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Goals of this course

Understand the effect of a convolution (linear filtering)
Analyze convolution operators in the spectral domain
Discover basic non-linear filters (mathematical morphology)
Perform simple image analysis tasks with these filters
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Convolution
Let u: Q — R be a graylevel image definedon Q=[0: M —1] x [0: N —1].
Let k : w — R be a kernel defined on a small domain w C Z2.
Often, k will be defined on a small square w = [—s, s]°.

Definition
The convolution k x u of the image u with kernel k is defined by ﬁ? —_—

kxu(y)= S K y)u(x—x.y ) e

(x".y")ew

This operation is also called linear filtering with filter k.
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Let u: Q — R be a graylevel image definedon Q=[0: M —1] x [0: N —1].
Let k : w — R be a kernel defined on a small domain w C Z2.
Often, k will be defined on a small square w = [—s, s]°.

Definition
The convolution k x u of the image u with kernel k is defined by ﬁ? —_—

kxu(y)= S K y)u(x—x.y ) e

(x".y")ew

This operation is also called linear filtering with filter k.
NB: If
® wis a small neighborhood of (0, 0)
® k:w—Ryissuchthat}®, Kk(x,y)=1
then k x u(x, y) is a kind of average of values of u around pixel (x, y).
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Convolution Example

kxu(x,y)= > k(=X =y ux+x.y+y)= > k(XY u(x+x.y+y')

(=x',—y")ew (=x',—y")ew
where k is defined by k(x, y) = k(—x, —y).

Example: with a kernel k defined on a 3 x 3 square w = [—1,1]%:

Reflected
Kernel k
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Exercise

Compute the convolution k * u with the following kernel and image

0|1]|2|38

NEAEIK

K . 0|02 |2
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Border condition

When (x, y) is at the border of Q, we should adopt a border condition to compute u(x — x’, y — y'),
for example:

e Zero-padding (extend image domain with 0 values)
® Periodic extension (recopy image in both directions)

7/47



Linear Filtering Linear Filtering in Fourier Domain Mathematical Morphology
0O000@0000 000000000000 0000000000000 0000000000

Border condition

When (x, y) is at the border of Q, we should adopt a border condition to compute u(x — x’, y — y'),
for example:

e Zero-padding (extend image domain with 0 values)
® Periodic extension (recopy image in both directions)

7/47



Linear Filtering Linear Filtering in Fourier Domain Mathematical Morphology
0O000@0000 000000000000 0000000000000 0000000000

Border condition

When (x, y) is at the border of Q, we should adopt a border condition to compute u(x — x’, y — y'),
for example:

e Zero-padding (extend image domain with 0 values)
® Periodic extension (recopy image in both directions)

7/47



Linear Filtering Linear Filtering in Fourier Domain Mathematical Morphology
0O000@0000 000000000000 0000000000000 0000000000

Border condition

When (x, y) is at the border of Q, we should adopt a border condition to compute u(x — x’, y — y'),
for example:

e Zero-padding (extend image domain with 0 values)
® Periodic extension (recopy image in both directions)

7/47



Linear Filtering Linear Filtering in Fourier Domain Mathematical Morphology
0O000@0000 000000000000 0000000000000 0000000000

Border condition

When (x, y) is at the border of Q, we should adopt a border condition to compute u(x — x’, y — y'),
for example:

e Zero-padding (extend image domain with 0 values)
® Periodic extension (recopy image in both directions)

7/47



Linear Filtering
0O0000e000

Back to the Exercice

Compute the convolution k * u by using zero-padding as boundary condition:

0[1[2]3
EEARERRER 32|21
B 0/0]2]2
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Back to the Exercice

Compute the convolution k * u by using zero-padding as boundary condition:
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Discrete Derivatives

The discrete derivatives of u are images 0y u, 0-u defined by

{81 u(x,y) = u(x +1,y) = u(x, y)

ou(x,y)=u(x,y +1) —u(x,y)

We also define the gradient of u which is a “vector-field image” Vu : Q — R? with
Vu(x,y) = (01u(x, y), G2u(X, ¥))-

One can remark that partial derivatives are given by discrete convolutions:

For example, d1u = kq * u with k; which has only two non-zero values:

ki (0,0) = —1,
Ki(—1,0)=1.
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Example of Discrete Derivatives

u Ou==ky xu Oou=koxU
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Example of Discrete Derivatives

u Ou==ky xu Oou=koxU

NB: With Python convention for indexing,
® Jiu responds more to horizontal edges
® J,u responds more to vertical edges
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Blurring Operators

e A spatially uniform blur can be seen as a convolution

Au=k=xu

¢ Depending on k we may have different kinds of blur. Isotropic Blur - Motion Blur

Original u Blurred image k * u
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Outline

Linear Filtering in Fourier Domain

12/47



Linear Filtering Linear Filtering in Fourier Domain
[o]e] O®0000000000

Discrete Fourier Transform (DFT)

Definition
The discrete Fourier transform (DFT) of the image u : 2 — C is defined by
M—1 N—1 fX Cy
W6 60 =Y X uly)ew (-2im(55+ )
x=0 y=

Such an image is implicitly extended by (M, N)-periodicity as u : Z? — C.
One can see that & is also (M, N)-periodic: &(¢ + kM, ¢ + ¢N) = 0(€,¢), Vk, £ € Z.

Te ITe 3T AT o t

Continuous s s Discrete s 5
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DFT Properties

The DFT is linear.
Consider the translated image v(x, y) = u(x — a,y — b). Then

o(6.0) = exp (-2in (g1 + %) ) 016,00

If uis real-valued, then  Y(¢,¢) € Z2, O(—¢,—C) = (£, C).

In this case, we have that |0 is an even function.

For this reason, DFT are usually displayed on the centered M x N domain, approximately:

o-[E )[4y
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DFT and Periodicity

Mathema

15/47



Linear Filtering in Fourier Domain
0O00@00000000

DFT and Periodicity
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Spectrum of Natural Images

u f££2 (u) fftshift (££t2 (u))
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Spectrum of Natural Images

fft2 (u) fftshift (££t2 (u))
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Inverse Discrete Fourier Transform

Definition
The inverse discrete Fourier transform (iDFT) of v : Q — C is defined by
M—1 N—1 é_ Cy
2 v
V(x,y) €27, V(x,y) = Nggvu exp(2/7r(M+ N)) :

Theorem
For any u : Q — C (extended by (M, N)-periodicity), we have U = u, that is,

M—1N—-1

V(x,y) €Z%, u(x,y) = ﬁ 2.2 0, ¢) exp (ZiF(% + %)) :

IMPORTANT: There exists an algorithm, called the Fast Fourier Transform (FFT) that allows to
compute the DFT (or iDFT) of u with O(MN log(MN)) operations.
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Convolution in Fourier Domain

Theorem

Consider u,v : Q — C and the convolution u x v computed with periodic boundary conditions.
Then U * v = 0V, that is,

V(€ Q) e 72, UxV(E,C) = U(E QV(E Q).

In other words, the DFT transforms a convolution into a product.

Important Consequence: The convolution u * v can be computed with O(MN log MN) operations:

usv=DFT (DFT(u) : DFT(v)).

Corollaire
Foru,v:Q — C,wealsohave v = ix¥.
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Gaussian Blur

191

s
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Anti-Aliasing Filters
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Anti-Aliasing Filters
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Different Kinds of Filtering

Consider the spectral domain
e =[-

NN
N

] X [7ga

(S

; Il
* The low frequencies correspond to (£, ¢) € © located near (0, 0).
* The high frequencies correspond to (&, ¢) € © with max(|¢[, |¢]) large.

In practice, there are different kinds of linear filtering operators depending on k:
* Low-pass filtering can be used for smoothing or removing noise (see later).
® High-pass filtering can be used for contour extraction.
* Band-pass filtering can be used for fine analysis (e.g. texture extraction).
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Derivatives seen as high-pass filter

u u=k xu (|
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Example of Bandpass Filtering
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Example of Bandpass Filtering
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Outline

Mathematical Morphology
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A Simple Non-linear Filter: the Median filter

For the median filter, the output value at pixel x is the median of neighbooring pixels:
u(x) = Median( uix+a), ac w),

where w = [-1,1]2.

The median filter is useful to remove sparse noise, like “salt and pepper” noise.
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Mathematical Morphology

Linear filtering (with convolution) relies on a linear structure on the image space (+)
Mathematical filters will rely on an order between image values (<)

® This is interesting because in natural images, edges often correspond to “occlusion”:
that is, a 2D image is obtained by a projection of a 3D scene where objects occlude each other.

Also, we will define operators that do progressive simplification of images.
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Binary v.s. Continuous Image

¢ First, we will work with binary image u: Q — {0,1} (0 = False, 1 = True).
® A binary image u encodes a set
Xu={xeQux)=1}

® [f v is the “OR” operator (applied pixel by pixel), then X, U X, = Xyvv.
® |f Ais the “AND” operator (applied pixel by pixel), then X, N X, = Xuyav.

Binary image Graylevel image
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Structuring Element

e We will work either on discrete domain Q C Z2 or continuous domain Q c R
¢ Morphological filters will rely on a structuring element, denoted as B ¢ Z2 or R?.
® |t is analogous to the w neighborhood of (0, 0) used for convolutions.

o()e

Continous Discrete
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Binary Dilation

Warning: Q is the ambient space (i.e. all sets are written as subsets of Q).

Definition
The binary dilation of X C Q by B is defined by

DIX,B)=X@®B={x+b|xcX,bcB}=Uwx(x+B).
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Binary Erosion

Warning: Q is the ambient space (i.e. all sets are written as subsets of Q).

Definition
The binary erosion of X C Q by B is defined by

E(X,B)=XoB={xecQ|x+BcX}.
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Properties of Binary Dilation and Erosion

¢ Dilation and Erosion are both non-decreasing with respect to X:

XCY = DX,BycD(Y,B) and E(X,B)cC E(Y,B).
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Properties of Binary Dilation and Erosion

¢ Dilation and Erosion are both non-decreasing with respect to X:
XCcY = D(X,B)cD(Y,B) and E(X,B)C E(Y,B).
e Dilation commutes with union, but not with intersection:

D(XUY,B)=D(X,B)UD(Y,B) , D(XNY,B)cC D(X,B)nD(Y,B).
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Properties of Binary Dilation and Erosion

¢ Dilation and Erosion are both non-decreasing with respect to X:
XcY = DX,BycD(Y,B) and E(X,B)C E(Y,B).
e Dilation commutes with union, but not with intersection:
D(XUY,B)=D(X,B)yuD(Y,B) , D(XnY,B)cD(X,BynD(Y,B).
® Erosion commutes with intersection, but not with union:

E(XNY,B)=EX,B)nE(Y,B) , E(XUY,B)> E(X,B)UE(Y,B).
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Properties of Binary Dilation and Erosion

Dilation and Erosion are both non-decreasing with respect to X:

XCY = DX,BycD(Y,B) and E(X,B)cC E(Y,B).

Dilation commutes with union, but not with intersection:

D(XUY,B) = D(X,B)UD(Y,B)

)

D(XNY,B)c D(X,B)nD(Y,B).

Erosion commutes with intersection, but not with union:

E(XNY,B)=E(X,BynE(Y,B)
Iteration property:

D(D(X,B),B) = D(X,B® B)

)

)

E(XUY,B)> E(X,B)UE(Y,B).

E(E(X,B),B)=E(X,Ba® B).
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Properties of Binary Dilation and Erosion

Dilation and Erosion are both non-decreasing with respect to X:
XcY = DX,BycD(Y,B) and E(X,B)C E(Y,B).

Dilation commutes with union, but not with intersection:

D(XUY,B)=D(X,B)yuD(Y,B) , D(XnY,B)cD(X,BynD(Y,B).
Erosion commutes with intersection, but not with union:

E(XNY,B)y=E(X,B)nE(Y,B) , E(XUY,B)D>E(X,B)UE(Y,B).
Iteration property:

D(D(X,B),B)=D(X,B®B) , E(E(X,B),B)=E(X,BgB).

If 0 € B, then B C D(X, B) (extensive), and E(X, B) C B (anti-extensive).
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Properties of Binary Dilation and Erosion

Dilation and Erosion are both non-decreasing with respect to X:
XcY = DX,BycD(Y,B) and E(X,B)C E(Y,B).

Dilation commutes with union, but not with intersection:

D(XUY,B)=D(X,B)yuD(Y,B) , D(XnY,B)cD(X,BynD(Y,B).
Erosion commutes with intersection, but not with union:

E(XNY,B)y=E(X,B)nE(Y,B) , E(XUY,B)D>E(X,B)UE(Y,B).
Iteration property:

D(D(X,B),B)=D(X,B®B) , E(E(X,B),B)=E(X,BgB).

If 0 € B, then B C D(X, B) (extensive), and E(X, B) C B (anti-extensive).
E(X,B)° = D(X°, B)
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Binary Opening

Definition
The opening of X C Q by B is defined by

Xs = D(E(X, B), B).

Left: X. Middle: Openlng D(X, B) by a disk B. Right: Difference between original and opening.
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Binary Closure

Definition
The binary closure of X C Q by B is defined by

X5 = E(D(X, B), B).

Left: X. Middle: Closure E(X, B) by a disk B. Right: Difference between original and closure.
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Properties of Binary Opening and Closure

® Binary opening and closure are non-decreasing with respect to X:

XCY = XscCVYs and XBcCYE
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Properties of Binary Opening and Closure

® Binary opening and closure are non-decreasing with respect to X:
XCcY = XscVYs and XBcC Y5

e Binary closure is extensive X c X5.
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Properties of Binary Opening and Closure

® Binary opening and closure are non-decreasing with respect to X:
XCcY = XscVYs and XBcC Y5

e Binary closure is extensive X c X5.
® Binary opening is anti-extensive Xg C X.
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Properties of Binary Opening and Closure

® Binary opening and closure are non-decreasing with respect to X:
XCcY = XscVYs and XBcC Y5

e Binary closure is extensive X c X5.
® Binary opening is anti-extensive Xg C X.
® Binary opening and closure are idempotent:

Xg)s =Xz , (X%)P=X5

Mathematical Morphology
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Properties of Binary Opening and Closure

® Binary opening and closure are non-decreasing with respect to X:
XCcY = XscVYs and XBcC Y5

e Binary closure is extensive X c X5.
® Binary opening is anti-extensive Xg C X.
® Binary opening and closure are idempotent:

Xg)s =Xz , (X%)P=X5
e (XB)°=(X)s

35/47



Linear Filtering 1 Fourier Domain Mathematical Morphology

000000000000 e0000000000

From Binary to Grayscale Morphology

® The order between sets (C, D) corresponds to order on indicator functions (<, >).
® The union/intersection correspond to max/min on indicator functions.
* We will thus generalize morphological filters to graylevel images with sup/inf operations.
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Dilation

Definition
The dilation of u: Q — R by Bis an image D(u, B) defined by

Vxe€Q, D(u,B)(X)= sup u(X+b).
beB|x+beQ

Dilation by a disk B
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Erosion
Definition
The erosion of u: Q — R by Bis an image E(u, B) defined by
vx € Q, E(u,B)(x)= beB;)?-fbeQ u(x +b).

Erosion by a disk B
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Opening

Definition
The opening of u: Q@ — R by B is the image ugs = D(E(u, B)).

Opening by a disk B
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Closure

Definition
The closure of u: Q — R by Bis the image u? = E(D(u, B)).

Closure by a disk B
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Mathematical Properties

® The properties of dilation, erosion, opening, closure extends to the grayscale case.
® We have the iteration property:

D(D(u,B),B)=D(u,B®B) , E(E(u,B),B)=E(u,BaB).
® Also, opening and closure are still idempotent:
(ug)s = us
(UB)B _ uB

NB: The iteration property holds in the discrete AND continuous case.
In the discrete case, B @ B’ is a discrete sum (but discrete disks may not look like disks...).
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lterated Filters

e Let us iterate opening-closure u — (ug)® with larger and larger squares B.
® This allows to compute successive morphological sketches of the image.
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Morphological Gradient

The morphological gradient of u w.r.t. Bis defined as D(u, B) — E(u, B).
. . y .

43/47



Mathematical Morphology
00000000000000000000e00

Top-hat Transform

® The top-hat transform is defined as u — us.
® |t can be used to highlight edges or salient details.

u— ugs
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Choice of Structuring Element

e Of course, the type of highlighted details depends on the choice of structuring element.

N4 x|

O *
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Granulometry

® Summing binary erosions with larger balls allows to perform granulometry.
® This allows to extract “characteristic scales” of objects in the image.

.25

0.10  0.18 = 0.20 0O

Surface des objets (10e5)
.08

0.00

20

T € Morphologie

s 10 18
Taille de 1'ouvertu
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Conclusion

® You've discovered linear and non-linear filtering operators.

e Linear filtering is a convolution by a kernel k.

® Linear filtering can be computed in Fourier domain with the DFT.

® Linear filtering can model many imaging operators (derivatives, blur, sharpening filters, ...)

® Morphological operators perform non-linear filtering which allows to better preserve the edges.

® Linear filters and Morphological filters can be used for image analysis.
(detection of edges or simple shapes)

Credits for illustrations: Isabelle Bloch, Christophe Kervazo, Alasdair Newson

THANK YOU FOR YOUR ATTENTION!
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