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Abstract—In this paper, we consider a dual-hop Multiple Input
Multiple Output (MIMO) wireless multi-relay network, in which
a source-destination pair both equipped with multiple antennas
communicates through multiple half-duplex amplify-and-forward
(AF) relay terminals which are also with multiple antennas.
Imperfect channel estimations for all nodes are considered. We
propose a novel robust linear beamforming at the relays, based
on the QR decomposition filter at the destination node which
performs successive interference cancellation (SIC). Using Law
of Large Number, we obtain the asymptotic rate, upon which
the proposed relay beamforming is optimized. Simulation results
show that the asymptotic rate matches with the ergodic rate
well. Analysis and simulation results demonstrate that the pro-
posed beamforming outperforms the conventional beamforming
schemes.

Index Terms—MIMO relay, successive interference cancella-
tion (SIC) detection, relay beamforming, channel estimation, rate.

I. INTRODUCTION

MIMO relay network has been of great interest in recent

years as it allows an increase of the data rate in the cellular

edge and extend the network coverage [1], [2].

In [3], the authors show a scaling theory for multi-relay

MIMO network. In [4], [5], the authors design three relay

beamforming schemes based on matrix triangularization which

have superiority over the conventional zero-forcing (ZF) and

amplify-and-forward (AF) beamformers. The proposed beam-

forming scheme can both fulfill intranode gain and distributed

array gain. [6] designed a beamforming scheme that achieves

the upper bound of capacity with a small gap when K is

significantly large. But it has bad performance for small K
and the source needs channel state information(CSI) which

increases overhead. In [7], two efficient relay-beamformers for

the dual-hop MIMO multi-relay networks have been presented,

which are based on matched filter (MF) and regularized zero-

forcing (RZF). But the beamformers are not optimized to

the network. In [8], the authors investigated lower and upper

bounds of mutual information under CSI error. In [9], the

authors studied the trade-off between accuracy of channel

estimation and data transmission, and show that the optimal

number of training symbols is equal to the number of transmit

antennas. Imperfect CSI for MIMO relay networks were taken

into account in [10]–[12].

In this paper, we propose a new robust beamforming scheme

for dual-hop MIMO multi-relay networks with imperfect chan-

nel estimation. SIC is also implemented at the destination by

QR decomposition. The proposed beamformer at relay is based

on the MMSE receiver and the RZF precoder. We optimize

their regularizing factors. In the derivation, using the Law of

Large Number, we obtain the asymtotic rate capacity for the

MMSE-RZF beamformer, based on which, the performance

of the beamformer can be easily analyzed. Simulation results

show that the asymptotic rate capacity matches well the

ergodic capacity. The asymptotic rate also validates the scaling

law in [3]. Analysis and simulations demonstrate that the

rate of our robust MMSE-RZF outperforms other published

schemes.

In this paper, boldface lowercase letter and boldface upper-

case letter represent vectors and matrices, respectively. Nota-

tions (A)i and (A)i,j denote the i-th row and (i, j)-th entry of

the matrix A. Notations tr(·), (·)†, (·)∗ and (·)H denote trace,

pseudo-inverse, conjugate and conjugate transpose operation

of a matrix respectively. Term IN is an N×N identity matrix.

The diag
{
{am}Mm=1

}
denotes a diagonal matrix with diagonal

entries of a1, . . . , aM . ∥a∥ stands for the Euclidean norm of

a vector a, and
w.p.
−→ represents convergence with probability

one. Finally, we denote the expectation operation by E {·}.

II. SYSTEM MODEL

The considered MIMO multi-relay network consists of a

single source and destination node both equipped with M
antennas, and K N -antenna relay nodes distributed between

the source-destination pair. We consider half-duplex non-

regenerative relaying throughout this paper, where it takes

two non-overlapping time slots for the data to be transmitted

from the source to the destination node via the backward

channels and forward channels. Due to deep large-scale fading

effects produced by the long distance, we assume that there is

no direct link between the source and destination. Imperfect

estimations are assumed. Assuming that Ĥk ∈ C
M×M and

Ĝk ∈ C
M×M stands for the available imperfect CSIs of

backward channel (BC) and forward channel (FC), we model
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the channel as

Hk = Ĥk + e1Ω1,k, (1)

Gk = Ĝk + e2Ω2,k, (2)

where Hk ∈ C
M×M and Gk ∈ C

M×M (k = 1, ...,K) stand

for the real CSI. Ω1,k and Ω2,k are matrices respectively

independent of Hk and Gk, whose entries are independently

and identically distributed(i.i.d) zero-mean complex Gaussian,

with unity variance [8], [13]. Therefore the power of CSI errors

of BC and FC are e21 and e22. All channels H1, · · · ,HK and

G1, · · · ,GK can be supposed to be i.i.d and experience the

same Rayleigh flat fading.

In the first time slot, the source node broadcasts the signal

to all the relay nodes through BCs. Let M×1 vector s be

the transmit signal vector satisfying the power constraint

E
{
ssH

}
= (P/M) IM , where P is defined as the transmit

power at the source node. Then the corresponding received

signal at the k-th relay can be written as rk = Hks + nk,
where the term nk is the spatio-temporally white zero-mean

complex additive Gaussian noise vector, independent across k,

with the covariance matrix E
{
nkn

H
k

}
= σ2

1IM . In the second

time slot, firstly each relay node performs linear processing by

multiplying rk with an N ×N beamforming matrix Fk. This

Fk is based on its imperfect CSIs Ĥk and Ĝk. Consequently,

the signal vector sent from the k-th relay node is tk = Fkrk.
From more practical consideration, we assume that each relay

node has its own power constraint satisfying E
{
tHk tk

}
≤ Q,

which is independent of power P . Hence a power constraint

condition of tk can be derived as

ρ (tk) = tr

{
Fk

(
P

M
HkH

H
k + σ2

1IN

)
FH

k

}
≤ Q. (3)

After linear relay beamforming processing, all the relay nodes

forward their data simultaneously to the destination. Thus the

signal vector received by the destination can be expressed as

y =

K∑

k=1

Gktk + nd =

K∑

k=1

GkFkHks+

K∑

k=1

GkFknk + nd,

(4)

where nd ∈ C
M , satisfying E

{
ndn

H
d

}
= σ2

2IM , denotes

the zero-mean white circularly symmetric complex additive

Gaussian noise vector at the destination node with the noise

power σ2
2 .

III. RELAY BEAMFORMING DESIGN

In this section, the QR detector at the destination node for

SIC detection is introduced and a relay beamforming scheme

based on MMSE receiver and RZF precoder is proposed.

A. QR Decomposition and SIC Detection

QR-decomposition (QRD) detector is utilized as the des-

tination receiver W in this paper, which is proved to be

asymptotically equivalent to that of the maximum-likelihood

detector (MLD) [14]. Let
∑K

k=1 ĜkFkĤk = HSD. Then (4)

can be rewritten as y = HSDs + n̂, where HSD represents

the effective channel between the source and destination node,

and

n̂ ∼=

K∑

k=1

e1ĜkFkΩ1,ks+
K∑

k=1

e2Ω2,kFkĤks+
K∑

k=1

GkFknk+nd

(5)

is the effective noise vector cumulated from the CSI errors,

the noise nk at the k-th relay node, and the noise vector nd

at the destination. In the derivation, we omit the small term

including e1e2. Finally, in order to cancel the interference from

other antennas, QR decomposition of the effective channel is

implemented as

HSD = QSDRSD, (6)

where QSD is an M × M unitary matrix and RSD is an

M × M right upper triangular matrix. Therefore the QRD

detector at destination node is chosen as: W = QH
SD, and the

signal vector after QRD detection becomes

ỹ = QH
SDy = RSDs+QH

SDn̂. (7)

A power control factor ρk is set with Fk in (3) to guarantee

that the k-th relay transmit power is equal to Q. The transmit

signal from each relay node after linear beamforming and

power control becomes tk = ρkFkrk, where the power control

factor ρk can be derived from (3) as

ρk =

(
Q

/
E

[
tr

{
Fk

(
P

M
HkH

H
k + σ2

1IN

)
FH

k

}]) 1

2

.

(8)

B. Beamforming at Relay Nodes

We propose at the relay nodes a robust MMSE-RZF beam-

former which can be optimized according to the network

condition. We design the Beamforming at the k-th relay as

follows

Fk = ĜH
k

(
ĜkĜ

H
k + αRZF

k IM

)−1 (
ĤH

k Ĥk + αMMSE
k IM

)−1

ĤH
k .

(9)

Note that MF-MF and ZF-ZF are two extreme cases for

αMMSE
k = αRZF

k = ∞ and αMMSE
k = αRZF

k = 0 respectively.

Generally, if the α (either regularizing factor in MMSE or

RZF) is too large, the effective channel matrix will far deviate

from a diagonal matrix, which results in power consumption

and interference across different datas. If α is too small, the

MMSE receiver and RZF precoder will perform like a ZF

receiver or precoder which have the power penalty problem

due to its inverse Wishart distribution term in its transmit

power [15]. We aim to obtain the optimal αMMSE
k and αRZF

k

to maximize the rate in this paper. However, to directly get

the global optimal closed-form solution is difficult. In the

following, we derive an optimized solution by two steps. We

first derive an optimized αMMSE
k by maximizing the SINR

at the relay nodes, and then we derive an optimized αRZF
k

dependent on the given optimized αMMSE
k by maximizing the

rate at the destination.
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IV. ROBUST MMSE-RZF BEAMFORMER

In this section, we derive the optimized αMMSE
k and αRZF

k

in the MMSE-RZF beamformer by two steps. We first derive

the optimized αMMSE
k by maximizing the SINR at relay nodes,

and then derive the optimized αRZF
k for a given αMMSE

k based

on the asymptotic rate.

A. Optimization of αMMSE
k

We optimize αMMSE
k by maximizing the SINR at relay

nodes. For the k-th relay, the signal vector after processed

by an MMSE receiver is

vk =
(
ĤH

k Ĥk + αMMSE
k IM

)−1

ĤH
k rk

=
(
ĤH

k Ĥk + αMMSE
k IM

)−1

ĤH
k Ĥks

+ e1

(
ĤH

k Ĥk + αMMSE
k IM

)−1

ĤH
k Ω1,ks

+
(
ĤH

k Ĥk + αMMSE
k IM

)−1

ĤH
k nk.

(10)

The first term in (10) is the signal vector, which

contains inter-stream interference, because matrix(
ĤH

k Ĥk + αMMSE
k IM

)−1

ĤH
k Ĥk is not diagonal if

αMMSE
k ̸= 0. So we need to calculate the power of

desired signal and the interference. We use the diagonal

decompositions in the following analysis, i.e.,

ĤkĤ
H
k = Pkdiag{θk,1, . . . , θk,M}Pk

H , (11)

ĜkĜ
H
k = Qkdiag{λk,1, . . . , λk,M}Qk

H , (12)

where Pk and Qk are unitary matrices. Here we define that

diag{θk,1, . . . , θk,M} , Θk and diag{λk,1, . . . , λk,M} , Λk.

To divides the interference from the desired signal, we intro-

duce the following two lemmas.

Lemma 1: Assume A ∈ C
M×M is a random matrix. If

there is a diagonal decomposition A = QΛQH , where Λ =
diag{λ1, . . . , λM} ∈ R

M×M and the matrix Q is unitary, we

have

E{(A)
2
m,m} =

1

M(M + 1)



(

M∑

l=1

λl

)2

+

M∑

l=1

λ2
l


 , µ(λ),

(13)

for any m, where the expectation is taken over the distribution

Q.

The proof of Lemma 1 can be directly obtained from [15]

which considers perfect CSI. Due to the limited space, we

omit the details.

Lemma 2: Assume A ∈ C
M×M is a random matrix. If

there is a diagonal decomposition A = QΛQH , with Λ =
diag{λ1, . . . , λM} ∈ R

M×M and unitary matrix Q, we have

E{| (A)m,j |
2} =

1

(M − 1)(M + 1)

M∑

l=1

λ2
l

−
1

(M − 1)M(M + 1)

(
M∑

l=1

λl

)2

, ν(λ), (14)

for any m ̸= j, where the expectation is taken over the

distribution Q.

Proof: Because A is a conjugate symmetric matrix, we

have

E





M∑

j=1,j ̸=m

| (A)m,j |
2



+ E

{
(A)

2
m,m

}

= E
{(

AAH
)
m,m

}
= E

{(
QΛ2QH

)
m,m

}
=

1

M

M∑

l=1

λ2
l .

(15)

Since E
{
| (A)k,j |

2
}

are all equal for j ̸= k, we have

E
{
| (A)k,j |

2
}
=

1

(M − 1)

(
1

M

M∑

l=1

λ2
l − E{(A)

2
m,m}

)

=
1

(M − 1)(M + 1)

M∑

l=1

λ2
l−

1

(M − 1)M(M + 1)

(
M∑

l=1

λl

)2

.

(16)

Now we return to derive the signal-to-interference noise

ratio (SINR) for each stream at each relay. The first term in

the right hand side of (10) can be rewritten as
(
ĤH

k Ĥk + αMMSE
k IM

)−1

ĤH
k Ĥks = Pk

Θk

Θk + αMMSE
k IN

Pk
Hs.

(17)

Therefore, from Lemma 1, the power of the desired signal of

the m-th stream can be calculated as

E





∣∣∣∣∣

(
Pk

Θk

Θk + αMMSE
k IN

Pk
H

)

m,m

sm

∣∣∣∣∣

2




=
P

M
µ

(
θk

θk + αMMSE
k

)
, (18)

where θk denotes the set of all the diagonal entries in Θk.

From Lemma 2, the interference from other streams are

E





∣∣∣∣∣∣

M∑

j=1,j ̸=m

(
Pk

Θk

Θk + αMMSE
k IN

Pk
H

)

m,j

sj

∣∣∣∣∣∣

2




=
P (M − 1)

M
ν

(
θk

θk + αMMSE
k

)
. (19)

The effective noise of the m-th stream is

neff,k = e1

(
ĤH

k Ĥk + αMMSE
k IM

)−1

ĤH
k Ω1,ks

+
(
ĤH

k Ĥk + αMMSE
k IM

)−1

ĤH
k nk, (20)

whose covariance matrix can be similarly calculated as

E
{
neff,kn

H
eff,k

}
=

e21P + σ2
1

M

M∑

m=1

θk,m(
θk,m + αMMSE

k

)2 IM ,

(21)
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where we used the fact E
{
ΩAΩH

}
= tr (A) for an N ×N

matrix A. In (18), (19) and (21), expectations are taken over

their respective unitary matrices. Combining (18), (19), and

(21), the SINR of the m-th stream at the k-th relay is

P
M
µ
(

θk
θk+αMMSE

k

)

P (M−1)
M

ν
(

θk
θk+αMMSE

k

)
+

e2
1
P+σ2

1

M

∑M

m=1
θk,m

(θk,m+αMMSE

k )
2

.

(22)

The derived SINR in (22) is a function of the singular

values of the instantaneous channel. To maximize the SINR

expression, we introduce the following lemma which is a

conclusion of the Appendix B in [15].

Lemma 3: For an SNR in terms of α,

SNR(α)

=
A
(∑M

l=1
λl

λl+α

)2
+B

∑M

l=1
λ2

l

(λl+α)2

C
∑M

l=1
λl

(λl+α)2 +D
∑M

l=1
λ2

l

(λl+α)2 + E
(∑M

l=1
λl

λl+α

)2 ,

(23)

is maximized by α = C/D.

The optimum value of α can be obtained by differentiating

(23) and setting it to be zero, which results in

∑

l>k

λlλk(λk − λl)
2(C/D − α)

(λl + α)3(λk + α)3
= 0. (24)

For the eigenvalues are not all equal, the SINR is maximized

only when α = C/D. Substituting µ(λ) and ν(λ) into (22)

and using Lemma 3, we obtain

αMMSE,opt =
e2
1
P+σ2

1

M

1
(M−1)(M+1) ·

P (M−1)
M

= (M+1)

(
e21 +

σ2
1

P

)
.

(25)

We see that the derived αMMSE,opt
k is a closed-form value

independent of the instantaneous channel.

B. Optimization of αRZF
k

To optimize αRZF
k , we need to derive the rate of the system.

In the rest of the analysis, we write FMMSE−RZF
k in (9) as Fk

for simplicity. By adding the power control factor at the relays,

we have

HSD =

K∑

k=1

ρkĜkFkĤk. (26)

The effective noise vector in (5) is

n̂ =

K∑

k=1

e1ρkĜkFkΩ1,ks+

K∑

k=1

e2ρkΩ2,kFkĤks

+
K∑

k=1

ρkGkFknk + nd. (27)

Finally we obtain the SNR of the m-th data stream at the

destination after QR decomposition as

SNRD
m =

P
M

|(RSD)m,m|2

P
M

∑M

j=m+1 |(RSD)m,j |
2
+ (Ncov)m,m

, (28)

where Ncov is the covariance matrix of n̂ after QR decompo-

sition of the effective channel. The ergodic rate is derived by

summing up all the data rates on each antenna link, i.e.,

C = E{Ĥk,Ĝk}
K

k=1

{
1

2

M∑

m=1

log2
(
1 + SNRD

m

)
}
, (29)

where the 1
2 penalty is due to the two time-slot transmission.

From (28), we see that it is difficult to obtain the optimal

solution directly. We derive asymptotic rate for large K and

then get the optimized αRZF
k . Since all terms in (26) and (27)

include ρk except for nd, we first consider the expectation

of ρ−2
k . From (8), substituting the perfect CSIs with (1) and

(2), and taking expectation over Pk and Qk and leaving the

expectations of λ and θ, we have

ρ−2 , E
{
ρ−2
k

}
=

P

Q
E

{
θ2

(θ + αMMSE)2

}
E

{
λ

(λ+ αMMSE)2

}

+
(e21P + σ2

1)M

Q
×E

{
θ

(θ + αMMSE)2

}
E

{
λ

(λ+ αMMSE)2

}
,

(30)

where the expectation is taken over distributions of Pk and

Qk (k = 1, . . . ,K). Here we denote α, λ and θ without

subscript k and m for simplicity, because all the channels

for different relays are i.i.d. and λm and θm for every m
are identically distributed. (30) implies that the expectation of

ρ−2
k results in a uniform fixed ρ−2 for all relays. Therefore

we approximate ρ−2
k by ρ−2 in the following analysis. The

performance with such approximation varies little compared

with using the dynamic power control factors [16]. Since all

terms in the numerator and the denominator of (28) excerpt

for the nd will generate ρ2k, in the following analysis, we can

omit ρk in calculation and multiply ρ−2 to σ2 which is the

power of nd. For the case of large K, using Law of Large

Number, we have the approximations

(HSD)i,i
w.p.
−→ K

(
E

{(
ĜkFkĤk

)
i,i

})

= KE

{(
Qk

Λk

Λk + αRZFIM
QH

k Pk

Θk

Θk + αMMSEIM
PH

k

)

i,i

}

=
K

MN
E

{
M∑

m=1

θk,m
θk,m + αMMSE

}
E

{
M∑

m=1

λk,m

λk,m + αRZF

}

= KE

{
θ

θ + αMMSE

}
E

{
λ

λ+ αRZF

}
, (31)

Note that

E

{(
ĜkFkĤk

)
i,j

}

= E

{(
Qk

Λk

Λk + αRZFIM
QH

k Pk

Θk

Θk + αMMSEIM
PH

k

)

i,j

}

=
∑

l,m,n

E

{
(Qk)i,l

(
Λk

Λk + αRZFIM

)

l

(
QH

k

)
l,m

(Pk)m,n

(
Θk

Θk + αMMSEIM

)

n

(
PH

k

)
n,j

}
= 0 (32)
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for i ̸= j, because (Qk)i,l
(
QH

k

)
l,m

= 0 for i ̸= m and

(Pk)m,n

(
PH

k

)
n,j

= 0 for m ̸= j. Then we have

(HSD)i,j
K

−→E

{(
ĜkFkĤk

)
i,j

}
= 0 (33)

for large K. Therefore, from (31) and (33), we have

(HSD)i,i = O(K) and (HSD)i,j = o(K), which results in

that HSD

K
is asymptotically diagonal for large K. So we have

QSD
w.p.
−→ IM and RSD

w.p.
−→ HSD for large K.

To obtain the power of interference, we calculate the non-

diagonal entries of the effective channel matrix which is

included in (37) in the appendix.

Since the fact in [15] that

E
{
|(Qr)i,k|

2|(Qr)l,k|
2
}

=
2

M(M + 1)
if i = l(34)

E
{
|(Qr)i,k|

2|(Qr)l,k|
2
}

=
1

M(M + 1)
if i ̸= l,(35)

then when i ̸= m, l ̸= r we have

E
{
(Qk)i,l(Qk)

∗
m,l(Qk)

∗
i,r(Qk)m,r

}

=
1

M(M − 1)
E





M∑

l,r=1,l ̸=r

(Qk)i,l(Qk)
∗
m,l(Qk)

∗
i,r(Qk)m,r





=
1

M(M − 1)
E





M∑

l,r=1

(Qk)i,l(Qk)
∗
m,l(Qk)

∗
i,r(Qk)m,r





−
1

M(M − 1)
E

{
M∑

l=1

|(Qk)i,l|
2|(Qk)m,l|

2

}

= −
1

(M − 1)M(M + 1)
. (36)

Using (34), (35) and (36), and through some manipulation,

we have where λ and λ′, θ and θ′ are different singular

values within one decomposition. Obviously, (37) equals zero

when αMMSE and αRZF are zero. Let us define the following

expectations. Eθ
1 , E

{
θ

(θ+αMMSE)

}
, Eθ

2 , E
{

θ
(θ+αMMSE)2

}
,

Eθ
3 , E

{
θ2

(θ+αMMSE)2

}
, Eθ

4 , E
{

θθ′

(θ+αMMSE)(θ′+αMMSE)

}
,

and Eλ
1 , E

{
λ

(λ+αRZF)

}
, Eλ

2 , E
{

λ
(λ+αRZF)2

}
, Eλ

3 ,

E
{

λ2

(λ+αRZF)2

}
, Eλ

4 , E
{

λλ′

(λ+αRZF)(λ′+αRZF)

}
. Substituting

(30), (31) and (37) into (28) and (29), we obtain the asymptotic

rate of the system as

C
w.p.
−→

M

2
log2

(
1 +

P
M

(
KEθ

1E
λ
1

)2

I(Eλ, Eθ) +N (Eλ, Eθ)

)
, (38)

where I(Eλ, Eθ) and N (Eλ, Eθ) are respectively the derived

results of the power of interference and noise. Generally, the

expectations in the asymptotic rate are difficult to obtain.

Fortunately, if we write the expectations by the arithmetic

means, the asymptotic rate can be maximized by using Lemma
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3. Finally we obtain

αRZF,opt

=
(PKe22 +

σ2

2
P

Q
)Eθ

3 + (e22σ
2
1KM +

(e2
1
P+σ2

1
)Mσ2

2

Q
)Eθ

2

(e21P + σ2
1)KEθ

2 + PK(M−1)(M+2)
M(M+1)2 Eθ

3 − PK(M−1)
M(M+1)2 E

θ
4

,

(39)

which is also independent of the instantaneous CSIs as

αMMSE,opt.

V. SIMULATION RESULTS

We compare the robust MMSE-RZF with MF and MF-RZF

in [7] and QR in [4]. ZF mentioned in Section III is also

plotted for reference. In all these figures, we set M = N = 4,

and compare the ergodic rates.

In Fig. 1, we compare the ergodic and asymptotic rate ca-

pacities of the MMSE-RZF beamforming schemes for various
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∣∣(HSD)(i,j)
∣∣2 w.p.

−→
K(M + 2)

(M + 1)2
E

{
λ2

(λ+ αRZF)
2

}
E

{
θ2

(θ + αMMSE)
2

}

−
K

(M + 1)2
E

{
λλ′

(λ+ αRZF) (λ′ + αRZF)

}
E

{
θ2

(θ + αMMSE)
2

}
−

K

(M + 1)2
E

{
λ2

(λ+ αRZF)
2

}
E

{
θθ′

(θ + αMMSE) (θ′ + αMMSE)

}

−
KM

(M + 1)2
E

{
λλ′

(λ+ αRZF) (λ′ + αRZF)

}
E

{
θθ′

(θ + αMMSE) (θ′ + αMMSE)

}
(37)

−40 −35 −30 −25 −20 −15 −10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

e
1

2
 (=e

2

2
) (dB)

E
rg

o
d
ic

 s
u
m

 r
a
te

s
 (

b
it
s
/s

/H
z
)

 

 

Robust MMSE−RZF

MF

MF−RZF

QR

ZF

Fig. 3. Ergodic rates versus e
2
1
(= e

2
2
). PNR=10dB, QNR=10dB.

regularizing factors. We set PNR=QNR=10dB and e21 = e22 =
0.01. The lines are the asymptotic rates, and the dots are

the ergodic rates obtained from simulation. The ergodic rate

converges to the derived asymptotic rate for various αMMSE

and αRZF.

The advantage of the proposed robust MMSE-RZF can be

observed in Fig. 2. Note that MF, MF-RZF and ZF are all

special cases of MMSE-RZF, which are not optimized with

the system condition. The poor performance of ZF comes

from the inverse Wishart distribution term in its power control

factor at the relays, especially when M = N . We find that

the ergodic capacities still satisfy the scaling law in [3],

i.e., C = (M/2) log(K) + O(1) for large K with channel

estimation errors, which is also consistent with the asymptotic

capacities of robust MMSE-RZF. Fig. 3 compare the ergodic

rate capacities versus the power of CSI error. we set K = 3
and PNR= 10dB, QNR= 10dB. MMSE-RZF outperforms

others as the power of CSI error changes.

VI. CONCLUSION

In this paper, we propose a robust MMSE-RZF beamformer

in a dual-hop MIMO multi-relay network in the presence of

imperfect channel estimation. We optimize the regularized fac-

tors of the beamforming in two steps. Analysis and simulations

demonstrate that the proposed robust MMSE-RZF outperforms

other coexistent beamforming schemes.

VII. ACKNOWLEDGEMENT

This work is supported by the National 973 Project

#2012CB316106 and by ANR-NFSC Greencocom

#61161130529.

REFERENCES

[1] R. Pabst et al., “Relay-based deployment concepts for wireless and mobile
broadband radio,” IEEE Commun. Magazine, vol. 42, pp. 80-89, Sep
2004.

[2] I. Kang, W. Sheen, R. Chen, S. Lin, and C. Hsiao, “Throughput improve-
ment with relay-augmented cellular architecture,” IEEE 802.16mmr-05
008 [Online]. Available: http://www.wirelessman.org, Sep 2005.

[3] H. Bolcskei, R. U. Nabar, O. Oyman, and A. J. Paulraj, “Capacity scaling
laws in MIMO relay networks,” IEEE Trans. on Wireless Commun., vol.
5, no. 6, pp. 1433-1444, June 2006.

[4] H. Shi, T. Abe, T. Asai, and H. Yoshino, “A relaying scheme using QR
decomposition with phase control for MIMO wireless networks,” in Proc.

Int. Conf. on Commun., May 2005, vol. 4, pp. 2705-2711.
[5] H. Shi, T. Abe, T. Asai, and H. Yoshino, “Relaying schemes using matrix

triangularization for MIMO wireless networks,” IEEE Trans. Commun.,
vol. 55, pp. 1683-1688, Sep. 2007.

[6] S. O. Gharan, A. Bayesteh, and A. K. khandani, “Asymptotic analysis of
amplify and forward relaying in a parallel MIMO relay network,” IEEE

Trans. Inf. Theory., vol. 57, no. 4, April. 2011.
[7] Y. Zhang, H. Luo, and W. Chen, “Efficient relay beamforming design

with SIC detection for dual-hop MIMO relay networks,” IEEE Trans.

Vehicular Technology, vol. 59, no. 8, pp. 4192-4197, 2010. 1, pp. 154-
172, Jan. 2005.

[8] T. Yoo, A. Goldsmith, “Capacity and power allocation for fading MIMO
channels with channel estimation error,” IEEE Trans. Inf. Theory., vol.
52, no. 5, pp. 2203-2214, May. 2006.

[9] B. Hassibi, and B. M. Hochwald, “How much training is needed in
multiple-antenna wireless links?” IEEE Tran. Inf. Theory., vol. 49, no.
4, pp. 951-963, Apr. 2003.

[10] Z. Wang, Wen Chen, and J. Li, “Efficient beamforming for MIMO
relaying broadcast channel with imperfect channel estimation,” IEEE

Trans. Vehicular Technology, vol. 61, no. 1, pp. 419-426, 2012.
[11] M. Zhang, H. Yi, H. Yu, H. Luo and Wen Chen, “Joint optimization

in bidirectional multi-user multi-relay MIMO systems: non-robust and
robust cases,” IEEE Trans. Vehicular Technology, 2013.

[12] R. Mo, Y. H. Chew, C. Yuen, “Information rate and relay precoding
design for amplify-and-forward MIMO relay networks with imperfect
channel state information,” IEEE Trans. Vehicular Technology, pp. 3958-
3968, November, 2012.

[13] A. D. Dabbagh and D. J. Love, “Multiple Antenna MMSE Based
Downlink Precoding with Quantized Feedback or Channel Mismatch”
IEEE Trans. Commun., vol. 56, no. 11, pp. 1859-1868, November. 2008.

[14] J. K. Zhang, A. Kavcic, and K. M. Wong, “Equal-diagonal QR decom-
position and its application to precoder design for successive-cancellation
detection,” IEEE Trans. Inf. Theory, vol. 51, no. 1,pp.154-172, Jan. 2005.

[15] C. Peel, B. Hochwald, and A. Swindlehurst, “Vector-perturbation tech-
nique for near-capacity multiantenna multiuser communication-Part I:
Channel inversion and regularization,” IEEE Trans. Commun., vol. 53,
no. 1, pp. 195-202, Jan. 2005.

[16] B. M. Hochwald, Christian B. Peel, A. Lee Swindlehurst, “A
vector-perturbation technique for near-capacity multiantenna multiuser
communication-Part II: Perturbation”, IEEE Trans. Commun., vol. 53,
no. 8, Mar. 2005.

Globecom 2013 - Signal Processing for Communications Symposium

3264


