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Context

Cardiovascular diseases : leading cause of
death in the world according to the World
Health Organization

→ Visualization of vascular structures via
angiographic images

MRI-TOF of the brain

Vascular Network Analysis Importance

▶ Improvement in diagnosis and management of diseases

▶ Providing tools for visualization and treatment
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Context

Angiographic
images

Manual
segmentation

Need for precise localization
of the vascular network

Segmentation of the vascular
structure from angiographic
images

Structures difficult to
segment
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Automatic segmentation methods

Approach

Global
Quality

Capacity to
Generalize

Classical

- +

Supervised
Deep learning

+ -

Hybrid methods

▶ Bridging Classical and Deep Learning approaches

▶ Taking advantages of both approaches
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Hybrid methods based on the variational approach

Variational approach definition

u⋆ = Argmin
u

D(u, f ) + λR(u)

with,

▶ u⋆ ∈ Rn the solution image

▶ f ∈ Rn the initial image

▶ D,R ∈ Γ0(Rn)2

▶ λ the regularization coefficient

Constraints difficult to model

Hybrid methods

▶ Replacing R with a learned model

▶ Plug the model into the minimization resolution

g ∈ Γ0(Rn) the set of lower semi-continuous , convex et proper functions on Rn .
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Plug-and-play approach

Training of a denoiser model

1

Explicit gradient descent

Data fidelity Regularization

Denoiser model application

2

No annotation required for main task

Meinhardt et al. ”Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging

Problems”, ICCV 2017
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Plug-and-play approach

▶ Tested on different applications
Demosaicking, inpainting, deblurring, ...

▶ With different resolution algorithms
HQS2, ADMM3, PDHG1 , ...

▶ Strategies to ensure method convergence 4

1 Meinhardt et al. ”Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging

Problems”, ICCV 2017
2

Zhang et al. ”Learning deep CNN denoiser prior for image restorations”, CVPR 2017
3

Le Pendu et al. ”Preconditioned plug-and-play admm with locally adjustable denoiser for image restoration”,

SIAM 2023
4

Pesquet et al. ”Learning maximally monotone operators for image recovery.”, SIAM 2021
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Variational segmentation: Chan model1

Definition

u⋆ = argmin
u

D(u, f ) + λR(u)

With :

▶ f ∈ [0, 1]n

▶ u⋆ ∈ [0, 1]n

▶ c = (c1 − fj)
2 − (c2 − fj)

2

▶ TV (u) = ∥∇u∥2,1

Problem reformulation

u⋆ = argmin
u

⟨c, u⟩F + λTV (u) + ι[0,1]n (u) ι[0,1]n (u) =

{
0 if x ∈ [0, 1]
+∞ otherwise

c1 and c2 foreground and the background constants

1 Chan et al. ”Algorithms for finding global minimizers of image segmentation and denoising models”, SIAM, 2006.
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Primal-Dual method

u⋆ = argmin
u

D(u, f )+g(Lu)+k(u)

– D(u) = ⟨u, cf ⟩F

– k(u) = ι[0,1]n

– g(.) = λ∥.∥2,1

– L = ∇

Resolution:

ui+1 = proxτk(ui − τ(∇D(ui ) + LT vi ))

vi+1 = proxσg⋆(vi + σL(2ui+1 − ui ))

τ , σ the gradient descent step sizes

Condat L. ” A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear
composite terms”, Journal of Opt. Theory and Applications, 2013.
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Variational segmentation of vascular structures
→ TV1 tend to make thin structures disappeared

nD directional TV2

R(u) =|| ∇mu ||2,1,
∇mu = V̄(f )∇du + (1− V̄(f ))∇u,

▶ V̄ a prior on the presence of
tubular structures

▶ ∇d the directional gradient

Connectivity is not preserved

1 Rudin et al. ”Nonlinear total variation based noise removal algorithms”, Physica D: Nonlinear Phenomena, 1992

2 Merveille et al. ”nD variational restoration of curvilinear structures with prior-based directional regularization”,

IEEE TIP, 2019 10 / 35
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∇mu = V̄(f )∇du + (1− V̄(f ))∇u,

▶ V̄ a prior on the presence of
tubular structures

▶ ∇d the directional gradient

TV nD TV

Estimation of structures direction
thanks to the prior in order to integrate

it in the gradient computation

Connectivity is not preserved
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Idea

1. Learn a model that reconnects vascular structures

Reconnection of

vascular structures

Binary vascular
 structure

Reconnected binary
vascular structure 

2. Plug it into a variational segmentation resolution as a regularization term
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Proposed method

What do I need to learn to reconnect vascular structures ?

▶ An annotated dataset

▶ An architecture to train

Dataset creation

▶ Easy to disconnect

▶ Independant toward the modality

→ Use of binary structures

13 / 35



Context Proposed method Experiences Conclusion and perspectives

Proposed method

What do I need to learn to reconnect vascular structures ?

▶ An annotated dataset

▶ An architecture to train

Dataset creation

▶ Easy to disconnect

▶ Independant toward the modality

→ Use of binary structures

13 / 35



Context Proposed method Experiences Conclusion and perspectives

Proposed method

What do I need to learn to reconnect vascular structures ?

▶ An annotated dataset

▶ An architecture to train

Dataset creation

▶ Easy to disconnect

▶ Independant toward the modality

→ Use of binary structures

13 / 35



Context Proposed method Experiences Conclusion and perspectives

Proposed method

1 Dataset creation

Disconnection
generation

Binary curvilinear
structure

Disconnected binary 
curvilinear structure
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1. Dataset creation

Observations

Groundtruth

Segmentations

Hypothesis

▶ The thinner the vessel, the more likely it is to become disconnected

▶ The thinner the vessel, the bigger the disconnection

▶ Artefact presence

15 / 35



Context Proposed method Experiences Conclusion and perspectives

1. Dataset creation

Observations

Groundtruth

Segmentations

Hypothesis

▶ The thinner the vessel, the more likely it is to become disconnected

▶ The thinner the vessel, the bigger the disconnection

▶ Artefact presence

15 / 35



Context Proposed method Experiences Conclusion and perspectives

1. Dataset creation

Inputs of the algorithm

▶ A binary vascular structure:

▶ A manual annotation

▶ A synthetic vascular tree

▶ The number of disconnections to create
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1. Dataset creation

Binary vascular structure
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1. Dataset creation

5 5 5 5 4 4 44 44 4 4 4 4 4 4 4 3
3 3

3 3
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2
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1

Extraction of the structure radius on the centerlines
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1. Dataset creation

2 2

2
2
2
2
2

Draw a class and then a pixel from the centerline to select the center of a
disconnection
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1. Dataset creation

s

Disconnect the structure at the selected pixel
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1. Dataset creation

Add fragments
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Proposed method

1 Dataset creation

Disconnection
generation

Binary curvilinear
structure

Disconnected binary 
curvilinear structure

2 Reconnecting regularization term learning

Greco

Disconnected 

binary curvilinear 

structure

Binary 

curvilinear

structure

3 Plug and play segmentation

Optimisation algorithm

Regularizations

TV Ereco

Data fidelity 

D
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2. Reconnecting regularization term learning

Model architecture: Residual U-Net1

▶ Reconnection of binary vascular
structures similar to segmentation
task

▶ U-Net architecture : the gold
standard for biomedical image
segmentation

Residual U-Net architecture

1 Kerfoot et al. ” Left-ventricle quantification using residual u-net”, International Workshop on Statistical Atlases

and Computational Models of the Heart, 2018
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2. Reconnecting regularization term learning

Loss function:

▶ Unbalanced classes (background,
structure)

▶ Fragments : small part of the vascular
structure (6% of the structure in 2D)

Example of a connected
vascular structure

Dice loss not adapted
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2. Reconnecting regularization term learning

Proposed Dice loss :

L(x , y) = D(x , y) +D(x , y ;M),

avec :

▶ x ∈ [0, 1]n a disconnected image
composed of n pixels

▶ y ∈ {0, 1}n its annotation,

▶ M ∈ {0, 1}n the mask containing
the missing fragments and their
neighbors.

Disconnected vascular structure
Mask of the disconnection
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Proposed method

1 Dataset creation

Disconnection
generation
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structure

Disconnected binary 
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3. Plug and play segmentation

Optimisation algorithm

Regularizations

TV Ereco

Data fidelity 

D

Our model

Greco : {0, 1}n → [0, 1]n

Applicable to binary or near-binary
images

Variational optimisation scheme

1 500 1000 itérations......

ui evolution through iterations
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3. Plug and play segmentation

Variational optimisation scheme

1 500 1000 itérations......

ui evolution through iterations

Argmin
u

⟨c, u⟩F + λTV (u) + ι[0,1]n (u) as a first step

Argmin
u

⟨c, u⟩F + λTV (u) + Ereco(u) when u is near binary
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3. Plug and play segmentation

Variational optimisation scheme

1 500 1000 itérations......

ui evolution through iterations

Argmin
u

⟨c, u⟩F + λTV (u) + ι[0,1]n (u) if i < α

Argmin
u

⟨c, u⟩F + λTV (u) + Ereco(u) if i ≥ α
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3. Plug and play segmentation

Primal-dual algorithm:

ui+1 = proxτk(ui − τ(∇D(ui ) + LT vi ))

vi+1 = proxσg⋆(vi + σL(2ui+1 − ui ))

Proposed algorithm :

ui+1 = Φ(ui − τ(∇D(ui ) + LT vi ))

vi+1 = proxσg⋆(vi + σL(2ui+1 − ui )),

Φ(x) =

{
proxι[0,1]n (x) if i < α

Greco(P(x)) otherwise

▶ D(u) = ⟨u, cf ⟩F
▶ g(.) = λ∥.∥2,1
▶ L = ∇
▶ P(.) the projection in the image set

▶ α the iteration from which Greco is plugged

25 / 35
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Experiences

Compared methods

▶ Chan Model with the TV1

▶ Chan Model with the nD directional TV2

▶ Our proposed method combining the Chan model with Greco

→ Optimization of the regularization coefficient for each model

1 Chan et al. ”Algorithms for finding global minimizers of image segmentation and denoising models”, SIAM, 2006
2 Merveille et al. ”nD variational restoration of curvilinear structures with prior-based directional regularization”,
IEEE TIP, 2019
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Datasets

Evaluation Dataset
DRIVE 1 : 20 retinophotographies
and their annotations

Training Dataset

OpenCCO2 : 80 synthetic vascular
trees

1 Staal et al. ”Ridge-based vessel segmentation in color images of the retina”, Trans. on Medical Imaging, 2004

2 Kerautret et al. ”OpenCCO: An Implementation of Constrained Constructive Optimization for Generating 2D

and 3D Vascular Trees”. Image Processing On Line, 2023
28 / 35
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Quantitative evaluation of vascular segmentations

Matthews correlation coefficient (MCC)

MCC =
VP × VN − FP × FN√

(VP + FP)(VP + FN)(VN + FP)(VN + FN)

Average Symmetric Surface Distance (ASSD)

ASSD(A,B) =

∑
dAB +

∑
dBA

|A|+ |B|

A

B

dAB

dBA

Number of connected components β0

ϵβ0 =

∣∣∣∣β0 − β0GT

β0GT

∣∣∣∣
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Analysis

Groundtruth

Directional TV

TV

Proposed method

MCC ↑ ASSD ↓ ϵβ0 ↓
0.732 2.017 22.668

TV ± 0.026 ± 0.452 ±15.203
0.733 1.896 23.458

nD TV ± 0.026 ± 0.497 ± 17.921
0.742 2.386 2.325

Greco, CCO ± 0.023 ± 0.0.627 ± 2.274

▶ Better structure detection

▶ A better-connected structure

▶ Disappearance of certain
vascular fragments.
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Generalization

Plug and play segmentation with Greco trained on OpenCCO on two
datasets containing curvilinear structures :

▶ Road cracks

▶ Cells from the corneas of pigs’ eyes

(a) Original image (b) Groundtruth (c) TV (d) Our method
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Conclusion

▶ Development of a plug-and-play segmentation method

▶ Unsupervised and generalizable

▶ Connectivity preservation
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Limits and perspectives

▶ No convergence assurance
Idea : Learn a maximally monotone operator1

▶ Injecting the reconnector model from an iteration α
Idea : adopt a Deep Equilibrium approach2

Explicit gradient descent

Data fidelity Regularization

Implicit descent gradient
with a pretrained model

2

Deep Equilibrium approach

1
Pesquet et al. ”Learning maximally monotone operators for image recovery.”, SIAM 2021

2 Gilton et al. ”Deep equilibrium architectures for inverse problems in imaging”, IEEE Trans. on Computational

Imaging, 2021
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Thank you !
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