Linear and Non-linear Filtering

Arthur Leclaire

Athens Week 2025

Goals of this course

- Understand the effect of a convolution (linear filtering)
- Analyze convolution operators in the spectral domain
- Discover basic non-linear filters (mathematical morphology)
- Perform simple image analysis tasks with these filters

Outline

Linear Filtering

Linear Filtering in Fourier Domair

Mathematical Morphology

Convolution

Let $u: \Omega \to \mathbf{R}$ be a graylevel image defined on $\Omega = [0: M-1] \times [0: N-1]$.

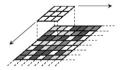
Let $k : \omega \to \mathbf{R}$ be a **kernel** defined on a small domain $\omega \subset \mathbb{Z}^2$.

Often, k will be defined on a small square $\omega = [-s, s]^2$.

Definition

The convolution k * u of the image u with kernel k is defined by

$$k * u(x, y) = \sum_{(x', y') \in \omega} k(x', y') u(x - x', y - y')$$



This operation is also called **linear filtering with filter** k.

Convolution

Let $u: \Omega \to \mathbf{R}$ be a graylevel image defined on $\Omega = [0: M-1] \times [0: N-1]$.

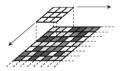
Let $k : \omega \to \mathbf{R}$ be a **kernel** defined on a small domain $\omega \subset \mathbb{Z}^2$.

Often, k will be defined on a small square $\omega = [-s, s]^2$.

Definition

The convolution k * u of the image u with kernel k is defined by

$$k * u(x,y) = \sum_{(x',y') \in \omega} k(x',y')u(x-x',y-y')$$



This operation is also called **linear filtering with filter** k.

NB: If

- ω is a small neighborhood of (0,0)
- $k: \omega \to \mathbf{R}_+$ is such that $\sum_{(x,y)\in\omega} k(x,y) = 1$

then k * u(x, y) is a kind of average of values of u around pixel (x, y).

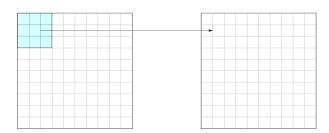
Convolution Example

$$k * u(x,y) = \sum_{(-x',-y') \in \omega} k(-x',-y')u(x+x',y+y') = \sum_{(-x',-y') \in \omega} \tilde{k}(x',y')u(x+x',y+y')$$

where \tilde{k} is defined by $\tilde{k}(x,y) = k(-x,-y)$.

Example: with a kernel *k* defined on a 3×3 square $\omega = [-1, 1]^2$:

Reflected Kernel k



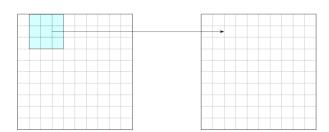
Convolution Example

$$k * u(x,y) = \sum_{(-x',-y') \in \omega} k(-x',-y')u(x+x',y+y') = \sum_{(-x',-y') \in \omega} \tilde{k}(x',y')u(x+x',y+y')$$

where \tilde{k} is defined by $\tilde{k}(x,y) = k(-x,-y)$.

Example: with a kernel *k* defined on a 3×3 square $\omega = [-1, 1]^2$:

Reflected Kernel k



Compute the convolution k * u with the following kernel and image

k

-1	1	1
	~	

Ñ

0	1	2	3
3	2	2	1
0	0	2	2

и

Compute the convolution k * u with the following kernel and image

1	1	-1

k

-1	1	1

ĩ

0	1	2	3
3	2	2	1
0	0	2	2

и



Compute the convolution k * u with the following kernel and image

1 1 -1

k

-1	1	1

ĩ

0	1	2	3
3	2	2	1
0	0	2	2

и

3	4	
1	1	
2	4	

Compute the convolution k * u with the following kernel and image

1 1 -1

k

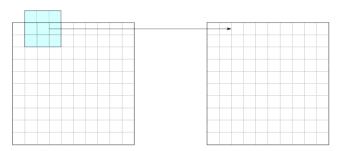
-1	1	1

ĩ

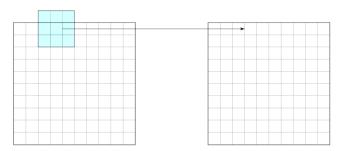
0	1	2	3
3	2	2	1
0	0	2	2

и

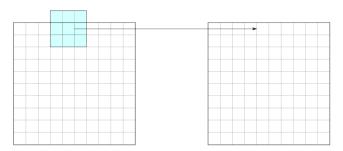
?	3	4	?
?	1	1	?
?	2	4	?



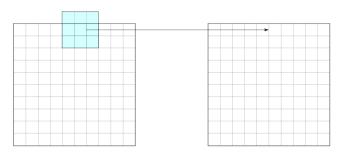
- Zero-padding (extend image domain with 0 values)
- Periodic extension (recopy image in both directions)



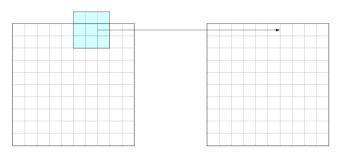
- Zero-padding (extend image domain with 0 values)
- Periodic extension (recopy image in both directions)



- Zero-padding (extend image domain with 0 values)
- Periodic extension (recopy image in both directions)



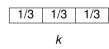
- Zero-padding (extend image domain with 0 values)
- Periodic extension (recopy image in both directions)



- Zero-padding (extend image domain with 0 values)
- Periodic extension (recopy image in both directions)

Back to the Exercice

Compute the convolution k * u by using **zero-padding** as boundary condition:



0	1	2	3
3	2	2	1
0	0	2	2

и

Back to the Exercice

Compute the convolution k * u by using **zero-padding** as boundary condition:

1/3	1/3	1/3		
k				

1	2	3
2	2	1
0	2	2
		2 2

и

3 4 1 1 2 4

Back to the Exercice

Compute the convolution k * u by using **zero-padding** as boundary condition:

1/3	1/3	1/3		
k				

1	2	3
2	2	1
0	2	2
	1 2 0	2 2

и

1	3	4	1
5	1	1	-1
0	2	4	0

 $k * \iota$

Discrete Derivatives

The discrete derivatives of u are images $\partial_1 u$, $\partial_2 u$ defined by

$$\begin{cases} \partial_1 u(x,y) = u(x+1,y) - u(x,y) \\ \partial_2 u(x,y) = u(x,y+1) - u(x,y) \end{cases}.$$

We also define the gradient of u which is a "vector-field image" $\nabla u : \Omega \to \mathbf{R}^2$ with

$$\nabla u(x,y) = (\partial_1 u(x,y), \partial_2 u(x,y)).$$

One can remark that partial derivatives are given by discrete convolutions:

For example, $\partial_1 u = k_1 * u$ with k_1 which has only two non-zero values:

$$\begin{cases} k_1(0,0) = -1, \\ k_1(-1,0) = 1. \end{cases}$$

Example of Discrete Derivatives

$$\partial_2 u = k_2 * u$$

Example of Discrete Derivatives

NB: With Python convention for indexing,

- $\partial_1 u$ responds more to horizontal edges
- $\partial_2 u$ responds more to vertical edges

Blurring Operators

• A spatially uniform blur can be seen as a convolution

$$Au = k * u$$

• Depending on k we may have different kinds of blur.

Isotropic Blur Mo

Original *u*

Blurred image k * u

Outline

Linear Filtering

Linear Filtering in Fourier Domain

Mathematical Morphology

Discrete Fourier Transform (DFT)

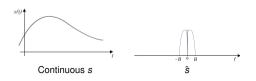
Definition

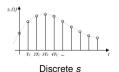
The discrete Fourier transform (DFT) of the image $u: \Omega \to \mathbb{C}$ is defined by

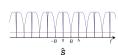
$$\forall (\xi,\zeta) \in \mathbb{Z}^2, \quad \hat{u}(\xi,\zeta) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} u(x,y) \exp\left(-2i\pi\left(\frac{\xi x}{M} + \frac{\zeta y}{N}\right)\right) .$$

Such an image is implicitly extended by (M, N)-periodicity as $u : \mathbb{Z}^2 \to \mathbb{C}$.

One can see that \hat{u} is also (M, N)-periodic: $\hat{u}(\xi + kM, \zeta + \ell N) = \hat{u}(\xi, \zeta), \forall k, \ell \in \mathbb{Z}$.







DFT Properties

- The DFT is linear.
- Consider the translated image v(x, y) = u(x a, y b). Then

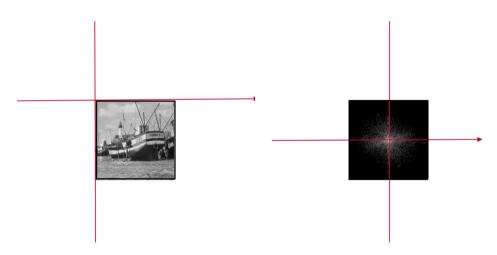
$$\hat{v}(\xi,\zeta) = \exp\left(-2i\pi\left(\frac{\xi a}{M} + \frac{\zeta b}{N}\right)\right)\hat{u}(\xi,\zeta).$$

• If u is real-valued, then $\forall (\xi,\zeta) \in \mathbb{Z}^2$, $\hat{u}(-\xi,-\zeta) = \overline{\hat{u}(\xi,\zeta)}$. In this case, we have that $|\hat{u}|$ is an even function.

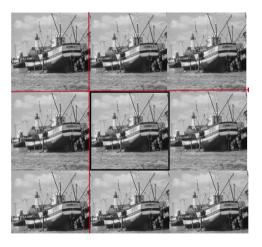
NB: For this reason, DFT are usually displayed on the centered $M \times N$ domain, approximately:

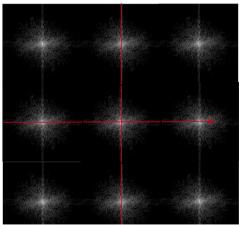
$$\Theta = \left[-\frac{M}{2} : \frac{M}{2} \right] \times \left[-\frac{N}{2} : \frac{N}{2} \right].$$

DFT and Periodicity

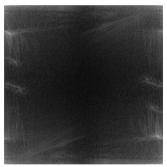


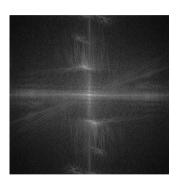
DFT and Periodicity





Spectrum of Natural Images



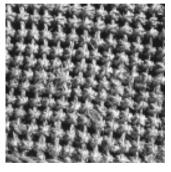


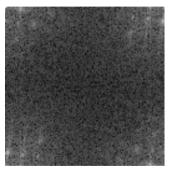
u

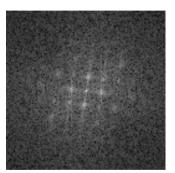
fft2(u)

fftshift(fft2(u))

Spectrum of Natural Images







fft2(u)

fftshift(fft2(u))

Inverse Discrete Fourier Transform

Definition

The inverse discrete Fourier transform (iDFT) of $v:\Omega\to\mathbb{C}$ is defined by

$$\forall (x,y) \in \mathbb{Z}^2, \quad \check{v}(x,y) = \frac{1}{MN} \sum_{\xi=0}^{M-1} \sum_{\zeta=0}^{N-1} v(\xi,\zeta) \exp\left(2i\pi\left(\frac{\xi x}{M} + \frac{\zeta y}{N}\right)\right) .$$

Theorem

For any $u:\Omega\to\mathbb{C}$ (extended by (M,N)-periodicity), we have $\check{b}=u$, that is,

$$\forall (x,y) \in \mathbb{Z}^2, \quad u(x,y) = \frac{1}{MN} \sum_{\xi=0}^{M-1} \sum_{\zeta=0}^{N-1} \hat{u}(\xi,\zeta) \exp\left(2i\pi\left(\frac{\xi x}{M} + \frac{\zeta y}{N}\right)\right).$$

IMPORTANT: There exists an algorithm, called the **Fast Fourier Transform (FFT)** that allows to compute the DFT (or iDFT) of u with $\mathcal{O}(MN \log(MN))$ operations.

Convolution in Fourier Domain

Theorem

Consider $u, v : \Omega \to \mathbb{C}$ and the convolution u * v computed with periodic boundary conditions.

Then $\widehat{u*v} = \widehat{u}\widehat{v}$, that is,

$$\forall (\xi,\zeta) \in \mathbb{Z}^2, \quad \widehat{u*v}(\xi,\zeta) = \hat{u}(\xi,\zeta)\hat{v}(\xi,\zeta).$$

In other words, the **DFT transforms a convolution into a product**.

Important Consequence: The convolution u * v can be computed with $\mathcal{O}(MN \log MN)$ operations:

$$u * v = \mathsf{DFT}^{-1} \Big(\mathsf{DFT}(u) \cdot \mathsf{DFT}(v) \Big).$$

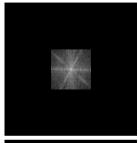
Corollaire

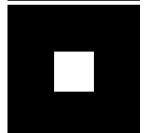
For $u, v : \Omega \to \mathbb{C}$, we also have $\widehat{uv} = \frac{1}{MN}\hat{u} * \hat{v}$.

Gaussian Blur

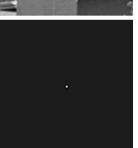


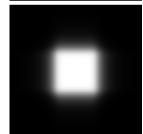
Anti-Aliasing Filters





Anti-Aliasing Filters





Different Kinds of Filtering

Consider the spectral domain

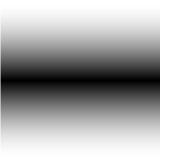
$$\Theta = \left[-\frac{M}{2}, \frac{M}{2} \right] \times \left[-\frac{N}{2}, \frac{N}{2} \right].$$

- The **low frequencies** correspond to $(\xi, \zeta) \in \Theta$ located near (0, 0).
- The **high frequencies** correspond to $(\xi, \zeta) \in \Theta$ with $\max(|\xi|, |\zeta|)$ large.

In practice, there are different kinds of linear filtering operators depending on \hat{k} :

- Low-pass filtering can be used for smoothing or removing noise (see later).
- **High-pass** filtering can be used for contour extraction.
- Band-pass filtering can be used for fine analysis (e.g. texture extraction).

Derivatives seen as high-pass filter

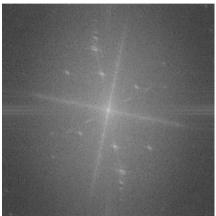


и

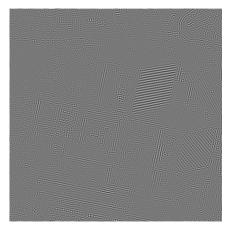
 $\partial_1 u = k_1 * u$

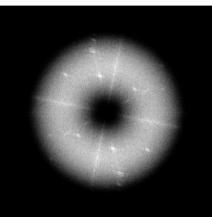
 $|\hat{k}_1|$

Example of Bandpass Filtering



Example of Bandpass Filtering





Outline

Linear Filtering

Linear Filtering in Fourier Domain

Mathematical Morphology

A Simple Non-linear Filter: the Median filter

For the median filter, the output value at pixel **x** is the median of neighbooring pixels:

$$u(\mathbf{x}) = \text{Median}(u(\mathbf{x} + \mathbf{a}), \mathbf{a} \in \omega),$$

where $\omega = [-1, 1]^2$.

The median filter is useful to remove sparse noise, like "salt and pepper" noise.

Mathematical Morphology

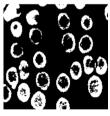
- Linear filtering (with convolution) relies on a linear structure on the image space (+)
- Mathematical filters will rely on an order between image values (≤)
- This is interesting because in natural images, edges often correspond to "occlusion": that is, a 2D image is obtained by a projection of a 3D scene where objects occlude each other.
- Also, we will define operators that do progressive simplification of images.

Binary v.s. Continuous Image

- First, we will work with binary image $u: \Omega \to \{0, 1\}$ (0 = False, 1 = True).
- A binary image u encodes a set

$$X_u = \{ \mathbf{x} \in \Omega \mid u(\mathbf{x}) = 1 \}.$$

- If \vee is the "OR" operator (applied pixel by pixel), then $X_u \cup X_v = X_{u \vee v}$.
- If \wedge is the "AND" operator (applied pixel by pixel), then $X_u \cap X_v = X_{u \wedge v}$.

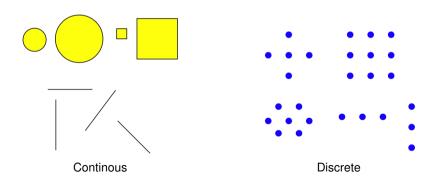


Binary image

Graylevel image

Structuring Element

- We will work either on **discrete** domain $\Omega \subset \mathbb{Z}^2$ or **continuous** domain $\Omega \subset \mathbb{R}^2$.
- Morphological filters will rely on a **structuring element**, denoted as $B \subset \mathbb{Z}^2$ or \mathbb{R}^2 .
- It is analogous to the ω neighborhood of (0,0) used for convolutions.



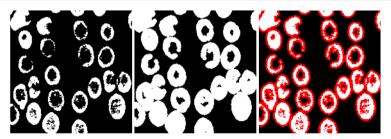
Binary Dilation

Warning: Ω is the ambient space (i.e. all sets are written as subsets of Ω).

Definition

The binary dilation of $X \subset \Omega$ by B is defined by

$$D(X,B) = X \oplus B = \{ \mathbf{x} + \mathbf{b} \mid \mathbf{x} \in X, \mathbf{b} \in B \} = \bigcup_{x \in X} (\mathbf{x} + B).$$



Left: X. Middle: Dilation D(X, B) by a disk B. Right: Difference between original and dilation.

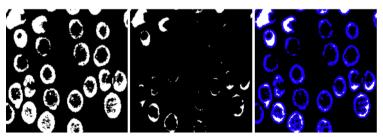
Binary Erosion

Warning: Ω is the ambient space (i.e. all sets are written as subsets of Ω).

Definition

The binary erosion of $X \subset \Omega$ by B is defined by

$$E(X,B) = X \ominus B = \{ \mathbf{x} \in \Omega \mid \mathbf{x} + B \subset X \}.$$



Left: X. Middle: Erosion E(X, B) by a disk B. Right: Difference between original and erosion.

• Dilation and Erosion are both non-decreasing with respect to X:

$$X \subset Y \Rightarrow D(X,B) \subset D(Y,B)$$
 and $E(X,B) \subset E(Y,B)$.

• Dilation and Erosion are both non-decreasing with respect to X:

$$X \subset Y \Rightarrow D(X,B) \subset D(Y,B)$$
 and $E(X,B) \subset E(Y,B)$.

• Dilation commutes with union, but not with intersection:

$$D(X \cup Y, B) = D(X, B) \cup D(Y, B)$$
 , $D(X \cap Y, B) \subset D(X, B) \cap D(Y, B)$.

Dilation and Erosion are both non-decreasing with respect to X:

$$X \subset Y \Rightarrow D(X,B) \subset D(Y,B)$$
 and $E(X,B) \subset E(Y,B)$.

• Dilation commutes with union, but not with intersection:

$$D(X \cup Y, B) = D(X, B) \cup D(Y, B)$$
, $D(X \cap Y, B) \subset D(X, B) \cap D(Y, B)$.

• Erosion commutes with intersection, but not with union:

$$E(X \cap Y, B) = E(X, B) \cap E(Y, B)$$
, $E(X \cup Y, B) \supset E(X, B) \cup E(Y, B)$.

Dilation and Erosion are both non-decreasing with respect to X:

$$X \subset Y \Rightarrow D(X,B) \subset D(Y,B)$$
 and $E(X,B) \subset E(Y,B)$.

• Dilation commutes with union, but not with intersection:

$$D(X \cup Y, B) = D(X, B) \cup D(Y, B)$$
, $D(X \cap Y, B) \subset D(X, B) \cap D(Y, B)$.

Erosion commutes with intersection, but not with union:

$$E(X \cap Y, B) = E(X, B) \cap E(Y, B)$$
, $E(X \cup Y, B) \supset E(X, B) \cup E(Y, B)$.

• Iteration property:

$$D(D(X,B),B')=D(X,B\oplus B')$$
 , $E(E(X,B),B')=E(X,B\oplus B')$.

Dilation and Erosion are both non-decreasing with respect to X:

$$X \subset Y \Rightarrow D(X,B) \subset D(Y,B)$$
 and $E(X,B) \subset E(Y,B)$.

• Dilation commutes with union, but not with intersection:

$$D(X \cup Y, B) = D(X, B) \cup D(Y, B)$$
, $D(X \cap Y, B) \subset D(X, B) \cap D(Y, B)$.

Erosion commutes with intersection, but not with union:

$$E(X \cap Y, B) = E(X, B) \cap E(Y, B)$$
, $E(X \cup Y, B) \supset E(X, B) \cup E(Y, B)$.

• Iteration property:

$$D(D(X,B),B')=D(X,B\oplus B')$$
 , $E(E(X,B),B')=E(X,B\oplus B')$.

• If $0 \in B$, then $B \subset D(X, B)$ (extensive), and $E(X, B) \subset B$ (anti-extensive).

Dilation and Erosion are both non-decreasing with respect to X:

$$X \subset Y \Rightarrow D(X,B) \subset D(Y,B)$$
 and $E(X,B) \subset E(Y,B)$.

• Dilation commutes with union, but not with intersection:

$$D(X \cup Y, B) = D(X, B) \cup D(Y, B)$$
, $D(X \cap Y, B) \subset D(X, B) \cap D(Y, B)$.

Erosion commutes with intersection, but not with union:

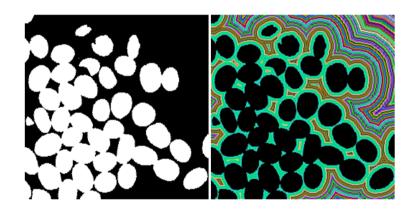
$$E(X \cap Y, B) = E(X, B) \cap E(Y, B)$$
, $E(X \cup Y, B) \supset E(X, B) \cup E(Y, B)$.

• Iteration property:

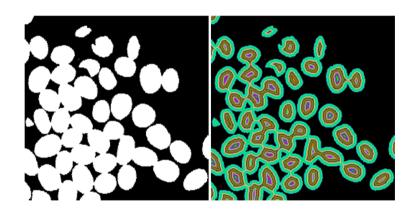
$$D(D(X,B),B')=D(X,B\oplus B')$$
 , $E(E(X,B),B')=E(X,B\oplus B')$.

- If $0 \in B$, then $B \subset D(X, B)$ (extensive), and $E(X, B) \subset B$ (anti-extensive).
- $E(X,B)^c = D(X^c,B)$

Relation with Distances



Relation with Distances

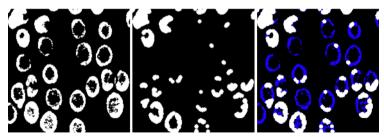


Binary Opening

Definition

The opening of $X \subset \Omega$ by B is defined by

$$X_B = D(E(X, B), B).$$



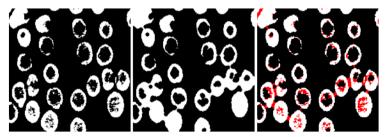
Left: X. Middle: Opening D(X, B) by a disk B. Right: Difference between original and opening.

Binary Closure

Definition

The binary closure of $X \subset \Omega$ by B is defined by

$$X^B = E(D(X, B), B).$$



Left: X. Middle: Closure E(X, B) by a disk B. Right: Difference between original and closure.

• Binary opening and closure are non-decreasing with respect to X:

$$X \subset Y \Rightarrow X_B \subset Y_B \text{ and } X^B \subset Y^B.$$

• Binary opening and closure are non-decreasing with respect to *X*:

$$X \subset Y \Rightarrow X_B \subset Y_B \text{ and } X^B \subset Y^B.$$

• Binary closure is extensive $X \subset X^B$.

• Binary opening and closure are non-decreasing with respect to *X*:

$$X \subset Y \Rightarrow X_B \subset Y_B \text{ and } X^B \subset Y^B.$$

- Binary closure is extensive $X \subset X^B$.
- Binary opening is anti-extensive $X_B \subset X$.

• Binary opening and closure are non-decreasing with respect to *X*:

$$X \subset Y \Rightarrow X_B \subset Y_B \text{ and } X^B \subset Y^B.$$

- Binary closure is extensive $X \subset X^B$.
- Binary opening is anti-extensive X_B ⊂ X.
- Binary opening and closure are idempotent:

$$(X_B)_B = X_B$$
 , $(X^B)^B = X^B$.

Binary opening and closure are non-decreasing with respect to X:

$$X \subset Y \Rightarrow X_B \subset Y_B \text{ and } X^B \subset Y^B.$$

- Binary closure is extensive $X \subset X^B$.
- Binary opening is anti-extensive $X_B \subset X$.
- Binary opening and closure are idempotent:

$$(X_B)_B = X_B$$
 , $(X^B)^B = X^B$.

$$\bullet (X^B)^c = (X^c)_B$$

From Binary to Grayscale Morphology

- The order between sets (\subset, \supset) corresponds to order on indicator functions (\leq, \geq) .
- The union/intersection correspond to max/min on indicator functions.
- We will thus generalize morphological filters to graylevel images with sup/inf operations.

Dilation

Definition

The dilation of $u: \Omega \to \mathbf{R}$ by B is an image D(u, B) defined by

$$\forall \mathbf{x} \in \Omega, \quad D(u, B)(\mathbf{x}) = \sup_{\mathbf{b} \in B \mid \mathbf{x} + \mathbf{b} \in \Omega} u(\mathbf{x} + \mathbf{b}).$$

Dilation by a disk B

Erosion

Definition

The erosion of $u: \Omega \to \mathbf{R}$ by B is an image E(u, B) defined by

$$\forall \mathbf{x} \in \Omega, \quad E(u, B)(\mathbf{x}) = \inf_{\mathbf{b} \in B \mid \mathbf{x} + \mathbf{b} \in \Omega} u(\mathbf{x} + \mathbf{b}).$$

Erosion by a disk B

Opening

Definition

The opening of $u: \Omega \to \mathbf{R}$ by B is the image $u_B = D(E(u, B))$.

Opening by a disk B

Closure

Definition

The closure of $u: \Omega \to \mathbf{R}$ by B is the image $u^B = E(D(u, B))$.

Closure by a disk B

Mathematical Properties

- The properties of dilation, erosion, opening, closure extends to the grayscale case.
- We have the iteration property:

$$D(D(u,B),B')=D(u,B\oplus B')$$
 , $E(E(u,B),B')=E(u,B\oplus B')$.

• Also, opening and closure are still idempotent:

$$(u_B)_B = u_B$$
$$(u^B)^B = u^B$$

NB: The iteration property holds in the discrete AND continuous case. In the discrete case, $B \oplus B'$ is a discrete sum (but discrete disks may not look like disks...).

- Let us iterate opening-closure $u \mapsto (u_B)^B$ with larger and larger squares B.
- This allows to compute successive morphological sketches of the image.

- Let us iterate opening-closure $u \mapsto (u_B)^B$ with larger and larger squares B.
- This allows to compute successive morphological sketches of the image.

- Let us iterate opening-closure $u \mapsto (u_B)^B$ with larger and larger squares B.
- This allows to compute successive morphological sketches of the image.

- Let us iterate opening-closure $u \mapsto (u_B)^B$ with larger and larger squares B.
- This allows to compute successive morphological sketches of the image.

- Let us iterate opening-closure $u \mapsto (u_B)^B$ with larger and larger squares B.
- This allows to compute successive morphological sketches of the image.

Morphological Gradient

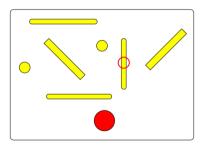
The morphological gradient of u w.r.t. B is defined as D(u, B) - E(u, B).

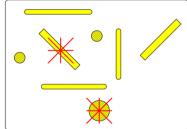
Top-hat Transform

- The top-hat transform is defined as $u u_B$.
- It can be used to highlight edges or salient details.

Choice of Structuring Element

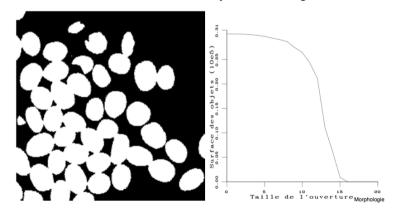
• Of course, the type of highlighted details depends on the choice of structuring element.





Granulometry

- Summing binary erosions with larger balls allows to perform granulometry.
- This allows to extract "characteristic scales" of objects in the image.



Conclusion

- You've discovered linear and non-linear filtering operators.
- Linear filtering is a convolution by a kernel k.
- Linear filtering can be computed in Fourier domain with the DFT.
- Linear filtering can model many imaging operators (derivatives, blur, sharpening filters, ...)
- Morphological operators perform non-linear filtering which allows to better preserve the edges.
- Linear filters and Morphological filters can be used for image analysis. (detection of edges or simple shapes)

Credits for illustrations: Isabelle Bloch, Christophe Kervazo, Alasdair Newson

THANK YOU FOR YOUR ATTENTION!