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Objective

Spectral CT uses energy-dependent information
➜ Allows to reconstruct basis material density images.

It is an ill-posed inverse problem
➜ Requires regularization or prior.

From handcrafted to learned prior
➜ Generative model as regularization.
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Standard Computed Tomography (CT)

We consider the Linear Attenuation Coefficient (LAC) of an object.
For an incoming ray of intensity s, Beer-Lambert’s law gives the relative absorption of photons
as a function of the LAC :

s µ(l) s+ ds

ds

s
= −µ(l)dl.

=⇒ sf = s0 exp

(
−
∫
L
µ(l)dl︸ ︷︷ ︸

:=R(µ)

)
.
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Standard Computed Tomography (CT)

Figure: LAC image µ ∈ RJ and its corresponding projection R(µ) ∈ RI.
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Standard Computed Tomography (CT)

In standard CT, we aim to reconstruct a linear attenuation coefficient (LAC) image µ ∈ RJ

from the measures y ∈ RI. We assume that y = (y1, y2, . . . , yI) ∈ RI is a realization of a
random Poisson variable (Y|µ).

(Y | µ) ∼ Poisson(ȳ(µ)),

ȳi(µ) = se−[R(µ)]i .
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Spectral CT

Spectral CT : Discriminate energy dependance of the LAC.

µ← µ(ϵ)

s← s(ϵ)

ȳi(µ) = se−[R(µ)]i ←
∫ +∞

0
s(ϵ)e−[Rµ(ϵ)]idϵ.

s(ϵ) is the photon flux (intensity) as a function of the energy.

Figure: Example of a spectral image µ(ϵ) for three selected energies (40, 80 and 120 keV).
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Spectrum partition into energy bins

ȳi(x) =

∫ +∞

0
s(ϵ)e−[Rµ(ϵ)]idϵ.

We divide the energy spectrum into K energy bins (intervals of the form [ϵk, ϵk+1]) and obtain
measures for each bins regrouped into the random variable Y ∈ RI×K.
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Spectral CT

We can leverage this energy dependent LAC function µ(ϵ) to obtain N material images
x = (x1,x2, · · · ,xN) using the following relation:

µ(ϵ) = Q(x, ϵ) =

N∑
n=1

qn(ϵ)xn

where qn is the known n-th material attenuation function.

Figure: Example of a material image x for two materials (bones and soft tissues).
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Forward models

➜ Spectral forward model:

(YsCT | µ) ∼ Poisson(ȳ(µ)),

ȳk,i(µ) =

∫ +∞

0
sk(ϵ)e

−[Rµ(ϵ)]idϵ.

We can replace the spectral image µ by it’s material representation µ = Q(x, ϵ).
➜ Material forward model:

(YMD | x) = (YsCT | µ = Q(x, ϵ))

∼ Poisson(ȳ(x)),

ȳl,i(x) =

∫ +∞

0
sk(ϵ)e

−[RQ(x,ϵ)]idϵ.
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Modelisation

Material images

x ∈ RN×J

Spectral images

µ ∈ RE×J

Material projections

Rx ∈ RN×I

Spectral projection

Rµ ∈ RE×I
Measures
y ∈ RK×I

Q

R Q

R ∫
s(ϵ)e−RQxdϵ
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One-step and Two-step approaches

Given an energy-binned measurement y ∈ RK×I, maximum a posteriori (MAP) spectral CT
material decomposition can be achieved in two ways:

Two-step approach

(µ̂k)k=1,2,...,K ∈ argmax
µ∈RK×J

psCT (y|µ)·pµ(µ)

then solving

Q(x, ϵk) = µ̂k ∀k = 1, 2, . . . , K.

(Or the other way around)

One-step approach

x̂ ∈ argmax
x∈RN×J

pMD(y|x) · pX(x)

➜ Combines both inverse problems.

➜ Using a generative model to learn the prior pµ / pX.
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Diffusion models [3, 6] (forward)

We denote by W ∈ {µ,X} the random vector which can be either µ or X depending on
which strategy we wish to use (One-step or Two-step).

Denoising Diffusion Probabilistic Model (DDPM) (Ho et al.) version of diffusion models:
Starting from W0 ∼ pdata(w) ≈ p(w), we apply a Markov process:

(Wt |Wt−1 = wt−1) ∼ N (
√
αt wt−1, (1− αt)IJ), t ∈ {1, 2, . . . , T}

=⇒ (Wt |W0 = w0) ∼ N (
√
ᾱt w0, (1− ᾱt)IJ), t ∈ {1, 2, . . . , T}

with ᾱt =
∏t

s=1 αs.

WT
L−→

T→∞
Z with Z ∼ N (0, IJ).

We assume that each Wt admits a density pt.

C.Vazia, A.Bousse, B.Vedel , F.Vermet, J.Froment (VFU)Guidance of a diffusion model for material decomposition in photon-counting computed tomographyDecember 9th, 2024 12 / 18



Diffusion models [3, 6] (forward)

We denote by W ∈ {µ,X} the random vector which can be either µ or X depending on
which strategy we wish to use (One-step or Two-step).
Denoising Diffusion Probabilistic Model (DDPM) (Ho et al.) version of diffusion models:
Starting from W0 ∼ pdata(w) ≈ p(w), we apply a Markov process:

(Wt |Wt−1 = wt−1) ∼ N (
√
αt wt−1, (1− αt)IJ), t ∈ {1, 2, . . . , T}

=⇒ (Wt |W0 = w0) ∼ N (
√
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Diffusion models (reverse)

Reverse diffusion process [1, 3]:
WT ∼ N (0, IJ)

(Wt−1 |Wt = wt) ∼ N
(
m(wt, t), σ(t)

2IJ
)
,

with

m(wt, t) =
1
√
αt

wt +
1− αt√

αt
∇ log (pt)(wt)︸ ︷︷ ︸

”score”

The score function is intractable → Approximation with a neural network sθ(wt, t) and the
Score Matching by Denoising technique [5, 7].

θ̂ ∈ Argmin
θ

EW0,t,(Wt|W0)

{∥∥∥∥sθ(wt, t)−
wt −

√
ᾱtw0

1− ᾱt

∥∥∥∥2
2

}
,

The right term is a proxy for the true score, using Tweedie’s formula. Learning the score is in
fact closely related to learning a denoising function.
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Diffusion models as an a priori

Alter the diffusion process to take into account the measures
→ conditional score function ∇ log pt(· | y). Bayes rules:

∇ log pt(wt | y) = ∇ log pt(wt) +∇ log pt(y | wt).

Diffusion Posterior Sampling 1 approximation:

∇ log pt(y | wt) ≈ ∇ log p(y | ŵ0(wt, t)).

p(y | w0) is one of the two forward models described earlier.

ŵ0(wt, t) is obtained using Tweedie’s formula.

m(wt,y, t) =
1
√
αt

wt +
1− αt√

αt

 ∇ log pt(wt)︸ ︷︷ ︸
unconditional score

+

conditional guidance︷ ︸︸ ︷
∇ log p (y | ŵ0(wt, t))



1Diffusion posterior sampling for general noisy inverse problems., Chung et al. ICLR 2024
C.Vazia, A.Bousse, B.Vedel , F.Vermet, J.Froment (VFU)Guidance of a diffusion model for material decomposition in photon-counting computed tomographyDecember 9th, 2024 14 / 18



Diffusion models as an a priori

Alter the diffusion process to take into account the measures
→ conditional score function ∇ log pt(· | y). Bayes rules:

∇ log pt(wt | y) = ∇ log pt(wt) +∇ log pt(y | wt).

Diffusion Posterior Sampling 1 approximation:

∇ log pt(y | wt) ≈ ∇ log p(y | ŵ0(wt, t)).
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One-step and Two-step DPS

Two-step Diffusion Posterior Sampling (TDPS) : reconstructs the spectral image x then
applies material composition matrix pseudo inverse in order to obtain material image z.

θ̂TDPS ∈ Argmin
θ

Eµ0,t,(µt|µ0)

{∥∥∥∥sθ(µt, t)−
µt −

√
ᾱtµ0

1− ᾱt

∥∥∥∥2
2

}
.

One-step Diffusion Posterior Sampling (ODPS) : Reconstructs directly the material images z

θ̂ODPS ∈ Argmin
θ

Ex0,t,(xt|x0)

{∥∥∥∥sθ(xt, t)−
xt −

√
ᾱtx0

1− ᾱt

∥∥∥∥2
2

}
.
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Reference FBP2 PWLS3 One-step DPS

B
o
n
es

PSNR: 18.35

SSIM: 0.062

PSNR: 18.35

SSIM: 0.062
PSNR: 18.35

SSIM: 0.062 PSNR: 26.21

SSIM: 0.588

PSNR: 26.21

SSIM: 0.588
PSNR: 26.21

SSIM: 0.588 PSNR: 38.15

SSIM: 0.919

PSNR: 38.15

SSIM: 0.919
PSNR: 38.15

SSIM: 0.919

S
o
ft

T
is
su
es

PSNR: 11.39

SSIM: 0.059

PSNR: 11.39

SSIM: 0.059PSNR: 11.39

SSIM: 0.059

PSNR: 15.98

SSIM: 0.650

PSNR: 15.98

SSIM: 0.650PSNR: 15.98

SSIM: 0.650

PSNR: 32.03

SSIM: 0.828

PSNR: 32.03

SSIM: 0.828PSNR: 32.03

SSIM: 0.828

2Filtered Backprojection and Pseudo inverse
3Penalized Weighted Least Square and Pseudo inverse
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Reference Projection Domain Image Domain One-step DPS

B
o
n
es

PSNR: 32.90

SSIM: 0.849

PSNR: 32.90

SSIM: 0.849
PSNR: 32.90

SSIM: 0.849 PSNR: 34.47

SSIM: 0.786

PSNR: 34.47

SSIM: 0.786
PSNR: 34.47

SSIM: 0.786 PSNR: 38.15

SSIM: 0.919

PSNR: 38.15

SSIM: 0.919
PSNR: 38.15

SSIM: 0.919

S
o
ft

T
is
su
es

PSNR: 23.32

SSIM: 0.482

PSNR: 23.32

SSIM: 0.482PSNR: 23.32

SSIM: 0.482

PSNR: 30.04

SSIM: 0.829

PSNR: 30.04

SSIM: 0.829PSNR: 30.04

SSIM: 0.829

PSNR: 32.02

SSIM: 0.828

PSNR: 32.02

SSIM: 0.828PSNR: 32.02

SSIM: 0.828

C.Vazia, A.Bousse, B.Vedel , F.Vermet, J.Froment (VFU)Guidance of a diffusion model for material decomposition in photon-counting computed tomographyDecember 9th, 2024 17 / 18



Remarks and perspectives

Ordered subsets

Log-likelihood gradient approximation :

∇wt log p(y | ŵ0(wt, t)) ∝ ∇w0 log p(y | ŵ0(wt, t))

Diffusion on latent spaces or transformation of images (Cascaded diffusion models [4],
Wavelets Diffusion Models [2], ...)
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Tweedie formula for DDPM

From the Markov process Xt | Xt−1 = xt−1, we can deduce that:

(Xt | X0 = x0) ∼ N (
√
ᾱtx0, (1− ᾱt)),

with ᾱt =
∏t

s=0 αs.
Tweedie formula :

E[
√
ᾱtX0 | Xt = xt] = xt + (1− ᾱt)∇ log(pt)(xt),

→ x̂0(xt, t) =
xt + (1− ᾱt)∇ log(pt)(xt)√

ᾱt
,

x̂0(xt, t, sθ) =
xt + (1− ᾱt)sθ(xt, t)√

ᾱt
.
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