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Popular Image Databases

• MNIST (digits): 60k images with 282 px (10 classes)
• Fashion-MNIST (clothes): 70k images with 282 px (10 classes)
• CIFAR-10: 60k images with 322 px (10 classes)
• ImageNet: ≈ 1430k images of various size (1000 classes)
• CelebA: ≈ 200k images with 178 × 278 px
• CelebA-HQ: ≈ 30k images with 10242 px
• LSUN (Bedroom/Cat/Churches/...): ≈ 100k or 1M images with 2562 px
• FFHQ (or FFHQ-U): 70k images with 10242 px
• LAION-5B: 5.85B images of various size
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Neural Network architecture

Generator and discriminator networks can have various layers:
• Fully connected (FC) layers
• Upsampling (interpolation) or Subsampling (max/average pooling) layers
• Convolution/Transposed convolution (with stride)
• Activation functions: RELU, leakyRELU, sigmoid, tanh, etc
• BatchNorm
• ...

Input noise Z has often uniform distribution U([0, 1]p) or Gaussian distribution N (0, Id).
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Convolution

Let u : Ω → RC be defined on Ω = [0 : M − 1]× [0 : N − 1].

Let w : ω → RC′×C be defined on a small ω ⊂ Z2. (Often, ω = [−k , k ]2)

Definition
The convolution w ∗ u of the image u with kernel w is defined by

w ∗ u(x) =
∑
y∈ω

w(y)u(x − y) =
∑

z∈−ω

w̃(z)u(x + z) where w̃(z) = w(−z).

NB: There are several possible border conditions (restriction, constant padding, periodic, ...)
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Convolution and Transposed convolution

Notice that
• The transpose of a convolution with a k × k kernel is a convolution with a k × k kernel
• The transpose of a border crop is zero-padding the borders.
• The transpose of a crude subsampling is zero-inserting.

Strided convolutions:
• A “convolution with stride” is a convolution followed by subsampling.
• Called Conv2d in PyTorch

Fractionally strided convolutions:
• This is the transpose operator of convolution with stride.
• Called ConvTranspose2d in PyTorch
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One Example from [Dumoulin and Visin, 2016]

“The transpose of convolving a 3 × 3 kernel over a 5 × 5 input padded with a 1 × 1 border of zeros
using 2 × 2 strides (i.e., i = 5, k = 3, s = 2 and p = 1). It is equivalent to convolving a 3 × 3 kernel
over a 3 × 3 input (with 1 zero inserted between inputs) padded with a 1 × 1 border of zeros using
unit strides (i.e., i ′ = 3, ĩ ′ = 5, k ′ = k , s′ = 1 and p′ = 1).”

See also https://madebyollin.github.io/convnet-calculator/

https://madebyollin.github.io/convnet-calculator/
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BatchNorm layer

Principle of BatchNormalization:
• Consider a batch (xn)1≤n≤N of N responses to a neural layer with C features.
• For each n, xn,i ∈ RW×H is the i-th feature map of the n-th image.
• Batch normalization consists in computing for any n, i

yn,i = γizn,i + βi with zn,i =
xn,i − mi√
σ2

i + ε

where mi , σi are the mean and std of the gathered feature maps (xn,i)1≤n≤N .
(In other words, mi , σi contains averages over N and spatial dimensions H,W .)

• γi , βi are trainable parameters.
• Implemented in BatchNorm2d in PyTorch.

At inference: normalization is done with mi , σi , γi , βi learned during training.
Switch to inference mode with model.eval().
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Different Kinds of Normalization

Diagram from [Wu and He, 2018]

• H,W : spatial dimensions
• C: channel dimension
• N: batch dimension

(See the formula for InstanceNorm in [Ulyanov et al., 2017])
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Convolutional GAN
[Radford et al., 2016]

Important principles of the construction:
• “All convolutional”: remove max pooling layers, and learn downsampling instead
• Eliminate Fully-Connected Layers
• Batch Normalization to stabilize learning (except on generator output, and discriminator input)
• ReLU activations for the generator
• LeakyReLU activations for the discriminator

Generator: upsampling network with fractionally strided convolutions

Discriminator: convolutional network with strided convolutions
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DCGAN Architecture
[Radford et al., 2016]
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Image Generation with DCGAN [Radford et al., 2016]

Generations of realistic bedrooms pictures, from randomly generated latent variables.
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Image Interpolation with DCGAN [Radford et al., 2016]

Interpolation in between points in latent space.
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Arithmetic with DCGAN [Radford et al., 2016]

• Average latent vector of several samples
• After arithmetic, add a small random perturbation to get similar samples



15/43

Large-Scale GAN Training Quality Metrics for Generative Models Generative Texture Models

Arithmetic with DCGAN [Radford et al., 2016]
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Progressive Growing of GANs [Karras et al., 2018]

• Progressive Multiresolution Training
• Mirror architectures for G and D
• Simple upsampling/downsampling

nearest neighbor upsampling;
average pooling downsampling

· Minibatch statistics layer at the end of D

· Pixelwise feature normalization
• Training with WGAN-GP
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StyleGAN [Karras et al., 2019]

• “Separation of high-level features (pose, identity)
from stochastic variation (freckles, hair)”

• Embed latent code z into an intermediate latent
space w with a multilayer perceptron (8 FC layers)

• Spatially invariant style vector y = (ys, yb) for each
feature map, obtained from w

• AdaIN: Adaptive Instance Normalization

AdaIN(xi , y) = ys,i
xi − µ(xi)

σ(xi)
+ yb,i

where the feature map xi is normalized separately.
(No learned parameters γ, β here.)

AdaIN(xn,i , y) = ys,i
xn,i − µ(xn,i)

σ(xn,i)
+ yb,i

• Style mixing (playing with two latent codes w1,w2)
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StyleGAN [Karras et al., 2019]

StyleGAN allows for style mixing at different scales (by using the corresponding subparts of w).
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StyleGAN2 [Karras et al., 2020]

• AdaIN causes droplet artifacts in StyleGAN
→ Weight modulation/demodulation instead of AdaIN

• Path length regularization: fixed-norm steps in w
results in fixed-norm changes in image space

• Residual connections with downsampling in D
• Skip connections in G
• No progressive growing

(which leads to phase artifacts)
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Face Generation with StyleGAN2 [Karras et al., 2020]

https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/
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Face Generation with StyleGAN2 [Karras et al., 2020]

https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/
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Face Generation with StyleGAN2 [Karras et al., 2020]

https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/
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StyleGAN vs StyleGAN2

First row: real images
Second row: samples of StyleGAN after projection on the latent code
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StyleGAN vs StyleGAN2

First row: real images
Second row: samples of StyleGAN2 after projection on the latent code
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The Cat Challenge...

Samples of StyleGAN2-Model1 trained on LSUN Cat
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The Cat Challenge...

Samples of StyleGAN2-Model2 trained on LSUN Cat
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StyleGAN3 aka Alias-free GANs

• Aliasing artifacts present in some GANs results due to:
· non-ideal upsampling
· pointwise activations

• Enforce continuous equivariance to sub-pixel translation (Shannon is back...)
• Also, ensure that no aliasing appears through the network:

· use band-limited filters
· use low-pass filters when needed
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StyleGAN3 aka Alias-free GANs
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Conditional GANs

Conditional GANs: Train the generator and the discriminator by passing a class information:
• Generator: Generate a fake “3”.
• Discriminator: Is it a real or a fake “3”?

Class conditional training:

min
θG

max
θD

∑
(x,c)∈Dreal

logDθD (x , c) +
∑

(z,c)∈Drand

log(1 − DθD (GθG (z, c)︸ ︷︷ ︸
fake

, c))

where
• Dreal is a collection of real labeled data.
• Drand is a collection of synthetic latent code and labels.

This requires to choose a distribution on c to generate the synthetic image GθG (z, c).
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Quality of a Generative Model

• Question: How to measure that the generator covers well the training data?
• Main idea: Comparing image distributions is hard...

but comparing measurements from it is easier.
• Classification neural networks provide a set of deep non-linear features.

For example, VGG19 [Simonyan and Zisserman, 2015], or Inception Networks [Szegedy et al., 2016].
• Measure quality of the generative model by looking at how deep statistics are preserved

Somehow, this ensures that the database is well-covered.
• Keep in mind that

· The network used to get the features must be relevant w.r.t. the generative task at play.
· Quantitative results highly depend on the network and implementation details.
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Inception Score ↑ [Salimans et al., 2016]

• The inception score measures if µ generates a diverse collection of meaningful pictures
• For an image x , Inception-v3 gives a label distribution p(y |x) (discrete on N = 1000 labels)
• Images containing meaningful objects have p(y |x) with low entropy
• In order to generate various images, p(y) =

∫
p(y |x)µ(dx) should have high entropy

The Inception Score then writes as

IS(µ) = exp

(∫
KL

(
p(y |x)|p(y)

)
µ(dx)

)
∈ [1,N]

It is 1 iff for a.e. x , p(·|x) = p(·) (label distribution does not depend on x)
It is N iff for a.e. x , p(·|x) is concentrated on one label, and ∀y ,

∫
p(y |x)µ(dx) = 1

N

How to compute it in practice:
• Compute an estimate p̂(y) of p(y) =

∫
p(y |x)µ(dx) by drawing samples of µ

• Estimate
∫
KL(p(y |x)|p̂(y))µ(dx) by drawing samples of µ
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Fréchet Inception Distance (FID) ↓ [Heusel et al., 2017]

The FID measures how close are two image distributions µ, ν in terms of features distributions.
It is based on the response of Inception-v3 [Szegedy et al., 2016] before last pooling layer:

f : Rd → Rm

that extracts m = 2048 features (as a generic image summary)
NB: Images may have to be resized/normalized to fit into this network.

Algorithm to compute the FID score:
1. Draw samples (xi) and (yj) of X ∼ µ and Y ∼ ν and compute the features (f (xi)), (f (yj))

2. Fit Gaussian distributions N (mX ,ΣX ) and N (mY ,ΣY ) to (f (xi)), (f (yj)) (in R2048)

3. Return the 2-Wasserstein distance between the Gaussian distributions,
i.e. the Fréchet distance: [Dowson and Landau, 1982]

W 2
2

(
N (mX ,ΣX ),N (mY ,ΣY )

)
= ∥mX − mY∥2

2 + Tr
(
ΣX +ΣY − 2(ΣXΣY )

1
2

)
NB: FID can be adapted to the “single-image” case: SiFID [Shaham et al., 2019]
SiFID compares distributions of features obtained after a convolution layer (spatially averaged)
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Comments on Generative Quality

• Inception Score does not depend on the target distribution ν.
• Need to distinguish “precision/recall” for evaluating quality [Lucic et al., 2018].

“Precision” is the probability that a fake image falls within the distribution of real images.
“Recall” is the probability that a real image falls within the distribution of fake sample.
IS mainly captures precision. FID captures both precision and recall.

• The IS and FID are not enough to measure the fact that samples are photo-realistic.
[Barratt and Sharma, 2018]

• Other measures have been proposed better correlated with Human prediction of quality.
[Kolchinski et al., 2019]
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Are GANs created equal?
[Lucic et al., 2018]

Many variants of GAN training exist, with various architectures and more or less stable training.
• Regarding quality of generated images, may GAN variants perform similarly.

[Lucic et al., 2018] proposed a large comparison framework, with a budget for hyperparameter
tuning, and by averaging over several random seeds.

• “WGANs work because they fail” [Stanczuk et al., 2021], [Mallasto et al., 2019]
The dual training in WGAN-GP does not approximate the Wasserstein distance correctly.
But estimating it more precisely (e.g. semi-discrete WGAN) often leads to blurrier samples.
→ The quality of a generative network relies on good features learned by the discriminator.
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Exemplar-based Texture Synthesis

• Examplar texture :

u0 : Ω → Rd

defined on a discrete rectangle Ω ⊂ Z2.
• Texture model: stationary random field

V : Z2 → Rd

The problem can be split into
• Estimate a model V
• Draw one (or several) samples of V

Exemplar u0

Synthesis v
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What do we want to preserve ?

• Covariance, Fourier spectrum
[Lewis, 1984], [Van Wijk, 1991], [Galerne et al., 2011], [Gilet et al., 2014]

• Wavelet statistics
[Heeger & Bergen, 1995], [Zhu et al., 1998], [Portilla & Simoncelli, 2000],
[Tartavel et al., 2014], [Zhang & Mallat, 2017], [Bruna & Mallat, 2019]

• Local Aspect, Patch statistics
[Efros & Leung, 1999], [Kwatra et al., 2005], [Lefebvre & Hoppe, 2005]

• Neural Statistics
[Gatys et al., 2015], [Lu et al., 2015], [Ulyanov et al., 2016]
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Texture Synthesis with Patch Optimal Transport
[Galerne et al., 2018]

QUESTION : How to prescribe the patch distribution at several resolutions ?

PRINCIPLE OF THE “TEXTO” MODEL:
• Initialize with a Gaussian field at coarse resolution
• At each resolution, apply a patch transport map

to reimpose the exemplar patch distribution νs

• Upsample cleverly to go from one scale to the next

Image u0 Image u1 Image u2 Image u3

Patch distrib ν0 Patch distrib ν1 Patch distrib ν2 Patch distrib ν3
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The Texto Model

Compute exemplar us : Ω ∩ (2sZ2) → Rd at different scales s = 0, . . . ,S − 1
and corresponding patch distributions νs

Initialize synthesis with Gaussian field US−1 at the coarse scale

For s = S − 1, . . . , 0,

■ Estimate the patch distribution µs of Us

■ Learn a patch semi-discrete OT map Ts such that Ts♯µs ≈ νs

(Recall that Ts is a biased nearest neighbor assignment!)
• Apply Ts to all patches of Us and recompose by averaging to an image Vs

• If s > 0, upsample Vs to initialize the next scale Us−1

(For that, use patches at the same positions, but twice larger.)

Output: synthesis at fine scale V0

Remark: Once the model learnt, one can discard the learning steps ■ to do synthesis on-the-fly
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Texto in one diagram
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Texto Results

• Long-range independence property
• Patches are transformed independently

→ allows for parallel computations
• Patch OT maps can be computed offline.

→ allows for very fast synthesis
• Synthesis slightly blurry

due to patch averaging

Original
128 × 128

Synthesis
1280 × 768 (4 scales, 1s)
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Spatial GANs [Jetchev et al., 2016], [Bergmann et al., 2017]

• Symmetric Convolutional Networks for G and D (as DCGAN, see later)
• From a l × m noise Z , gθ(Z ) generates a h × w image (in practice l = m = 4 and h = w = 640)
• Standard GAN loss (binary cross-entropy) but averaged over spatial positions (λ, µ):∑

λ,µ

E[log(1 − Dλ,µ(gθ(Z )))] + E[logDλ,µ(Y ′)] where Y ′ is a patch from u0

• PSGAN works on an augmented noise input Z , with local, global and periodic parts
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SinGAN: Learning from a Single Image [Shaham et al., 2019]

• Capture the multi-scale patch distributions of an image (possibly non-texture)
• Coarse-to-fine generator
• Patch-based dicriminator learned with WGAN-GP loss, at each scale
• Loss defined over all patches of the image, and not randomly selected patches

→ allows the network to learn boundary conditions
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SinGAN: Learning from a Single Image [Shaham et al., 2019]
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SinGAN: Learning from a Single Image [Shaham et al., 2019]
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Generative Networks for Texture Synthesis [Houdard et al., 2023]

IDEA : Build a generative network gθ that directly constrains features distributions where

Fp(u) : Ω → Rdp extracts features fo type p.

For each feature type p, let
• µθp : distribution of features Fp(gθ(Z ))

• νp : empirical distribution of features Fp(u0)

Examples:
• Fp(u) : Ω → Rsp×sp extracts the sp × sp patches of u
• Fp(u) : Ωp → Rdp extracts the response to layer p of a neural network (e.g. VGG)

Learning of GOTEX model

inf
θ

∑
p

W (µθp, νp)

−→ Alternate optimization with one dual variable ψp for each p
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Samples of Texture Networks

Original GOTEX PSGAN SinGAN
[Houdard et al., 2023] [Bergmann et al., 2017] [Shaham et al., 2019]
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Samples of Texture Networks

Original GOTEX PSGAN SinGAN
[Houdard et al., 2023] [Bergmann et al., 2017] [Shaham et al., 2019]
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Samples of Texture Networks

Original GOTEX PSGAN SinGAN
[Houdard et al., 2023] [Bergmann et al., 2017] [Shaham et al., 2019]



43/43

Take-home Messages

• We discussed several architectures for image generation.
• Large-scale synthesis benefits from architectures adapted for multi-resolution synthesis.
• Recent generative models crucially rely on

· several tricks for training or designing the architecture
· very long training of models...
· with a very large number of parameters
· and a very large dataset.

• FID score gives a reasonable/simple way to measure the quality of a generative model...
but it does not suffice to judge photo-realism of the samples.

THANK YOU FOR YOUR ATTENTION!
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