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ABSTRACT

In this paper, a spectral interpolation coder (SIC) and
decoder are investigated for simultaneous source cod-
ing and impulse noise cancellation. For simplicity of
the analysis, we restrict ourselves to the framework of
scalar quantization of a memoryless gaussian source to
be transmitted over binary symmetric channel (BSC).
Our approach is to make a carefully designed interpola-
tion of the data in the spectral domain prior to quanti-
zation and transmission. The SIC decoder then exploits
the properties of SIC codes in order to analyse, detect
and correct (or reduce) erroneous data.
A nice feature of this procedure is that the decoder deals
simultaneously with the quantization noise and impulse
channel noise; therefore it is able to reduce distortion
introduced not only by the transmission channels errors
but also by the quantizer.
A comparaison study is also investigated in this paper:
Simulations show that we obtain a 3dB improvement in
SNR over the classical TSC scheme for a global rate of
8:2 transmitted bits per source sample and small BSC
crossover probability.

1 Introduction

It is known that the performance of a scalar quantizer
can be degraded if used over a noisy channel. While
quantization produces errors of small amplitude in the
reconstructed data, channel errors have the e�ect of pro-
ducing impulse noise of larger amplitude.
A classical approach to solving this problem is to use

channel coding : one inserts redundancy in the output
of the source encoder to make it easier for the receiver
to detect and/or correct the erroneously received data.
Thus protecting against errors results in an increase in
bandwith.
This classical approach does not take full advantage of

the redundancy introduced by the channel coder: if no
error occured in the channel this redundancy is wasted
whereas it could have been useful to reduce the quanti-
zation noise by increasing the quantizer's precision.
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In this paper, we follow the approach suggested by
Sayood and Borkenhagen [1] which combines both chan-
nel and source statistics in the design of the source
coder. Our approach inserts a carefully designed redun-
dancy prior to quantization and exploits the knowledge
of the channel characteristics and quantization to restore
the received data.

The underlying theory in our approach is related to
frame expansions [2] and to spectral analysis [3] in the
presence of background noise. The SIC design can also
be rephrased in terms of Bose-Chaudhuri-Hocquenghem
(BCH) codes in the �eld of real numbers [4]. Compared
to a classical tandem source and channel coding (TSC)
scheme, in which a binary BCH coder would take place
after quantization, our approach makes use of BCH cod-
ing prior to quantization, thus allowing joint source and
channel decoding.

2 Transmission Scheme

The proposed transmission scheme is depicted in �g. 1.
Each source word i (k gaussian samples) is �rst encoded
using a SIC coder that produces a codeword c on n sam-
ples, which is then quantized on b bits per sample using
a Lloyd-Max quantizer. Natural index assignement is
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Figure 1: Principle of the SIC transmission scheme

then applied to ĉ = Q(c) and the resulting n� b bits are
transmitted over the BSC de�ned by its crossover (bit
error) probability �.



3 Spectral Interpolation Encoder

3.1 Description

We describe SIC codes in the framework of BCH
codes [5], whose de�nition and properties can be investi-
gated using the Discrete Fourier Transform (DFT). The
BCH coder diagram is shown in �g. 2. A block I of k
spectral components is computed from the original data
block i = (i0; i1; : : : ; ik�1) by applying a length-k DFT.
This block is then padded with n � k consecutives ze-
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Figure 2: SIC coding from the information word to the
expanded SIC encoded signal

ros in such a way that Hermitian symmetry is preserved
(see �g. 2), and a length-n inverse DFT is applied, re-
sulting in a real encoded signal c = (c0; c1; : : : ; cn�1).
This codeword is normalized so that energy is preserved:
jj cjj2 = jj ijj2. Compared to a classical systematic BCH
coding scheme as described by Blahut [4], this encoding
procedure has the nice feature that it roughly preserves
the amplitude range of data samples.

3.2 Relation to frame expansion methods

The SIC encoding procedure is a special case of
the expansion-quantization-reconstruction scenario de-
picted in [2].
In our case the encoding equation can be written as
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where Wl is the length-l DFT matrix, P is the n � k

zero-padding matrix.
The codeword components cj , j = 0, 1, . . . , n � 1

are then quantized as in [2]. The problem is how to use
the redundancy present in the quantized codeword to
correct errors introduced by the channel. This is solved
in the next section using the language of BCH codes.

4 Spectral Interpolation Decoder

4.1 Description

The decoding problem can be rephrased as follows.
Given a noisy codeword ĉ0 input to the decoder, esti-
mate the transmitted codeword c0 in order to �nally
reconstruct the initial source word i0.
From �g. 1 and the assumption that the quantizer is

scalar and the BSC channel is memoryless, we �nd that

each codeword sample is a�ected (independently of the
others) according to

ĉ0j = cj + nj + ej j = 0; 1; : : : ; n� 1

where nj is the quantization noise (assumed white) and
ej is the impulse \error" due to the BSC channel. The
impulse error probability that ej 6= 0 is p = 1� (1� �)b

where b is the number of quantized bits per sample and �
is the BSC bit error probability. Typically when ej 6= 0,
ej takes larger values than nj .
We use the redundancy introduced by SIC coding to

simultaneously localize and correct impulse noise sam-
ples and reduce quantization noise. The SIC decoding
algorithm is based upon the fact that n � k consecu-
tives DFT components of the codeword c vanish. After
quantization and transmission, the corresponding com-
ponents of ĉ0 will no longer take zero values even when
no channel errors have been introduced. These compo-
nents are �rst computed in the spectral domain by the
SIC decoder. They constitute the so-called syndrome [4]
and is used as a \signature" of the impulse noise to be
removed in the presence of the background noise.
The decoding algorithm is then in three steps:

(1) evaluate the number of impulses considered as \er-
rors," (2) �nd the error locations and (3) �nd and cor-
rect the error values to recover c0. Blahut [4] describes
several e�cient algorithms for doing this, but unfor-
tunately these are very sensitive to quantization noise.
Therefore, we have followed the approach taken in [6],
which is a modi�ed version of the classical Peterson-
Gorenstein-Zierler algorithm adapted to the real num-
ber case:
(1) The number of \error impulses" is �rst determined
as the rank of a suitable \syndrome matrix," taking the
statistical contribution of the quantization noise into ac-
count.
(2) Then, we solve a Yule-Walker system to compute the
error-locator polynomial, whose roots give the location
of the impulses.
(3) Finally, from the estimated locations we solve an
overdetermined Van der Monde system in the least
squares sense to estimate the impulse amplitudes.
At each step of the algorithm, we are able to detect

probable malfunction of the decoder. If malfunction is
detected, and if we insist on correcting errors there will
be a signi�cant increase in distortion due to the decoder
because additionnal errors will be introduced. There-
fore, in this case, the algorithm stops and the noisy in-
put data ĉ0 is directly output as c0.
As a �nal step, the corrected word is \projected back

to the code": the n�k spectral components are removed
in order to recover the source word i0 by inverting the
encoding process of section 3. Notice that when no \im-
pulse" is detected at the reception, this last step will
always reduce the quantization distortion. This, as we
have already noticed, cannot occur in a classical \tan-
dem" scheme.



4.2 Relation to Spectral Analysis

Our SIC decoding algorithm is closely related with
the multiple frequency estimation problem in mixed-
spectrum time series [3], with the di�erence that time
becomes frequency and frequency becomes time.
In this spectral analysis context, the syndrome is seen

as a sum of complex sinusoids in additive noise, where
each sinusoid correspond to one impulse error intro-
duced by the channel. It satis�es a �th order autoregres-
sive (AR) equation, where � is the number of sinusoids
(errors). Our error localization routine can be rephrased
as a Prony algorithm for estimating the sinusoids' fre-
quencies [3].
A noticable di�erence with what usually happens in

spectral analysis is that we are given only n � k obser-
vations of the noisy data (the syndrome components),
which limits the performance of our location estimator.

5 Product SIC codes on the reals

The concept of real SIC product codes [7] is a simple and
relatively e�cient method to construct powerful codes
capable of solving the decoder malfunction by iterating
the decoding algortihm.
Given a code C = (n; k), the product code is obtained

by:

� placing (k � k) information samples in a matrix,

� coding the k rows by the code C,

� coding the n columns using the code C.

The resulting product codeword is a n�nmatrix. On re-
ceiving the matrix, the �rst decoder performs the decod-
ing of the columns (and rows)of the matrix, estimates
and correct the errors when no malfunction is detected,
and gives as output to the next decoder the resulting
decoded matrix [6].
In fact, a very simple loop procedure is used to achieve

decoding: A �rst pass is made on the lines of the matrix,
a second pass is then performed on the columns. Next
iteration the same procedure is repeated. Even when
only a few impulses are suitably corrected in the begin-
ning of the algorithm, such correction greatly reduces
the task of the following step, which is performed in the
other direction in the matrix.

6 Simulation results

We compare our method (�g. 1) to the classical TSC
scheme depicted in �g. 3.
This tandem scheme consists of quantizing the source

on b bits, index assignment and binary BCH coding with
the BCH code of parameters (N = n � b;K = k � b).
The binary coded 
ow is then transmitted over the BSC.
Both transmission schemes use the same global rate

nb=k = N=K � b transmitted bits per source sample.
The comparison is also made with the same quantizer,
index assignment, and sample delay k.
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Figure 3: Principle of the TSC scheme

Figure 4 gives the end-to-end SNR in the recon-
structed source i0 relative to the initial source i, as
a function of the BSC bit error probability � for both
SIC and TSC schemes. The numerical values were
b = 5 bits/sample for the scalar Lloyd-Max quantizer,
delay k = 31 samples, n = 51, and (N = 255;K =
155; t = 13) binary BCH code, giving a global rate of
8:2 bits/sample. Also shown in �g. 4 are the SIC coding
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Figure 4: End-to-end SNR comparison of SIC coding
and Binary BCH (TSC) coding schemes.

scheme with side information about the correct localiza-
tion of impulses, and a simple Lloyd-Max quantization
scheme on 8 bits/sample without channel coding.
We observe that, for noisy channels (� > 10�4), the

SIC scheme (as well as the TSC scheme) always outper-
form the case of simple quantization without channel
coding, for the same global rate, as was to be expected.
Moreover, the SIC scheme is more robust to channel
noise than the TSC scheme for a large range of � val-
ues, especially when the correct localization of errors are
known at the decoder.
For example, we obtain a 3dB improvement in SNR

over the classical TSC scheme for very small BSC
crossover probability.



Further improvement of the SIC decoding algorithm
is achieved, as expected, using the product SIC code
(n = 19; k = 15) and the same quantizer b = 5. As
shown in �g. 5, this method allows to recover almost
all the error locations for a crossover probability around
10�2
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Figure 5: End-to-end SNR comparison of SIC coding
and product SIC coding schemes.

7 Conclusion

The presented method of SIC coding prior to quantiza-
tion and the decoding algorithm is able to reduce distor-
tion introduced not only by the transmission channels
errors but also by the quantizer. The decoding algo-
rithm is therefore suitable to increase the end-to-end
SNR since it deals simultaneously with the quantization
noise and impulse channel noise.
Compared to classical TSC scheme, our SIC coding

approach is more robust to channel noise for a large
range of crossover propability, thus allowing e�cient
joint source and channel decoding.
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