Some thoughts about PnP, unrolled and diffusion

Pierre Weiss, IRIT & CBI, Université de Toulouse

Why | came today?

Why | came today?

A mental disorder started in 2022...

® Workshop, Mathematical models for PnP restoration, MIA 2022

® Laumont, Bayesian computation with PnP priors for inverse problems, PhD 2022

Hurault, Convergent PnP methods for inverse problems, PhD 2023

® Gossard & P.W., Adaptive unrolled networks for blind inverse problems, SIIMS 2022

Why | came today?

A mental disorder started in 2022...

® Workshop, Mathematical models for PnP restoration, MIA 2022

® Laumont, Bayesian computation with PnP priors for inverse problems, PhD 2022

Hurault, Convergent PnP methods for inverse problems, PhD 2023

® Gossard & P.W., Adaptive unrolled networks for blind inverse problems, SIIMS 2022

Am | an outdated marginal?

Why | came today?

A mental disorder started in 2022...

® Workshop, Mathematical models for PnP restoration, MIA 2022

® Laumont, Bayesian computation with PnP priors for inverse problems, PhD 2022

Hurault, Convergent PnP methods for inverse problems, PhD 2023

® Gossard & P.W., Adaptive unrolled networks for blind inverse problems, SIIMS 2022

Am | an outdated marginal?
Objective today: clarify this!

An outdated marginal?

Maybe not... Own experiments suggest that unrolled nets are “better”

Groud truth

Masked image

Vanilla PnP (DRUNet)

o/

Vanilla Unrolled (same architecture)

An outdated inal?

Maybe not... Own experiments suggest that unrolled nets are “better”

Diffusion model (advanced PnP)

Why | came today?

PnP and unrolled, what is different?

e Definitions
e Statistical interpretation
e Qualitative properties

e Some insights

Inverse problems

y=A(x)+b

e A:RN — RM observation operator
e x: object to recover (may be more complicated than an image)

e b: noise

y: observed measurements

Inverse problem = recover x from y

Bayesian formalism
Some information is lost in the acquisition!
We inject it through a probabilistic model.

e x is the realization of a random variable X with density px.

e b is the realization of a random variable B with density pg.

Popular estimators

MAP = best point estimate
Maximum A Posteriori (optimization):

def.

Kmap(y) = argmax px|y(x|y)

B .
e argmin — log py|x (y|x) — log(px(x))

= argmin f(x) + g(x).

Example: b~ N(0,0°Id) = f(x) = 53 [|A(x) — y|I

Popular estimators

MAP = best point estimate
Maximum A Posteriori (optimization):

def.

Kmap(y) = argmax px|y(x|y)

B .
= argmin — log py|x (y|x) — log(px(x))

= argmin f(x) + g(x).
Example: b~ N(0,0°Id) = f(x) = 53 [|A(x) — y|I

MMSE = best in average estimate

Minimum Mean Square Estimation (integration):

~ def. .
Sanse(y) = argmin E(|lx — X|31Y = y) =E(x]y)
x€ER

= /XX - dpyy ()

How to compute them?

Popular estimators

MAP = best point estimate
Maximum A Posteriori (optimization):

def.

Kmap(y) = argmax px|y(x|y)

B .
= argmin — log py|x (y|x) — log(px(x))

= argmin f(x) + g(x).

Example: b~ N(0,0°Id) = f(x) = 53 [|A(x) — y|I
MMSE = best in average estimate

Minimum Mean Square Estimation (integration):

~ def. .
Sanse(y) = argmin E(|lx — X|31Y = y) =E(x]y)
x€ER

= /XX - dpyy ()

Popular estimators

MAP = best point estimate
Maximum A Posteriori (optimization):

def.

Kmap(y) = argmax px|y(x|y)

B .
= argmin — log py|x (y|x) — log(px(x))

= argmin f(x) + g(x).

Example: b~ N(0,0°Id) = f(x) = 53 [|A(x) — y|I
MMSE = best in average estimate

Minimum Mean Square Estimation (integration):

~ def. .
Sanse(y) = argmin E(|lx — X|31Y = y) =E(x]y)
x€ER

= /XX - dpyy ()

How to compute them?

MMSE and supervised learning

Computing the MMSE for Y = A(X) + B

MMSE and supervised learning

Computing the MMSE for Y = A(X) + B

Prerequisities

e Neural network N(y, w).

e A database of clean images (x1,...,x)

e Synthesize y; = A(x;) + b;.

MMSE and supervised learning

Computing the MMSE for Y = A(X) + B

Prerequisities

e Neural network N(y, w).

e A database of clean images (x1,...,x)

e Synthesize y; = A(x;) + b;.

Training = Stochastic gradient

1
L1 2
o inf ZI: IN(yi, w) — xil2

MMSE and supervised learning

Computing the MMSE for Y = A(X) + B

Prerequisities

e Neural network N(y, w).

e A database of clean images (x1,...,x)

e Synthesize y; = A(x;) + b;.

Training = Stochastic gradient

1
L1 2
o inf ZI: IN(yi, w) — xil2

Output

e N(y,w"): a trained network

e Can be used with arbitrary images

MMSE and supervised learning

Claim (informal)

If I large enough, N(-, w) expressive + generalizes, good training.

N(y, w") = Rimse (y)

MMSE and supervised learning

Claim (informal)

If I large enough, N(-, w) expressive + generalizes, good training.
N(y, w") = Rumse(y)

Proof.
1
N(-,w*) ~ argmin - E lo(yi) — xill3 Good optimization
d):N(-,W / i=1

I
1 . .
A argmin 7 E lo(vi) — xi||3 Expressivity + Generalization
i=1

¢ measurable

~ argmin Exy(||¢(Y)— X|3) Large dataset
¢ measurable
def. .
= Rumse!
O

MAP and Gradient methods (a 1 page panorama)

Combettes & Pesquet, Proximal splitting methods in signal processing, 2011

“Implicit” gradient

Xir1 = Xk — TVF(Xk1) € Xip1 = prox¢(xx)

10

MAP and Gradient methods (a 1 page panorama)

Combettes & Pesquet, Proximal splitting methods in signal processing, 2011

“Implicit” gradient
Xir1 = Xk — TVF(Xk1) € Xip1 = prox¢(xx)

Explicit/Implicit methods for + g
e E-E (gradient descent):
X1 = xk — Tk (VF(xk) + Vg(xk))
e |-E (proximal gradient descent):
Xk+1 = ProX, ¢ (xx — Tk Vg(xx))
e E-l (proximal gradient descent):

(Xk — Tka(Xk))

Xk+1 = Prox, .

e I-I (Douglas-Rachford, ADMM): both prox, and prox;.

10

MAP: computing Vg = —V log px

Claim

Let Ds denote a network trained for denoising
Y =X+ B, B~ N(0,§1d)

Let g5 = —log(py) Then

x — Ds(x, w*)

Vg5 (X) ~ 52

Good denoiser =~ gradient of the log prior!

akil,

MAP: computing Vg = —V log px

Claim

Let Ds denote a network trained for denoising
Y =X+ B, B~ N(0,§1d)

Let g5 = —log(py) Then

x — Ds(x, w*)

Vg5 (X) ~ 52

Good denoiser =~ gradient of the log prior!

Proof.

py = px * Gs Basic property

akil,

MAP: computing Vg = —V log px

Claim

Let Ds denote a network trained for denoising
Y =X+ B, B~ N(0,§1d)

Let g5 = —log(py) Then

x — Ds(x, w*)

Vg5 (X) ~ 52

Good denoiser =~ gradient of the log prior!

Proof.

py = px * Gs Basic property

y — Rumse(Y)

Vlog py(y) = s Tweedie Formula
V= Dggy, w’) NN power

~ Vlog px(y) = Vg(x) Smallo |,

MAP: computing Prox. .

Claim: hardly tractable
def. . 1 2
prox,,(xo) = argmin —7 log px(x) + §||x — xo/|2

Nonconvex, full of spurious minimizers for large 7.

12

MAP: computing Prox. .

Claim: hardly tractable
def. . 1 2
prox,,(xo) = argmin —7 log px(x) + §||x — xo/|2

Nonconvex, full of spurious minimizers for large 7.

A common practice

People replace prox,, by Ds(xo).

12

MAP: computing Prox. .

Claim: hardly tractable
def. . 1 2
prox,,(xo) = argmin —7 log px(x) + §||x — xo/|2

Nonconvex, full of spurious minimizers for large 7.

A common practice

People replace prox,, by Ds(xo).

Understanding still limited, though it was the original PnP

12

Computing the MAP - an example

Regularization by denoising

Assume that Y = A(X) + B.

e._g.

R .1
Ruar(y) = argmin 2—2||AX — ylI5 — log px(x)
xeRN 40

'3}

Computing the MAP - an example

Regularization by denoising

Assume that Y = A(X) + B.

e._g.

R .1
Ruae(y) =" argmin —— [|Ax — y|13 — log px(x)
xeRN 20

Can be computed with a gradient descent:

X1 = xk — 7 [V log py x(v|xx) — V log px (x«)]

6k1

xx — Ds(xx, w*
S et _v.ogpy‘x(ym)_w

52

This is Vanilla PnP

'3}

Computing the MAP - an example

Regularization by denoising

Assume that Y = A(X) + B.

e._g.

R .1
Ruae(y) =" argmin —— [|Ax — y|13 — log px(x)
xeRN 20

Can be computed with a gradient descent:

X1 = xk — 7 [V log py x(v|xx) — V log px (x«)]

6k1

xx — Ds(xx, w*
N Xk —T —V|OgPY\x(Y|Xk)_M

52
This is Vanilla PnP

Not working for highly ill-posed problems.

'3}

Sampling the posterior (Langevin diffusion)

Assume that Y = A(X) + B. Construct the Euler-Maruyama sequence:

— Ds(xx, w*
Xky1 =Xk — T {*Vlogpv\x(ﬂxk) = kas—gka) +V/2by

where b, ~ N(0,1d).
Then (under mild conditions — log-Sobolev inequalities)

K

%Z@k — Px|y

k=1

14

Sampling the posterior (Langevin diffusion)

Assume that Y = A(X) + B. Construct the Euler-Maruyama sequence:

-D *
Xir1 = Xk — T {*V log pyx (y|x) — ka;—(szM/) +V2by
where b, ~ N(0,1d).
Then (under mild conditions — log-Sobolev inequalities)

1 K
L35

k=1

My experience: not working for hard problems

14

Diffusion / Gaussian continuation / score matching

Assume that Y = A(X) + B. Construct the Euler-Maruyama sequence:
xx — Ds, (xx, w*
Xk+1 = Xk — T -V |ngy|x(y‘Xk) - %(k) + (\/Ebk)jl 5

with 6o > 61 > ... > 0k = 0.

15

Diffusion / Gaussian continuation / score matching

Assume that Y = A(X) + B. Construct the Euler-Maruyama sequence:
xx — Ds, (xx, w*
Xkt1 = xk — 7 | =V log py|x(y|x«) — %(k) + (ﬁbk)} :
with 6o > 61 > ... > 0k = 0.

My experience: works, basic mechanism behind “diffusion” models

15

Computing the MMSE with unrolled networks

Assume that Y = A(X) + B.
Construct a sequence of denoising networks D(x, wi), k =1...K:
X0 =A"(y)

Xk — D(Xk, Wk)

Xep1 = Xk — T | =V log pyx (xkly) — 52

16

Computing the MMSE with unrolled networks

Assume that Y = A(X) + B.
Construct a sequence of denoising networks D(x, wi), k =1...K:
X0 =A"(y)

Xk — D(Xk, Wk)

Xep1 = Xk — T | =V log pyx (xkly) — 52

Define the architecture UN (y, A, w) = xk with w = (wa, ..., wk).

After training:
UN (v, A, w™) & Ruwse(y)!

16

Computing the MMSE with unrolled networks

Assume that Y = A(X) + B.
Construct a sequence of denoising networks D(x, wi), k =1...K:
X0 =A"(y)

Xk — D(Xk, Wk)

Xep1 = Xk — T | =V log pyx (xkly) — 52

Define the architecture UN (y, A, w) = xk with w = (wa, ..., wk).

After training:
UN (v, A, w™) & Ruwse(y)!

Unrolling = good for expressivity + generalization

16

posterior distribution pgl, (z|y)

plug-and-play

unrolled networks
local max

PATER .
observation y

17

Main facts

e MAP estimation

Learn to denoise = prior via V log px

Universal: can be used for arbitrary inverse problems
Plug&play (universal method)

Vanilla not satisfactory

Requires continuation

Possibility to include sampling

“Best” looking result... But, can we trust it?

Can be slow at runtime

18

Main facts

e MAP estimation

Learn to denoise = prior via V log px

Universal: can be used for arbitrary inverse problems
Plug&play (universal method)

Vanilla not satisfactory

Requires continuation

Possibility to include sampling

“Best” looking result... But, can we trust it?

Can be slow at runtime

¢ MMSE

Unrolled network (specific to an operator)

Same architecture as PnP!

Learn to reconstruct

“Best” result in average (blurry where unfaithful)
Fast at runtime

Long at train time

18

PnP methods Unrolled networks

Stat. interpretation
Architecture
Training objective
Training cost
Adaptivity
Inference time
Convergence
Computation
Stability
Appearance
Performance
Properties

MAP (local.) MMSE
Identical, but smaller /X for unrolled

Learn to denoise Learn to reconstruct
Rather lightweight Rather expensive
Any inverse problem Problem-dependent
Long if many iterations Fast once trained
Local minimizers Ongoing research
High dim. optimization High dim. integral
Low for nonsmooth priors More stable
Best looking Best in average

Unrolled > vanilla-PnP by up to 5 dB [35]
Nice looking but uncertain Blurry where unfaithful
Trapped in local minimizers Can be unlikely
Improved with continuation

19

ally bad idea for blind deblurri

Recover 0, x from y = h(0) * x

—0.71 x 10°)< 10" —1.14 x 10" —1.37 x 10® —1.51 x 10® —1.62 x 10° —1.70 x 10° —1.77 x 10°

A

~A

1.04 x 10° —1.36 x 10° —1.54 x 10° —1.66 x 10 —1.73 x 10° —1.79 x 10°

',é '\,é.@

N .] 4 /] A A
0=05 (0-20 0=-25) 0=35

Theorem (Nguyen, Pauwels, P.W. 2024)

If px prior learned on natural images and x € minjca(px). Then peg)y
possesses:

e A global minimizer at (4, y).

20

sically bad idea for blind deblurring

Recover 0, x from y = h(0) * x

10° —1.14 x 10°

~A

0.61 x 10 0.70 x 10/ 1.04 x 10° —1.36 x 10° —1.54 x 10° —1.66 x 10 —1.73 x 10° —1.79 x 10°

/]
5

\
0=0.

Theorem (Nguyen, Pauwels, P.W. 2024)

If px prior learned on natural images and x € minjca(px). Then peg)y
possesses:

e A global minimizer at (4, y).

e A local minimizer at (h(6), x).

20

sically bad idea for blind deblurring

Recover 0, x from y = h(0) * x

10° —1.14 x 10°

~A

0.61 x 10 0.70 x 10/ 1.04 x 10° —1.36 x 10° —1.54 x 10° —1.66 x 10 —1.73 x 10° —1.79 x 10°

/]
5

\
0=0.

Theorem (Nguyen, Pauwels, P.W. 2024)

If px prior learned on natural images and x € minjca(px). Then peg)y
possesses:

e A global minimizer at (4, y).
e A local minimizer at (h(6), x).

e The result is stable to noise.

20

sically bad idea for blind deblurring

Recover 0, x from y = h(0) * x

10° —1.14 x 10°

~A

0.61 x 10 0.70 x 10/ 1.04 x 10° —1.36 x 10° —1.54 x 10° —1.66 x 10 —1.73 x 10° —1.79 x 10°

/]
5

\
0=0.

Theorem (Nguyen, Pauwels, P.W. 2024)
If px prior learned on natural images and x € minjca(px). Then peg)y
possesses:

e A global minimizer at (4, y).

e A local minimizer at (h(6), x).

e The result is stable to noise.

e Finding local minimizers is not tractable.

20

ally bad idea for blind deblurring

Recover 0, x from y = h(0) * x

Theorem (Nguyen, Pauwels, P.W. 2024)
If px prior learned on natural images and x € minjca(px). Then peg)y
possesses:

e A global minimizer at (4, y).

e A local minimizer at (h(6), x).

e The result is stable to noise.

e Finding local minimizers is not tractable.

The MMSE behaves differently.
20

Conclusion

Maximizing the posterior can be risky

PnP, diffusion designed to find posterior maxima

e Full of spurious minimizers
e Partial avoidance with Gaussian continuation
e Diffusion can help, but still looking for modes

e The global maximizer can be pointless

21

Conclusion

Maximizing the posterior can be risky

PnP, diffusion designed to find posterior maxima

e Full of spurious minimizers
e Partial avoidance with Gaussian continuation
e Diffusion can help, but still looking for modes

e The global maximizer can be pointless

Unrolled networks = mutiple advantages

e Fast at inference time
e Blur = kind of uncertainty quantification.
e Stable

e Works empirically for blind inverse problems

21

A few personal references

More details

® Nguyen & P.W., Comparing PnP and Unrolled networks, preprint 2024

® Gossard & P.W., Training adaptive reconstruction networks for blind inverse problems,

SIAM Imaging Science 2024

® Debarnot & P.W., DEEP-BLUR: Blind Identification and Deblurring with CNN,
Biological Imaging, 2024

® Nguyen, Pauwels & P.W., How learned priors shape the posterior landscapes in blind

inverse problems, Preprint, 2024

22

