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Goals of this course

• Understand the effect of a convolution (linear filtering)
• Analyze convolution operators in the spectral domain
• Discover basic non-linear filters (mathematical morphology)
• Perform simple image analysis tasks with these filters
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Outline

Linear Filtering

Linear Filtering in Fourier Domain

Mathematical Morphology
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Convolution

Let u : Ω → R be a graylevel image defined on Ω = [0 : M − 1]× [0 : N − 1].

Let k : ω → R be a kernel defined on a small domain ω ⊂ Z2.

Often, k will be defined on a small square ω = [−s, s]2.

Definition
The convolution k ∗ u of the image u with kernel k is defined by

k ∗ u(x , y) =
∑

(x′,y′)∈ω

k(x ′, y ′)u(x − x ′, y − y ′)

This operation is also called linear filtering with filter k .

NB: If
• ω is a small neighborhood of (0, 0)
• k : ω → R+ is such that

∑
(x,y)∈ω k(x , y) = 1

then k ∗ u(x , y) is a kind of average of values of u around pixel (x , y).
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Convolution Example

k ∗ u(x , y) =
∑

(−x′,−y′)∈ω

k(−x ′,−y ′)u(x + x ′, y + y ′) =
∑

(−x′,−y′)∈ω

k̃(x ′, y ′)u(x + x ′, y + y ′)

where k̃ is defined by k̃(x , y) = k(−x ,−y).

Example: with a kernel k defined on a 3 × 3 square ω = [−1, 1]2:

Reflected
Kernel k̃
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Exercise

Compute the convolution k ∗ u with the following kernel and image

1 1 -1

k

-1 1 1

k̃

0 1 2 3
3 2 2 1
0 0 2 2

u
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Exercise

Compute the convolution k ∗ u with the following kernel and image

1 1 -1

k

-1 1 1

k̃

0 1 2 3
3 2 2 1
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3 4
1 1
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Exercise

Compute the convolution k ∗ u with the following kernel and image

1 1 -1

k

-1 1 1

k̃

0 1 2 3
3 2 2 1
0 0 2 2

u

? 3 4 ?
? 1 1 ?
? 2 4 ?

k ∗ u
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Border condition

When (x , y) is at the border of Ω, we should adopt a border condition to compute u(x − x ′, y − y ′),
for example:

• Zero-padding (extend image domain with 0 values)
• Periodic extension (recopy image in both directions)
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Back to the Exercice

Compute the convolution k ∗ u by using zero-padding as boundary condition:

1/3 1/3 1/3

k

0 1 2 3
3 2 2 1
0 0 2 2

u



8/47

Linear Filtering Linear Filtering in Fourier Domain Mathematical Morphology

Back to the Exercice
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1/3 1/3 1/3
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0 1 2 3
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3 4
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2 4
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Back to the Exercice

Compute the convolution k ∗ u by using zero-padding as boundary condition:

1/3 1/3 1/3

k

0 1 2 3
3 2 2 1
0 0 2 2

u

1 3 4 1
5 1 1 -1
0 2 4 0

k ∗ u
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Discrete Derivatives

The discrete derivatives of u are images ∂1u, ∂2u defined by{
∂1u(x , y) = u(x + 1, y)− u(x , y)
∂2u(x , y) = u(x , y + 1)− u(x , y)

.

We also define the gradient of u which is a “vector-field image” ∇u : Ω → R2 with

∇u(x , y) = (∂1u(x , y), ∂2u(x , y)).

One can remark that partial derivatives are given by discrete convolutions:

For example, ∂1u = k1 ∗ u with k1 which has only two non-zero values:{
k1(0, 0) = −1 ,

k1(−1, 0) = 1 .
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Example of Discrete Derivatives

u ∂1u = k1 ∗ u ∂2u = k2 ∗ u

NB: With Python convention for indexing,
• ∂1u responds more to horizontal edges
• ∂2u responds more to vertical edges



10/47

Linear Filtering Linear Filtering in Fourier Domain Mathematical Morphology

Example of Discrete Derivatives

u ∂1u = k1 ∗ u ∂2u = k2 ∗ u

NB: With Python convention for indexing,
• ∂1u responds more to horizontal edges
• ∂2u responds more to vertical edges



11/47

Linear Filtering Linear Filtering in Fourier Domain Mathematical Morphology

Blurring Operators

• A spatially uniform blur can be seen as a convolution

Au = k ∗ u

• Depending on k we may have different kinds of blur. Isotropic Blur Motion Blur

Original u Blurred image k ∗ u
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Outline

Linear Filtering

Linear Filtering in Fourier Domain

Mathematical Morphology
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Discrete Fourier Transform (DFT)

Definition
The discrete Fourier transform (DFT) of the image u : Ω → C is defined by

∀(ξ, ζ) ∈ Z2, û(ξ, ζ) =
M−1∑
x=0

N−1∑
y=0

u(x , y) exp
(
−2iπ

(ξx
M

+
ζy
N

))
.

Such an image is implicitly extended by (M,N)-periodicity as u : Z2 → C.

One can see that û is also (M,N)-periodic: û(ξ + kM, ζ + ℓN) = û(ξ, ζ), ∀k , ℓ ∈ Z.

Continuous s ŝ Discrete s ŝ



14/47

Linear Filtering Linear Filtering in Fourier Domain Mathematical Morphology

DFT Properties

• The DFT is linear.
• Consider the translated image v(x , y) = u(x − a, y − b). Then

v̂(ξ, ζ) = exp

(
−2iπ

(ξa
M

+
ζb
N

))
û(ξ, ζ).

• If u is real-valued, then ∀(ξ, ζ) ∈ Z2, û(−ξ,−ζ) = û(ξ, ζ).

In this case, we have that |û| is an even function.

NB: For this reason, DFT are usually displayed on the centered M × N domain, approximately:

Θ =

[
−M

2
:

M
2

]
×

[
−N

2
:

N
2

]
.
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DFT and Periodicity
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DFT and Periodicity
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Spectrum of Natural Images

u fft2(u) fftshift(fft2(u))



16/47

Linear Filtering Linear Filtering in Fourier Domain Mathematical Morphology

Spectrum of Natural Images

u fft2(u) fftshift(fft2(u))
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Inverse Discrete Fourier Transform

Definition
The inverse discrete Fourier transform (iDFT) of v : Ω → C is defined by

∀(x , y) ∈ Z2, v̌(x , y) =
1

MN

M−1∑
ξ=0

N−1∑
ζ=0

v(ξ, ζ) exp
(

2iπ
(ξx

M
+

ζy
N

))
.

Theorem
For any u : Ω → C (extended by (M,N)-periodicity), we have ˇ̂u = u, that is,

∀(x , y) ∈ Z2, u(x , y) =
1

MN

M−1∑
ξ=0

N−1∑
ζ=0

û(ξ, ζ) exp
(

2iπ
(ξx

M
+

ζy
N

))
.

IMPORTANT: There exists an algorithm, called the Fast Fourier Transform (FFT) that allows to
compute the DFT (or iDFT) of u with O(MN log(MN)) operations.
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Convolution in Fourier Domain

Theorem
Consider u, v : Ω → C and the convolution u ∗ v computed with periodic boundary conditions.
Then û ∗ v = ûv̂ , that is,

∀(ξ, ζ) ∈ Z2, û ∗ v(ξ, ζ) = û(ξ, ζ)v̂(ξ, ζ).

In other words, the DFT transforms a convolution into a product.

Important Consequence: The convolution u ∗ v can be computed with O(MN logMN) operations:

u ∗ v = DFT−1
(

DFT(u) · DFT(v)
)
.

Corollaire
For u, v : Ω → C, we also have ûv = 1

MN û ∗ v̂ .
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Gaussian Blur

u g1 ∗ u g1 |ĝ1|

g5 ∗ u g5 |ĝ5|
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Anti-Aliasing Filters
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Anti-Aliasing Filters
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Different Kinds of Filtering

Consider the spectral domain
Θ = [−M

2 ,
M
2 ]× [−N

2 ,
N
2 ].

• The low frequencies correspond to (ξ, ζ) ∈ Θ located near (0, 0).
• The high frequencies correspond to (ξ, ζ) ∈ Θ with max(|ξ|, |ζ|) large.

In practice, there are different kinds of linear filtering operators depending on k̂ :
• Low-pass filtering can be used for smoothing or removing noise (see later).
• High-pass filtering can be used for contour extraction.
• Band-pass filtering can be used for fine analysis (e.g. texture extraction).
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Derivatives seen as high-pass filter

u ∂1u = k1 ∗ u |k̂1|
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Example of Bandpass Filtering
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Example of Bandpass Filtering
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A Simple Non-linear Filter: the Median filter

For the median filter, the output value at pixel x is the median of neighbooring pixels:

u(x) = Median
(

u(x + a) , a ∈ ω
)
,

where ω = [−1, 1]2.

The median filter is useful to remove sparse noise, like “salt and pepper” noise.
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Mathematical Morphology

• Linear filtering (with convolution) relies on a linear structure on the image space (+)
• Mathematical filters will rely on an order between image values (≤)
• This is interesting because in natural images, edges often correspond to “occlusion”:

that is, a 2D image is obtained by a projection of a 3D scene where objects occlude each other.
• Also, we will define operators that do progressive simplification of images.

x
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Binary v.s. Continuous Image

• First, we will work with binary image u : Ω → {0, 1} (0 = False, 1 = True).
• A binary image u encodes a set

Xu = { x ∈ Ω | u(x) = 1 }.

• If ∨ is the “OR” operator (applied pixel by pixel), then Xu ∪ Xv = Xu∨v .

• If ∧ is the “AND” operator (applied pixel by pixel), then Xu ∩ Xv = Xu∧v .

Binary image Graylevel image
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Structuring Element

• We will work either on discrete domain Ω ⊂ Z2 or continuous domain Ω ⊂ R2.
• Morphological filters will rely on a structuring element, denoted as B ⊂ Z2 or R2.
• It is analogous to the ω neighborhood of (0, 0) used for convolutions.

Continous Discrete
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Binary Dilation

Warning: Ω is the ambient space (i.e. all sets are written as subsets of Ω).

Definition
The binary dilation of X ⊂ Ω by B is defined by

D(X ,B) = X ⊕ B = { x + b | x ∈ X ,b ∈ B } = ∪x∈X (x + B).

Left: X . Middle: Dilation D(X ,B) by a disk B. Right: Difference between original and dilation.
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Binary Erosion

Warning: Ω is the ambient space (i.e. all sets are written as subsets of Ω).

Definition
The binary erosion of X ⊂ Ω by B is defined by

E(X ,B) = X ⊖ B = { x ∈ Ω | x + B ⊂ X }.

Left: X . Middle: Erosion E(X ,B) by a disk B. Right: Difference between original and erosion.
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Properties of Binary Dilation and Erosion

• Dilation and Erosion are both non-decreasing with respect to X :

X ⊂ Y ⇒ D(X ,B) ⊂ D(Y ,B) and E(X ,B) ⊂ E(Y ,B).

• Dilation commutes with union, but not with intersection:

D(X ∪ Y ,B) = D(X ,B) ∪ D(Y ,B) , D(X ∩ Y ,B) ⊂ D(X ,B) ∩ D(Y ,B).

• Erosion commutes with intersection, but not with union:

E(X ∩ Y ,B) = E(X ,B) ∩ E(Y ,B) , E(X ∪ Y ,B) ⊃ E(X ,B) ∪ E(Y ,B).

• Iteration property:

D(D(X ,B),B′) = D(X ,B ⊕ B′) , E(E(X ,B),B′) = E(X ,B ⊕ B′).

• If 0 ∈ B, then B ⊂ D(X ,B) (extensive), and E(X ,B) ⊂ B (anti-extensive).
• E(X ,B)c = D(X c ,B)
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Relation with Distances
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Relation with Distances
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Binary Opening

Definition
The opening of X ⊂ Ω by B is defined by

XB = D(E(X ,B),B).

Left: X . Middle: Opening D(X ,B) by a disk B. Right: Difference between original and opening.
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Binary Closure

Definition
The binary closure of X ⊂ Ω by B is defined by

X B = E(D(X ,B),B).

Left: X . Middle: Closure E(X ,B) by a disk B. Right: Difference between original and closure.
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Properties of Binary Opening and Closure

• Binary opening and closure are non-decreasing with respect to X :

X ⊂ Y ⇒ XB ⊂ YB and X B ⊂ Y B.

• Binary closure is extensive X ⊂ X B .
• Binary opening is anti-extensive XB ⊂ X .
• Binary opening and closure are idempotent:

(XB)B = XB , (X B)B = X B.

• (X B)c = (X c)B
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From Binary to Grayscale Morphology

• The order between sets (⊂,⊃) corresponds to order on indicator functions (≤,≥).
• The union/intersection correspond to max/min on indicator functions.
• We will thus generalize morphological filters to graylevel images with sup/inf operations.
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Dilation

Definition
The dilation of u : Ω → R by B is an image D(u,B) defined by

∀x ∈ Ω, D(u,B)(x) = sup
b∈B|x+b∈Ω

u(x + b).

Dilation by a disk B
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Erosion

Definition
The erosion of u : Ω → R by B is an image E(u,B) defined by

∀x ∈ Ω, E(u,B)(x) = inf
b∈B|x+b∈Ω

u(x + b).

Erosion by a disk B
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Opening

Definition
The opening of u : Ω → R by B is the image uB = D(E(u,B)).

Opening by a disk B
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Closure

Definition
The closure of u : Ω → R by B is the image uB = E(D(u,B)).

Closure by a disk B



41/47

Linear Filtering Linear Filtering in Fourier Domain Mathematical Morphology

Mathematical Properties

• The properties of dilation, erosion, opening, closure extends to the grayscale case.
• We have the iteration property:

D(D(u,B),B′) = D(u,B ⊕ B′) , E(E(u,B),B′) = E(u,B ⊕ B′).

• Also, opening and closure are still idempotent:

(uB)B = uB

(uB)B = uB

NB: The iteration property holds in the discrete AND continuous case.
In the discrete case, B ⊕ B′ is a discrete sum (but discrete disks may not look like disks...).
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Iterated Filters

• Let us iterate opening-closure u 7→ (uB)
B with larger and larger squares B.

• This allows to compute successive morphological sketches of the image.
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• This allows to compute successive morphological sketches of the image.
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Morphological Gradient

The morphological gradient of u w.r.t. B is defined as D(u,B)− E(u,B).
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Top-hat Transform

• The top-hat transform is defined as u − uB .
• It can be used to highlight edges or salient details.

u uB u − uB
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Choice of Structuring Element

• Of course, the type of highlighted details depends on the choice of structuring element.
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Granulometry

• Summing binary erosions with larger balls allows to perform granulometry.
• This allows to extract “characteristic scales” of objects in the image.
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Conclusion

• You’ve discovered linear and non-linear filtering operators.
• Linear filtering is a convolution by a kernel k .
• Linear filtering can be computed in Fourier domain with the DFT.
• Linear filtering can model many imaging operators (derivatives, blur, sharpening filters, ...)
• Morphological operators perform non-linear filtering which allows to better preserve the edges.
• Linear filters and Morphological filters can be used for image analysis.

(detection of edges or simple shapes)

Credits for illustrations: Isabelle Bloch, Christophe Kervazo, Alasdair Newson

THANK YOU FOR YOUR ATTENTION!
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