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About Course Validation

• Assignment given in Session 5 (February, 6th)
Due for Session 8 (February, 27th)

• Projects
Project list given at Session 8 (February, 27th)
Choice of group and subject for March, 5th
Project defense: March 25th to 29th

• Attending the practical sessions is mandatory for course validation
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Learning a Generative Network

GOAL: Estimate a generative model that fits a database (yj)1≤j≤J of images
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Loss function for Generative Modeling

Learning a Generative Network consists in solving

inf
θ∈Θ

L(µθ, ν)

where
• L is a loss function between probability distributions µ, ν on X ,Y ⊂ Rd

• ... which (sometimes) depends on a “ground cost” c : X × Y → R
(e.g. c(x , y) = ∥x − y∥2

2)
• µθ is a probability on a compact X ⊂ Rd :

Often, gθ(Z ) ∼ µθ with gθ neural network and Z ∼ ζ input noise
• The generator is parameterized by a θ in a open set Θ ⊂ Rq

• ν is a probability on a compact Y ⊂ Rd :
Often, ν is the empirical distribution of the data
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Outline

In this session, we will study two approaches for learning generative models:
• Generative Adversarial Networks (GANs)

based on the Jensen-Shannon divergence JS(µθ, ν)
[Goodfellow et al., 2014]

• Wasserstein Generative Adversarial Networks (WGANs)
based on the optimal transport cost W (µθ, ν)

[Arjovsky et al., 2017]

Adversarial training is related to a dual formulation of the loss function.

The dual variable is interpreted as a discriminator between real and fake points.

In practice, it will be parameterized by a neural network.

The chosen loss function imposes different constraints on the dual variable.

Adversarial training can be implemented with an alternate algorithm.
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Generator v.s. Discriminator



7/54

Generative Adversarial Networks (GAN) Wasserstein GAN (WGAN) Semi-discrete WGAN

Neural Network architecture

Input noise Z has often distribution uniform U([0, 1]p) or Gaussian N (0, Id).

Generator and discriminator networks can have various layers:
• Fully connected layers
• Upsampling or Subsampling layers
• Convolution (with stride)
• Transposed convolution (with stride)
• Activation functions: RELU, leakyRELU, sigmoid, etc
• BatchNorm
• ...
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A glimpse on a Generative Architecture

DCGAN [Radford et al., 2016]
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Plan

Generative Adversarial Networks (GAN)

Wasserstein GAN (WGAN)
Semi-dual Optimal Transport
Wasserstein GANs

Semi-discrete WGAN
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The Gist of Adversarial Training

• Train simultaneously a generator gθ and a discriminator D with alternating updates:

→ Push the discriminator D : Rd → [0, 1] to discriminate between real and fake samples:
D(gθ(z)) should be close to 0 for any z
D(yj) should be close to 1 for any data point yj

→ Push the generator gθ to fool the discriminator
i.e. push D(gθ(z)) closer to 1 for any z
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Classification of fake points vs data points

For a fixed generator, updating D is a kind of classification problem
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Discriminator learning

• The discriminator solves a binary classification problem between real and fake images:

max
D∈D

E[logD(Y )] + E[log(1 − D(gθ(Z ))]

where D is a (parametric) set of measurable functions D : Rd → [0, 1]. (log 0 = −∞.)
• Based on a finite sample (x (i)) of real and fake points, this is a logistic regression with labels
ℓ(i) = 1 if x (i) is one of the data points (yj),
ℓ(i) = 0 if x (i) is a generated point gθ(Z ).
On a finite sample, this loss is called binary cross-entropy (BCELoss in PyTorch):

max
D

N∑
i=1

[
ℓ(i) logD(x (i)) + (1 − ℓ(i)) log

(
1 − D(x (i))

)]
• Finally, adversarial training can be seen as a min-max two-player game:

min
θ∈Θ

max
D∈D

E[logD(Y )] + E[log(1 − D(gθ(Z ))]
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Training Algorithm

• In practice, gθ and D are parameterized by neural networks.
D must have values in [0, 1]: take last layer as sigmoid activation σ(x) = 1

1+e−x .
(Alternately, use BCEWithLogitsLoss in PyTorch.)

• The GAN training algorithm alternates between
· Ascent step(s) on D 7→ E[logD(Y )] + E[log(1 − D(gθ(Z ))]

· Descent step(s) on θ 7→ min
θ

E[log(1 − D(gθ(Z ))]

(or on θ 7→ E[log(D(gθ(Z ))] ; non-saturating loss )

• For each step, use stochastic gradient-based updates (SGD, ADAM, ...).
Each step requires to take samples of gθ(Z ) and Y
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Illustration with a 2D example

Question: can you imagine a good discriminator for the following configuration?

• Dark blue: data points (yj)1≤j≤J

• Light blue: 100 samples (gθ(zk ))1≤k≤100 of µθ

0.0 0.2 0.4 0.6 0.8 1.0
Colormap for D
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Illustration with a 2D example

Question: can you imagine a good discriminator for the following configuration?

• Dark blue: data points (yj)1≤j≤J

• Light blue: 100 samples (gθ(zk ))1≤k≤100 of µθ

0.0 0.2 0.4 0.6 0.8 1.0
Colormap for D

Problem: D is close to 1 on Supp(µθ) → “vanishing gradients” issue (on ∇θ)
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Illustration with a 2D example

And now a tougher example...

• Dark blue: data points (yj)1≤j≤J

• Light blue: 100 samples (gθ(zk ))1≤k≤100 of µθ

0.0 0.2 0.4 0.6 0.8 1.0
Colormap for D
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Optimal Discriminator

Let us fix θ. Assume that there is a measure M such that µθ and ν have densities w.r.t. M:

dµθ = pθdM and ν = qdM (for example, take M = µθ + ν).

Let
L(θ,D) =

∫
log(D)dν +

∫
log(1 − D)dµθ.

Let D∞ the set of measurable functions from Rd to [0, 1]. Remark that

0 ⩾ sup
D∈D∞

L(θ,D) ⩾ L(θ, 1
2 ) = − log 4.

Proposition
We have

sup
D∈D∞

L(θ,D) = L(θ,D∗
θ ) with D∗

θ =
q

q + pθ
.

Remark: The optimal discriminator is unique as soon as pθ > 0, M-.a.e. [Biau et al., 2018].
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Relation with Jensen-Shannon divergence

Recall the definition of the Kullback-Leibler divergence between probability measures µ, ν:

KL(µ|ν) =

{∫
log( dµ

dν )dµ if dµ
dν exists,

+∞ otherwise.

Recall that KL(µ, ν) ≥ 0 with equality if and only if µ = ν.
Also, KL(µn, µ) → 0 implies µn → µ in total variation (Pinsker inequality, see [Tsybakov, 2008]).

The Jensen-Shannon divergence is defined by

JS(µ, ν) =
1
2
KL(µ, µ+ν2 ) +

1
2
KL(ν, µ+ν2 ).

Proposition
We have

sup
D∈D

L(θ,D) = L(θ,D∗
θ ) = 2 JS(µθ, ν)− log 4.
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Insufficiency of the Jensen-Shannon divergence

• If there exists A such that µθ(A) = 0 and ν(Ac) = 0,
then there is an optimal D∗

θ such that D∗
θ = 0 on Ac and D∗

θ = 1 on A.
Therefore, L(θ,D∗

θ ) = 0, i.e. JS(µθ, ν) = log 2.
Problem: This does not depend on how “close” the supports are.

• When ν is the empirical data distribution, it has finite support A = Y.
Assume that µθ(A) = 0 (true as soon as µθ has a density).
Then D∗

θ is ≈ 0 around fake points, and ≈ 1 around data points.
Problem: With D∗

θ , the gradient w.r.t. θ is not informative (vanishing gradients)

• Why does it work then?
→ Because the parameterized discriminator is in practice smoother than D∗

θ .
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What did you expect?

Final configuration. What is the final discriminator?

• Dark blue: data points (yj)1≤j≤6

• Light blue: 100 samples (gθ(zk ))1≤k≤100 of µθ

0.0 0.2 0.4 0.6 0.8 1.0
Colormap for D
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What did you expect?

What happens if we update only the generator?

• Dark blue: data points (yj)1≤j≤6

• Light blue: 100 samples (gθ(zk ))1≤k≤100 of µθ

0.0 0.2 0.4 0.6 0.8 1.0
Colormap for D
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What did you expect?

And if we retrain the discriminator?

• Dark blue: data points (yj)1≤j≤6

• Light blue: 100 samples (gθ(zk ))1≤k≤100 of µθ

0.0 0.2 0.4 0.6 0.8 1.0
Colormap for D
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GAN Training for MNIST digits (next week)

Training with MNIST (60 000 images)
• Adam optimizer
• Learning rate 0.0002 for both the discriminator and the generator

Real images Fake images, epoch 1
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GAN Training for MNIST digits (next week)

Training with MNIST (60 000 images)
• Adam optimizer
• Learning rate 0.0002 for both the discriminator and the generator

Real images Fake images, epoch 2



19/54

Generative Adversarial Networks (GAN) Wasserstein GAN (WGAN) Semi-discrete WGAN

GAN Training for MNIST digits (next week)

Training with MNIST (60 000 images)
• Adam optimizer
• Learning rate 0.0002 for both the discriminator and the generator

Real images Fake images, epoch 3
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GAN Training for MNIST digits (next week)

Training with MNIST (60 000 images)
• Adam optimizer
• Learning rate 0.0002 for both the discriminator and the generator

Real images Fake images, epoch 10
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GAN Training for MNIST digits (next week)

Training with MNIST (60 000 images)
• Adam optimizer
• Learning rate 0.0002 for both the discriminator and the generator

Real images Fake images, epoch 100
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GAN Training for MNIST digits (next week)

Training GANs is quite unstable!
The generator can suffer from mode collapse:
i.e. it always produces the same image (one mode only).
Example: same as before but with SGD instead of Adam.

Real images Fake images, epoch 1
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GAN Training for MNIST digits (next week)

Training GANs is quite unstable!
The generator can suffer from mode collapse:
i.e. it always produces the same image (one mode only).
Example: same as before but with SGD instead of Adam.

Real images Fake images, epoch 100
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Plan

Generative Adversarial Networks (GAN)

Wasserstein GAN (WGAN)
Semi-dual Optimal Transport
Wasserstein GANs

Semi-discrete WGAN



21/54

Generative Adversarial Networks (GAN) Wasserstein GAN (WGAN) Semi-discrete WGAN

Optimal Transport (see G. Peyré’s or Villani’s books)

For µ, ν probability measures on Rd , let

OT(µ, ν) = min
T

∫
Rd

c(x ,T (x))dµ(x)

where T should send µ onto ν.

COLOR TRANSFER SHAPE INTERPOLATION
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Two OT formulations

Let µ, ν two probability distributions supported in X ,Y ⊂ Rd .

OPTIMAL TRANSPORT COST WITH MONGE FORMULATION:

OT(µ, ν) = min
T♯µ=ν

∫
Rd

c(x ,T (x))dµ(x) (OT-Monge)

where T ♯µ(A) = µ(T−1(A)) for all A.

OPTIMAL TRANSPORT COST WITH KANTOROVICH FORMULATION:

W (µ, ν) = inf
π∈Π(µ,ν)

∫
X×Y

c(x , y) dπ(x , y) (OT-Kanto)

where Π(µ, ν) is the set of distributions π on X × Y with marginals µ, ν.

NB: If T solves (OT-Monge), then the law of (X ,T (X )) (with X ∼ µ) solves (OT-Kanto).
Also, under weak regularity assumptions on µ, OT(µ, ν) = W (µ, ν) [Santambrogio, 2015].
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Metric Properties

For c(x , y) = ∥x − y∥p, p ∈ [1,∞), the p-Wasserstein cost is defined by

Wp(µ, ν) = inf
π∈Π(µ,ν)

∫
X×Y

∥x − y∥p dπ(x , y).

Theorem (See e.g. Chap 6 of [Villani, 2009])
Let Pp the set of probability measures µ on Rd such that

∫
∥x∥pdµ(x) <∞.

• W
1
p

p is a distance on Pp.

• µn
Wp−−−→

n→∞
µ if and only if

{
∀φ ∈ Cb(Rd),

∫
φdµn →

∫
φdµ∫

∥x∥pdµn(x) →
∫
∥x∥pdµ(x)

.
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Dual Optimal Transport

Theorem
If µ, ν are supported in X ,Y compact and if c is continuous on X × Y, then

W (µ, ν) = sup
φ,ψ

∫
φ(x)dµ(x) +

∫
ψ(y)dν(y),

where φ ∈ C (X ), ψ ∈ C (Y) are such that φ(x) + ψ(y) ⩽ c(x , y) for all x ∈ X , y ∈ Y.

For fixed ψ, the optimal φ is the c-transform defined by

ψc(x) = min
y∈Y

c(x , y)− ψ(y).

Theorem
If µ, ν are supported in X ,Y compact and if c is continuous on X × Y, then

W (µ, ν) = sup
ψ∈C (Y)

∫
ψc(x)dµ(x) +

∫
ψ(y)dν(y),
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Duality - sketch of proof

Let M+(X × Y) the set of non-negative measures on X × Y.

We put the constraint in the functional by noticing

sup
φ,ψ

∫
φdµ+

∫
ψdν −

∫ (
φ(x) + ψ(y)

)
dπ(x , y) =

{
0 if π ∈ Π(µ, ν)

+∞ otherwise
.

We get the problem

inf
π∈M+(X×Y)

sup
φ,ψ

∫
c(x , y)dπ(x , y) +

∫
φdµ+

∫
ψdν −

∫ (
φ(x) + ψ(y)

)
dπ(x , y).

Using Fenchel-Rockafellar duality, we can exchange inf-sup and get

sup
φ,ψ

(∫
φdµ+

∫
ψdν + inf

π∈M+(X×Y)

∫ (
c(x , y)− φ(x)− ψ(y)

)
dπ(x , y)︸ ︷︷ ︸

=

0 if φ(x) + ψ(y) ⩽ c(x , y) dµ(x)dν(y) a.e
−∞ otherwise

)
.
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Regularity of dual solutions

Proposition
Assume that c is L-Lipschitz. Then for any ψ ∈ C (Y), ψc is L-Lipschitz.

Consequence for c(x , y) = ∥x − y∥ on X = Y:
There exist 1-Lipschitz solutions with ψc = −ψ. Therefore,

W1(µ, ν) = sup
ψ∈Lip1(Y)

−
∫
ψ(x)dµ(x) +

∫
ψ(y)dν(y)
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Wasserstein Generative Networks (WGAN)

Learning a Wasserstein WGAN consists in solving

Argmin
θ∈Θ

W (µθ, ν),

For any groundcost c, we can use the c-transform formulation:

W (µθ, ν) = sup
ψ∈C (Y)

E[ψ(Y )] + E[ψc(gθ(Z ))].

For c(x , y) = ∥x − y∥, we get the usual WGAN formulation [Arjovsky et al., 2017]:

W1(µθ, ν) = sup
D∈Lip1

E[D(Y )]− E[D(gθ(Z ))].

Advantage of the Wasserstein cost over KL: it is sensitive to the groundcost!
(and thus to the distance between the supports of µθ and ν)
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Recall Loss functions

• Loss function for “Vanilla” GAN:

sup
D∈D∞

E[logD(Y )] + E[log(1 − D(gθ(Z )))]

• Loss function for WGAN (for the 1-Wasserstein cost):

sup
D∈Lip1

EY∼ν [D(Y )]− EZ∼ζ [D(gθ(Z ))].

We just got rid of the log and D(x) is not in [0, 1]... but we now have a constraint “D ∈ Lip1”.

• The WGAN training algorithm alternates between
· Ascent step(s) on D 7→ E[D(Y )]− E[D(gθ(Z )]

· Descent step(s) on θ 7→ min
θ

E[−D(gθ(Z ))]

• But, we have to constrain D ∈ Lip1 along the way...
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Learning Lipschitz discriminators

• The original WGAN paper [Arjovsky et al., 2017] uses weight clipping to restrict the Lipschitz
constant:

• Alternately, [Gulrajani et al., 2017] proposed to change the discriminator loss in order to penalize
the Lipschitz constant of D.

• This requires to estimate the Lipschitz constant of D.
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Practical estimation of a Lipschitz constant
From points (xi), (yj), we can sample the segments [xi , yj ]:

aij = (1 − uijxi) + uijyj with uij ∼ U(0, 1),

and then compute ∇D(aij) by automatic differentiation:

NB: For sufficiently large batches (xi), (yi) of same size, you can just use the points

ai = (1 − uixi) + uiyi with ui ∼ U(0, 1).
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The Gradient Penalty

• Actually, Gulrajani et al. propose to use a finer property of W1:
the optimal dual potential φ satisfies ∥∇ϕ∥ = 1 on segments joining samples from µθ and ν.
(see e.g. [Santambrogio, 2015], and also a remark later in these slides)

• Therefore, they proposed to include a “gradient penalty” in the loss:

GP(D) = E[(∥∇D(X )∥ − 1)2] where X ∼ U([gθ(Z ),Y ]).

Warning: the gradient is with respect to the variable x and not the parameters θ.
• This leads to the WGAN-GP discriminator loss (with penalty weight λ > 0):

sup
D

E[D(Y )]− E[D(gθ(Z ))]− λE[(∥∇D(X )∥ − 1)2].

• We could also do a unilateral penalty E[(∥∇D(X )∥ − 1)2
+].
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WGAN: Gradient Penalty v.s. Weight clipping

(source: [Gulrajani et al., 2017])
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Example of WGAN training

WGAN-WC WGAN-GP
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WGAN Stability
WGAN-GP is a more stable way to train deep convolutional generators/discriminators.
But the results still depend highly on the optimization strategy and on the networks architectures.

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)
Baseline (G: DCGAN, D: DCGAN)

G: No BN and a constant number of filters, D: DCGAN

G: 4-layer 512-dim ReLU MLP, D: DCGAN

No normalization in either G or D

Gated multiplicative nonlinearities everywhere in G and D

tanh nonlinearities everywhere in G and D

101-layer ResNet G and D

Figure 2: Different GAN architectures trained with different methods. We only succeeded in train-
ing every architecture with a shared set of hyperparameters using WGAN-GP.

5.2 Training varied architectures on LSUN bedrooms

To demonstrate our model’s ability to train many architectures with its default settings, we train six
different GAN architectures on the LSUN bedrooms dataset [30]. In addition to the baseline DC-
GAN architecture from [21], we choose six architectures whose successful training we demonstrate:
(1) no BN and a constant number of filters in the generator, as in [2], (2) 4-layer 512-dim ReLU
MLP generator, as in [2], (3) no normalization in either the discriminator or generator (4) gated
multiplicative nonlinearities, as in [23], (5) tanh nonlinearities, and (6) 101-layer ResNet generator
and discriminator.

Although we do not claim it is impossible without our method, to the best of our knowledge this
is the first time very deep residual networks were successfully trained in a GAN setting. For each
architecture, we train models using four different GAN methods: WGAN-GP, WGAN with weight
clipping, DCGAN [21], and Least-Squares GAN [17]. For each objective, we used the default set
of optimizer hyperparameters recommended in that work (except LSGAN, where we searched over
learning rates).

For WGAN-GP, we replace any batch normalization in the discriminator with layer normalization
(see section 4). We train each model for 200K iterations and present samples in Figure 2. We only
succeeded in training every architecture with a shared set of hyperparameters using WGAN-GP.
For every other training method, some of these architectures were unstable or suffered from mode
collapse.

5.3 Improved performance over weight clipping

One advantage of our method over weight clipping is improved training speed and sample quality.
To demonstrate this, we train WGANs with weight clipping and our gradient penalty on CIFAR-
10 [13] and plot Inception scores [22] over the course of training in Figure 3. For WGAN-GP,

6

(source: [Gulrajani et al., 2017])
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WGAN in the semi-discrete case

The rest of the section is devoted to WGAN learning
with semi-discrete optimal transport.

Semi-discrete Optimal transport is the case where
• µ has a density on Rd

• ν has finite support i.e. Y finite

More generally, we will also have in mind the case
where µ has a density on a subspace (or submanifold) of Rd .

In the semi-discrete case, we will see that
• we know the form of the OT map
• we can use the c-transform for stable WGAN learning

Example:
µ is a density in graylevels
ν is uniform on Y = {yj}
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Laguerre Diagram
[Aurenhammer et al., 1998], [Kitagawa et al., 2017]

In this semi-discrete case, we will look for solutions
of (OT-Monge) under the form

Tψ(x) = Argmin
y∈Y

c(x , y)− ψ(y)

where ψ ∈ RY . Here, ψ = (ψ(y1), . . . , ψ(yJ)).

The preimages of Tψ form a Laguerre diagram.

Lψ(y) = T−1
ψ (y) is called the Laguerre cell of y .

• Very simple parameterization
• Stochastic Algorithm to compute ψ

(wait for it...) µ = U([0, 1]2) −→ ν =
1
|Y|

∑
y∈Y

δy
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Let’s look at c-transforms for the quadratic cost

Suppose that we want to compute the optimal transport from µ = U([0, 1]2) to ν =
1
|Y|

∑
y∈Y

δy .

ψc(x) = minj ∥x − yj∥2 with ψ = 0
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Let’s look at c-transforms for the quadratic cost

Suppose that we want to compute the optimal transport from µ = U([0, 1]2) to ν =
1
|Y|

∑
y∈Y

δy .

Voronoi diagram (ψ = 0)
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Let’s look at c-transforms for the quadratic cost

Suppose that we want to compute the optimal transport from µ = U([0, 1]2) to ν =
1
|Y|

∑
y∈Y

δy .

ψc(x) = minj ∥x − yj∥2 with ψ = 0
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Let’s look at c-transforms for the quadratic cost

Suppose that we want to compute the optimal transport from µ = U([0, 1]2) to ν =
1
|Y|

∑
y∈Y

δy .

ψc(x) = minj ∥x − yj∥2 − ψ(yj) with optimal ψ
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Let’s look at c-transforms for the quadratic cost

Suppose that we want to compute the optimal transport from µ = U([0, 1]2) to ν =
1
|Y|

∑
y∈Y

δy .

Laguerre diagram with optimal ψ
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Optimality of Tψ

Proposition
Tψ is an optimal mapping between µ and m := (Tψ)♯µ.

Proof.
Let T : X → Y measurable such that T♯µ = m.
Using the definition of Tψ and integrating,∫ (

c(x ,Tψ(x))− ψ(Tψ(x))
)

dµ(x) ⩽
∫ (

c(x ,T (x))− ψ(T (x))
)

dµ(x)

But since m = (Tψ)♯µ = T♯µ we have∫
ψ(Tψ(x))dµ(x) =

∫
ψ(T (x))dµ(x) =

∫
ψ(y)dm(y)

and thus ∫
c(x ,Tψ(x))dµ(x) ⩽

∫
c(x ,T (x))dµ(x).
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Towards a finite-dimensional concave problem

In the semi-discrete setting, ν has finite support Y = {y1, . . . , yJ}.
Writing vj = ψ(yj) and νj = ν({yj}), we have∫

ψdν =
J∑

j=1

ψ(yj)ν({yj}) =
∑

j

νjvj .

We thus have to maximize the function

H(v) =
∫

X

(
min

j
c(x , yj)− vj

)
dµ(x) +

∑
j

νjvj (v ∈ RJ).
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Dual Problem

Theorem ([Kitagawa et al., 2019])
Assume that µ has a density w.r.t. Lebesgue measure λ on Rd , and that ν has finite support Y.
Assume also that

∀y , z ∈ Y,∀t ∈ R, λ({ x |c(x , y)− c(x , z) = t}) = 0.

Then, a solution to (OT) is given by Tψ where v = (ψ(yj)) ∈ RJ maximizes the C1 concave function

H(v) =
∫

Rd

(
min

j
∥x − yj∥2 − vj

)
dµ(x) +

∑
j

νjvj ,

whose gradient is given by
∂H
∂vj

= −µ(Lψ(yj)) + νj .

NB: H is not strictly concave in general.
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Semi-discrete OT and Mass constraints

Corollary
The following statements are equivalent

• v is a global maximizer of H
• Tv is an optimal transport map between µ and ν
• (Tv )♯µ = ν

µ = U([0, 1]2) −→ ν =
1
|Y|

∑
y∈Y

δy

Consequence: Solving semi-discrete OT from µ to ν amounts to finding a
Laguerre diagram (Lψ(y))y∈Y that divides the µ-mass according to the target masses ν:

∀j, µ(Lψ(yj)) = ν({yj}).
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Remark linked to the Gradient Penalty

Consider the c-transform for the 1-Wasserstein cost:

ψc(x) = min
j

∥x − yj∥ − ψ(yj).

On Lψ(yj), we have Tψ(x) = yj and ψc(x) = ∥x − yj∥ − ψ(yj) and then, if x ̸= yj ,

∇ϕ(x) = ∇ψc(x) = ∇∥x − yj∥ =
x − yj

∥x − yj∥
.

In particular, ∥∇ϕ(x)∥ = 1, justifying the GP term of [Gulrajani et al., 2017].

Question: Is this still true for the 2-Wasserstein cost? (i.e. with c(x , y) = ∥x − y∥2)
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ASGD Algorithm for Semi-Discrete OT

The optimal dual variable v for W (µ, ν) can be found via a stochastic algorithm. Indeed, write

W (µ, ν) = max
v

H(v) = max
v

EX∼µθ

[
H̃(v ,X )

]
with H̃(v , x) = v c(x) +

∫
vdν

with Averaged Stochastic Gradient Descent (ASGD): [Genevay et al., 2016]

∀k ∈ N∗,

{
ṽk = ṽk−1 +

γ√
k

(
1

|Bk |
∑

x∈Bk
∂v H̃(ṽk−1, x)

)
vk = 1

k (ṽ1 + · · ·+ ṽk ),

where γ > 0 is the learning rate, and the (Bk ) are batches of samples of µθ.

Proposition
• H(·) is a concave function
• We have the convergence guarantee in expectation (w.r.t. the batches Bk )

E[H(v∗)− H(vk )] = O
(
log k√

k

)
,
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Exercise 1

On R2 we consider the groundcost c(x , y) = ∥x − y∥ (Euclidean distance).
Compute JS(µ, ν) and W1(µ, ν) for the following measures on R2:

• µ uniform on the square of vertices (0,±1), (±1, 0).
• ν = 1

2δy1 +
1
4δy2 +

1
4δy3 with

y1 = (2, 0), y2 = (−1, 1) y3 = (−1,−1).
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Exercise 2

Consider
• µθ the uniform distribution on the segment [a, b] with θ = (a, b) ∈ Θ = (R2)2,
• ν = 1

2δy1 +
1
2δy2 with y1 = (−1, 0) and y2 = (1, 0),

• c(x , y) = ∥x − y∥2.

1) For any θ ∈ Θ, compute W (µθ, ν).

2) Solve minθ∈Θ W (µθ, ν).
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The Gradient formula

Let us write

h(θ) := W (µθ, ν) = max
ψ∈C (Y)

H(ψ, θ) where H(ψ, θ) =

∫
X
ψcdµθ +

∫
Y
ψdν.

Proposition ([Arjovsky et al., 2017])
Let θ0 and ψ0 satisfying h(θ0) = H(ψ0, θ0).
If h and θ 7→ H(ψ0, θ) are both differentiable at θ0, then

∇h(θ0) = ∇θH(ψ0, θ0). (Grad-OT)

� Problem : there are cases where no such couple (ψ0, θ0) exists.
(Exercise: find such a case.)
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A sufficient condition for (Grad-OT)

Theorem ([Houdard et al., 2023])
Suppose that Card(Y) = J <∞ and c Lipschitz and C 1 in x. Suppose also that

• ∀θ ∈ Θ, the optimal ψ∗ for W (µθ, ν) is unique up to additive constants.
• ∀θ ∈ Θ, ∀ψ ∈ RJ , µθ does not charge the interface of the Laguerre diagram of ψ,

G(Θ) : ∀θ0 ∈ Θ, there is a neighborhood V of θ0 and K ∈ L1(ζ) such that g(·,Z ) is a.s. C 1 on V and

∀θ ∈ V , ζ-a.s.. ∥g(θ,Z )− g(θ0,Z )∥ ⩽ K (Z )∥θ − θ0∥.

Then h0(θ) = W0(µθ, ν) is differentiable at any θ ∈ Θ and (Grad-OT) holds:

∇h0(θ) = ∇θH0(ψ∗, θ) = E
[
Dθg(θ,Z )T∇ψc

∗(gθ(Z ))
]
.

Proposition
Assume also that the input noise is integrable, that is, E[∥Z∥] <∞.
Hypothesis G(Θ) is true for gθ a neural network with C 1 and Lipschitz activation functions



49/54

Generative Adversarial Networks (GAN) Wasserstein GAN (WGAN) Semi-discrete WGAN

Alternate algorithm for semi-discrete WGAN learning
The semi-discrete WGAN cost writes as

min
θ

h(θ) = min
θ

max
ψ

H(ψ, θ)

Initialization : θ (random)
For n = 1, . . . ,N

· ψ ≈ Argmax H(·, θ) (ASGD)

· θ ≈ Argmin H(ψ, ·) (ADAM)

Output: Model µθ

NB: Both steps rely on samples of µθ.

∇θH(ψ, θ) = E
[
∇θ

(
ψc(g(θ,Z ))

)]
,

∇ψc(x) = ∇x c(x ,Tψ(x)). Dark blue: points of ν
Light blue: samples of µθ

Orange partition: Laguerre diagram of Tψ
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Example of semi-discrete WGAN

K
=

10
0

K
=

2

n = 0 n = 50 n = 100 n = 200
K : number of iterations in ASGD subloop

Comment: Semi-discrete WGAN learning is even more stable, but requires visiting the whole Y at each iteration.
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Take-home Messages

SUMMARY AND COMMENTS:
• We introduced GANs and Wasserstein GANs
• Connection between Adversarial training and Dual expression of the loss
• Alternate algorithm for adversarial training
• Some constraints (Lipschitz) help to make training more stable
• Semi-discrete OT gives a parameterization of one dual variable by a c-transform.

It makes training even more stable but is limited to relatively small datasets.
• Results also depend on the generator/discriminator architectures and the optimization strategy

✗ The adopted losses do not measure if the generated images are photo-realistic.
How to assess the quality of a generative model for large-scale image synthesis?
→ Let’s discuss that next Tuesday! (among other things)

THANK YOU FOR YOUR ATTENTION!
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