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Abstract
We experiment relative merits of information-theoretic metrics such as guessing entropy, conditional
Shannon or Rényi entropies vs. success probability, in the problem of guessing a cryptographic key form
a leakage in some practical cryptosystems, with Hamming weight leakage model in additive (Gaussian)
measurement noise.
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Figure 1: Leakage model: secret X , noise Z and leakage Y

Let X be a discrete random variable with probability distribution p(x). Without loss of generality we may
suppose that X ∈ {1, 2, . . . , n, . . .} with respective probabilities p1, p2, . . . , pn, . . .. Let Y = f (X) + Z be
additional information (leakage) about X . If noise Z is present, Y is a continuous r.v. with density p(y), while
in the noiseless case (Z = 0), Y is discrete with distribution p(y). The attacker knows Y and guesses X . We
have the following metrics:
• (Conditional) Guessing entropy: letting pk = p(x = k), k = 1, 2, . . . , n, . . ., we have the (conditional)

guessing entropies G(X) and G(X|Y ) as:

G(X) =
∑
k

kp(k), G(X|Y ) =
∑∫
p(y)G(X|Y = y) (1)

where the probabilities are arranged in decreasing order p(1) ≥ p(2) ≥ · · · ≥ p(n) ≥ · · · .
• (Conditional) Shannon Entropies:

H(X) =
∑
x∈X

p(x) log2
1

p(x)

H(X|Y ) =
∑∫
y∈Y

p(y)
∑
x∈X

p(x|y) log
1

p(x|y)

(2)

• (Conditional) Arimoto-Rényi Entropies:

Hα(X) =
α

1− α
log
(∑
x

p(x)α
)1/α

Hα(X|Y ) =
α

1− α
log
∑∫
y∈Y

p(y)
(∑
x

p(x|y)α
)1/α

(3)

• (Conditional) Success probability:

Ps(X) = max
x
p(x), Ps(X|Y ) =

∑∫
y∈Y

p(y) max
x
p(x|y) ≥ Ps(X) (4)

Guessing X with Noiseless Hamming Weight Leakages
Hamming weight leakage model f = wH is one of the most general leakage model used in side-channel
analysis. Particularly, hardware implementations leak bits in parallel, hence the leakage is the sum of the
registers state bits, that is the Hamming weight of the register contents.

Let Y = wH(X) where wH is the Hamming weight function, in the noiseless case (Z = 0). We choose
|X | = M = 2n for the sake of calculation.

p(x) =
1

2n
, p(y) =

(n
y

)
2n
, p(x|y) =

1y=wH(x)(n
y

) (5)

We focus on quantifying the reduction of uncertainty of X knowing Y . Thus,
• (Conditional) Guessing entropy:

G(X) =
∑
k

pk =

2n∑
k=1

k · 1

2n
=

2n + 1

2

G(X|Y ) =
∑
y

P(y)
∑
x

x · P(x|y) =
1

2
+

1

2n+1

(
2n

n

)
≈ 1

2

(
1 +

2n√
πn

)
≈ 1

2

(
1 +

2n√
πn

)
≈ 1

2

(
1 +

2n√
πn

) (6)

• (Conditional) Shannon Entropies:

H(X) =
∑
x

p(x) log
1

p(x)
= log 2n = n

H(X|Y ) = −
∑
x,y

p(x, y) log p(x|y) = 2−n
∑
y

(
n

y

)
· log

(
n

y

)
= 2−n

∑
y

(
n

y

)
· log

(
n

y

)
= 2−n

∑
y

(
n

y

)
· log

(
n

y

) (7)

•Conditional Rényi Entropies:

Hα(X|Y ) =
α

1− α
log
∑
y

p(y)

(∑
x

p(x|y)α

) 1
α

=
α

α− 1

n− log
∑
y

(
n

y

) 1
α

=
α

α− 1

n− log
∑
y

(
n

y

) 1
α

=
α

α− 1

n− log
∑
y

(
n

y

) 1
α

 (8)

•Conditional Success probability:

Ps(X|Y ) = EY max
x
p(x|Y ) =

M ′

M
=
n + 1

2n
=
n + 1

2n
=
n + 1

2n
(9)

Numerical Results on Noiseless Leakages
By upper bound from Fano’s inequality and lower bound H(X|Y ) ≥ ϕ∗(Ps(X|Y )) where ϕ∗(s) =

b1sc
(
sd1se − 1

)
logb1sc +

(
1− b1sc

(
sd1se − 1

))
logd1se and Hα(X|Y ) ≥ α

1−α log φ∗α(Ps(X|Y )), where φ∗α(s) =(⌈1
s

⌉
s − 1

)⌊1
s

⌋1/α
+

(
1 −

⌊1
s

⌋(⌈1
s

⌉
s − 1

))⌈1
s

⌉1−α
α (by Sason et al. [1]), we numerically show the condi-

tional Shannon and Rényi entropies of X as Fig. 2. Specifically, the upper bound of Rényi entropy is highly
dependent on the α. With α much larger than 1.0, the marked region is much smaller than the region with
α < 1.0.
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Figure 2: Conditional Shannon and Rényi Entropies of X with Hamming weight leakages

Guessing X with Noisy Hamming Weight Leakages
In fact, noise is the intrinsic part in the side-channel leakages, like power consumption and electromagnetic
radiations. Thus we consider the noisy leakages in a classic way by assuming the noise is the additive white
Gaussian noise (AWGN), which is a basic noise model to mimic the effect of many random processes.

We assume that Z ∼ N (0, σ2) of standard normal density ϕ(z) which is a nonincreasing function of |z|.
Thus we have:

p(x) =
1

M
, p(y) =

∑
x

p(x)p(y|x) =
1

M

∑
x

ϕ(y − f (x))

p(y|x) = ϕ(y − f (x)), p(x|y) =
p(y|x)p(x)

p(y)
=

ϕ(y)∑
x′ ϕ(y − f (x′))

(10)

In addition, maximum conditional probability of success is computed as follows.

Ps(X|Y ) = Emax
x
p(x|Y ) =

∫  1

M

∑
x′
ϕ(y − f (x′))

× ϕ(minx |y − f (x)|)∑
x′ ϕ(y − f (x′))

dy

=
1

M

∫
ϕ(y − f (x∗(y))) dy (where x∗(y) = arg min

x
|y − f (x)|)

=
M ′

M
− 2

M ′ − 1

M
Q

(
∆/2

σ

)
=
M ′

M
− 2

M ′ − 1

M
Q

(
∆/2

σ

)
=
M ′

M
− 2

M ′ − 1

M
Q

(
∆/2

σ

)
(where Q(x) =

1

2
erfc

(
x√
2

)
)

H(X|Y ) = H(X)− h(Y ) + h(Y |X) = logM +
1

2
log(2πeσ2)−

∫
p(y) log

1

p(y)
dy= logM +

1

2
log(2πeσ2)−

∫
p(y) log

1

p(y)
dy= logM +

1

2
log(2πeσ2)−

∫
p(y) log

1

p(y)
dy

(11)

Numerical Comparison with Lower and Upper Bounds of G(X|Y )

We present here six upper and lower bounds of guessing entropy of X by knowing its Hamming weight leak-
ages. Interestingly, Bostas’s upper bound is the best one which is identical to guessing entropy, which in the
Hamming weight leakage scenarios.
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Figure 3: Comparison of six upper and lower bounds of G(X)

Preliminary Conclusions
We present two scenarios of guessing a secret X with Hamming weight leakages. Specifically, with small
M = 2n, this type of leakage has much more impact on the conditional entropies, which are the common
cases in embedded systems. This explains why the Divide-and-Conquer attacks work in side-channel analy-
sis. However, with large M , such as M = 2128 for the AES-128 cryptographic key, the Hamming weight of
whole key is of very little help for the attacker.
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