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g Abstract

We experiment relative merits of information-theoretic metrics such as guessing entropy, conditional
Shannon or Rényi entropies vs. success probability, in the problem of guessing a cryptographic key form
a leakage 1n some practical cryptosystems, with Hamming weight leakage model in additive (Gaussian)
measurement noise.
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Information-theoretic metrics
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Figure 1: Leakage model: secret X, noise Z and leakage Y

Let X be a discrete random variable with probability distribution p(x). Without loss of generality we may
suppose that X € {1,2,...,n,...} with respective probabilities pi,p,...,pn,.... Let Y = f(X) + Z be
additional information (leakage) about X. If noise Z is present, Y is a continuous r.v. with density p(y), while
in the noiseless case (Z = 0), Y is discrete with distribution p(y). The attacker knows Y and guesses X. We
have the following metrics:

¢ (Conditional) Guessing entropy: letting p;. = p(x = k), k = 1,2,...,n,..., we have the (conditional)

guessing entropies G(X ) and G(X|Y) as:
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where the probabilities are arranged in decreasing order p(j) = prg) = -+ = Pry) = -

¢ (Conditional) Shannon Entropies:
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¢ (Conditional) Arimoto-Rényi Entropies:
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¢ (Conditional) Success probability:

Ps(X) = max p(x),

X

Ps(XY) = %Eyp(y) max p(z|y) > Ps(X) 4)

Guessing X with Noiseless Hamming Weight Leakages

Hamming weight leakage model f/ = wy is one of the most general leakage model used in side-channel
analysis. Particularly, hardware implementations leak bits in parallel, hence the leakage 1s the sum of the
registers state bits, that 1s the Hamming weight of the register contents.

Let Y = wy(X) where wyy is the Hamming weight function, in the noiseless case (Z = 0). We choose
|X| = M = 2" for the sake of calculation.
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We focus on quantifying the reduction of uncertainty of X knowing Y. Thus,
¢ (Conditional) Guessing entropy:
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¢ (Conditional) Shannon Entropies:
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¢ Conditional Rényi Entropies:
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e Conditional Success probability:

Ho(X]Y) =
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Numerical Results on Noiseless Leakages

By upper bound from Fano’s inequality and lower bound H(X|Y) > ¢*(Ps(X|Y)) where ¢*(s)

(T3] = 1) togl L) + (1= LLJ(s[H] = 1)) log[] and Ha(X[Y) > 125 log 64 (Ps(X[Y)), where ¢ (s) =

-«
(EJ — 1) I Jl/a 1 — |4 (EWS — 1) [1]7%" (by Sason et al. [1]), we numerically show the condi-
tional Shannon and Rényi1 entropies of X as Fig. 2. Specifically, the upper bound of Rényi entropy 1s highly
dependent on the a. With o much larger than 1.0, the marked region 1s much smaller than the region with
a < 1.0.
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Figure 2: Conditional Shannon and Rényi Entropies of X with Hamming weight leakages

Guessing X with Noisy Hamming Weight Leakages

In fact, noise 1s the intrinsic part in the side-channel leakages, like power consumption and electromagnetic
radiations. Thus we consider the noisy leakages 1n a classic way by assuming the noise 1s the additive white
Gaussian noise (AWGN), which 1s a basic noise model to mimic the effect of many random processes.

We assume that Z ~ N(0, 0?) of standard normal density o(z) which is a nonincreasing function of |z|.
Thus we have:
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In addition, maximum conditional probability of success is computed as follows.
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Numerical Comparison with Lower and Upper Bounds of G( X |Y')

We present here six upper and lower bounds of guessing entropy of X by knowing its Hamming weight leak-
ages. Interestingly, Bostas’s upper bound is the best one which is identical to guessing entropy, which in the
Hamming weight leakage scenarios.
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Figure 3: Comparison of six upper and lower bounds of G(X)

Preliminary Conclusions

We present two scenarios of guessing a secret X with Hamming weight leakages. Specifically, with small
M = 2", this type of leakage has much more impact on the conditional entropies, which are the common
cases in embedded systems. This explains why the Divide-and-Conquer attacks work in side-channel analy-
sis. However, with large M, such as M = 22° for the AES-128 cryptographic key, the Hamming weight of
whole key is of very little help for the attacker.
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