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Abstract—We study the three-user multi-antenna Gaussian first message is known only to Transmitter 1 (but not to
multiple-access channel (MAC) where prior to the transmis®n  Transmitters 2 and 3), the second only to Transmitter 2, the
over the MAC the transmitters can communicate with each othe  iq only to Transmitter 3, the fourth only to Transmitters

over noise-free broadcast pipes of given capacities. We ment the . . .
capacity region of this channel. Additionally, we also stug the and 2 (but not to Transmitter 3), the fifth only to Transmitter

three-user multi-antenna Gaussian MAC with common message and 3, the sixth only to Transmitter 2 and 3, and finally the
and present its capacity region. last messages is known to all transmitters. We refer to this

~ The main step in deriving these two capacity results consist setup as thehree-user MIMO Gaussian MAC with common
in proving that Gaussian distributions maximize certain mutual

: X . . , messages

information expressions under multiple Markov constraints. i ] ] )

Towards this end, a tool previously used in [3], [6], [7] is etended In this paper we determine the capacity region for both
to the vector case and to multiple Markov conditions. these described setups. The achievability part for the first

setup with broadcast conferencing is based on the idea in
[1] but extended to three users. The achievability part for

We study the three-user multi-antenna (MIMO) multiplefhe second setup with common messages is based on the
access channel (MAC), i.e., a scenario where three trammitmulti-layer superposition coding in [5], [8]. The converse
simultaneously wish to communicate with a common receivg{ the first setup is similar to [6], [7] and the converse in
and where the transmitters and the receiver are equipp&d Wie second setup similar to [5]. However, both converses
multiple antennas. We focus on the Gaussian MAC where th?quire extending a tool used in [3], [6], [7] to the vector-
signal observed at the receiver is corrupted by additiveevhizzse and to multiple Markov conditions. That is, the core®rs
Gaussian noise. In this paper we consider two different SUFé‘huire proving that Gaussian vector-distributions mazem
setups. o certain mutual information expressions under multiple kéar

The first setup represents a generalization of the twWggnstraints. For such maximization problems the tradition
user MAC with conferencing encoders in [1], [6] to thregpproach of proving the optimality of Gaussian distribogio
transmitters and multiple antennas at the transmittexsitrer. by employing the Max-Entropy Theorem [2, Theorem 12.1.1.]
More specifically, in this first setup the three transmitt@ish o 5 conditional version thereof [4] fails, because repigc
to transmit independent messages over a MIMO Gaussiggh-Gaussian vector satisfying given Markovity conditidry
MAC. Prior to each block of transmission the transmitterg Gaussian vector of the same covariance matrix may result
can hold a conferencei.e., they can communicate with each, 5 Gaussian vector that violates the Markovity conditions

other over noise-free bit-pipes of given capacities. Welimes Before defining the two setups in more detail and presenting

brogdcastpmes,n .e., the symbols a gven transmitter feeds Eﬁeir capacity regions (Sections Il and lll ahead), we define
a pipe are received at both other transmitters. Such brsadfi e three-user MIMO Gaussian MAC

pipes model orthogonal wireless links (e.g., blue-toottikdi i ) ) ) )
occupying separate frequency bands) when all transmitterdVe assume that Transmitter 1 is equipped withransmit
have approximately the same distance to each other. We réfgfennas, Transmitter 2 with, transmit antennas, Trans-
to the described setup as ttizee-user MIMO Gaussian MAC mitter 3 with ¢3 transmit antennas, and the receiver with
with broadcast conferencing receive antennas. The timeehannel input at Transmitters
A three-user extension of the MAC with conferencing: 2. and 3 is then described by thedimensional random
encoders [1] (for single-antenna transmitters/receiiag al- Vector X, ;, the i,-dimensional random vectoX,;, and
ready been studied in [8]. However, their model differs frori'€ t3-dimensional random vectaX ;. Similarly, the timet
ours in that in [8] the pipes are assumed to form a ring and tﬁganne_l output observed at the receiver is described b_y_—the
outputs can only be observed by a single intended trangmit@imensional real random vectdf;. In this paper all quantities
Our second setup represents a Gaussian multi-antenna #@-assumed to be real.
sion of the three-user MAC with common messages in [5, To describe the MAC we introduce the fixed, time-invariant,
Section 7]. In this setup, the three transmitters wish to corchannel matricesl;, Ho, andHs, whereH,,, for v € {1, 2, 3},
municate seven independent messages to the receiver whe dimensions: x t,,. Then, for given time-channel inputs
the messages are known to the transmitters as follows. The:, x2 ¢, andxs: at Transmitters 1, 2, and 3, respectively,

I. INTRODUCTION



the time+¢ channel outpuly; can be described by » and three sets of encoding functiokgi 1,..., f1.x},
{fo1,- s for}, and{fa1,..., far}

such that the parameters,k,Cy,Cy,C3, and the sets

where the sequencgZ;} consists of independent and iden{V1 1,..., Vi s}, {Vo,1,...,Vor}, and{Vs1,...,Vs;} sat-

tically distributed (1ID) r-dimensional zero-mean Gaussiarsfy (3).

vectors of covariance matrix equal to the identity matrix Define the sequencey; = (Vi1,...,Vig), Vo =
We impose average block power constraifis P, Ps >  (Va1,...,Vax), and Vs = (Va1,...,Va ). After the con-

0 on the channel input sequences, i.e., whedenotes the ference Transmitter 1 is cognizant of the sequeri¢esand

Y: = Hixy;+ Hoxoy + Haxgy + Zy, 1)

blocklength of transmission it is required that V3, Transmitter 2 ofV; and V3, and Transmitter 3 oV,
Lo and V,. Thus, the time- channel inputs are generated as
3 el <P ve{1,2,3). @) Xie = @) (M, Vs, V), Xo, = 03" (M, V1, V3), and
s X1 = ¢y (Ms, V1, V), for some sequences of encoding
Il. THREE-USERMIMO GAUSSIAN MAC WITH functions { (") L gpgft)} - and{%’_’?}til satisfying
BROADCAST CONFERENCING the power constraints (2). ~ '~ =
A. Setting Based on the output sequen€¥,,...,Y,,) the decoder
In this first setup, Transmitters 1, 2, and 3 wish to commurfPPlies a decoding function(™,
cate their messagéd;, Ms, and M3 over the MIMO Gaussian d)(n) LRV My X My X M, @)

MAC described in Section |I. The messages are assumed to be

independent of each other, and Messadg for v € {1,2,3}, to produce the message estimalds, Mo, and Ms, i.e.,
is assumed to be uniformly distributed over the discreteefini A A s ()

setM, = {1,...,|e"? |}. Here Ry, Ry, and R3 denote the (My, My, Mz) = 6™ (Y1, Ya). (®)
rates of transmission in nats per channel use. An error occurs whenevei\V,, Ma, Ms) # (Mth,Ms).

Prior to each block of. channel uses, the three transmitters p e triple (Ry,R2,R3) is said to be achievable
hold a conference. That means, they exchange informatiQher the three-user MIMO Gaussian MAC  with
overk uses of three broadcast pipes, one broadcast pipe frgpdadcast conferencing if there exist a sequence of
each transmitter to both other transmitters. The threespéipe {(n,C1,Cs, C5)}-conferences, a sequence of encoding

assumed to be . yn Mn nn e
functions {{‘Pg,t)}t:p {Soé,t)}t:p {Soé,t)}tzl} satisfying the

« perfect in the sense that any input symbol t0 & pipe j&ver constraints (2), and a sequence of decoding functions
available immediately and error-free at the two outpu (")) such that the probability of error tends to 0 as the

of t_he_ pipe; and i blocklengthn tends to infinity, i.e.,
« of limited throughput<";, C3, and Cs, in the sense that

when thek inputs to the pipe from Transmitter take lim Pr[(Ml,Mg,M3) +# (]\Z/l,Mg,]\ng)} =0. (9)
values in the set¥, 1,...,V, x, for v € {1, 2,3} then e
. The capacity regionCconi( P, Ps, P3; C1,C2,C3) is defined
Zlog Vol < nCy, ve{1,2,3). 3) as the closure of the set of all achievable rate triples.
=1 B. Results

Here and throughout all logarithms are natural logarithms.  pafinition 1: Given at,-dimensional random vectdX;, a
Note that the communication over the pipes is assumedttQQdimensional random vectoX,, a ts-dimensional random

be held in a conferencing way, so that theh inputsVi ¢ €  yectorX,, and a finite-dimensional random vector define
Vi, Voo € Vo, andVs p € Vs, can depend on the respectivgpe rate region

messages as well as on the past observed pipe-outputs at the

corresponding transmitter, i.e., Reonf(U, X1, X2, X3)
A .
V17g:f1_’g (Mla‘/Q,la---7‘/2171,‘/3,17---7‘/3171)3 (4) = {(R17R27R3) .
Voo = fo e (Mo, Vi, ..., Vie—1,Va1,...,V30-1), (5) Ry < I(Xy; Y [XX3U) + Oy,
Voo = fa,0 (M3, Vi, ..., Vip—1,Vou,...,Vae_1), (6) Ry < I(X2; Y[X;X3U) + Oy,
for some given sequences of encoding functions R < I(Xs; Y[X1XoU) + Cs,
{f17é}];:1 , {f?,f}];:l , and {f3,é}§:1- Rl + R2 < I(X1X2, Y|X3U) + C1 + 02,
Define an(n, Cy, Ca, Cs)-conferenceto be the collection Ri + R < I(X;X3;Y|X,U) + Cy + Cs,
of: Ro+ Ry < I(XoX3 Y[X,U) + Cs + Cs,
« an integer numbet, R :
. T Ry+ Ry < I(X;XoX3:Y|U)+Cy + Cs + Cs,
« three sets of input alphabets{V;1,...,Vi s}, ' ° 2 SIXX X YIU) ' ? ’
Va1, Vord, and{Va g, .., Va i, Ri+ R+ Ry < I(XaX2X5Y) }



whereY £ H;X; + HyX5 4+ H3 X5 + Z andZ is zero-mean where the union is over all; x (t1 + t2 + t3) matrices
Gaussian of covariance matrixand independent of the tupleA;, By, all ¢2 x (t; + t2 + t3) matrices Ay, By, and all
(U, X4, X2, X3). ts x (t1+t2+1t3) matricesAs, Bs such that the trace constraint
Definition 2: Given powersP;, P,, P; > 0 and pipe capac- tr (A A, + B,B]) < P, is satisfied, forv € {1, 2, 3}.
ities C1, Co, C3 > 0, define the rate region
IIl. THREE-USERMIMO GAUSSIAN MAC WITH
Coontg (P, P2, P3; C1, C2, Cs) COMMON MESSAGES

= U RCOHf(U7 X1, Xo, X3)7

where the union on the right-hand side is taken ovejoittly In this second setup, the goal is to communicate Messages
Gaussianrandom vectordU, X, X5, X3 such thatU is of !
PRy B2y <A Mo, My, M, Ms, Mis, Mis, and Mg over the three-user

dimension(t; + t2 + t3) and such that the Markov cond|t|ons|v|”vIO Gaussian MAC described in Section I. Messagds,

A. Setting

X, —o-U—o-X,, v,V €{1,2,3} andv # V/, My, My, M3, M2, Mi3, Moz are assumed to be independent
of each other and uniformly distributed over the discrete
and the trace constraints finite setsMo = {1,..., [e"|}, My = {1,..., [e"]},
My = {1,..., LenRZJ}, Mz = {1,..., \_e"RSJ}, My =
tr(Kx,) < P, v e{l,2,3}, {1,...,\_6”R12J}, Mz = {1,...,|_€"R13J}, Moy =
nRa3 T
are satisfied, wheix, denotes the covariance matrix of the{l’ oo le 1}, respectively.

Transmitter 1 is cognizant of Messagel, My, M1, Mis,
Transmitter 2 is cognizant of Messagkf, ,M>, Mo, Mos,
and Transmitter 3 is cognizant of Messageg, M3, M3,
Mos3. Thus, the time:channel inputs are generated as

vectorX,,.

Theorem 1:Given powers Pi, Py, P3 > 0 and
pipe capacitiesCy,C>,C3 > 0, the capacity region
Cecont(P1, P2, P3;C1,Co,C5) of the three-user MIMO
Gaussian MAC with broadcast conferencing coincides with n
the regionCcontg(P1, Ps, P3; C1,Ca, Cs). Thug, Xis = spgvt)(Mo’Ml’Mm’MB)’
Xt = ‘Pé?t)(Mo,MmMu,Mz?,),

Cconf(Pr, P, P3;C1,C3,C3) n
- X3t = @é7t)(M01M37M237M13)1
= U {(R17R21R3) :

n
A1,A2,A3,B1,B2,B3 for some sequences of encoding functim{&@}

’
t=1

1 n n L
Ry < 3 log (|l + H.B1BIH]|) + C4, gagft)}ti , and {wé’_”)}til satisfying the power con-
1 . straints (2). -
Ry < 9 log (|l + H2B2B3H3|) + Cb, The receiver decodes the messages by applying a decoding
L 1og (|l + HsB3BIHT function ¢ on the output sequenc& y,...,Y,), i.e., it
Ry < Slog (|l + HsBsBiH[) + Cs, produces the message estimates
1 THT THT ~ ~ ~ ~ ~ ~ ~
Bit s 5 log (|l + H1B1B1Hy + HaB,B3H3)) (Mo, My, My, M3, Myz, Mys, Mag) = ¢ (Y1, ..., Y,),
+C1 + Oy,
1 where
R+ R3 < 510g(||+HlBlB;H;+HngBg 5|)
10y + Cs, ot R — Mox My x Max Max Mizx Mizx Moas.
1 T T T T
Ry + B3 < 2 log (|1 + H2B2B3H3 + H3BsBiH; ) An error occurs in the transmission whenever
+Cs + Cs, R . R R . N N
Ry + Ry + Rs (Mo, My, Ma, M3, Mo, M3, Ma3)
1 .
< 5 log (|1 + H1ByBIH] + HaB2BLH; + HaBoBYHi) 7 (Mo, My, Mo, My, Miz, Miz, M)
+C7 + Cy + C3, A rate tuple (Ro, Ri1, Ro, R3, R12, R13, Rgg) is said to
Ry + Ry + Rs be achievable over the three-user MIMO Gaussian MAC

B 11 L H A ATHT 4 HOALATHE + HoALATHE with common messages if therenexist a seguence of encod-
< Slog ([l +HiAl i T1+ 22 T2 T2+ 373 o ing functions{{wg’ft)}t:l,{wé?}tzl,{wé?}tzl} satisfy-
+H1B1BHy + H2B2ByHy + H3B3B3H; ing (2) and a sequence of decoding functi¢n&™ } such that
+H1ATASHS + HiATAZHS + HaAsAsH; } the average probability of error tends to 0 as the blocklengt

FHaALATHT + HaAsATHT + HyAsAL ;D n tgnds to infinity. The capacity regicﬁgMAc_(Pl, Py, Ps) is
defined as the closure of the set of all achievable rate tuples



B. Results

Definition 3: Given at;-dimensional random vectdK,,
a to-dimensional random vectaK,, a ts3-dimensional ran-

dom vector X3, and finite-dimensional random vectors

Uy, Ujo, U3, Usg, define the rate region
Rawac(Uo, Uiz, Uis, Uas, Xy, Xy, X3)
£ {(RoaR17R2,R3,R12,R13,R23) :
Ry < I(X1;Y|X3,X3,Up, Usg, Uss)

Ry < I1(X5;Y|X1,X3,Ug, Usa, Uss)
R3 < I(X3;Y|X1, X2, Ug, Uss, Uss)
Ry + Ry < 1(X4,X32;Y[X3,Up, Ua, Usz, Uss)
Ry + R3 < I(X4,X3;Y[X3,Ug, Uo, Uz, Uss)
Ry + R3 < I(X2,X3;Y[Xy,Ug, Ui, Ugz, Uss)
Ri 4+ Ry + Rz < I(X4,X32,X3;Y|Up, Uo, Uz, Uss)

Ria + Ry + Ry < I(Xy,X2;Y[X3,Ug, Uiz, Uaz)
Ris + R+ Ro + R3

< I(X1,X2,X3;Y[Ug, Uss, Uss)
Ri3 + Ry + R3 < I(Xy,X3;Y[X2,Ug, Uz, Uz)
Ris5+ R1 + R+ R3

< I(X1,X2,X3;Y[Ug, Upa, Uss)
Ras + Ry + R3 < I(X2,X3;Y[Xy,Ug, Usa, Uss)
Ros 4+ R1 + Ro + R3

< I(Xq,X2,X3;Y[Up, Upa, Uss)
Ris+ Riz+ R1+ Ro+ R3

< I(X1,X2,X3;Y[Ug, Uss)
Rio 4+ Ros+ R1 + Ro + R3

< I(Xy,X2,X3;Y[Up, Uss)
Ris+ Roz + R1 + Ro + R3

< I(X1,X2,X5;Y|Up, Upo)
Rz + Ri3 + Roz + R1 + Ra + R3

< I(X1,X2,X3;Y|Uy)
Ry + Ri2 + Ri3 + Roz3 + R1 + Re + Rs

< I(X1, X0, X5 Y), } 10

whereY £ H;X; + HyX, + H3X35 + Z and Z is zero-

random vectordJ,, Ujo, U3, Usg are independent of each
other and the three Markov chains

X1——(Ug, U1z, Uiz)——(X2, X3, Uss), (11)
Xo——(Up, Uz, Uaz)——(X1, X3, Uy3), (12)
X3——(Up, U3, Ugz)——(X1, X2, Uya), (13)

and the power constraints
tr(Kx,) < P, ve{l,2,3}, (14)

are satisfied.

Theorem 2:Given powersPy, P>, P; > 0, the capacity
region of the three-user MIMO Gaussian MAC with common
message$_suac(P1, P, P3) coincides with the rate region
Cawac,g(P1, P2, P3), i.e

Cawuac(Pr, P2, P3) = Cavac,g(P1, P2, Ps).

IV. PROOF OFTHEOREM2
The achievability ofCayac(P;, Ps, Ps), i.e

Camac,g(P1, P2, P3) C Camac(P1, Po, Ps),

follows by applying a multi-layer superposition schemeras i
[5], [8, Section 7] and using vector-valued Gaussian digtri
tions in the code construction. The details are omitted.

To prove the converse, i.e.,

Camac(Pr, P2, P3) C Camac,g(P1, P2, P3),

we first outer boundCsyac (Py, Po, P3) by Cou(P1, Ps, Ps)
(Lemma 1). The converse is then established by showing that

Cow(Pr1, P2, P3) = Camac,g(P1, P2, Ps) (15)

for all powers P;,P,,P; > 0. Notice that the regions
Com(Pl,PQ,Pg) and CgMAc_’g(Pl,PQ,Pg) differ only with
respect to the tuples of random vectors over which the
unions are taken: folCou( Py, P2, P3) the union is taken
over all seven-tuples satisfying the independence condi-
tions, the Markov chains, and the trace constraints, and for
Caswmac,g(P1, P2, P3) the union is only over those that are
Gaussianand have appropriate dimensions. Thus, (15) can be
shown by proving that foCou( P, P2, Ps) it is sufficient to
take the union only over those seven-tuples that are Gaussia
and have appropriate dimensions. Hence, Lemma 2 ahead

mean Gaussian of covariance mattixand independent of establishes the proof.

the Seven-tupléUOa U127 U137 U237 Xla X27 X3)
Definition 4: Given powers P, P,, P3 > 0, define the
region

Camac,g(Pr, P2, )
2 | JRawac(Uo, Uiz, Uss, Uss, X1, X5, X3),
where the union on the right-hand side is taken ovejodtitly
Gaussiarseven-tuple§U, U1o, U;s, Ugs, X5, Xo, X3) such

that Uy is of dimension(¢; +t2+t3), U1 of dimension(¢; +
t2), Uiz of dimension(¢; + t3), Uas of dimension(ts + t3),

Definition 5: Given powersP;, P, P; > 0, define the
region

Coul(Pr, P2, Ps)
£ URSMAC(Um Uiz, Uiz, Ui, X4, X5, X3),

where the union on the right-hand side is taken over all (not
necessarily Gaussian) seven-tuples of finite-dimensiiowla-
pendent random vecto¥, U5, U;3, Uss, t;-dimensional
random vectorsX;, to-dimensional random vectoX,, and
ts-dimensional random vectorX3 satisfying the Markov

andX, is of dimensiory,,, for v € {1,2, 3}, and such that the chains (11)-(13) and the trace constraints (14).



Lemma 1:The region Cou(P1, P2, P3) includes the ca- Moreover, by the conditional max-entropy theorem in [4]:
acity region of the three-user MIMO Gaussian MAC with
pacty g Ramac(Vo, Via, Viz, Vg, X1, X, X3)

common messages: G G G G w6 G G
CR V7,VY, V7., Vi, X7 X5, X7),
Camac(P1, P2, P3) € Couw(Pr, P2, P3). _ B 3M6C( O T e 3)._
which together with Inclusion (21) establishes Conditiaf)(
€ Since the triple X, X5, X3 satisfies the trace con-
straints (14) and the triplX$, XJ, X¢ is chosen zero-mean
. . . ] and of the same covariance matrix, we can further conclude
X5, X3) be given whereX, is of dimensiont,, for v €

that Constraints (19) in the lemma are satisfied.
{1,2,3}, and where the random vectot$y, U5, U;3, Usgs G ~7G ~sC
are independent of each other and Conditions (11%—\/\/e next prove that the random vectorg, V¥, Vs, V3,

Proof: Requires only a slight modification of the convers
in [5] to account for the power constraints.
Lemma 2:Let a seven-tuple (Uy, Ujs, Uss, Uss, Xy,

(14) are satisfied. There exists a jointly Gaussian tup (e independent (.)f .e_ach other.. Since t_he tuple
V9.V, Vv VO X9 XI X9), where V¢ is of dimen- V9, v, VY, VY,) is jointly Gaussian, it suffices to
SO0 P12y A3 F 23 E L T2 s 0 G show pair-wise orthogonality. Indeed, e.g.,
sion (t1 + t2 + t3), Vi, of dimension(t; + ¢2), V7, of
dime_nsion_(tl + t3), V3§, of dimension(t, + ¢3), and X§ E{V% (V%)T} — E[V1,VT]
of dimensiont,, for v € {1,2,3} and where the following :
four conditions are satisfied: = E[E[V12Vi5|Uo]]
1.) the random vector¥§, V¥$,, V¥,, VY, are independent = E[E[V12|Uo] E[V13]Uo]]
of each other; =0,

2) the three Markov chains where in the first equality we used the fact that the pairs

X{——(V{§, VY, Vi) ——(X§,X{, V), (16) (VY,VY,) and(Vy, Vi3) have the same covariance matrix;

X§——(V§, VY, Vi) ——(X9,X§,VY,), (17) inthethird equality we used thaf;, andV; are independent

X9 VI V9. VI.)—o (X9 XS VI 18 conditional onUy; and in the fourth inequality we used that
3_0_( 0> 13» 23) ( 1> 2 12)’ ( ) E[V12|UO] — E[V13|UO] :0.

hold; It remains to prove the Markov conditions (16)—

3.) the random vectorX{, X§, X satisfy (18) in the lemma. They can be shown using the
. fact that the tupIeS(Vo Vi2, Vi3, Vo3, X1, X5 Xg) and

tr (Kxo) < P, € {1,2,3); 19 ) V12, Vi, Vs, A1, Ra, _

. (Kxg) - ved ) (19) (V§, VY, Vi, V5, XY XJ,X9) have the same covari-

4.) the following Inclusion (20) holds: ance matrix and the fact that for the original seven-
Ravac(Uo, Uiz, Urs, Usg, X1, Xa, X3) tuple (Ug, Ujo, Uss, Uss, X4, X2, X3) the random vectors

Uy, Ujo, U3, Uss are independent of each other and Markov

¢ v9 v9 v9 X9 %9 %9
€ Ramac(V, Via, Vis, Vig, X7, X5, X5). (200 ¢conditions (11)—(13) are satisfied. The details are omitmd

Proof of Lemma 2: Define
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