
Some thoughts about PnP, unrolled and diffusion

Pierre Weiss, IRIT & CBI, Université de Toulouse

Why I came today?

A mental disorder started in 2022...

• Workshop, Mathematical models for PnP restoration, MIA 2022

• Laumont, Bayesian computation with PnP priors for inverse problems, PhD 2022

• Hurault, Convergent PnP methods for inverse problems, PhD 2023

• Gossard & P.W., Adaptive unrolled networks for blind inverse problems, SIIMS 2022

Am I an outdated marginal?
Objective today: clarify this!

2

Why I came today?

A mental disorder started in 2022...

• Workshop, Mathematical models for PnP restoration, MIA 2022

• Laumont, Bayesian computation with PnP priors for inverse problems, PhD 2022

• Hurault, Convergent PnP methods for inverse problems, PhD 2023

• Gossard & P.W., Adaptive unrolled networks for blind inverse problems, SIIMS 2022

Am I an outdated marginal?
Objective today: clarify this!

2

Why I came today?

A mental disorder started in 2022...

• Workshop, Mathematical models for PnP restoration, MIA 2022

• Laumont, Bayesian computation with PnP priors for inverse problems, PhD 2022

• Hurault, Convergent PnP methods for inverse problems, PhD 2023

• Gossard & P.W., Adaptive unrolled networks for blind inverse problems, SIIMS 2022

Am I an outdated marginal?

Objective today: clarify this!

2

Why I came today?

A mental disorder started in 2022...

• Workshop, Mathematical models for PnP restoration, MIA 2022

• Laumont, Bayesian computation with PnP priors for inverse problems, PhD 2022

• Hurault, Convergent PnP methods for inverse problems, PhD 2023

• Gossard & P.W., Adaptive unrolled networks for blind inverse problems, SIIMS 2022

Am I an outdated marginal?
Objective today: clarify this!

2

An outdated marginal?

Maybe not... Own experiments suggest that unrolled nets are “better”

Groud truth
3

An outdated marginal?

Maybe not... Own experiments suggest that unrolled nets are “better”

Masked image
3

An outdated marginal?

Maybe not... Own experiments suggest that unrolled nets are “better”

Vanilla PnP (DRUNet)

3

An outdated marginal?

Maybe not... Own experiments suggest that unrolled nets are “better”

Vanilla Unrolled (same architecture)
3

An outdated marginal?

Maybe not... Own experiments suggest that unrolled nets are “better”

Diffusion model (advanced PnP)
3

Why I came today?

PnP and unrolled, what is different?

• Definitions

• Statistical interpretation

• Qualitative properties

• Some insights

4

Inverse problems

y = A(x) + b

• A : RN → RM observation operator

• x : object to recover (may be more complicated than an image)

• b: noise

• y : observed measurements

Inverse problem ≡ recover x from y

5

Bayesian formalism

Some information is lost in the acquisition!

We inject it through a probabilistic model.

• x is the realization of a random variable X with density pX .

• b is the realization of a random variable B with density pB .

6

Popular estimators

MAP = best point estimate

Maximum A Posteriori (optimization):

x̂MAP(y)
def.
= argmax

x
pX |Y (x |y)

Bayes
= argmin

x
− log pY |X (y |x)− log(pX (x))

= argmin
x

f (x) + g(x).

Example: b ∼ N (0, σ2Id) ⇒ f (x) = 1
2σ2 ∥A(x)− y∥2

2

MMSE = best in average estimate

Minimum Mean Square Estimation (integration):

x̂MMSE(y)
def.
= argmin

x∈RN

E(∥x − X∥2
2|Y = y) = E(x |y)

=

∫
x

x · dpx|y (x)

How to compute them?

7

Popular estimators

MAP = best point estimate

Maximum A Posteriori (optimization):

x̂MAP(y)
def.
= argmax

x
pX |Y (x |y)

Bayes
= argmin

x
− log pY |X (y |x)− log(pX (x))

= argmin
x

f (x) + g(x).

Example: b ∼ N (0, σ2Id) ⇒ f (x) = 1
2σ2 ∥A(x)− y∥2

2

MMSE = best in average estimate

Minimum Mean Square Estimation (integration):

x̂MMSE(y)
def.
= argmin

x∈RN

E(∥x − X∥2
2|Y = y) = E(x |y)

=

∫
x

x · dpx|y (x)

How to compute them?

7

Popular estimators

MAP = best point estimate

Maximum A Posteriori (optimization):

x̂MAP(y)
def.
= argmax

x
pX |Y (x |y)

Bayes
= argmin

x
− log pY |X (y |x)− log(pX (x))

= argmin
x

f (x) + g(x).

Example: b ∼ N (0, σ2Id) ⇒ f (x) = 1
2σ2 ∥A(x)− y∥2

2

MMSE = best in average estimate

Minimum Mean Square Estimation (integration):

x̂MMSE(y)
def.
= argmin

x∈RN

E(∥x − X∥2
2|Y = y) = E(x |y)

=

∫
x

x · dpx|y (x)

How to compute them?

7

Popular estimators

MAP = best point estimate

Maximum A Posteriori (optimization):

x̂MAP(y)
def.
= argmax

x
pX |Y (x |y)

Bayes
= argmin

x
− log pY |X (y |x)− log(pX (x))

= argmin
x

f (x) + g(x).

Example: b ∼ N (0, σ2Id) ⇒ f (x) = 1
2σ2 ∥A(x)− y∥2

2

MMSE = best in average estimate

Minimum Mean Square Estimation (integration):

x̂MMSE(y)
def.
= argmin

x∈RN

E(∥x − X∥2
2|Y = y) = E(x |y)

=

∫
x

x · dpx|y (x)

How to compute them? 7

MMSE and supervised learning

Computing the MMSE for Y = A(X) + B

Prerequisities

• Neural network N(y ,w).

• A database of clean images (x1, . . . , xI)

• Synthesize yi = A(xi) + bi .

Training ≡ Stochastic gradient

• inf
w

1
I

I∑
i=1

∥N(yi ,w)− xi∥2
2

Output

• N(y ,w⋆): a trained network

• Can be used with arbitrary images

8

MMSE and supervised learning

Computing the MMSE for Y = A(X) + B

Prerequisities

• Neural network N(y ,w).

• A database of clean images (x1, . . . , xI)

• Synthesize yi = A(xi) + bi .

Training ≡ Stochastic gradient

• inf
w

1
I

I∑
i=1

∥N(yi ,w)− xi∥2
2

Output

• N(y ,w⋆): a trained network

• Can be used with arbitrary images

8

MMSE and supervised learning

Computing the MMSE for Y = A(X) + B

Prerequisities

• Neural network N(y ,w).

• A database of clean images (x1, . . . , xI)

• Synthesize yi = A(xi) + bi .

Training ≡ Stochastic gradient

• inf
w

1
I

I∑
i=1

∥N(yi ,w)− xi∥2
2

Output

• N(y ,w⋆): a trained network

• Can be used with arbitrary images

8

MMSE and supervised learning

Computing the MMSE for Y = A(X) + B

Prerequisities

• Neural network N(y ,w).

• A database of clean images (x1, . . . , xI)

• Synthesize yi = A(xi) + bi .

Training ≡ Stochastic gradient

• inf
w

1
I

I∑
i=1

∥N(yi ,w)− xi∥2
2

Output

• N(y ,w⋆): a trained network

• Can be used with arbitrary images

8

MMSE and supervised learning

Claim (informal)

If I large enough, N(·,w) expressive + generalizes, good training.

N(y ,w⋆) ≈ x̂MMSE(y)

Proof.

N(·,w⋆) ≈ argmin
ϕ=N(·,w)

1
I

I∑
i=1

∥ϕ(yi)− xi∥2
2 Good optimization

≈ argmin
ϕ measurable

1
I

I∑
i=1

∥ϕ(yi)− xi∥2
2 Expressivity + Generalization

≈ argmin
ϕ measurable

EX ,Y (∥ϕ(Y)− X∥2
2) Large dataset

def.
= x̂MMSE !

9

MMSE and supervised learning

Claim (informal)

If I large enough, N(·,w) expressive + generalizes, good training.

N(y ,w⋆) ≈ x̂MMSE(y)

Proof.

N(·,w⋆) ≈ argmin
ϕ=N(·,w)

1
I

I∑
i=1

∥ϕ(yi)− xi∥2
2 Good optimization

≈ argmin
ϕ measurable

1
I

I∑
i=1

∥ϕ(yi)− xi∥2
2 Expressivity + Generalization

≈ argmin
ϕ measurable

EX ,Y (∥ϕ(Y)− X∥2
2) Large dataset

def.
= x̂MMSE !

9

MAP and Gradient methods (a 1 page panorama)

Combettes & Pesquet, Proximal splitting methods in signal processing, 2011

“Implicit” gradient

xk+1 = xk − τ∇f (xk+1) ⇔ xk+1 = proxτ f (xk)

Explicit/Implicit methods for f + g

• E-E (gradient descent):

xk+1 = xk − τk (∇f (xk) +∇g(xk))

• I-E (proximal gradient descent):

xk+1 = proxτk f
(xk − τk∇g(xk))

• E-I (proximal gradient descent):

xk+1 = proxτkg
(xk − τk∇f (xk))

• I-I (Douglas-Rachford, ADMM): both proxg and proxf .

10

MAP and Gradient methods (a 1 page panorama)

Combettes & Pesquet, Proximal splitting methods in signal processing, 2011

“Implicit” gradient

xk+1 = xk − τ∇f (xk+1) ⇔ xk+1 = proxτ f (xk)

Explicit/Implicit methods for f + g

• E-E (gradient descent):

xk+1 = xk − τk (∇f (xk) +∇g(xk))

• I-E (proximal gradient descent):

xk+1 = proxτk f
(xk − τk∇g(xk))

• E-I (proximal gradient descent):

xk+1 = proxτkg
(xk − τk∇f (xk))

• I-I (Douglas-Rachford, ADMM): both proxg and proxf .

10

MAP: computing ∇g = −∇ log pX

Claim

Let Dδ denote a network trained for denoising

Y = X + B, B ∼ N (0, δ2Id)

Let gδ = − log(pY) Then

∇gδ(x) ≈
x − Dδ(x ,w

⋆)

δ2

Good denoiser ≈ gradient of the log prior!

Proof.

pY = pX ⋆ Gδ Basic property

∇ log pY (y) =
y − x̂MMSE(y)

δ2 Tweedie Formula

≈ y − Dδ(y ,w
⋆)

δ2 NN power

≈ ∇ log pX (y) ≈ ∇g(x) Small δ

11

MAP: computing ∇g = −∇ log pX

Claim

Let Dδ denote a network trained for denoising

Y = X + B, B ∼ N (0, δ2Id)

Let gδ = − log(pY) Then

∇gδ(x) ≈
x − Dδ(x ,w

⋆)

δ2

Good denoiser ≈ gradient of the log prior!

Proof.

pY = pX ⋆ Gδ Basic property

∇ log pY (y) =
y − x̂MMSE(y)

δ2 Tweedie Formula

≈ y − Dδ(y ,w
⋆)

δ2 NN power

≈ ∇ log pX (y) ≈ ∇g(x) Small δ

11

MAP: computing ∇g = −∇ log pX

Claim

Let Dδ denote a network trained for denoising

Y = X + B, B ∼ N (0, δ2Id)

Let gδ = − log(pY) Then

∇gδ(x) ≈
x − Dδ(x ,w

⋆)

δ2

Good denoiser ≈ gradient of the log prior!

Proof.

pY = pX ⋆ Gδ Basic property

∇ log pY (y) =
y − x̂MMSE(y)

δ2 Tweedie Formula

≈ y − Dδ(y ,w
⋆)

δ2 NN power

≈ ∇ log pX (y) ≈ ∇g(x) Small δ 11

MAP: computing proxτg

Claim: hardly tractable

proxτg (x0)
def.
= argmin

x
−τ log pX (x) +

1
2
∥x − x0∥2

2

Nonconvex, full of spurious minimizers for large τ .

A common practice

People replace proxτg by Dδ(x0).

Understanding still limited, though it was the original PnP

12

MAP: computing proxτg

Claim: hardly tractable

proxτg (x0)
def.
= argmin

x
−τ log pX (x) +

1
2
∥x − x0∥2

2

Nonconvex, full of spurious minimizers for large τ .

A common practice

People replace proxτg by Dδ(x0).

Understanding still limited, though it was the original PnP

12

MAP: computing proxτg

Claim: hardly tractable

proxτg (x0)
def.
= argmin

x
−τ log pX (x) +

1
2
∥x − x0∥2

2

Nonconvex, full of spurious minimizers for large τ .

A common practice

People replace proxτg by Dδ(x0).

Understanding still limited, though it was the original PnP

12

Computing the MAP - an example

Regularization by denoising

Assume that Y = A(X) + B.

x̂MAP(y)
e.g.
= argmin

x∈RN

1
2σ2 ∥Ax − y∥2

2 − log pX (x)

Can be computed with a gradient descent:

xk+1 = xk − τ
[
−∇ log pY |X (y |xk)−∇ log pX (xk)

]
δ≪1
≈ xk − τ

[
−∇ log pY |X (y |xk)−

xk − Dδ(xk ,w
⋆)

δ2

]
.

This is Vanilla PnP

Not working for highly ill-posed problems.

13

Computing the MAP - an example

Regularization by denoising

Assume that Y = A(X) + B.

x̂MAP(y)
e.g.
= argmin

x∈RN

1
2σ2 ∥Ax − y∥2

2 − log pX (x)

Can be computed with a gradient descent:

xk+1 = xk − τ
[
−∇ log pY |X (y |xk)−∇ log pX (xk)

]
δ≪1
≈ xk − τ

[
−∇ log pY |X (y |xk)−

xk − Dδ(xk ,w
⋆)

δ2

]
.

This is Vanilla PnP

Not working for highly ill-posed problems.

13

Computing the MAP - an example

Regularization by denoising

Assume that Y = A(X) + B.

x̂MAP(y)
e.g.
= argmin

x∈RN

1
2σ2 ∥Ax − y∥2

2 − log pX (x)

Can be computed with a gradient descent:

xk+1 = xk − τ
[
−∇ log pY |X (y |xk)−∇ log pX (xk)

]
δ≪1
≈ xk − τ

[
−∇ log pY |X (y |xk)−

xk − Dδ(xk ,w
⋆)

δ2

]
.

This is Vanilla PnP

Not working for highly ill-posed problems.

13

Sampling the posterior (Langevin diffusion)

Assume that Y = A(X) + B. Construct the Euler-Maruyama sequence:

xk+1 = xk − τ

[
−∇ log pY |X (y |xk)−

xk − Dδ(xk ,w
⋆)

δ2 +
√

2bk
]

where bk ∼ N (0, Id).

Then (under mild conditions – log-Sobolev inequalities)

1
K

K∑
k=1

δxk ⇀ pX |Y

My experience: not working for hard problems

14

Sampling the posterior (Langevin diffusion)

Assume that Y = A(X) + B. Construct the Euler-Maruyama sequence:

xk+1 = xk − τ

[
−∇ log pY |X (y |xk)−

xk − Dδ(xk ,w
⋆)

δ2 +
√

2bk
]

where bk ∼ N (0, Id).

Then (under mild conditions – log-Sobolev inequalities)

1
K

K∑
k=1

δxk ⇀ pX |Y

My experience: not working for hard problems

14

Diffusion / Gaussian continuation / score matching

Assume that Y = A(X) + B. Construct the Euler-Maruyama sequence:

xk+1 = xk − τ

[
−∇ log pY |X (y |xk)−

xk − Dδk (xk ,w
⋆)

δ2 +
(√

2bk
)]

.

with δ0 ≥ δ1 ≥ . . . ≥ δK ≈ 0.

My experience: works, basic mechanism behind “diffusion” models

15

Diffusion / Gaussian continuation / score matching

Assume that Y = A(X) + B. Construct the Euler-Maruyama sequence:

xk+1 = xk − τ

[
−∇ log pY |X (y |xk)−

xk − Dδk (xk ,w
⋆)

δ2 +
(√

2bk
)]

.

with δ0 ≥ δ1 ≥ . . . ≥ δK ≈ 0.

My experience: works, basic mechanism behind “diffusion” models

15

Computing the MMSE with unrolled networks

Assume that Y = A(X) + B.

Construct a sequence of denoising networks D(x ,wk), k = 1 . . .K :

x0 = A−1(y)

xk+1 = xk − τ

[
−∇ log pY |X (xk |y)−

xk − D(xk ,wk)

δ2

]

Define the architecture UN (y ,A,w) = xK with w = (w1, . . . ,wK).

After training:
UN (y ,A,w⋆) ≈ x̂MMSE(y)!

Unrolling = good for expressivity + generalization

16

Computing the MMSE with unrolled networks

Assume that Y = A(X) + B.

Construct a sequence of denoising networks D(x ,wk), k = 1 . . .K :

x0 = A−1(y)

xk+1 = xk − τ

[
−∇ log pY |X (xk |y)−

xk − D(xk ,wk)

δ2

]
Define the architecture UN (y ,A,w) = xK with w = (w1, . . . ,wK).

After training:
UN (y ,A,w⋆) ≈ x̂MMSE(y)!

Unrolling = good for expressivity + generalization

16

Computing the MMSE with unrolled networks

Assume that Y = A(X) + B.

Construct a sequence of denoising networks D(x ,wk), k = 1 . . .K :

x0 = A−1(y)

xk+1 = xk − τ

[
−∇ log pY |X (xk |y)−

xk − D(xk ,wk)

δ2

]
Define the architecture UN (y ,A,w) = xK with w = (w1, . . . ,wK).

After training:
UN (y ,A,w⋆) ≈ x̂MMSE(y)!

Unrolling = good for expressivity + generalization

16

17

Main facts

• MAP estimation
• Learn to denoise ≈ prior via ∇ log pX
• Universal: can be used for arbitrary inverse problems
• Plug&play (universal method)
• Vanilla not satisfactory
• Requires continuation
• Possibility to include sampling
• “Best” looking result... But, can we trust it?
• Can be slow at runtime

• MMSE
• Unrolled network (specific to an operator)
• Same architecture as PnP!
• Learn to reconstruct
• “Best” result in average (blurry where unfaithful)
• Fast at runtime
• Long at train time

18

Main facts

• MAP estimation
• Learn to denoise ≈ prior via ∇ log pX
• Universal: can be used for arbitrary inverse problems
• Plug&play (universal method)
• Vanilla not satisfactory
• Requires continuation
• Possibility to include sampling
• “Best” looking result... But, can we trust it?
• Can be slow at runtime

• MMSE
• Unrolled network (specific to an operator)
• Same architecture as PnP!
• Learn to reconstruct
• “Best” result in average (blurry where unfaithful)
• Fast at runtime
• Long at train time

18

19

MAP = intrisically bad idea for blind deblurring

Recover θ, x from y = h(θ) ⋆ x

Theorem (Nguyen, Pauwels, P.W. 2024)

If pX prior learned on natural images and x ∈ minlocal(pX). Then p(θ,x)|y
possesses:

• A global minimizer at (δ, y).

• A local minimizer at (h(θ), x).

• The result is stable to noise.

• Finding local minimizers is not tractable.

The MMSE behaves differently.

20

MAP = intrisically bad idea for blind deblurring

Recover θ, x from y = h(θ) ⋆ x

Theorem (Nguyen, Pauwels, P.W. 2024)

If pX prior learned on natural images and x ∈ minlocal(pX). Then p(θ,x)|y
possesses:

• A global minimizer at (δ, y).

• A local minimizer at (h(θ), x).

• The result is stable to noise.

• Finding local minimizers is not tractable.

The MMSE behaves differently.

20

MAP = intrisically bad idea for blind deblurring

Recover θ, x from y = h(θ) ⋆ x

Theorem (Nguyen, Pauwels, P.W. 2024)

If pX prior learned on natural images and x ∈ minlocal(pX). Then p(θ,x)|y
possesses:

• A global minimizer at (δ, y).

• A local minimizer at (h(θ), x).

• The result is stable to noise.

• Finding local minimizers is not tractable.

The MMSE behaves differently.

20

MAP = intrisically bad idea for blind deblurring

Recover θ, x from y = h(θ) ⋆ x

Theorem (Nguyen, Pauwels, P.W. 2024)

If pX prior learned on natural images and x ∈ minlocal(pX). Then p(θ,x)|y
possesses:

• A global minimizer at (δ, y).

• A local minimizer at (h(θ), x).

• The result is stable to noise.

• Finding local minimizers is not tractable.

The MMSE behaves differently.

20

MAP = intrisically bad idea for blind deblurring

Recover θ, x from y = h(θ) ⋆ x

Theorem (Nguyen, Pauwels, P.W. 2024)

If pX prior learned on natural images and x ∈ minlocal(pX). Then p(θ,x)|y
possesses:

• A global minimizer at (δ, y).

• A local minimizer at (h(θ), x).

• The result is stable to noise.

• Finding local minimizers is not tractable.

The MMSE behaves differently.
20

Conclusion

Maximizing the posterior can be risky

PnP, diffusion designed to find posterior maxima

• Full of spurious minimizers

• Partial avoidance with Gaussian continuation

• Diffusion can help, but still looking for modes

• The global maximizer can be pointless

Unrolled networks = mutiple advantages

• Fast at inference time

• Blur = kind of uncertainty quantification.

• Stable

• Works empirically for blind inverse problems

21

Conclusion

Maximizing the posterior can be risky

PnP, diffusion designed to find posterior maxima

• Full of spurious minimizers

• Partial avoidance with Gaussian continuation

• Diffusion can help, but still looking for modes

• The global maximizer can be pointless

Unrolled networks = mutiple advantages

• Fast at inference time

• Blur = kind of uncertainty quantification.

• Stable

• Works empirically for blind inverse problems

21

A few personal references

More details

• Nguyen & P.W., Comparing PnP and Unrolled networks, preprint 2024

• Gossard & P.W., Training adaptive reconstruction networks for blind inverse problems,

SIAM Imaging Science 2024

• Debarnot & P.W., DEEP-BLUR: Blind Identification and Deblurring with CNN,

Biological Imaging, 2024

• Nguyen, Pauwels & P.W., How learned priors shape the posterior landscapes in blind

inverse problems, Preprint, 2024

22

