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Introduction to inverse problem in imaging

Ground Truth Observation ERED Flip

Figure — Image despeckling with a number of looks of 50 with ERED algorithm
(random flip)
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Introduction to inverse problem

Physical model of the degradation
y ~ N(A(X)),

with
e x € R? : clean image
@ y € R™ : noisy observation
o A:RY = R™: degradation operator
e N : law of noise model
Linear system :

y =Ax+n,
with A € R™*? and n ~ N(0,07).

How to recover x from the observation y 7
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Introduction to maximum a posteriori

We look for

arg max p(xly) = arg max 20202
x€RY x€Rd p(y)

= argmin —log p(y|x) — log p(x)
TR &)

We want to solve the problem

arg min F(x) := f(x) + Ar(x).

xERY

Gradient descent scheme :

Xk4+1 = Xk — 1) (Vf(xk) -+ )\Vr(xk))
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Regularisation by denoising (RED)

To solve the previous problem, we train a Deep Neural Network D, to
denoise images. Thanks to the Tweedie formula, we make the following
approximations

1
-2

Vr(x) =~V log p(x) & ~V log po(x) = 5 (x ~ D;(x)) ~ -

Skip Connection

3
i
=
E]
=
4
&

Figure — Drunet denoiser*

1. Kai Zhang et al., Plug-and-Play Image Restoration with Deep Denoiser Prior, 2021
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Regularisation by denoising (RED)?2

Algorithm RED

1: Param. : init. x, € R, 0 >0, A >0, >0, NeN
2: Input : degraded image y

3: Output : restored image xy

4. for k=0,1,..., N—1do

5. Xgq1 & Xk — OVIF(xk,y) — g (xk — Do (xx))

6: end for

2. Y. Romano, M. Elad, and P. Milanfar. The little engine that could :
Regularization by denoising (RED). SIAM Journal on Imaging Sciences, 2017.
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Stochastic deNOising REgularization (SNORE) 3

Algorithm SNORE

1: Param. : init. xo € R4, 6 >0, A>0,6 >0, NeN
2: Input : degraded image y

3: Qutput : restored image xy

4. for k=0,1,...,N—1do

5: Xi < X + o€ with e, <—./\/(0, Id)

6: Xk+1 S Xk — 5Vf(xk,y) — 2*2 (Xk — Dg()?k))

7: end for

3. M. Renaud, J. Prost, A. Leclaire, and N. Papadakis. Plug-and-play image

restoration with stochastic denoising regularization, ICML, 2024.
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Equivariant Regularization by Denoising (eq. RED)*

Algorithm eq. RED

1: Param. : init. x, € R, 6 >0, A >0, >0, NeN
2: Input : degraded image y

3: Output : restored image xy

4. for k=0,1,...,N—1do

5 gk~G

6 Xey1 < Xk — OVF(x,y) — 22 (% — g4 ' Do (gixk))
7: end for

gk are linear invertible transformations.

4. M. Terris, T. Moreau, N. Pustelnik, and J. Tachella. Equivariant plug-and-play
image reconstruction. ArXiv, 2024.
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Some notations

@ G is a set of differentiable transformations of R,
e g:RY = RY denote a transformation of G.

@ G is a random variable of law 7 on G.
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Example of invariance

Figure — Set of rotated images of an image.
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Unified formulation of ERED

Algorithm ERED

: Param. : init. o € R, 6 >0, A>0,6 >0, N &N
. Input : degraded image y
: Output : restored image xy
: for k=0,1,..., N—1do
G~
Xic1 4= Xk — OV F (i, y) = 23 (JE () G (k) — IE () D (G (xk)))
end for

e RED : G = {ly}.

@ eq. RED : G is a finite set of linear isometries and 7 uniform, then
Jl(x)=6"1.

@ SNORE : G is a set of translation, g,(x) = x4+ oz, and
n(g:) = N(z;0,0%ly), then JL(x) = Iy.
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Notion of invariance and m-equivariance

Definition (Invariance)

A density p on RY is said to be invariant to a set of transformations G if
VgeG, p=pogae.

Definition (7-equivariance)

A density p on RY is said to be m-equivariant if Eg.[|log(p o G)|] < oo
and log p = Egx [log(p o G)].
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Why does the Jacobian appear?

For p € C}(R?,R%) and g € C}(R?,R?), we have

_ Vipog)() _ Js (IVPEX) _ r o .
= og))  (pog))  Jz X)(Vieer)(g(x).

Vlog(p o g)(x)

with x € R,
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The m-equivariant regularization

We introduce the m-equivariant regularization by

r7 (x) := —Egnr (log(ps © G)(x))
s7(x) 1= ~Egr (4G (x)(V log pr)(G(x))) -

Thanks to the Tweedie formula, we get

1

o2 (Ex WG] - B3(x)) ~ 1

3 (Ex [JE0306(9)] = Da())

si(x) = >

with D, = the equivariant denoiser.
ERED is a stochastic gradient descent to solve

arg min F(x) = f(x) + ArJ(x)

xeRd
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The m-equivariant regularization is m-equivariant

Proposition

If G is a compact Hausdorff topological group and 7 the associated
right-invariant Haar measure, then r? is w-equivariant.
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With the exact MMSE Denoiser D}

We define the set of critical points S, = {x € RY|V.F(x) = 0}

A= [ {x € K}

keN

Proposition

Let (xk)ken be the iterates generated by ERED with the exact MMSE
Denoiser D¥. Then, under Assumptions, we have almost surely on Ng

kliToo d(x:50) =0, (1)
0 IVF(xi) |l = 0, (2)

and (F(xx))ken converges to a value of F(S,).
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Qualitative experimental results

Ground Tru Observation . ERED Flip_
W ]17.14]§ ( 79 [P 125,79 RS

Figure — Deblurring (a motion blur kernel with input noise level o, = 5/255)
and despeckling (number of looks 50)




Quantitave results for deblurring

Method PSNRT SSIMT  NJ|
RED 32.25 0.84 400
ERED rotation 32.53 0.85 400
ERED translation 32.44 0.85 400
ERED flip 32.51 0.85 400

ERED subpixel rotation 32.32 0.85 400
ERED all transformations  31.94 0.83 400
SNORE 32.45 0.86 1000
Annealed SNORE 32.89 0.87 1500

Table — Quantitative comparison of image deblurring methods on 10 images
from CBSD68 dataset with 10 different blur kernels (fixed and motion kernel of
blur) and a noise level o, = 5/255.
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Conclusion

Conclusion
@ Unified formulation of ERED and geometrical interpretation
o Convergence results for ERED

Perspective
@ Generalize to Equivariant PnP or Equivariant PnP-ULA

@ Explore more geometrical transformations
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Assumptions

(a) The step-size decreases to zero but not too fast : >0 8k = +00
and Y128 62 < +o0.

(b) The data-fidelity term f : x € R? s f(x) € R is C*°.

(c) The noisy prior score is sub-polynomial, i.e. there exist B € R,
B €R and n; € N such that Yo > 0, Vx € RY,

IV log po (x)II < Bo?(1 + || x]™).
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Assumptions

(a) The random variable Jg has a uniform finite moment, i.e.

Je > 0, Moy > 0 such that

Vx € RY Egrr ([ J6(¥)[|?F€) € Maye < 400,

(b) The transformation has bounded moments on any compact, i.e.

VK C RY compact, Vm € N, 3Ck m < +0oc such that
¥ € K, Egn(|GGOI™) < G |
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Assumptions with D,

The realistic denoiser D, is sub-polynomial, i.e. 3C > 0 and n, € N such
that ¥x € RY, || D, (x)|| < C(1 + ||x]|").

For every compact K, there exists Ck, such that
Vx € K,Vg € G, |lg(x)|l < Ck.
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Result with inexact denoiser D,

Proposition

Let (xx)ken be the sequence provided by ERED with an inexact denoiser
D,. Then, under Assumptions, there exists M such that, almost surely
on AK N

lim sup [|[VFZ (x¢)|| < Mkn? 3)
k— o0

lim sup FJ (xx) — lim inf 7 (xx) < Mk, (4)
— 00

k—o0

with the asymptotic bias ) = limsup,_, .. |[E(&x)]|-
Moreover, under last Assumption, we have

A %
1 < — sup E([[Je (X)) 1Dy — Dz lloo,L; (5)
0% xeK

with L = B(0, Ck).
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Assumptions for critical points analysis

(a) The prior distribution p € C1(R9,]0, +oo[) with
l[Plloo + IVPllos < +o00.
(b) Jc has finite first moment, i.e. sup,crs Egr(||Jo(x)|]) < +o00.

The data-fidelity term is continuously differentiable, i.e. f € C1(R4,R).
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Critical point analysis

S = {x € R% 30, > 0 decreasing to 0, x, € S,, such that x, — x}.
n— o0

Proposition

Under Assumptions, if the prior p is w-equivariant, we have

ScS*.
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Denoising performance

Denoising method PNSR, PNSR PNSR

o =5/255 | 0 =10/255 | o = 20/255
Simple denoising 40.54 36.46 32.73
Rotation denoising 40.58 36.49 32.76
Translation denoising 40.53 36.44 32.71
Subpixel Rotation denoising 40.34 36.26 32.56
Flip denoising 40.58 36.49 32.76

Table — Denoising results on the CBSD68 dataset with various level of noise
with the GS-DRUNet denoiser.
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Deblurring with various denoiser
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Denoiser Restoration method | PNSR 1 | SSIM 1t
RED 32.25 0.84
GS-DRUNet (o), = 52¢) ERED rotation 32.53 0.85
ERED flip 32.51 0.85
RED 29.24 0.81
DRUNet (o, = %) ERED rotation 29.48 0.83
ERED flip 20.44 | 0.82
RED 35.26 0.94
DnCNN (o), = 522) ERED rotation 35.34 0.94
ERED flip 3532 | 0.94

Table — Deblurring results on CBSD10 (10 images extracted from CBSD68
dataset) with 10 kernels of blur (including fixed and motion blur) with different

pre-trained denoisers.
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