥
∥2 + 1

n
‖PAfθ (y)‖2

− 2

n
fθ (y)TA†y + 2σ 2

n
divy(fθ (y))

]
,

where A† is the pseudoinverse of A and PA = A†A is projection
onto the row space of A.

Authorized licensed use limited to: CEA DAM. Downloaded on June 30,2021 at 07:30:38 UTC from IEEE Xplore.  Restrictions apply. 

(source: [Ongie et al., 2020])



43/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Image-to-image translation

Pix2pix: Image-to-Image Translation with Conditional Adversarial Nets [Isola et al., 2017]

• Training using a set of image pairs (xi , yi)

• GAN conditioned on input image x to produce y = G(x).
• Opens the way for new creative tools



43/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Image-to-image translation

goes into designing effective losses. In other words, we still
have to tell the CNN what we wish it to minimize. But, just
like King Midas, we must be careful what we wish for! If
we take a naive approach and ask the CNN to minimize the
Euclidean distance between predicted and ground truth pix-
els, it will tend to produce blurry results [43, 62]. This is
because Euclidean distance is minimized by averaging all
plausible outputs, which causes blurring. Coming up with
loss functions that force the CNN to do what we really want
– e.g., output sharp, realistic images – is an open problem
and generally requires expert knowledge.

It would be highly desirable if we could instead specify
only a high-level goal, like “make the output indistinguish-
able from reality”, and then automatically learn a loss func-
tion appropriate for satisfying this goal. Fortunately, this is
exactly what is done by the recently proposed Generative
Adversarial Networks (GANs) [24, 13, 44, 52, 63]. GANs
learn a loss that tries to classify if the output image is real
or fake, while simultaneously training a generative model
to minimize this loss. Blurry images will not be tolerated
since they look obviously fake. Because GANs learn a loss
that adapts to the data, they can be applied to a multitude of
tasks that traditionally would require very different kinds of
loss functions.

In this paper, we explore GANs in the conditional set-
ting. Just as GANs learn a generative model of data, condi-
tional GANs (cGANs) learn a conditional generative model
[24]. This makes cGANs suitable for image-to-image trans-
lation tasks, where we condition on an input image and gen-
erate a corresponding output image.

GANs have been vigorously studied in the last two
years and many of the techniques we explore in this pa-
per have been previously proposed. Nonetheless, ear-
lier papers have focused on specific applications, and
it has remained unclear how effective image-conditional
GANs can be as a general-purpose solution for image-to-
image translation. Our primary contribution is to demon-
strate that on a wide variety of problems, conditional
GANs produce reasonable results. Our second contri-
bution is to present a simple framework sufficient to
achieve good results, and to analyze the effects of sev-
eral important architectural choices. Code is available at
https://github.com/phillipi/pix2pix.

2. Related work
Structured losses for image modeling Image-to-image

translation problems are often formulated as per-pixel clas-
sification or regression (e.g., [39, 58, 28, 35, 62]). These
formulations treat the output space as “unstructured” in the
sense that each output pixel is considered conditionally in-
dependent from all others given the input image. Condi-
tional GANs instead learn a structured loss. Structured
losses penalize the joint configuration of the output. A

fake

G(x)

x

D

real

D

G
x y

x

Figure 2: Training a conditional GAN to map edges→photo. The
discriminator, D, learns to classify between fake (synthesized by
the generator) and real {edge, photo} tuples. The generator, G,
learns to fool the discriminator. Unlike an unconditional GAN,
both the generator and discriminator observe the input edge map.

large body of literature has considered losses of this kind,
with methods including conditional random fields [10], the
SSIM metric [56], feature matching [15], nonparametric
losses [37], the convolutional pseudo-prior [57], and losses
based on matching covariance statistics [30]. The condi-
tional GAN is different in that the loss is learned, and can, in
theory, penalize any possible structure that differs between
output and target.

Conditional GANs We are not the first to apply GANs
in the conditional setting. Prior and concurrent works have
conditioned GANs on discrete labels [41, 23, 13], text [46],
and, indeed, images. The image-conditional models have
tackled image prediction from a normal map [55], future
frame prediction [40], product photo generation [59], and
image generation from sparse annotations [31, 48] (c.f. [47]
for an autoregressive approach to the same problem). Sev-
eral other papers have also used GANs for image-to-image
mappings, but only applied the GAN unconditionally, re-
lying on other terms (such as L2 regression) to force the
output to be conditioned on the input. These papers have
achieved impressive results on inpainting [43], future state
prediction [64], image manipulation guided by user con-
straints [65], style transfer [38], and superresolution [36].
Each of the methods was tailored for a specific applica-
tion. Our framework differs in that nothing is application-
specific. This makes our setup considerably simpler than
most others.

Our method also differs from the prior works in several
architectural choices for the generator and discriminator.
Unlike past work, for our generator we use a “U-Net”-based
architecture [50], and for our discriminator we use a convo-
lutional “PatchGAN” classifier, which only penalizes struc-
ture at the scale of image patches. A similar PatchGAN ar-
chitecture was previously proposed in [38] to capture local
style statistics. Here we show that this approach is effective
on a wider range of problems, and we investigate the effect
of changing the patch size.

3. Method
GANs are generative models that learn a mapping from

random noise vector z to output image y,G : z → y [24]. In

(source: From [Isola et al., 2017])



44/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Conditional GANs

Conditional GANs: Train the generator and the discriminator by passing a class information:
• Generator: Generate a fake “3”.
• Discriminator: Is it a real or a fake “3”?

Unconditional training:

min
θG

max
θD

∑
x∈Dreal

logDθD (x) +
∑

z∈Drand

log(1 − DθD (GθG (z)︸ ︷︷ ︸
fake

))

Class conditional training:

min θG max θD

∑
(x,c)∈Dreal

logDθD (x , c) +
∑

(z,c)∈Drand

log(1 − DθD (GθG (z, c)︸ ︷︷ ︸
fake

, c))

Needs a distribution model for drawing c to generate GθG (z, c).



45/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Conditional GANs: image-to-image translation

goes into designing effective losses. In other words, we still
have to tell the CNN what we wish it to minimize. But, just
like King Midas, we must be careful what we wish for! If
we take a naive approach and ask the CNN to minimize the
Euclidean distance between predicted and ground truth pix-
els, it will tend to produce blurry results [43, 62]. This is
because Euclidean distance is minimized by averaging all
plausible outputs, which causes blurring. Coming up with
loss functions that force the CNN to do what we really want
– e.g., output sharp, realistic images – is an open problem
and generally requires expert knowledge.

It would be highly desirable if we could instead specify
only a high-level goal, like “make the output indistinguish-
able from reality”, and then automatically learn a loss func-
tion appropriate for satisfying this goal. Fortunately, this is
exactly what is done by the recently proposed Generative
Adversarial Networks (GANs) [24, 13, 44, 52, 63]. GANs
learn a loss that tries to classify if the output image is real
or fake, while simultaneously training a generative model
to minimize this loss. Blurry images will not be tolerated
since they look obviously fake. Because GANs learn a loss
that adapts to the data, they can be applied to a multitude of
tasks that traditionally would require very different kinds of
loss functions.

In this paper, we explore GANs in the conditional set-
ting. Just as GANs learn a generative model of data, condi-
tional GANs (cGANs) learn a conditional generative model
[24]. This makes cGANs suitable for image-to-image trans-
lation tasks, where we condition on an input image and gen-
erate a corresponding output image.

GANs have been vigorously studied in the last two
years and many of the techniques we explore in this pa-
per have been previously proposed. Nonetheless, ear-
lier papers have focused on specific applications, and
it has remained unclear how effective image-conditional
GANs can be as a general-purpose solution for image-to-
image translation. Our primary contribution is to demon-
strate that on a wide variety of problems, conditional
GANs produce reasonable results. Our second contri-
bution is to present a simple framework sufficient to
achieve good results, and to analyze the effects of sev-
eral important architectural choices. Code is available at
https://github.com/phillipi/pix2pix.

2. Related work
Structured losses for image modeling Image-to-image

translation problems are often formulated as per-pixel clas-
sification or regression (e.g., [39, 58, 28, 35, 62]). These
formulations treat the output space as “unstructured” in the
sense that each output pixel is considered conditionally in-
dependent from all others given the input image. Condi-
tional GANs instead learn a structured loss. Structured
losses penalize the joint configuration of the output. A

fake

G(x)

x

D

real

D

G
x y

x

Figure 2: Training a conditional GAN to map edges→photo. The
discriminator, D, learns to classify between fake (synthesized by
the generator) and real {edge, photo} tuples. The generator, G,
learns to fool the discriminator. Unlike an unconditional GAN,
both the generator and discriminator observe the input edge map.

large body of literature has considered losses of this kind,
with methods including conditional random fields [10], the
SSIM metric [56], feature matching [15], nonparametric
losses [37], the convolutional pseudo-prior [57], and losses
based on matching covariance statistics [30]. The condi-
tional GAN is different in that the loss is learned, and can, in
theory, penalize any possible structure that differs between
output and target.

Conditional GANs We are not the first to apply GANs
in the conditional setting. Prior and concurrent works have
conditioned GANs on discrete labels [41, 23, 13], text [46],
and, indeed, images. The image-conditional models have
tackled image prediction from a normal map [55], future
frame prediction [40], product photo generation [59], and
image generation from sparse annotations [31, 48] (c.f. [47]
for an autoregressive approach to the same problem). Sev-
eral other papers have also used GANs for image-to-image
mappings, but only applied the GAN unconditionally, re-
lying on other terms (such as L2 regression) to force the
output to be conditioned on the input. These papers have
achieved impressive results on inpainting [43], future state
prediction [64], image manipulation guided by user con-
straints [65], style transfer [38], and superresolution [36].
Each of the methods was tailored for a specific applica-
tion. Our framework differs in that nothing is application-
specific. This makes our setup considerably simpler than
most others.

Our method also differs from the prior works in several
architectural choices for the generator and discriminator.
Unlike past work, for our generator we use a “U-Net”-based
architecture [50], and for our discriminator we use a convo-
lutional “PatchGAN” classifier, which only penalizes struc-
ture at the scale of image patches. A similar PatchGAN ar-
chitecture was previously proposed in [38] to capture local
style statistics. Here we show that this approach is effective
on a wider range of problems, and we investigate the effect
of changing the patch size.

3. Method
GANs are generative models that learn a mapping from

random noise vector z to output image y,G : z → y [24]. In

(source: From [Isola et al., 2017])
Architecture details:

• Generator: U-net architecture
• Discriminator applied to each 70 × 70 patch and spatially averaged
• Both are fully convolutional so after training, larger images can be generated
• No latent code z in the generator, but randomness thanks to dropout in the network.



45/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Conditional GANs: image-to-image translation

goes into designing effective losses. In other words, we still
have to tell the CNN what we wish it to minimize. But, just
like King Midas, we must be careful what we wish for! If
we take a naive approach and ask the CNN to minimize the
Euclidean distance between predicted and ground truth pix-
els, it will tend to produce blurry results [43, 62]. This is
because Euclidean distance is minimized by averaging all
plausible outputs, which causes blurring. Coming up with
loss functions that force the CNN to do what we really want
– e.g., output sharp, realistic images – is an open problem
and generally requires expert knowledge.

It would be highly desirable if we could instead specify
only a high-level goal, like “make the output indistinguish-
able from reality”, and then automatically learn a loss func-
tion appropriate for satisfying this goal. Fortunately, this is
exactly what is done by the recently proposed Generative
Adversarial Networks (GANs) [24, 13, 44, 52, 63]. GANs
learn a loss that tries to classify if the output image is real
or fake, while simultaneously training a generative model
to minimize this loss. Blurry images will not be tolerated
since they look obviously fake. Because GANs learn a loss
that adapts to the data, they can be applied to a multitude of
tasks that traditionally would require very different kinds of
loss functions.

In this paper, we explore GANs in the conditional set-
ting. Just as GANs learn a generative model of data, condi-
tional GANs (cGANs) learn a conditional generative model
[24]. This makes cGANs suitable for image-to-image trans-
lation tasks, where we condition on an input image and gen-
erate a corresponding output image.

GANs have been vigorously studied in the last two
years and many of the techniques we explore in this pa-
per have been previously proposed. Nonetheless, ear-
lier papers have focused on specific applications, and
it has remained unclear how effective image-conditional
GANs can be as a general-purpose solution for image-to-
image translation. Our primary contribution is to demon-
strate that on a wide variety of problems, conditional
GANs produce reasonable results. Our second contri-
bution is to present a simple framework sufficient to
achieve good results, and to analyze the effects of sev-
eral important architectural choices. Code is available at
https://github.com/phillipi/pix2pix.

2. Related work
Structured losses for image modeling Image-to-image

translation problems are often formulated as per-pixel clas-
sification or regression (e.g., [39, 58, 28, 35, 62]). These
formulations treat the output space as “unstructured” in the
sense that each output pixel is considered conditionally in-
dependent from all others given the input image. Condi-
tional GANs instead learn a structured loss. Structured
losses penalize the joint configuration of the output. A

fake

G(x)

x

D

real

D

G
x y

x

Figure 2: Training a conditional GAN to map edges→photo. The
discriminator, D, learns to classify between fake (synthesized by
the generator) and real {edge, photo} tuples. The generator, G,
learns to fool the discriminator. Unlike an unconditional GAN,
both the generator and discriminator observe the input edge map.

large body of literature has considered losses of this kind,
with methods including conditional random fields [10], the
SSIM metric [56], feature matching [15], nonparametric
losses [37], the convolutional pseudo-prior [57], and losses
based on matching covariance statistics [30]. The condi-
tional GAN is different in that the loss is learned, and can, in
theory, penalize any possible structure that differs between
output and target.

Conditional GANs We are not the first to apply GANs
in the conditional setting. Prior and concurrent works have
conditioned GANs on discrete labels [41, 23, 13], text [46],
and, indeed, images. The image-conditional models have
tackled image prediction from a normal map [55], future
frame prediction [40], product photo generation [59], and
image generation from sparse annotations [31, 48] (c.f. [47]
for an autoregressive approach to the same problem). Sev-
eral other papers have also used GANs for image-to-image
mappings, but only applied the GAN unconditionally, re-
lying on other terms (such as L2 regression) to force the
output to be conditioned on the input. These papers have
achieved impressive results on inpainting [43], future state
prediction [64], image manipulation guided by user con-
straints [65], style transfer [38], and superresolution [36].
Each of the methods was tailored for a specific applica-
tion. Our framework differs in that nothing is application-
specific. This makes our setup considerably simpler than
most others.

Our method also differs from the prior works in several
architectural choices for the generator and discriminator.
Unlike past work, for our generator we use a “U-Net”-based
architecture [50], and for our discriminator we use a convo-
lutional “PatchGAN” classifier, which only penalizes struc-
ture at the scale of image patches. A similar PatchGAN ar-
chitecture was previously proposed in [38] to capture local
style statistics. Here we show that this approach is effective
on a wider range of problems, and we investigate the effect
of changing the patch size.

3. Method
GANs are generative models that learn a mapping from

random noise vector z to output image y,G : z → y [24]. In

(source: From [Isola et al., 2017])
Training loss:

min
θG

max
θD

∑
(x,y)∈D

logDθD (y , x) + log(1 − DθD (GθG (x)︸ ︷︷ ︸
fake

, x)) + ∥GθG (x)︸ ︷︷ ︸
fake

−y∥1

The discriminator looks at generated patches while the ℓ1 loss is global.



46/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

Pix2Pix results

Input Ground truth L1 cGAN L1 + cGAN

Figure 4: Different losses induce different quality of results. Each column shows results trained under a different loss. Please see
https://phillipi.github.io/pix2pix/ for additional examples.

Second, we measure whether or not our synthesized
cityscapes are realistic enough that off-the-shelf recognition
system can recognize the objects in them. This metric is
similar to the “inception score” from [52], the object detec-
tion evaluation in [55], and the “semantic interpretability”
measures in [62] and [42].

AMT perceptual studies For our AMT experiments, we
followed the protocol from [62]: Turkers were presented
with a series of trials that pitted a “real” image against a
“fake” image generated by our algorithm. On each trial,
each image appeared for 1 second, after which the images
disappeared and Turkers were given unlimited time to re-
spond as to which was fake. The first 10 images of each
session were practice and Turkers were given feedback. No
feedback was provided on the 40 trials of the main experi-
ment. Each session tested just one algorithm at a time, and
Turkers were not allowed to complete more than one ses-
sion. ∼ 50 Turkers evaluated each algorithm. Unlike [62],
we did not include vigilance trials. For our colorization ex-
periments, the real and fake images were generated from the
same grayscale input. For map↔aerial photo, the real and
fake images were not generated from the same input, in or-
der to make the task more difficult and avoid floor-level re-
sults. For map↔aerial photo, we trained on 256×256 reso-

lution images, but exploited fully-convolutional translation
(described above) to test on 512× 512 images, which were
then downsampled and presented to Turkers at 256 × 256
resolution. For colorization, we trained and tested on
256 × 256 resolution images and presented the results to
Turkers at this same resolution.

“FCN-score” While quantitative evaluation of genera-
tive models is known to be challenging, recent works [52,
55, 62, 42] have tried using pre-trained semantic classifiers
to measure the discriminability of the generated stimuli as a
pseudo-metric. The intuition is that if the generated images
are realistic, classifiers trained on real images will be able
to classify the synthesized image correctly as well. To this
end, we adopt the popular FCN-8s [39] architecture for se-
mantic segmentation, and train it on the cityscapes dataset.
We then score synthesized photos by the classification accu-
racy against the labels these photos were synthesized from.

4.2. Analysis of the objective function

Which components of the objective in Eqn. 4 are impor-
tant? We run ablation studies to isolate the effect of the L1
term, the GAN term, and to compare using a discriminator
conditioned on the input (cGAN, Eqn. 1) against using an
unconditional discriminator (GAN, Eqn. 2).

(source: From [Isola et al., 2017])



47/48

Inverse Problems Metrics for Inverse Problems Restoration with Generative Priors

“Style transfer” with weak optimal transport [Korotin et al., 2023]

Weak optimal transport allows for style transfer with y = T (x , z) and z truly stochastic.

(source: [Korotin et al., 2023])



48/48

Take-home Messages

• We have seen optimization methods for solving imaging inverse problems.
• This can be adapted to use a generative prior (related to GAN inversion).
• Generative priors are useful for tasks where one has access to very few measurements.
• Such deep prior may hallucinate details. Use with care in scientific context.

Crucial need for uncertainty quantization!
• For explicit regularizations based on deep denoisers, see courses on Plug-and-Play imaging.

THANK YOU FOR YOUR ATTENTION!



49/48

References

References I

Bora, A., Jalal, A., Price, E., and Dimakis, A. G. (2017).
Compressed sensing using generative models.
In International Conference on Machine Learning, pages 537–546. PMLR.

Bourrier, A., Davies, M., Peleg, T., Perez, P., and Gribonval, R. (2014).
Fundamental performance limits for ideal decoders in high-dimensional linear inverse problems.

Information Theory, IEEE Transactions on, 60(12):7928–7946.

Candes, E. J., Romberg, J. K., and Tao, T. (2006).
Stable signal recovery from incomplete and inaccurate measurements.
Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute
of Mathematical Sciences, 59(8):1207–1223.

Gatys, L. A., Ecker, A. S., and Bethge, M. (2015).
Texture synthesis using convolutional neural networks.
In Advances in Neural Information Processing Systems, pages 262–270.



50/48

References

References II

Gatys, L. A., Ecker, A. S., and Bethge, M. (2016).
Image style transfer using convolutional neural networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
2414–2423.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017).
Image-to-image translation with conditional adversarial networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Jin, K. H., McCann, M. T., Froustey, E., and Unser, M. (2017).
Deep convolutional neural network for inverse problems in imaging.
IEEE transactions on image processing, 26(9):4509–4522.

Kim, J., Lee, J. K., and Lee, K. M. (2016).
Accurate image super-resolution using very deep convolutional networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1646–1654.

Korotin, A., Selikhanovych, D., and Burnaev, E. (2023).
Kernel neural optimal transport.
arXiv preprint arXiv:2205.15269.



51/48

References

References III

Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A.,
Totz, J., Wang, Z., et al. (2017).
Photo-realistic single image super-resolution using a generative adversarial network.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
4681–4690.

Mallat, S. (1989).
A theory for multiresolution signal decomposition: the wavelet representation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7):674–693.

Ongie, G., Jalal, A., Metzler, C. A., Baraniuk, R. G., Dimakis, A. G., and Willett, R. (2020).
Deep learning techniques for inverse problems in imaging.
IEEE Journal on Selected Areas in Information Theory, 1(1):39–56.

Pan, X., Zhan, X., Dai, B., Lin, D., Loy, C., and Luo, P. (2022).
Exploiting deep generative prior for versatile image restoration and manipulation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):7474–7489.



52/48

References

References IV

Ronneberger, O., Fischer, P., and Brox, T. (2015).
U-net: Convolutional networks for biomedical image segmentation.
In Navab, N., Hornegger, J., Wells, W. M., and Frangi, A. F., editors, Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2015, pages 234–241, Cham. Springer
International Publishing.

Shaham, T. R., Dekel, T., and Michaeli, T. (2019).
SinGAN: Learning a Generative Model from a Single Natural Image.
In Proceedings of the IEEE International Conference on Computer Vision, pages 4570–4580.

Simonyan, K. and Zisserman, A. (2015).
Very deep convolutional networks for large-scale image recognition.
In Bengio, Y. and LeCun, Y., editors, Proceedings of the International Conference on Learning
Representations.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2018).
Deep image prior.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).



53/48

References

References V

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004).
Image quality assessment: from error visibility to structural similarity.
IEEE transactions on image processing, 13(4):600–612.

Zhang, K., Li, Y., Zuo, W., Zhang, L., Van Gool, L., and Timofte, R. (2021).
Plug-and-play image restoration with deep denoiser prior.
IEEE Transactions on Pattern Analysis and Machine Intelligence.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang, O. (2018).
The unreasonable effectiveness of deep features as a perceptual metric.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).


	Inverse Problems
	Imaging Inverse Problems
	Gradient Descent
	Optimization for Inverse Problems

	Metrics for Inverse Problems
	Restoration with Generative Priors
	Generative Priors
	Deep learning for Inverse Problems

	
	
	References


