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Introduction to inverse problem in imaging

Figure – Image despeckling with a number of looks of 50 with ERED algorithm
(random flip)
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Introduction to inverse problem

Physical model of the degradation

y ∼ N (A(x)),

with
x ∈ Rd : clean image
y ∈ Rm : noisy observation
A : Rd → Rm : degradation operator
N : law of noise model

Linear system :
y = Ax + n,

with A ∈ Rm×d and n ∼ N (0, σ2
y ).

How to recover x from the observation y ?
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Introduction to maximum a posteriori

We look for

argmax
x∈Rd

p(x |y) = argmax
x∈Rd

p(y |x)p(x)
p(y)

= argmin
x∈Rd

− log p(y |x)︸ ︷︷ ︸
f (x)

− log p(x)︸ ︷︷ ︸
r(x)

We want to solve the problem

argmin
x∈Rd

F(x) := f (x) + λr(x).

Gradient descent scheme :

xk+1 = xk − δ (∇f (xk) + λ∇r(xk))
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Regularisation by denoising (RED)

To solve the previous problem, we train a Deep Neural Network Dσ to
denoise images. Thanks to the Tweedie formula, we make the following
approximations

∇r(x) = −∇ log p(x) ≈ −∇ log pσ(x) =
1
σ2 (x − D⋆

σ(x)) ≈
1
σ2 (x − Dσ(x)) .

Figure – Drunet denoiser 1

1. Kai Zhang et al., Plug-and-Play Image Restoration with Deep Denoiser Prior, 2021
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Regularisation by denoising (RED) 2

Algorithm RED

1: Param. : init. x0 ∈ Rd , σ > 0, λ > 0, δ > 0, N ∈ N
2: Input : degraded image y
3: Output : restored image xN
4: for k = 0, 1, . . . ,N − 1 do
5: xk+1 ← xk − δ∇f (xk , y)− λδ

σ2 (xk − Dσ(xk))
6: end for

2. Y. Romano, M. Elad, and P. Milanfar. The little engine that could :
Regularization by denoising (RED). SIAM Journal on Imaging Sciences, 2017.
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Stochastic deNOising REgularization (SNORE) 3

Algorithm SNORE

1: Param. : init. x0 ∈ Rd , σ > 0, λ > 0, δ > 0, N ∈ N
2: Input : degraded image y
3: Output : restored image xN
4: for k = 0, 1, . . . ,N − 1 do
5: x̃k ← xk + σϵk with ϵk ← N (0, Id)
6: xk+1 ← xk − δ∇f (xk , y)− λδ

σ2 (xk − Dσ(x̃k))
7: end for

3. M. Renaud, J. Prost, A. Leclaire, and N. Papadakis. Plug-and-play image
restoration with stochastic denoising regularization, ICML, 2024.
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Equivariant Regularization by Denoising (eq. RED) 4

Algorithm eq. RED

1: Param. : init. x0 ∈ Rd , σ > 0, λ > 0, δ > 0, N ∈ N
2: Input : degraded image y
3: Output : restored image xN
4: for k = 0, 1, . . . ,N − 1 do
5: gk ∼ G
6: xk+1 ← xk − δ∇f (xk , y)− λδ

σ2

(
xk − g−1

k Dσ(gkxk)
)

7: end for

gk are linear invertible transformations.

4. M. Terris, T. Moreau, N. Pustelnik, and J. Tachella. Equivariant plug-and-play
image reconstruction. ArXiv, 2024.
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Some notations

G is a set of differentiable transformations of Rd .
g : Rd → Rd denote a transformation of G.
G is a random variable of law π on G.
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Example of invariance

Figure – Set of rotated images of an image.
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Unified formulation of ERED

Algorithm ERED

1: Param. : init. x0 ∈ Rd , σ > 0, λ > 0, δ > 0, N ∈ N
2: Input : degraded image y
3: Output : restored image xN
4: for k = 0, 1, . . . ,N − 1 do
5: G ∼ π
6: xk+1 ← xk − δ∇f (xk , y)− λδ

σ2

(
JTG (xk)G (xk)− JTG (xk)Dσ(G (xk))

)
7: end for

RED : G = {Id}.
eq. RED : G is a finite set of linear isometries and π uniform, then
JTG (x) = G−1.
SNORE : G is a set of translation, gz(x) = x + σz , and
π(gz) = N (z ; 0, σ2Id), then JTG (x) = Id .
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Notion of invariance and π-equivariance

Definition (Invariance)

A density p on Rd is said to be invariant to a set of transformations G if
∀g ∈ G, p = p ◦ g a.e.

Definition (π-equivariance)

A density p on Rd is said to be π-equivariant if EG∼π[| log(p ◦ G )|] <∞
and log p = EG∼π [log(p ◦ G )].
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Why does the Jacobian appear ?

For p ∈ C1(Rd ,R∗
+) and g ∈ C1(Rd ,Rd), we have

∇ log(p ◦ g)(x) = ∇(p ◦ g)(x)
(p ◦ g)(x)

=
JTg (x)∇p(g(x))

(p ◦ g)(x)
= JTg (x)(∇ log p)(g(x)),

with x ∈ Rd .
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The π-equivariant regularization

We introduce the π-equivariant regularization by

rπσ (x) := −EG∼π (log(pσ ◦ G )(x))

sπσ (x) := −EG∼π

(
JTG (x)(∇ log pσ)(G (x))

)
.

Thanks to the Tweedie formula, we get

sπσ (x) =
1
σ2

(
Eπ

[
JTG (x)G (x)

]
− D̃∗

σ(x)
)
≈ 1

σ2

(
Eπ

[
JTG (x)G (x)

]
− D̃σ(x)

)
,

with D̃σ = the equivariant denoiser.
ERED is a stochastic gradient descent to solve

argmin
x∈Rd

F(x) = f (x) + λrπσ (x)
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The π-equivariant regularization is π-equivariant

Proposition

If G is a compact Hausdorff topological group and π the associated
right-invariant Haar measure, then rπσ is π-equivariant.
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With the exact MMSE Denoiser D∗σ

We define the set of critical points Sσ = {x ∈ Rd |∇F(x) = 0}

ΛK =
⋂
k∈N

{xk ∈ K}.

Proposition

Let (xk)k∈N be the iterates generated by ERED with the exact MMSE
Denoiser D∗

σ. Then, under Assumptions, we have almost surely on ΛK

lim
k→+∞

d(xk ,Sσ) = 0, (1)

lim
k→+∞

∥∇F(xk)∥ = 0, (2)

and (F(xk))k∈N converges to a value of F(Sσ).
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Qualitative experimental results

Figure – Deblurring (a motion blur kernel with input noise level σy = 5/255)
and despeckling (number of looks 50)
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Quantitave results for deblurring

Method PSNR↑ SSIM↑ N↓
RED 32.25 0.84 400

ERED rotation 32.53 0.85 400
ERED translation 32.44 0.85 400

ERED flip 32.51 0.85 400
ERED subpixel rotation 32.32 0.85 400

ERED all transformations 31.94 0.83 400
SNORE 32.45 0.86 1000

Annealed SNORE 32.89 0.87 1500
Table – Quantitative comparison of image deblurring methods on 10 images
from CBSD68 dataset with 10 different blur kernels (fixed and motion kernel of
blur) and a noise level σy = 5/255.
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Conclusion

Conclusion
Unified formulation of ERED and geometrical interpretation
Convergence results for ERED

Perspective
Generalize to Equivariant PnP or Equivariant PnP-ULA
Explore more geometrical transformations
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Assumptions

Assumption

(a) The step-size decreases to zero but not too fast :
∑+∞

k=0 δk = +∞
and

∑+∞
k=0 δ

2
k < +∞.

(b) The data-fidelity term f : x ∈ Rd 7→ f (x) ∈ R is C∞.
(c) The noisy prior score is sub-polynomial, i.e. there exist B ∈ R+,
β ∈ R and n1 ∈ N such that ∀σ > 0, ∀x ∈ Rd ,
∥∇ log pσ(x)∥ ≤ Bσβ(1 + ∥x∥n1).
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Assumptions

Assumption

(a) The random variable JG has a uniform finite moment, i.e.
∃ϵ > 0,M2+ϵ ≥ 0 such that
∀x ∈ Rd ,EG∼π(~JG (x)~

2+ϵ) ≤ M2+ϵ < +∞.
(b) The transformation has bounded moments on any compact, i.e.
∀K ⊂ Rd compact, ∀m ∈ N, ∃CK,m < +∞ such that
∀x ∈ K,EG∼π(∥G (x)∥m) ≤ CK,m.
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Assumptions with Dσ

Assumption

The realistic denoiser Dσ is sub-polynomial, i.e. ∃C > 0 and n2 ∈ N such
that ∀x ∈ Rd , ∥Dσ(x)∥ ≤ C (1 + ∥x∥n2).

Assumption

For every compact K, there exists CK, such that
∀x ∈ K,∀g ∈ G, ∥g(x)∥ ≤ CK.
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Result with inexact denoiser Dσ

Proposition

Let (xk)k∈N be the sequence provided by ERED with an inexact denoiser
Dσ. Then, under Assumptions, there exists MK such that, almost surely
on ΛK :

lim sup
k→∞

∥∇Fπ
σ (xk)∥ ≤ MKη

1
2 (3)

lim sup
k→∞

Fπ
σ (xk)− lim inf

k→∞
Fπ

σ (xk) ≤ MKη, (4)

with the asymptotic bias η = lim supk→∞ ∥E(ξk)∥.
Moreover, under last Assumption, we have

η ≤ λ

σ2 sup
x∈K

E (~JG (x)~) ∥Dσ − D∗
σ∥∞,L, (5)

with L = B(0,CK).
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Assumptions for critical points analysis

Assumption

(a) The prior distribution p ∈ C1(Rd , ]0,+∞[) with
∥p∥∞ + ∥∇p∥∞ < +∞.
(b) JG has finite first moment, i.e. supx∈Rd EG∼π(~JG (x)~) < +∞.

Assumption

The data-fidelity term is continuously differentiable, i.e. f ∈ C1(Rd ,R).
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Critical point analysis

S = {x ∈ Rd |∃σn > 0 decreasing to 0, xn ∈ Sσn such that xn −−−→
n→∞

x}.

Proposition

Under Assumptions, if the prior p is π-equivariant, we have

S ⊂ S∗.
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Denoising performance

Denoising method PNSR, PNSR PNSR
σ = 5/255 σ = 10/255 σ = 20/255

Simple denoising 40.54 36.46 32.73
Rotation denoising 40.58 36.49 32.76

Translation denoising 40.53 36.44 32.71
Subpixel Rotation denoising 40.34 36.26 32.56

Flip denoising 40.58 36.49 32.76

Table – Denoising results on the CBSD68 dataset with various level of noise
with the GS-DRUNet denoiser.
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Deblurring with various denoiser

Denoiser Restoration method PNSR ↑ SSIM ↑

GS-DRUNet (σy = 5
255 )

RED 32.25 0.84
ERED rotation 32.53 0.85

ERED flip 32.51 0.85

DRUNet (σy = 5
255 )

RED 29.24 0.81
ERED rotation 29.48 0.83

ERED flip 29.44 0.82

DnCNN (σy = 1
255 )

RED 35.26 0.94
ERED rotation 35.34 0.94

ERED flip 35.32 0.94

Table – Deblurring results on CBSD10 (10 images extracted from CBSD68
dataset) with 10 kernels of blur (including fixed and motion blur) with different
pre-trained denoisers.
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