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Source Coding Problems with Conditionally Less
Noisy Side Information

Roy Timo, Tobias J. Oechtering and Michèle Wigger

Abstract—A computable expression for Heegard and Berger’s
rate-distortion (RD) function has eluded information theory for
nearly three decades. Heegard and Berger’s single-letter achiev-
ability bound is well known to be optimal for physically degraded
side information; however, it is not known whether the bound
is optimal for arbitrarily correlated side information (general
discrete memoryless sources). In this paper, we consider a new
setup where the side information at one receiver is conditionally
less noisy than that at the other. The new setup includes degraded
side information as a special case, and it is motivated by the
literature on degraded and less noisy broadcast channels. Our
key contribution is a converse proving the optimality of Heegard
and Berger’s achievability bound in a new setting, where the side
information is conditionally less noisy and one distortion function
is deterministic. The less noisy setup is also generalised to two
different successive-refinement problems.

I. INTRODUCTION

WYNER and Ziv’s seminal 1976 paper [1] extended rate-
distortion (RD) theory to include side information at

the receiver. Nearly a decade later, Heegard and Berger [2]
further extended the theory to include side information at mul-
tiple receivers: an example of which, and the principal subject
of this paper, is shown in Fig. 1. Heegard and Berger’s RD
function, however, has eluded complete characterisation in that
matching computable [3, p. 259] achievability and converse
bounds have yet to be obtained1. Indeed, the RD function
is unknown for the seemingly simple case of deterministic
distortion functions2, where each receiver needs to losslessly
reconstruct a function of the source [6, 7].

The best single-letter achievability bound for two receivers
is due to Heegard and Berger [2, Thm. 2], and the best
bound for three or more receivers is due to Timo, Chan, and
Grant [7, Thm. 2]. Both bounds hold for arbitrary discrete
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1Matsuta and Uyematsu [4] recently presented matching achievability
and converse bounds for general sources and distortion functions using an
information-spectrum approach; these bounds, however, are not computable.

2The Heegard-Berger problem with deterministic distortion functions also
subsumes (an almost lossless version of) the popular index coding problem [5].

memoryless sources under average per-letter distortion con-
straints. Matching converses have been obtained only in some
special cases, for example, see [2, 6, 8]–[12]. One such case
is called physically degraded side information, and it refers to
the situation where the side information at one receiver is a
noisy version of that at the other. Degraded side information is
essential to Heegard and Berger’s converse [2, pp. 733-734].

This paper considers a new setup where the side information
at one receiver is conditionally less noisy than that at the other.
Conditionally less noisy side information is a generalisation
of physically degraded side information, and it is motivated
by similar (but apparently unrelated) literature on broadcast
channels [13, 14]. Our key contribution is a converse that
proves the optimality of Heegard and Berger’s achievability
bound when the side information is conditionally less noisy
and one distortion function is deterministic.

Generalisations of Heegard and Berger’s RD problem in-
clude the successive-refinement work [15]–[19] and the joint
source-channel coding work [20]–[22]. Other variations of
the problem have been considered with causal side informa-
tion [23, 24] and common reconstructions [25, 26]. The less
noisy side information model may be useful in such problems;
indeed, to conclude the paper, we apply our converse methods
to obtain new results for two successive-refinement problems.

Paper Outline: Section II presents a single-letterization
lemma that will be used throughout the paper. Sections III
and IV present new converses for the Heegard-Berger problem
and two successive-refinement problems with side information
(degraded side information [15, 16] and scalable side informa-
tion [17]). Longer proofs are given in the appendices.

Notation: All random variables in this paper are discrete and
finite and denoted by uppercase letters, e.g., X . The alphabet
of a random variable is identified by matching calligraphic
font, e.g. X ∈ X . The n-fold Cartesian product of an alphabet
is denoted by boldface font, e.g. X is the n-fold product of
X . If a random vector (X,Y, Z) forms a Markov chain in
the same order, then we write X ↔ Y ↔ Z. The symbol ⊕
denotes modulo-two addition.

II. A LEMMA

We start with a single-letterization (entropy characterisation)
problem: Express the difference of two n-letter conditional
mutual informations in a single-letter form.

Consider a tuple of random variables (R,S1, S2, T, L) with
an arbitrary joint distribution. Let

(R,S1,S2,T ,L) := (R1, S1,1, S2,1, T1, L1),

(R2, S1,2, S2,2, T2, L2), . . . , (Rn, S1,n, S2,n, Tn, Ln)
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Fig. 1. The rate-distortion problem with side information at two receivers.

denote n i.i.d. copies of (R,S1, S2, T, L). Further, suppose
that J is jointly distributed with (R,S1,S2,T ,L) and

J ↔ (R,L)↔ (S1,S2,T )

forms a Markov chain. Consider the difference

I(J ;S2|L)− I(J ;S1|L).

We wish to know whether this difference can be expressed
in a single-letter form in the sense of Csiszár and Körner [3,
p. 259]. The next lemma answers the question in the affirma-
tive, and it is proved in Appendix A.

Lemma 1: Let (J,R,S1,S2,T ,L) be defined as above.
There exists an auxiliary random variable W , with alphabet
W and jointly distributed with (R,S1, S2, T, L), such that

I(J ;S2|L)− I(J ;S1|L) = n
(
I(W ;S2|L)− I(W ;S1|L)

)
,

the cardinality of W satisfies |W| ≤ |R||L|, and

W ↔ (R,L)↔ (S1, S2, T )

forms a Markov chain. If, in addition, L is a function of R,
then the Markov chain can be replaced by W ↔ R↔ (S1, S2,
T ) and the cardinality bound on W becomes |W| ≤ |R|.

III. THE HEEGARD-BERGER PROBLEM

This section is devoted to Heegard and Berger’s RD problem
for two receivers and is organised as follows: We recall the RD
function’s operational definition in Section III-A; we review
some important results in Section III-B; and we state our new
results in Section III-C.

A. Operational Definition of the RD Function

Consider a tuple of random variables (X,Y1, Y2) with an
arbitrary joint distribution on X × Y1 × Y2. Let (X,Y1,Y2)
denote a string of n i.i.d. copies of (X,Y1, Y2). Let X , Y1

and Y2 denote the n-fold Cartesian products of X , Y1 and Y2
respectively.

Consider the setup of Fig. 1: The transmitter observes X ,
receiver 1 observes Y1 and receiver 2 observes Y2. The string
X is to be compressed by the transmitter and reconstructed
by both receivers using a block code. The RD function is
the smallest rate at which X can be compressed while still
allowing the receivers to reconstruct X to within specified
average distortions, as described next.

A block code consists of three (possibly stochastic) map-
pings:

f : X −→M

and

gj :M×Yj −→ X̂j , j = 1, 2,

whereM is an index set with finite cardinality |M| depending
on n, X̂j is the reconstruction alphabet of receiver j and X̂j its
n-fold Cartesian product. The transmitter sends M := f(X)
and receiver j reconstructs X̂j := gj(M,Yj).

Let

δj : X × X̂j −→ [0,∞), j = 1, 2,

be bounded per-letter distortion functions. For simplicity, and
without loss of generality, we assume that δ1 and δ2 are
normal [27, p. 185]; that is, for each x in Xj there exists
some x̂ in X̂j such that δj(x, x̂) = 0.

Definition 1: A rate R is said to be (D1, D2)-achievable if
for any ε > 0 there exists a block code (f, g1, g2), with some
sufficiently large blocklength n, satisfying

R+ ε ≥ 1

n
log |M|

and

Dj + ε ≥ E
1

n

n∑
i=1

δj(Xi, X̂j,i), j = 1, 2.

Definition 2: For distortions D1 ≥ 0 and D2 ≥ 0, Heegard
and Berger’s RD function is

R(D1, D2) := min
{
R > 0 : R is (D1, D2)-achievable

}
.

B. Existing Results

Single-letter expressions for R(D1, D2) have been found in
some special cases, for example, [2, 9, 10]. The achievability
proofs of all these cases follow from the next simple, but
surprisingly powerful, lemma. The converses, in contrast, are
proved on a case-by-case basis using different approaches.

Lemma 2 (Achievability): The RD function R(D1, D2) is
bounded from above by [2, Thm. 2]

R(D1, D2) ≤ min
(A,B,C)

{
max

{
I(X;C|Y1), I(X;C|Y2)

}
+I(X;A|C, Y1) + I(X;B|C, Y2)

}
,

where minimisation is taken over all auxiliary random tuples
(A,B,C), jointly distributed with (X,Y1, Y2), such that the
following is true:
(i) The tuple (A,B,C) is conditionally independent of the

side information (Y1, Y2) given X ,

(A,B,C)↔ X ↔ (Y1, Y2);

(ii) The cardinalities of the alphabets of C, A and B are
respectively bounded by

|C | ≤ |X |+ 3

|A| ≤ |C||X |+ 1

|B | ≤ |C||X |+ 1

(these bounds are new and proved in Appendix B);
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(iii) There exist deterministic maps

φ1 : A× C × Y1 −→ X̂1

φ2 : B × C × Y2 −→ X̂2

with

D1 ≥ E δ1
(
X,φ1(A,C, Y1)

)
D2 ≥ E δ2

(
X,φ2(B,C, Y2)

)
.

The next definition and theorem review a special case for
which the upper bound of Lemma 2 is known to be tight.

Definition 3: The side information is said to be physically
degraded if

X ↔ Y2 ↔ Y1

forms a Markov chain.
Theorem 3: If the side information is physically degraded,

then [2, Thm. 3]

R(D1, D2) = min
(B,C)

{
I(X;C|Y1) + I(X;B|C, Y2)

}
,

where the minimisation is taken over all auxiliary random
tuples (B,C), jointly distributed with (X,Y1, Y2), such that

(i) (B,C)↔ X ↔ (Y1, Y2) forms a Markov chain;
(ii) there exist deterministic maps

φ1 : C × Y1 −→ X̂1

φ2 : B × C × Y2 −→ X̂2

with

D1 ≥ E δ1
(
X,φ1(C, Y1)

)
D2 ≥ E δ2

(
X,φ2(B,C, Y2)

)
.

The Markov chain X ↔ Y2 ↔ Y1, which defines physically
degraded side information, enables a crucial step in Heegard
and Berger’s converse proof of Theorem 3, see [2, pp. 733-
734]. The aim of the next section is to broaden the scope of
Theorem 3 by replacing X ↔ Y2 ↔ Y1 with a more general
condition. Our main results, however, will fall slightly short
of this aim: We will need to restrict attention to the setting
where receiver 1 requires an almost lossless copy of a function
of X . More specifically, we will require that D1 = 0 and δ1
is deterministic in the following sense.

Definition 4: δ1 is said to be deterministic [17, 28] if there
is an alphabet X̃ with X̂1 = X̃ and a deterministic map

ψ : X −→ X̃

such that
δ1(x, x̂) :=

{
0 if x̂ = ψ(x)
1 otherwise.

For later discussions, we need to specialise Theorem 3 to
deterministic δ1. Let

X̃ := ψ(X).

Define

S(D2) := min
B

I(X;B|X̃, Y2), D2 ≥ 0, (1)

where the minimisation is taken over all auxiliary random
variables B, jointly distributed with (X,Y1, Y2), such that

(i) B ↔ X ↔ (Y1, Y2) forms a Markov chain;
(ii) the cardinality of the alphabet of B is bounded by

|B| ≤ |X |+ 1;

(iii) there exists a deterministic mapping

φ2 : B × X̃ × Y2 −→ X̂2

with
D2 ≥ E δ2

(
X,φ2(B, X̃, Y2)

)
.

The function S(D2) is non-increasing, convex and continuous
in D2 [1, Thm. A2]. The next corollary is proved in Ap-
pendix E.

Corollary 3.1: If the side information is physically de-
graded and δ1 is a deterministic distortion function, then

R(0, D2) = H(X̃|Y1) + S(D2).

It will be useful to further specialise Corollary 3.1 to a “two-
component” source model with Hamming distortion functions.
The specialisation is central to our understanding of how
Corollary 3.1 can be generalised to a less-noisy setup.

Definition 5: We say that (X,Y1, Y2) is a two-source if

X := X1 ×X2 and X := (X1, X2),

where X1 and X2 are finite alphabets. In addition, we say that
δ1 and δ2 are component Hamming distortion functions if

X̂j = Xj

and for all xj , x̂j ∈ Xj

δj(xj , x̂j) =

{
0 if x̂j = xj
1 otherwise j = 1, 2.

Corollary 3.2: Consider a two-source (X1, X2, Y1, Y2)with
component Hamming distortion functions. If the side informa-
tion is physically degraded (X1, X2)↔ Y2 ↔ Y1, then [2, 7]

R(0, 0) = H(X1|Y1) +H(X2|X1, Y2).

The corollary can be directly proved in a simple way that
nicely motivates the possibility of a more general converse.

Proof Outline (Converse): If R is achievable, then for each
ε > 0 there exists a block code (f, g1, g2) for which

R+ ε ≥ 1

n
log |M| ≥ 1

n
H(M) ≥ 1

n
I(X1,X2,Y1,Y2;M)

=
1

n

(
I(X1,Y1;M) + I(X2,Y2;M |X1,Y1)

)
≥ 1

n

(
I(X1;M |Y1) + I(X2;M |X1,Y1,Y2)

)
(a)
≥ 1

n

(
H(X1|Y1) +H(X2|X1,Y1,Y2)− nε(ε)

)
(b)
= H(X1|Y1) +H(X2|X1, Y1, Y2)− ε(ε)
(c)
= H(X1|Y1) +H(X2|X1, Y2)− ε(ε). (2)

The justifications for steps (a), (b) and (c) are as follows:
(a) X̂1 and X̂2 are determined by (M,Y1) and (M,Y2)

respectively, so (a) follows by Fano’s inequality [14,
Sec. 2.2]. Here ε(ε) can be chosen so that ε(ε) → 0
as ε→ 0.
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(b) (X1,X2,Y1,Y2) is i.i.d.
(c) The side information is physically degraded and conse-

quently X2 ↔ (X1, Y2)↔ Y1.

Proof Outline (Achievability): Suppose that we use the
Slepian-Wolf / Cover random-binning argument to send X1

losslessly to receiver 1 at rate R′ close to H(X1|Y1). The side
information is physically degraded, so we have

R′ ≥ H(X1|Y1) ≥ H(X1|Y2). (3)

A close inspection of the random binning proof, e.g. [14],
reveals that (3) also suffices for receiver 2 to reliably de-
code X1. Assuming that X1 is successfully decoded by
receiver 2, we can send X2 to receiver 2 at a rate R′′ close to
H(X2|X1, Y2) using (X1,Y2) as side information. The total
rate R = R′ +R′′ is close to H(X1|Y1) +H(X2|X1, Y2). �

We notice that the Markov chain (X1, X2) ↔ Y2 ↔ Y1 is
equivalent to

X1 ↔ Y2 ↔ Y1 (4a)

and
X2 ↔ (X1, Y2)↔ Y1. (4b)

The chain (4a) is a sufficient, but not necessary, condition
for the inequalities in (3) and hence the above achievability
argument. In contrast, the chain (4b) is essential for equality
(c) in (2) and hence the converse argument. The generality
of the achievability argument juxtaposed against the more
restrictive converse argument suggests that Corollary 3.2 might
hold for a broader class of two-sources. We show that this is
indeed the case in the next subsection; specifically, we will see
that the corollary holds when the Markov chain (4a) is replaced
by H(X1|Y1) ≥ H(X1|Y2) and the chain (4b) is replaced by
a more general “conditionally less noisy” condition.

Remark 1:
(i) R(D1, D2) depends on the joint distribution of (X,Y1,

Y2) only via the distributions of (X,Y1) and (X,Y2).
(ii) The side information is said to be stochastically de-

graded if the joint distribution of (X,Y1, Y2) is such
that there exists some physically degraded side informa-
tion (X ′, Y ′1 , Y

′
2) with marginals (X ′, Y ′1) and (X ′, Y ′2)

matching those of (X,Y1) and (X,Y2). By Remark 1 (i),
Theorem 3 and Corollaries 3.1 and 3.2 also hold for
stochastically degraded side information.

(iii) The function S(D2), which is defined in (1), is the
Wyner-Ziv RD function [1, Eqn. 15] for a source X
with side information (X̃,Y2).

(iv) The asserted upper bound for R(D1, D2) in [2, Thm. 2]
is incorrect for the case of three or more receivers [7].

C. New Results

Suppose that L is an auxiliary random variable that is jointly
distributed with (X,Y1, Y2).

Definition 6: We say that Y2 is conditionally less noisy than
Y1 given L, abbreviated as (Y2 � Y1 | L), if

I(W ;Y2|L) ≥ I(W ;Y1|L)

holds for every auxiliary random variable W , jointly dis-
tributed with (X,Y1, Y2, L), for which

W ↔ (X,L)↔ (Y1, Y2)

forms a Markov chain.
The next lemma and example collectively show that Defi-

nition 6 is broader than Definition 3. The lemma is proved in
Appendix C.

Lemma 4:
(i) If the side information is physically degraded X ↔

Y2 ↔ Y1 and

L↔ X ↔ (Y1, Y2),

forms a Markov chain, then (Y2 � Y1 | L).
(ii) If a two-source (X1, X2, Y1, Y2) satisfies

X2 ↔ X1 ↔ Y1

and L = X1, then (Y2 � Y1 | X1).
The next example describes a setup where the side informa-

tion is not degraded, but X2 ↔ X1 ↔ Y1 is a Markov chain
and therefore (Y2 � Y1 | X1).

Example 1: Let X2, Y2, and Z be independent Bernoulli
random variables with different, non-uniform, biases. Let

X1 = X2 ⊕ Y2 and Y1 = X1 ⊕ Z.

We notice that
X2 ↔ X1 ↔ Y1

forms a Markov chain, so assertion (ii) of Lemma 4 implies
(Y2 � Y1 | X1). In contrast, (X1, X2) is not conditionally
independent of Y1 given Y2.

The next lemma gives a converse for R(D1, D2). Its proof
uses Lemma 1 and is the subject of Appendix D. Our main
result in this section, Theorem 6, follows directly thereafter.

Lemma 5 (Converse): If δ1 is a deterministic distortion
function specified by X̃ = ψ(X), then the following state-
ments are true.

(i) For arbitrarily distributed (X,Y1, Y2), we have

R(0, D2) ≥ H(X̃|Y1) + S(D2)

+ min
{
I(W ;Y2|X̃)− I(W ;Y1|X̃)

}
,

where the minimisation is taken over all auxiliary W ,
jointly distributed with (X,Y1, Y2), such that

W ↔ X ↔ (Y1, Y2)

forms a Markov chain and |W| ≤ |X |.
(ii) If (X,Y1, Y2) satisfies (Y2 � Y1 | X̃), then

R(0, D2) ≥ H(X̃|Y1) + S(D2).

It is worth highlighting that

min
{
I(W ;Y2|X̃)− I(W ;Y1|X̃)

}
is non-positive because, for example, we can always choose
W to be a constant. Assertion (ii) of the lemma follows from
assertion (i) upon invoking Definition 6 with L = X̃ .
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The next theorem gives a single-letter expression for R(D1,
D2) in a new setting. The theorem is a consequence of the
achievability of Lemma 2 and the converse of Lemma 5 (ii).

Theorem 6: If δ1 is a deterministic distortion function spec-
ified by X̃ = ψ(X), (Y2 � Y1 | X̃) and

H(X̃|Y1) ≥ H(X̃|Y2),

then
R(0, D2) = H(X̃|Y1) + S(D2).

Proof: The achievability of Theorem 6 follows from
Lemma 2 with C = X̃ and A = constant. The converse
follows from Lemma 5.

The next corollary generalises Corollary 3.2 from physically
degraded to the conditionally less noisy setting.

Corollary 6.1: Consider a two-source (X1, X2, Y1, Y2)with
component Hamming distortion functions. If

(Y2 � Y1 | X1) and H(X1|Y1) ≥ H(X1|Y2),

then
R(0, 0) = H(X1|Y1) +H(X2|X1, Y2).

Proof: The proof follows from Theorem 6 upon noting
X̃ = X1 and S(0) = H(X2|X1, Y2).

Example 2: Suppose that X1 and Z are independent
Bernoulli random variables with

P[X1 = 0] = P[X1 = 1] =
1

2

and
P[Z = 0] = 1− P[Z = 1] =

1

3
.

Let
X2 = X1 ⊕ Z.

Furthermore, let Y2 and Y1 be the outcomes of passing
X1 through two independent channels: A BEC(2/3) and a
BSC(1/4) respectively, see Fig. 2.

We have (Y2 � Y1 | X1) from condition (ii) of Lemma 4.
Moreover,

H(X1|Y2) = 2/3

is smaller than

H(X1|Y1) = Hb(1/4) ≈ 0.8113,

where

Hb(α) := −α log2 α− (1− α) log2(1− α)

is the binary entropy function. From Corollary 6.1, we have

R(0, 0) = Hb(1/4) +Hb(1/3).

Finally, we notice that the side information (Y1, Y2) is not
physically or stochastically degraded with respect to X1 [14,
p. 121], [29], and hence with respect to X = (X1, X2).

Remark 2:
(i) Theorem 6 includes Corollary 3.1 for physically de-

graded side information as a special case, since

X ↔ Y2 ↔ Y1

0 0 0 0

1 1 1 1

?

X1 Y2 Y1X1

2/3

2/3

1/3

1/3

1/4

1/4

3/4

3/4

(a) BEC (2/3) (b) BSC (1/4)

Fig. 2. Binary channels defining the side information in Example 2: (a)
Binary Erasure Channel (BEC) with erasure probability 2/3; and (b) Binary
Symmetric Channel (BSC) with crossover probability 1/4.

and

X̃ ↔ X ↔ (Y1, Y2)

together imply (Y2 � Y1 | X̃) and H(X̃|Y1) ≥
H(X̃|Y2) by the data processing lemma.

(ii) It appears that our approach to proving Lemma 5 does
not readily generalise to an arbitrary distortion function
δ1. An apparent difficulty follows from the use of a
Wyner-Ziv style converse argument to construct the
S(D2) term using (X̃,Y1) as side information. The
argument needs (X̃,Y1) to be i.i.d., and this need not
be the case when δ1 is arbitrary.

(iii) Theorem 6 employs the conditionally less noisy defi-
nition for the special case where L is a deterministic
function of the source X . In this case, we can remove
L from the Markov chain in Definition 6.

(iv) If L = ∅, then Definition 6 reduces to the less noisy con-
cept for information-theoretic security for source coding
recently introduced by Villard and Piantanida [30]. In
fact, recall Example 1 with Pr[X2 = 0] = p and
Pr[Z = 0] = r. If r is sufficiently small (or large)
compared to p so that

H(X1|Y1) < H(X2),

the side information Y2 is conditionally less noisy than
Y1 given X2, but Y2 is not less noisy than Y1. To see
the latter, select W = X1. We have

I(W ;Y1) = H(X1)−H(X1|Y1)

and

I(W ;Y2) = H(X1)−H(X1|Y2)
= H(X1)−H(X2),

and thus I(W ;Y1) > I(W ;Y2).

IV. SUCCESSIVE REFINEMENT WITH SIDE INFORMATION

The method used in Appendix D to prove Lemma 5 can,
with appropriate modification, yield useful converses for var-
ious generalisations of Heegard and Berger’s RD problem. In
this section, we extend the setup of Fig. 1 to two different
successive-refinement problems with receiver side informa-
tion.
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Fig. 3. The successive refinement of information problem with three stages
and side information at the receivers.

A. Problem Formulation

Consider a tuple of random variables (X,Y1, Y2, Y3) with an
arbitrary joint distribution. Let (X,Y1, Y2,Y3) denote a string
of n i.i.d. copies of (X,Y1, Y2, Y3). A successive-refinement
block code for the setup shown in Fig. 3 consists of four
(possibly stochastic) maps

f : X −→M1 ×M2 ×M3

and

g1 :M1 ×Y1 −→ X̂1

g2 :M1 ×M2 ×Y2 −→ X̂2

g3 :M1 ×M2 ×M3 ×Y3 −→ X̂3,

whereM1,M2 andM3 are finite index sets. The transmitter
sends (M1,M2,M3) := f(X) over the noiseless channels, as
shown in Fig. 3. Receiver 1 reconstructs X̂1 := g1(M1,Y1),
receiver 2 reconstructs X̂2 := g2(M1,M2,Y2) and receiver 3
reconstructs X̂3 := g3(M1,M2,M3,Y3).

Definition 7: A rate tuple (R1, R2, R3) is said to be achiev-
able with distortions (D1, D2, D3) if for any ε > 0 there
exists a block code (f, g1, g2, g3), with some sufficiently large
blocklength n, satisfying

Rj + ε ≥ 1

n
log |Mj |

and

Dj + ε ≥ E
1

n

n∑
i=1

δj(Xj , X̂j,i)

for j = 1, 2, 3.
Definition 8: The RD region R(D1, D2, D3) is the set of

all rates (R1, R2, R3) that are achievable with distortions (D1,
D2, D3).

B. Three Stages with Y3 better than Y2 better than Y1 (starting
from X ↔ Y3 ↔ Y2 ↔ Y1)

Let us now assume that Receiver 3 obtains the best side
information and Receiver 1 the worst. Tian and Diggavi [16]
modelled such a relation with physically degraded side infor-
mation, that is, X ↔ Y3 ↔ Y2 ↔ Y1, and they derived the

corresponding RD region. The goal here is to broaden their
result to a conditionally less noisy setup.

We will need the following achievable RD region that
holds for arbitrarily distributed side information. The region
is distilled from a more general achievability result in [7], see
Appendix F.

Let Rin(D1, D2, D3) denote the set of all rate tuples (R1,
R2, R3) for which there exists an auxiliary tuple (A1, A2, A3),
jointly distributed with (X,Y1, Y2, Y3), such that

(i) (A1, A2, A3) ↔ X ↔ (Y1, Y2, Y3) forms a Markov
chain;

(ii) The auxiliary alphabet cardinalities are bounded by3

|A1| ≤ |X |+ 6

|A2| ≤ |X | |A1|+ 4

|A3| ≤ |X | |A1| |A2|+ 1.

(iii) There exist (deterministic) maps for each j = 1, 2, 3

φj : Aj × Yj −→ X̂j

with
Dj ≥ E δj

(
X,φj(Aj , Yj)

)
.

(iv) The rate tuple (R1, R2, R3) satisfies

R1 ≥ I(X;A1|Y1),
R1 +R2 ≥ max

j=1,2
I(X;A1|Yj) + I(X;A2|A1, Y2)

and

R1 +R2 +R3 ≥ max
j=1,2,3

I(X;A1|Yj)

+ max
j=2,3

I(X;A2|A1, Yj)

+ I(X;A3|A1, A2, Y3).

Lemma 7:

Rin(D1, D2, D3) ⊆ R(D1, D2, D3).

The next theorem, which is due to Tian and Diggavi [16],
shows that the entire RD region is subsumed by Rin(D1, D2,
D3) whenever the side information is physically degraded.

Theorem 8: If the side information is physically degraded
X ↔ Y3 ↔ Y2 ↔ Y1, then [16, Thm. 1]

Rin(D1, D2, D3) = R(D1, D2, D3).

Moreover, the rate constraints defining Rin(D1, D2, D3) sim-
plify to

R1 ≥ I(X;A1|Y1)
R1 +R2 ≥ I(X;A1|Y1) + I(X;A2|A1, Y2)

R1 +R2 +R3 ≥ I(X;A1|Y1) + I(X;A2|A1, Y2)

+ I(X;A3|A1, A2, Y3),

where A1, A2 and A3 obey the same cardinality constraints
as those for Rin(D1, D2, D3), see also [16, Thm. 1].

The achievability part of Theorem 8 is given by Lemma 7,
and the simplified rate constraints follow from degraded side

3Reference [7] does not provide cardinality constraints, and these bounds
follow by the standard convex cover method.
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information (the Markov chain X ↔ Y3 ↔ Y2 ↔ Y1). The
converse assertion was proved by Tian and Diggavi in [16,
App. I] and there, again, degraded side information played a
crucial role.

We now consider Theorem 8 with deterministic distortion
functions at receivers 1 and 2. In particular, receivers 1 and 2
wish to reconstruct almost losslessly

X̃1 := ψ1(X) and X̃2 := ψ2(X),

respectively, where ψ1 and ψ2 are functions of the form

ψj : X −→ X̃j , j = 1, 2.

Theorem 8, with deterministic δ1 and δ2, simplifies as follows.
Define

S′(D3) := min I(X;A3|X̃1, X̃2, Y3), D3 ≥ 0,

where the minimisation is taken over all auxiliary A3, jointly
distributed with (X,Y1, Y2, Y3), such that

(i) A3 ↔ X ↔ (Y1, Y2, Y3) forms a Markov chain;
(ii) |A3| ≤ |X |+ 1;

(iii) there exists a (deterministic) map

φ3 : A3 × X̃1 × X̃2 × Y3 −→ X̂3

with
D3 ≥ E δ3

(
X,φ3(A3, X̃1, X̃2, Y3)

)
.

Corollary 8.1: If the side information is physically de-
graded X ↔ Y3 ↔ Y2 ↔ Y1 and the distortion functions
δ1 and δ2 are deterministic, then R(0, 0, D3) is equal to the
set of all rate tuples (R1, R2, R3) satisfying

R1 ≥ H(X̃1|Y1)
R1 +R2 ≥ H(X̃1|Y1) +H(X̃2|X̃1, Y2)

R1 +R2 +R3 ≥ H(X̃1|Y1) +H(X̃2|X̃1, Y2) + S′(D3).

Proof: The achievability part follows directly from The-
orem 8 upon selecting the auxiliary random variables as
A1 = X̃1 and A2 = X̃2 as well as recalling the definition
of S′(D3). The converse can be proved following arguments
similar to those used in Appendix E and is omitted.

The next lemma is a converse for deterministic distortion
functions δ1 and δ2 and arbitrarily distributed side informa-
tion; it is a successive-refinement version of Lemma 5. Let
Rout(D3) denote the set of all rate tuples (R1, R2, R3) for
which

R1 ≥ H(X̃1|Y1)
R1 +R2 ≥ H(X̃1|Y1) +H(X̃2|X̃1, Y2)

+ min
W

{
I(W ;Y2|X̃1)− I(W ;Y1|X̃1)

}
and

R1 +R2 +R3

≥ H(X̃1|Y1) +H(X̃2|X̃1, Y2) + S′(D3)

+ min
W

{
I(W ;Y2|X̃1)− I(W ;Y1|X̃1)

}
+min

W

{
I(W ;Y3|X̃1, X̃2)− I(W ;Y2|X̃1, X̃2)

}
,

where each minimisation is independently taken over an aux-
iliary random variable W , jointly distributed with (X,Y1, Y2,
Y3), such that |W| ≤ |X | and W ↔ X ↔ (Y1, Y2, Y3).

Lemma 9 (Converse): If δ1 and δ2 are deterministic distor-
tion functions, then

Rout(D3) ⊇ R(0, 0, D3).

Our proof of Lemma 9 is quite similar to that of Lemma 5,
and it is given in Appendix G.

The next theorem shows that the outer bound (converse) of
Lemma 9 matches the inner bound (achievability) of Lemma 7
for a certain conditionally less noisy setting.

Theorem 10: If δ1 and δ2 are deterministic distortion func-
tions, (Y2 � Y1 | X̃1), (Y3 � Y2 | X̃1, X̃2), and

H(X̃1|Y1) ≥ max
{
H(X̃1|Y2), H(X̃1|Y3)

}
,

H(X̃2|X̃1, Y2) ≥ H(X̃2|X̃1, Y3),

then R(0, 0, D3) is equal to the set of all rate tuples (R1, R2,
R3) satisfying

R1 ≥ H(X̃1|Y1)
R1 +R2 ≥ H(X̃1|Y1) +H(X̃2|X̃1, Y2)

R1 +R2 +R3 ≥ H(X̃1|Y1) +H(X̃2|X̃1, Y2) + S′(D3).

Proof: The converse follows directly by Lemma 9 and
uses the conditionally less noisy assumptions (Y2 � Y1 | X̃1)
and (Y3 � Y2 | X̃1, X̃2). The achievability follows by
Lemma 7 with A1 = X̃1 and A2 = X̃2.

Remark 3: Theorem 10 includes Corollary 8.1. To see this:
The Markov chain X ↔ Y3 ↔ Y2 ↔ Y1 implies, by the data
processing lemma, that

H(X̃1|Y1) ≥ H(X̃1|Y2) ≥ H(X̃1|Y3).

Moreover, we also have X̃2 ↔ (X̃1, Y3)↔ Y2 and therefore

H(X̃2|X̃1, Y3) = H(X̃2|X̃1, Y2, Y3) ≤ H(X̃2|X̃1, Y2).

Physical degradedness implies conditionally less noisy: For
every auxiliary random variable W satisfying W ↔ (X, X̃1)
↔ (Y1, Y2, Y3) we have W ↔ (X̃1, Y2)↔ Y1 and thus

I(W ;Y2|X̃1) = H(W |X̃1)−H(W |X̃1, Y1, Y2)

≥ I(W ;Y1|X̃1).

The less noisy condition (Y3 � Y2 | X̃1, X̃2) follows by a
similar argument.

Remark 4: Steinberg and Merhav [15] were the first to con-
sider and solve the two-stage successive refinement problem
with physically degraded side information. Tian and Diggavi’s
work [16] generalised Steinberg and Merhav’s result to three
or more stages with physically degraded side information.

C. Two Stages with Y1 better than Y2 (starting from X ↔
Y1 ↔ Y2)

Reconsider the successive-refinement problem in Fig. 3,
but now with only two receivers, receiver 1 and 2. Suppose
that the side information at receiver 1 is better than the side
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information at receiver 2. Side information scalable source
coding refers to the special case where

X ↔ Y1 ↔ Y2 (5)

forms a Markov chain. Here we notice that the roles of Y1
and Y2 in the Markov chain (5) are reversed with respect
to Definition 3 and Theorem 8. In contrast to Theorem 8,
however, there is no known computable expression for the
RD region under (5). Tian and Diggavi gave achievability and
converse bounds in [17], and they show that these bounds
match for degraded deterministic distortion measures. In this
section, we relax the Markov chain in (5) to a conditionally
less noisy setting.

The next lemma gives an achievable rate region for arbi-
trarily distributed side information. The rate constraints can
be distilled from those in [7], see Appendix F, and the
cardinality bounds can be derived by the standard convex
cover method [14]. The lemma includes Tian and Diggavi’s
bound [17, Cor. 1] for arbitrarily distributed side information
as a special case.

Let R∗in(D1, D2) denote the set of all rate pairs (R1, R2)
for which there exists a tuple of auxiliary random variables
(A12, A1, A2), jointly distributed with (X,Y1, Y2), such that

(i) (A12, A1, A2)↔ X ↔ (Y1, Y2) forms a Markov chain;
(ii) the auxiliary alphabet cardinalities satisfy

|A12| ≤ |X |+ 3

|A1| ≤ |X | |A12|+ 1

|A2| ≤ |X | |A12|+ 1;

(iii) there exist deterministic maps for j = 1, 2,

φj : Aj × Yj −→ X̂j ,

with
Dj ≥ E δj

(
X,φj(Aj , Yj)

)
;

(iv) the rate pair (R1, R2) satisfies

R1 ≥ I(X;A12, A1|Y1) (6a)

R1 +R2 ≥ max
{
I(X;A12|Y1), I(X;A12|Y2)

}
+ I(X;A1|A12, Y1)

+ I(X;A2|A12, Y2). (6b)

Lemma 11:

R∗in(D1, D2) ⊆ R(D1, D2).

The next and final result of the paper generalises Tian and
Diggavi’s result [17, Thm. 4], which holds under the Markov
chain in (5), to a conditionally less noisy setting. Suppose that
δ1 and δ2 are deterministic distortion functions, with X̃1 =
ψ1(X) and X̃2 = ψ2(X). It is said that δ2 is a degraded
version of δ1 if

ψ2 = ψ′ ◦ ψ1

for some deterministic map ψ′. The next theorem is proved in
Appendix H.

Theorem 12: Suppose that δ1 and δ2 are deterministic dis-
tortion functions.

(i) If δ2 is a degraded version of δ1,

H(X̃2|Y1) ≤ H(X̃2|Y2) and (Y1 � Y2 | X̃2),

then R∗in(0, 0) = R(0, 0) and the rate constraints of (6)
simplify to

R1 ≥ H(X̃1|Y1)
R1 +R2 ≥ H(X̃2|Y2) +H(X̃1|X̃2, Y1).

(ii) If δ1 is a degraded version of δ2 and

H(X̃1|Y1) ≤ H(X̃1|Y2)

then R∗in(0, 0) = R(0, 0) and the rate constraints (6)
simplify to

R1 ≥ H(X̃1|Y1)
R1 +R2 ≥ H(X̃2|Y2).

Remark 5: Theorem 12 applies to the reverse degraded side
information case, since by Lemma 4 (i) the Markov chain
X ↔ Y1 ↔ Y2 implies (Y1 � Y2 | X̃2) and by the data
processing lemma it also implies H(X̃j |Y1) ≤ H(X̃j |Y2) for
j = 1, 2.

APPENDIX A
PROOF OF LEMMA 1

We first notice that

I(J ;S2|L)− I(J ;S1|L) = I(J ;S2,L)− I(J ;S1,L), (7)

by the chain rule for mutual information. Expand the first
mutual information on the right hand side of (7) as follows:

I(J ;S2,L)

(a)
=

n∑
i=1

I(J ;S2,i, Li|Si−12,1 , L
i−1
1 )

(b)
=

n∑
i=1

I(J, Si−12,1 , L
i−1
1 ;S2,i, Li)

(c)
=

n∑
i=1

(
I(J, Sn1,i+1, S

i−1
2,1 , L

i−1
1 , Lni+1;S2,i, Li)

− I(Sn1,i+1, L
n
i+1;S2,i, Li|J, Si−12,1 , L

i−1
1 )

)
(d)
=

n∑
i=1

(
I(Wi;S2,i, Li)

− I(Sn1,i+1, L
n
i+1;S2,i, Li|J, Si−12,1 , L

i−1
1 )

)
(8)

where (a) and (c) follow from the chain rule for mutual
information; (b) exploits the fact that the source is i.i.d. and

H(S2,i, Li|Si−12,1 , L
i−1
1 ) = H(S2,i, Li);

and, finally, in (d) we define and substitute the random variable

Wi := (J, Sn1,i+1, S
i−1
2,1 , L

i−1
1 , Lni+1). (9)

Expand the second mutual information on the right hand
side of (7) as follows:

I(J ;S1,L)
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(a)
=

n∑
i=1

(
I(J, Si−12,1 , L

i−1
1 ;Sn1,i, L

n
i )

− I(J, Si2,1, Li1;Sn1,i+1, L
n
i+1)

)
(b)
=

n∑
i=1

(
I(J, Si−12,1 , L

i−1
1 ;S1,i, Li|Sn1,i+1, L

n
i+1)

− I(S2,i, Li;S
n
1,i+1, L

n
i+1|J, Si−12,1 , L

i−1
1 )

)
(c)
=

n∑
i=1

(
I(J, Sn1,i+1, S

i−1
2,1 , L

i−1
1 , Lni+1;S1,i, Li)

− I(S2,i, Li;S
n
1,i+1, L

n
i+1|J, Si−12,1 , L

i−1
1 )

)
(d)
=

n∑
i=1

(
I(Wi;S1,i, Li)

− I(S2,i, Li;S
n
1,i+1, L

n
i+1|J, Si−12,1 , L

i−1
1 )

)
, (10)

where (a) is a telescoping sum and we understand S0
2,1 and L0

1,
for i = 1, and Sn1,n+1 and Lnn+1, for i = n, to be degenerate
random variables (constants); (b) again uses the chain rule for
mutual information; (c) exploits the i.i.d. source and hence

H(S1,i, Li|Sn1,i+1, L
n
i+1) = H(S1,i, Li);

and, finally, in (d) we substitute

Wi ≡ (J, Sn1,i+1, S
i−1
2,1 , L

i−1
1 , Lni+1).

Subtract (10) from (8) to obtain

I(J ;S2,L)− I(J ;S1,L)

=

n∑
i=1

(
I(Wi;S2,i, Li)− I(Wi;S1,i, Li)

)
. (11)

We now single-letterize the quantity on the right hand side
of (11). To this end, let us introduce a time-sharing random
variable: Let Q be uniform on {1, 2, . . . , n} and independent
of the tuple (R,S1,S2,T , L). Dividing (11) by n, we have

1

n

n∑
i=1

(
I(Wi;S2,i, Li)− I(Wi;S1,i, Li)

)
(a)
=

1

n

n∑
i=1

(
I(Wi;S2,i, Li|Q = i)− I(Wi;S1,i, Li|Q = i)

)
(b)
= I(WQ;S2,Q, LQ|Q)− I(WQ;S1,Q, LQ|Q)
(c)
= I(WQ, Q;S2,Q, LQ)− I(WQ, Q;S1,Q, LQ)
(d)
= I(W̃ ;S2, L)− I(W̃ ;S1, L), (12)

where in (a) we use that Q is independent of (S1,i, S2,i, Li,
Wi); in (b) that Q is uniformly distributed; in (c) that
(S1,S2,L) is i.i.d. and independent of Q, and therefore

H(Sj,Q, LQ|Q) = H(Sj,Q, LQ), j = 1, 2;

and, finally, in (d) we define and substitute

W̃ = (WQ, Q), S1 = S1,Q, S2 = S2,Q, and L = LQ.

From (11) and (12), we have

I(J ;S2,L)− I(J ;S1,L)

= n
(
I(W̃ ;S2, L)− I(W̃ ;S1, L)

)
. (13)

We also notice that

Wi ↔ (Ri, Li)↔ (S1,i, S2,i, Ti), (14)

forms a Markov chain for all i = 1, 2, . . . , n. Each of the n
Markov chains in (14) follows from the definition of Wi, the
n-letter Markov chain

J ↔ (R,L)↔ (S1,S2,T ),

and the fact that (R,S1,S2,T ,L) is i.i.d. Now define

R = RQ and T = TQ.

Using the independence of Q from (R,T ,S1,S2,L), we have
the desired Markov chain,

W̃ ↔ (R,L)↔ (S1, S2, T ). (15)

It remains to show that the auxiliary random variable W̃ ,
whose alphabet cardinality is unbounded in n, can be replaced
by some W with an alphabet satisfying |W| ≤ |R||L|. We now
prove the existence of such using the convex cover method of,
for example, [14, App. C].

For each and every w̃ in the support set of W̃ , let qw̃ denote
the conditional distribution of (R,S1, S2, T, L) given W̃ = w̃.
Let P denote the set of all joint distributions on R × S1 ×
S2 × T × L.

For each and every pair (r, l) in R × L but one — the
omitted pair, say (r∗, l∗), can be chosen arbitrarily — define
the functional gr,l : P −→ [0, 1],

gr,l(q) :=
∑
s1∈S1

∑
s2∈S2

∑
t∈T

q(r, s1, s2, t, l). (16)

The (|R||L| − 1)-functionals defined in (16) will be used to
preserve the joint distribution of (R,S1, S2, T, L) when the
Support Lemma [14, Sec. App. C] is invoked shortly. Indeed,
we notice that for each such pair (r, l) the expectation

EW̃

{
gr,l
(
qW̃
)}
≡
∑
w̃∈W̃

P[W̃ = w̃] gr,l(qw̃)

is equal to the true probability P[(R,L) = (r, l)]. Moreover,
this agreement extends over R× S1 × S2 × T × L because

E
{
gr,l(qW̃ )

}
· P
[
S1 = s1, S2 = s2, T = t|R = r, L = l

]
(17)

is equal to the true joint probability P[R = r, S1 = s1, S2 =
s2, T = t, L = l].

If the joint distribution of (R,L, S1, S2, T ) is preserved, we
can additionally preserve the difference

I(W̃ ;S2, L)− I(W̃ ;S1, L) (18)

by simply preserving H(S2, L|W̃ )−H(S1, L|W̃ ). To this end,
define the functional g : P 7→ [−|S1|, |S2|],

g(q) := H(S2, L)−H(S1, L), (19)
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where the joint distribution4 of (R,S1,S2,T, L) is understood
to be given by q. We also notice that

EW̃

{
g(qW̃ )

}
≡
∑
w̃∈W̃

P[W̃ = w̃]g(qw̃)

= H(S2, L|W̃ )−H(S1, L|W̃ ).

The Support Lemma asserts that there exists an auxiliary
random variable W defined on an alphabetW with cardinality

|W| ≤ |R||L|

and a collection of (conditional) joint distributions {qw} from
P , indexed by the elements w of W , such that

(i) for all (r, l) in R × L — excluding the omitted pair
(r∗, l∗) — we have

EW

{
gr,l(qW )

}
= EW̃

{
gr,l(qW̃ )

}
, (20)

(ii) and

EW

{
g(qW )

}
= EW̃

{
g(qW̃ )

}
. (21)

The new auxiliary random variable W and the distribu-
tions {qw} induce a joint distribution on W × R × L. The
equality (20) ensures that the (R,L)-marginal of this new
distribution is equal to the true distribution of (R,L). This
agreement extends to the full joint distribution via (17); that
is, we impose the Markov chain

W ↔ (R,L)↔ (S1, S2, T ). (22)

Finally, the equalities (20) and (21) imply

I(W ;S2, L)− I(W ;S1, L)

= I(W̃ ;S2, L)− I(W̃ ;S1, L). (23)

For the case when L is a function of R: The tighter
cardinality bound |W| ≤ |R| can be proved using the above
method with the following modifications. If L is a function of
R, then L↔ R↔ W̃ and from (15) we have

W̃ ↔ R↔ (L, S1, S2, T ) . (24)

Replace the (|R||L| − 1) functionals {gr,l} in (16) by

gr(q) :=
∑
s1∈S1

∑
s2∈S2

∑
t∈T

∑
l∈L

q(r, s1, s2, t, l) (25)

for all r in R but one. The (|R| − 1)-functionals in (25)
combined with the Markov chain (24) are sufficient to preserve
the joint distribution of (R,S1, S2, T, L) using the Support
Lemma. The remainder of the proof remains unchanged except
that gr replaces gr,l in (20) and W ↔ R ↔ (L, S1, S2, T )
replaces (22). �

Remark 6:
(i) The proof of Lemma 1 can be manipulated so as to

replace the telescoping sum step (10) with a Csiszár sum
identity [14, Sec. 2.4] step. We feel that the telescoping
approach gives a cleaner proof.

(ii) We note that steps (a) and (b) of (10) are reminiscent of
those used in Kramer’s converse for the Gelfand-Pinsker

4We use sans serif font to emphasise that this joint distribution differs to
that of (R,S1, S2, T, L).

problem (coding for channels with state), see [31, Sec. F]
or [32, Sec. 6.6]. It is not clear, as yet, whether there is
a deeper relationship between the two problems.

APPENDIX B
PROOF OF CARDINALITY BOUNDS IN LEMMA 2

Suppose that we have auxiliary random variables (A,B,C)
as well as functions φ1 and φ2 such that (A,B,C) ↔ X ↔
(Y1, Y2) and

D1 ≥ E δ1
(
X,φ1(A,C, Y1)

)
D2 ≥ E δ2

(
X,φ2(B,C, Y2)

)
,

but without the cardinality bounds in Lemma 2; that is, the
alphabets A, B and C are finite but otherwise arbitrary.

Consider the variable C. For each and every c in the support
set of C, let qc denote the conditional distribution of (A,B,X)
given C = c. Let P1 denote the set of all joint distributions
on A× B × X .

For each and every x in X but one, say x∗, define gx :
P1 −→ [0, 1] by setting

gx(q) :=
∑
a∈A

∑
b∈B

q(a, b, x).

We notice that, for all x except x∗,

EC

{
gx(qC)

}
= P[X = x] (26)

gives the true marginal distribution of X . Now define the
following functionals — each mapping P1 to [−|X |, |X |] —
by setting

g1(q) := I(X;B|Y2)−H(X|A,Y1) (27)
g2(q) := I(X;A|Y1)−H(X|B,Y2) (28)

and

g3(q) :=
∑
a∈A

∑
y1∈Y1

min
x̂∈X̂1

∑
b∈B

∑
x∈X

∑
y2∈Y2

q(a, b, x)p(y1, y2|x)δ1(x̂, x)

g4(q) :=
∑
b∈B

∑
y2∈Y2

min
x̂∈X̂2

∑
a∈A

∑
x∈X

∑
y1∈Y1

q(a, b, x)p(y1, y2|x)δ2(x̂, x).

The joint distribution of (A,B,X,Y1,Y2) in (27) and (28)
is understood as follows: (A,B,X) is distributed according
to q and (Y1,Y2) conditionally depends on X via the true
side information channel (the conditional distribution P[Y1 =
y1, Y2 = y2|X = x]); in particular, we have imposed the
Markov chain (A,B)↔ X↔ (Y1,Y2). We also notice that

EC

{
g1(qC)

}
= I(X;B|Y2, C)−H(X|A,C, Y1)

EC

{
g2(qC)

}
= I(X;A|Y1, C)−H(X|B,C, Y2)

and

EC

{
g3(qC)

}
= min
φ1:A×C×Y1→X̂1

E δ1
(
X,φ1(A,C, Y1)

)
EC

{
g4(qC)

}
= min
φ2:B×C×Y2→X̂2

E δ2
(
X,φ2(B,C, Y2)

)
.
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The Support Lemma asserts that there exists a new auxiliary
random variable C† defined on an alphabet C† with cardinality

|C†| ≤ |X |+ 3

together with a collection of |C†| distributions {q†c} from P1

— indexed by the elements c of C† — such that

EC

{
gx(qC)

}
= EC†

{
gx(q

†
C†)
}
, ∀x ∈ X except x∗ (29)

and

EC

{
gj(qC)

}
= EC†

{
gj(q

†
C†)
}
, ∀j = 1, 2, 3, 4. (30)

The new variable C†, the distributions {q†c}, and the true
side information channel come together via the Markov chain

(A†, B†, C†)↔ X† ↔ (Y †1 , Y
†
2 ) (31)

to specify a tuple (A†, B†, C†, X†, Y †1 , Y
†
2 ) on A×B×C† ×

X ×Y1×Y2. The equality (29) ensures that (X†, Y †1 , Y
†
2 ) and

(X,Y1, Y2) have the same distribution, which also implies

H(X†|Y †1 ) = H(X|Y1)
and H(X†|Y †2 ) = H(X|Y2). (32)

Similarly, (30) ensures

I(X†;B†|Y †2 , C†)−H(X†|A†, C†, Y †1 )
= I(X;B|Y2, C)−H(X|A,C, Y1); (33a)

I(X†;A†|Y †1 , C†)−H(X†|B†, C†, Y †2 )
= I(X;A|Y1, C)−H(X|B,C, Y2); (33b)

and

min
φ†
1:A×C†×Y1→X̂1

E δ1
(
X†, φ†1(A

†, C†, Y †1 )
)

= min
φ1:A×C×Y1→X̂1

E δ1
(
X,φ1(A,C, Y1)

)
(34a)

min
φ†
2:B×C†×Y2→X̂2

E δ2
(
X†, φ†2(B

†, C†, Y †2 )
)

= min
φ2:B×C×Y2→X̂2

E δ2
(
X,φ2(B,C, Y2)

)
. (34b)

Finally, the equalities (32) and (33) together give

I(X†;C†|Y †1 ) + I(X†;A†|C†, Y †1 ) + I(X†;B†|C†, Y †2 )
= I(X;C|Y1) + I(X;A|C, Y1) + I(X;B|C, Y2)

and

I(X†;C†|Y †2 ) + I(X†;A†|C†, Y †1 ) + I(X†;B†|C†, Y †2 )
= I(X;C|Y2) + I(X;A|C, Y1) + I(X;B|C, Y2)

and therefore

max
j=1,2

I(X;C|Yj) + I(X;A|C, Y1) + I(X;B|C, Y2)

= max
j=1,2

I(X†;C†|Y †j ) + I(X†;A†|C†, Y †1 )

+ I(X†;B†|C†, Y †2 ). (35)

Consider the tuple (A†, B†, C†, X†, Y †1 , Y
†
2 ). We have the

Markov chain (31) by construction, and we notice that A† and
B† always appear separately in (33) and (34). We may there-
fore replace the joint distribution of (A†, B†, C†, X†, Y †1 , Y

†
2 )

with another that shares the same Markov chain (31) and
marginals (A†, C†, X†), (B†, C†, X†) and (X†, Y †1 , Y

†
2 ), but

imposes the new chain

A† ↔ (C†, X†)↔ B†. (36)

Or put another way, the Markov chain (36) does not alter the
left hand sides of (33) or (34). The chain (36) will be important
in the sequel because it allows the cardinalities of A and B
to be bounded independently. With a slight abuse of notation,
we retain the same notation (A†, B†, C†, X†, Y †1 , Y

†
2 ) for this

new distribution.
Consider the variable A†. For each and every a in the

support set of A†, let qa denote the conditional distribution
of (C†, X†) given A† = a. Let P2 denote the set of all joint
distributions on C† ×X . For each and every (c, x) in C† ×X
but one, define gc,x : P2 −→ [0, 1] by setting

gc,x(q) := q(c, x).

Here
EA†

{
gc,x(qA†)

}
= P[(C†, X†) = (c, x)]

returns the desired probability for all (c, x) in C†×X but one.
In addition, define

g5(q) := H(X|C,Y1)

and

g6(q) :=
∑
c∈C†

∑
y1∈Y1

min
x̂∈X̂1

∑
x∈X

∑
y2∈Y2

q(c, x)p(y1, y2|x)δ1(x̂, x),

where the joint distribution of (C,X,Y1,Y2) is understood as
follows: (C,X) is distributed according to q, and (Y1,Y2)
conditionally depends on X via the true side information
channel. We have

EA†
{
g5(qA†)

}
= H(X†|A†, C†, Y †1 ).

and

EA†
{
g6(qA†)

}
= min
φ†
1:A×C†×Y1→X̂1

Eδ1
(
X,φ†1(A

†, C†, Y †1 )
)
.

The Support Lemma asserts that there exists a random
variable A‡ defined on an alphabet A‡ with cardinality

|A‡| ≤ |C†||X |+ 1

together with a collection of |A‡| distributions {q‡a} from P2

(indexed by the elements a of A‡) such that

EA‡
{
gc,x(qA‡)

}
= EA†

{
gc,x(qA†)

}
(37)

and
EA‡

{
gj(qA‡)

}
= EA†

{
gj(qA†)

}
, j = 5, 6. (38)

The new variable A‡, the distributions {q‡a}, the true side in-
formation channel, the conditional distribution P (B†|X†, C†),
and the Markov chains (31) and (36) come together to specify
a tuple (A‡, B‡, C‡, X‡, Y ‡1 , Y

‡
2 ) on A‡×B×C†×X×Y1×Y2.
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The equalities in (37) ensure that (C‡, X‡) and (C†, X†)
have the same distribution. By construction, we also have
that (B‡, C‡, X‡, Y ‡1 , Y

‡
2 ) and (B†, C†, X†, Y †1 , Y

†
2 ) have the

same distribution, and therefore

max
{
I(X‡;C‡|Y ‡1 ), I(X‡;C‡|Y

‡
2 )
}
+H(X‡|C‡, Y ‡1 )

+ I(X‡;B‡|C‡, Y ‡2 )

= max
{
I(X†;C†|Y †1 ), I(X†;C†|Y

†
2 )
}
+H(X†|C†, Y †1 )

+ I(X†;B†|C†, Y †2 ). (39)

In addition, (38) ensures that

H(X‡|A‡, C‡, Y ‡1 ) = H(X†|A†, C†, Y †1 ) (40)

and

min
φ‡
1:A‡×C†×Y1→X̂1

E δ1
(
X‡, φ‡1(A

‡, C‡, Y ‡1 )
)

= min
φ†
1:A×C†×Y1→X̂1

E δ1
(
X†, φ1(A

†, C†, Y †1 )
)
. (41)

Combining (35), (34), (39), (40) and (41) gives

max
{
I(X‡;C‡|Y ‡1 ), I(X‡;C‡|Y

‡
2 )
}
+ I(X‡;A‡|C‡, Y ‡1 )

+ I(X‡;B‡|C‡, Y ‡2 )

= max
{
I(X;C|Y1), I(X;C|Y2)

}
+ I(X;A|C, Y1)

+ I(X;B|C, Y2). (42)

as well as

min
φ‡
1:A‡×C†×Y1→X̂1

E δ1
(
X‡, φ‡1(A

‡, C‡, Y ‡1 )
)

= min
φ1:A×C×Y1→X̂1

E δ1
(
X,φ1(A,C, Y1)

)
(43a)

and

min
φ‡
2:B×C†×Y2→X̂2

E δ2
(
X‡, φ‡2(B

‡, C‡, Y ‡2 )
)

= min
φ2:B×C×Y2→X̂2

E δ2
(
X,φ2(B,C, Y2)

)
, (43b)

as desired.
Using analogous arguments as above, we can find a random

vector (A′, B′, C ′, X ′, Y ′1 , Y
′
2) over A‡×B′×C†×X×Y1×Y2,

where the cardinality of the alphabet B′ satisfies

|B′| ≤ |C†||X |+ 1,

and such that (42) and (43) are satisfied when the tu-
ple (A‡, B‡, C‡, X‡, Y ‡1 , Y

‡
2 ) is replaced by the new tuple

(A′, B′, C ′, X ′, Y ′1 , Y
′
2). This concludes the proof of the car-

dinality bounds. �

APPENDIX C
PROOF OF LEMMA 4

A. Assertion (i)

Consider any auxiliary random variable W for which

W ↔ (X,L)↔ (Y1, Y2) (44)

is a Markov chain. We have

I(W ;Y2|L) = H(W |L)−H(W |L, Y2)
(a)
= H(W |L)−H(W |L, Y2, Y1)
≥ H(W |L)−H(W |L, Y1)
= I(W ;Y1|L),

where (a) uses the fact that

W ↔ (Y2, L)↔ Y1,

which follows from (44), the Markov chain L ↔ X ↔ (Y1,
Y2), and the physically degraded side information. �

B. Assertion (ii)

Take any auxiliary random variable W for which

W ↔ (X1, X2)↔ (Y1, Y2).

Consider Definition 6 with L = X1. We have

0 ≤ I(W ;Y1|X1)

= H(Y1|X1)−H(Y1|W,X1)
(a)
= H(Y1|X1, X2)−H(Y1|W,X1)
(b)
= H(Y1|X1, X2)−H(Y1|W,X1, X2)

= I(W ;Y1|X1, X2)
(c)
= 0,

where the indicated steps apply the following Markov chains:

(a) X2 ↔ X1 ↔ Y1
(b) X2 ↔ (W,X1)↔ Y1
(c) W ↔ (X1, X2)↔ (Y1, Y2).

Thus, we have that

I(W ;Y1|X1) = 0

and therefore I(W ;Y1|X1) is no larger than I(W ;Y2|X1). �

APPENDIX D
PROOF OF LEMMA 5

Fix a distortion D2 ≥ 0 and an (0, D2)-achievable rate
R > 0. By definition, for each ε > 0 we can find a block code
(f, g1, g2) with sufficiently large blocklength n such that

R+ ε ≥ 1

n
log |M|, (45)

ε ≥ E
1

n

n∑
i=1

δ1(Xi, X̂1,i), (46)

and

D2 + ε ≥ E
1

n

n∑
i=1

δ2(Xi, X̂2,i). (47)

Fix ε > 0 and consider such a block code. Define Pe,i as the
probability that the i-th symbol X̃i ≡ ψ(Xi) is reconstructed
in error at Receiver 1,

Pe,i := P
[
X̂1,i 6= X̃i

]
.
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The probability Pe,i can be expressed as Pe,i = Eδ1(Xi, X̂1,i),
so by (46)

1

n

n∑
i=1

Pe,i ≤ ε. (48)

Consider next the conditional entropy H(X̃|M,Y1). Start-
ing from the fact that X̂1 is determined by (M,Y1), we have

H(X̃|M,Y1)
(a)
= H(X̃|M,Y1, X̂1) ≤ H(X̃|X̂1)

(b)
≤

n∑
i=1

H(X̃i|X̂1,i)

(c)
≤

n∑
i=1

(
h(Pe,i) + Pe,i log |X̃ |

)
(d)
≤ n h

(
1

n

n∑
i=1

Pe,i

)
+

(
n∑
i=1

Pe,i

)
log |X̃ |

(e)
≤ nh(ε) + nε log |X̃ |
(f)
= nε(ε), (49)

where (a) applies the Markov chain

X̃ ↔ (M,Y1)↔ X̂1;

(b) invokes the chain rule for entropy and the fact that condi-
tioning cannot increase entropy; (c) applies Fano’s inequality;
(d) combines the concavity of the binary entropy function with
Jensen’s inequality; (e) invokes (48); and (f) substitutes

ε(ε) := h(ε) + ε log |X̃ |.

Finally, we notice that ε(ε)→ 0 as ε→ 0.
Now consider the rate condition (45). We have

R+ ε ≥ 1

n
log2 |M|

≥ 1

n
H(M)

≥ 1

n
H(M |Y1)

≥ 1

n
I(X, X̃;M |Y1)

=
1

n

(
I(X̃;M |Y1) + I(X;M |X̃,Y1)

)
(a)
≥ 1

n

(
H(X̃|Y1)− nε(ε) + I(X;M |X̃,Y1)

)
(b)
= H(X̃|Y1)− ε(ε) +

1

n
I(X;M |X̃,Y1), (50)

where (a) substitutes (49) and (b) invokes the fact that
(X, X̃,Y1) is i.i.d.

Consider the conditional mutual information term on the
right hand side of (50). Rearranging this term, with the intent
of conditioning on (X̃,Y2) instead of (X̃,Y1), we obtain

I(X;M |X̃,Y1)
(a)
= I(X;M |X̃,Y2)−H(M |X̃,Y2) +H(M |X̃,Y1)

= I(X;M |X̃,Y2) + I(M ;Y2|X̃)− I(M ;Y1|X̃) (51)

where (a) invokes that M is a function of X or, in the more
general case of stochastic encoders, that

M ↔X ↔ (X̃,Y1,Y2).

Consider the first conditional mutual information on the
right hand side of (51). Expand this term using the method
of Wyner and Ziv [1, Eqn. (52)] as follows:

I(X;M |X̃,Y2)

=

n∑
i=1

I(Xi;M |X̃,Y2, X
i−1
1 )

(a)
=

n∑
i=1

I(Xi;M, X̃i−1
1 , X̃n

i+1, Y
i−1
2,1 , Y n2,i+1, X

i−1
1 |X̃i, Y2,i)

≥
n∑
i=1

I(Xi;M,Y i−12,1 , Y n2,i+1|X̃i, Y2,i)

(b)
=

n∑
i=1

I(Xi;Bi|X̃i, Y2,i), (52)

where (a) follows because (X,Y2, X̃) i.i.d. and therefore

H(Xi|X̃,Y2, X
i−1
1 ) = H(Xi|X̃i, Y2,i),

and in (b) we define

Bi := (M,Y i−12,1 , Y n2,i+1).

Continuing on from (52), we have

1

n
I(X;M |X̃,Y2) ≥

1

n

n∑
i=1

I(Xi;Bi|X̃i, Y2,i)

(a)
≥ 1

n

n∑
i=1

S
(
Eδ2(Xi, X̂2,i)

)
(b)
≥ S

(
E
1

n

n∑
i=1

δ2(Xi, X̂2,i)

)
(c)
≥ S(D2 + ε), (53)

where
(a) follows from the definition of S(D2) upon noticing that

the i-th reconstructed symbol, X̂2,i, can be expressed as
a deterministic function of (Bi, Y2,i) and

Bi ↔ Xi ↔ (Y1,i, Y2,i);

(b) combines the convexity of S(D2) in D2 with Jensen’s
inequality; and

(c) S(D2) is non-increasing in D2 and

D2 + ε ≥ E
1

n

n∑
i=1

δ2(Xi, X̂2,i).

Consider (50), (51) and (53). We have

R+ ε ≥ H(X̃|Y1)− ε(ε) + S(D2 + ε)

+
1

n

(
I(M ;Y2|X̃)− I(M ;Y1|X̃)

)
.

We now apply Lemma 1 with

R = X, S1 = Y1, S2 = Y2, T = ∅, L = X̃ and J =M.
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There exists W , jointly distributed with (X, Y1, Y2, X̃), such
that

W ↔ X ↔ (Y1, Y2),

|W| ≤ |X |, and

R+ ε ≥ H(X̃|Y1)− ε(ε) + S(D2 + ε)

+ I(W ;Y2|X̃)− I(W ;Y1|X̃).

The converse proof is completed by letting ε→ 0 and invoking
the continuity of S(D2) in D2. �

APPENDIX E
PROOF OF COROLLARY 3.1

Choose C = X̃ in Theorem 3 and apply the definition of
S(D2) to obtain

R(0, D2) ≤ H(X̃|Y1) + S(D2).

The reverse inequality can be proved using a short converse;
specifically, we have

H(M) ≥ I(X, X̃,Y1,Y2;M)

≥ I(X̃;M |Y1) + I(X;M |X̃,Y1,Y2)

(a)
= H(X̃|Y1)−H(X̃|M,Y1) + I(X;M |X̃,Y2)

(b)
≥ n

(
H(X̃|Y1)− ε(ε) + S(D2 + ε)

)
, (54)

where (a) applies M ↔ (X̃,Y2) ↔ Y1 and (b) repeats the
steps in (49), (53), where ε(ε) can be chosen so that ε(ε)→ 0
as ε→ 0. �

APPENDIX F
PROOF OF LEMMAS 7 AND 11

Lemmas 7 and 11 are both special cases of the next theorem.
Theorem 13 (Thm. 1, [7]): Let (U123, U12, U13, U23, U1,

U2, U3) be any tuple of auxiliary random variables, jointly
distributed with (X,Y1, Y2, Y3), such that

(Y1, Y2, Y3)↔ X ↔ (U123, U12, U13, U23, U1, U2, U3); (55)

forms a Markov chain, and there exist three deterministic
mappings

φj : Uj × Yj −→ X̂j , j = 1, 2, 3,

with
Dj ≥ E δj

(
X,φj(Uj , Yj)

)
.

Then, for each such tuple of auxiliary random variables, any
rate tuple (R1, R2, R3) satisfying (57) is achievable with
distortions (D1, D2, D3).

A. Proof of Lemma 7
Suppose that the auxiliary random variables (A1, A2, A3)

meet the conditions of Lemma 7. Consider Theorem 13 with
U12 and U13 being constants and

U123 = U1 = A1

U23 = U2 = A2

U3 = A3.

The rate constraints of (57) now simplify to those of Lemma 7.
�

B. Proof of Lemma 11

Suppose that the auxiliary random variables (A12, A1, A2)
meet the conditions of Lemma 11. Consider Theorem 13 with
infinite D3, set U123, U13, U23 and U3 to be constants, and
U12 = A12, U1 = A1 and U2 = A2. The rate constraints
of (57) now simplify to those of Lemma 11. �

APPENDIX G
PROOF OF LEMMA 9

We have

R1 + ε ≥ 1

n
H(M1)

≥ 1

n
I(X̃1;M1|Y1)

(a)
≥ 1

n

(
H(X̃1|Y1)− nε1(ε)

)
(b)
= H(X̃1|Y1)− ε1(ε), (58)

where (a) applies Fano’s inequality in the same way as (49),
where ε1(ε) can be chosen so that ε1(ε) → 0 as ε → 0; and
(b) follows because the pair (X̃1,Y 1) is i.i.d. The sum rate
R1 + R2 is bounded in (60). The justification for the steps
leading to (60) is:
(a) The Markov chain (M1,M2)↔ (X̃1,X)↔ (Y1,Y2);
(b) X̃2 is determined by X;
(c) exploits the fact that (X̃1, X̃2,Y1,Y2) is i.i.d. and ap-

plies Fano’s inequality twice, in a manner similar to (49),
where ε1(ε) and ε2(ε) can be chosen so that they tend to
0 as ε→ 0; and

(d) the nonnegativity of conditional mutual information.
We now bound the sum rate R1 + R2 + R3. Notice that

the steps leading to (59) remain valid if we replace R1 +R2

by R1 +R2 +R3 and the pair of messages (M1,M2) by the
triple (M1,M2,M3). Indeed, we have (62), where (a) invokes
the Markov chain

(M1,M2,M3)↔ (X̃1, X̃2,X)↔ (Y2,Y3). (61)

Consider the first conditional mutual information on the
right hand side of (62). We have
1

n
I(X;M1,M2,M3|X̃1, X̃2,Y3)

(a)
≥ 1

n

n∑
i=1

I(Xi;M1,M2,M3, Y
i−1
3,1 , Y n3,i+1|X̃1,i, X̃2,i, Y3,i)

(b)
=

1

n

n∑
i=1

I(Xi;Ci|X̃1,i, X̃2,i, Y3,i)

(c)
≥

n∑
i=1

S′
(
Eδ3(Xi, X̂3,i)

)
(d)
≥ S′

(
E
1

n

n∑
i=1

δ3(Xi, X̃3,i)

)
(e)
≥ S′(D3 + ε), (63)

where (a) follows from the same reasoning as step (a) of (52);
in (b), we define

Ci :=
(
M1,M2,M3, Y

i−1
3,1 , Y n3,i+1

)
;
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R1 ≥ I(X;U123)− I(U123;Y1)

+ I(X;U12|U123)− I(U12;Y1|U123)

+ I(X,U12;U13|U123)− I(U13;U12Y1|U123)

+ I(X;U1|U123, U12, U13)− I(U1;Y1|U123, U12, U13) (57a)

R1 +R2 ≥ I(X;U123)−min
{
I(U123;Y1), I(U123;Y2)

}
+ I(X;U12|U123)−min

{
I(U12;Y1|U123), I(U12;Y2|U123)

}
+ I(X,U12;U13|U123)− I(U13;U12, Y1|U123)

+ I(X,U12, U13;U23|U123)− I(U23;U12, Y2|U123)

+ I(X;U1|U123, U12, U13)− I(U1;Y1|U123, U12, U13)

+ I(X;U2|U123, U12, U23)− I(U2;Y2|U123, U12, U23) (57b)

R1 +R2 +R3 ≥ I(X;U123)−min
{
I(U123;Y1), I(U123;Y2), I(U123;Y3)

}
+ I(X;U12|U123)−min

{
I(U12;Y1|U123), I(U12;Y2|U123)

}
+ I(X,U12;U13|U123)−min

{
I(U13;U12, Y1|U123), I(U13;Y3|U123)

}
+ I(X,U12, U13;U23|U123)−min

{
I(U23;U12, Y2|U123), I(U23;U13, Y3|U123)

}
+ I(X;U1|U123, U12, U13)− I(U1;Y1|U123, U12, U13)

+ I(X;U2|U123, U12, U23)− I(U2;Y2|U123, U12, U23)

+ I(X;U3|U123, U13, U23)− I(U3;Y3|U123, U13, U23). (57c)

R1 +R2 + ε ≥ 1

n
H(M1,M2) ≥

1

n
I(X̃1,X;M1,M2|Y1)

=
1

n

(
I(X̃1;M1,M2|Y1) + I(X;M1,M2|X̃1,Y1)

)
(a)
=

1

n

(
I(X̃1;M1,M2|Y1) + I(X;M1,M2|X̃1,Y2) + I(Y2;M1,M2|X̃1)− I(Y1;M1,M2|X̃1)

)
(b)
=

1

n

(
I(X̃1;M1,M2|Y 1) + I(X̃2;M1,M2|X̃1,Y2) + I(X;M1,M2|X̃1, X̃2,Y2)

+ I(Y2;M1,M2|X̃1)− I(Y1;M1,M2|X̃1)
)

(c)
≥ H(X̃1|Y1) +H(X̃2|X̃1, Y2)− ε1(ε)− ε2(ε) +

1

n

(
I(X;M1,M2|X̃1, X̃2,Y2)

+ I(Y2;M1,M2|X̃1)− I(Y1;M1,M2|X̃1)
)

(59)

(d)
≥ H(X̃1|Y1) +H(X̃2|X̃1, Y2)− ε1(ε)− ε2(ε) +

1

n

(
I(Y2;M1,M2|X̃1)− I(Y1;M1,M2|X̃1)

)
. (60)

and (c), (d) and (e) each follow the same reasoning as steps
(a), (b) and (c) of (53) respectively. From (62) and (63) we
obtain (64).

Consider (60) and (64), and apply Lemma 1 twice: once for

R = X, S1 = Y1, S2 = Y2, T = Y3 and L = X̃1,

and once for

R = X, S1 = Y2, S2 = Y3, T = Y1 and L = (X̃1, X̃2).

We conclude that there exist auxiliary random variables W1,
W2 and W3 with

|W1|, |W2|, |W3| ≤ |X |,

and
Wj ↔ X ↔ (Y1, Y2, Y3), j = 1, 2, 3,

such that the rate tuple (R1, R2, R3) satisfies

R1+R2+ε ≥ H(X̃1|Y1)+H(X̃2|X̃1, Y2)+I(W1;Y2|X̃1)

− I(W1;Y1|X̃1)− ε1(ε)− ε2(ε) (65)

and

R1 +R2 +R3 + ε

≥ H(X̃1|Y1) +H(X̃2|X̃1, Y2) + S′(D3 + ε)− ε2(ε)− ε1(ε)
+ I(W3;Y3|X̃1, X̃2)− I(W3;Y2|X̃1, X̃2) + I(W2;Y2|X̃1)

− I(W2;Y1|X̃1). (66)
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R1 +R2 +R3 + ε ≥ H(X̃1|Y1) +H(X̃2|X̃1, Y2)− ε1(ε)− ε2(ε) +
1

n

(
I(X;M1,M2,M3|X̃1, X̃2,Y2)

+ I(Y2;M1,M2,M3|X̃1)− I(Y1;M1,M2,M3|X̃1)
)

(a)
= H(X̃1|Y1) +H(X̃2|X̃1, Y2)− ε1(ε)− ε2(ε) +

1

n

(
I(X;M1,M2,M3|X̃1, X̃2,Y3)

+ I(M1,M2,M3;Y3|X̃1, X̃2)− I(M1,M2,M3;Y2|X̃1, X̃2)

+ I(Y2;M1,M2,M3|X̃1)− I(Y1;M1,M2,M3|X̃1)
)

(62)

R1 +R2 +R3 + ε ≥ H(X̃1|Y1) +H(X̃2|X̃1, Y2) + S′(D3 + ε) +
1

n

(
I(M1,M2,M3;Y3|X̃1, X̃2)

− I(M1,M2,M3;Y2|X̃1, X̃2)
)
+

1

n

(
I(M1,M2,M3;Y2|X̃1)

− I(M1,M2,M3;Y1|X̃1)
)
− ε1(ε)− ε2(ε). (64)

The converse proof follows by (58), (65), and (66), by letting
ε→ 0, and by the continuity of S′(D3) in D3. �

APPENDIX H
PROOFS OF THEOREM 12

A. Assertion (i)

Achievability: The rate constraints follow from (6) upon
setting A1 = X̃1 and A12 = A2 = X̃2 and invoking the
assumptions X̃2 = ψ′(X̃1) and H(X̃2|Y1) ≤ H(X̃2|Y2).

Converse: The lower bound on R1 is trivial. The lower
bound on the sum rate R1 + R2 follows by, now familiar,
arguments:

R1 +R2 + ε ≥ 1

n
H(M1,M2) ≥

1

n
I(X, X̃2;M1,M2|Y2)

=
1

n

(
I(X̃2;M1,M2|Y2) + I(X;M1,M2|X̃2,Y2)

)
=

1

n

(
I(X̃2;M1,M2|Y2) + I(X;M1,M2|X̃2,Y1)

+ I(M1,M2;Y1|X̃2)− I(M1,M2;Y2|X̃2)
)

(a)
≥ H(X̃2|Y2) +H(X̃1|X̃2, Y1)− ε(ε)

+
1

n

(
I(M1,M2;Y1|X̃2)− I(M1,M2;Y2|X̃2)

)
(b)
= H(X̃2|Y2) +H(X̃1|X̃2, Y1)− ε(ε) + I(W ;Y1|X̃2)

− I(W ;Y2|X̃2)
(c)
≥ H(X̃2|Y2) +H(X̃1|X̃2, Y1)− ε(ε),

where (a) applies Fano’s inequality and that X̃1 can be
computed as a function of X and ε(ε)→ 0 as ε→ 0; (b) uses
Lemma 1; and (c) invokes the assumption (Y1 � Y2 | X̃2). �

B. Assertion (ii)

Achievability: The rate constraints follow from (6) upon
setting A12 = X̃1, A2 = X̃2 and A1 = constant and invoking
the assumptions X̃1 = ψ′(X̃2) and H(X̃1|Y1) ≤ H(X̃1|Y2).

Converse: The converse holds because for j = 1, 2, we have
Rj ≥ H(X̃j |Yj) ≥ 0. �
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Michèle Wigger (S’05-M’09) received the M.Sc. degree in electrical en-
gineering (with distinction) and the Ph.D. degree in electrical engineering
both from ETH Zurich in 2003 and 2008, respectively. In 2009 she was
a postdoctoral researcher at the ITA center at the University of California,
San Diego. Since December 2009 she has been an Assistant Professor at
Telecom ParisTech, in Paris, France. Her research interests are in information
and communications theory.



17

REFERENCES

[1] A. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,” IEEE Transactions on Information
Theory, vol. 22, no. 1, pp. 1–10, 1976.

[2] C. Heegard and T. Berger, “Rate distortion when side information may
be absent,” IEEE Transactions on Information Theory, vol. 31, no. 6,
pp. 727–734, 1985.

[3] I. Csiszár and J. Körner, Information theory: coding theorems for
discrete memoryless systems. Academic Press, 1981.

[4] T. Matsuta and T. Uyematsu, “A general formula of rate-distortion
functions for source coding with side information at many decoders,”
in proceedings IEEE International Symposium on Information Theory,
MIT, Cambridge, MA, 2012.

[5] S. Unal and A. B. Wagner, “General index coding with side information:
three decoder case,” in IEEE International Symposium on Information
Theory, Istanbul, Turkey, 2013.

[6] T. Laich and M. Wigger, “Utility of encoder side information for
the lossless Kaspi/Heegard-Berger problem,” in IEEE International
Symposium on Information Theory, Istanbul, Turkey, 2013.

[7] R. Timo, T. Chan, and A. Grant, “Rate distortion with side-information
at many decoders,” IEEE Transactions on Information Theory, vol. 57,
no. 8, pp. 5240–5257, 2011.

[8] A. Sgarro, “Source coding with side information at several decoders,”
IEEE Transactions on Information Theory, vol. 23, no. 2, pp. 179–182,
1977.

[9] R. Timo, A. Grant, and G. Kramer, “Lossy broadcasting with comple-
mentary side information,” IEEE Transactions on Information Theory,
vol. 59, no. 1, pp. 104 – 131, 2013.

[10] S. Watanabe, “The rate-distortion function for product of two sources
with side-information at decoders,” in proceedings IEEE International
Symposium on Information Theory, St. Petersburg, Russia, 2011.

[11] ——, “The rate-distortion function for product of two sources with side-
information at decoders,” IEEE Transactions on Information Theory,
vol. 59, no. 9, pp. 5678 – 5691, 2013.

[12] T. Liaich, “The Kaspi / Heegard-Berger rroblem with an informed
encoder,” Thesis, Swiss Federal Institute of Technology, Zurich, 2012.

[13] J. Körner and K. Marton, “Comparison of two noisy channels,” in Topics
in Information Theory, Keszthely, Hungry, 1977.

[14] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge
University Press, 2011.

[15] Y. Steinberg and N. Merhav, “On successive refinement for the Wyner-
Ziv problem,” IEEE Transactions on Information Theory, vol. 50, no. 8,
pp. 1636–1654, 2004.

[16] C. Tian and S. Diggavi, “On multistage successive refinement for Wyner-
Ziv source coding with degraded side informations,” IEEE Transactions
on Information Theory, vol. 53, no. 8, pp. 2946–2960, 2007.

[17] C. Tian and S. N. Diggavi, “Side-information scalable source coding,”
IEEE Transactions on Information Theory, vol. 54, no. 12, pp. 5591–
5608, 2008.

[18] R. Timo, A. Grant, T. Chan, and G. Kramer, “Source coding for a
simple network with receiver side information,” in IEEE International
Symposium on Information Theory, Toronto, Canada, 2008.

[19] B. N. Vellambi and R. Timo, “Successive refinement with common
receiver reconstructions,” in IEEE International Symposium on Infor-
mation Theory, Honolulu, USA, 2014.

[20] E. Tuncel, “Slepian-Wolf coding over broadcast channels,” IEEE Trans-
actions on Information Theory, vol. 52, no. 4, pp. 1469–1482, 2006.

[21] J. Nayak, E. Tuncel, and D. Gunduz, “Wyner-Ziv coding over broadcast
channels: digital schemes,” IEEE Transactions on Information Theory,
vol. 56, no. 4, pp. 1782–1799, 2010.

[22] Y. Gao and E. Tuncel, “Wyner-Ziv coding over broadcast channels:
hybrid digital / analog schemes,” IEEE Transactions on Information
Theory, vol. 57, no. 9, pp. 5660–5672, 2010.

[23] A. Maor and N. Merhav, “On successive refinement with causal side
information at the decoders,” IEEE Transactions on Information Theory,
vol. 54, no. 1, pp. 332–343, 2008.

[24] R. Timo and B. N. Vellambi, “Two lossy source coding problems with
causal side-information,” in proceedings IEEE International Symposium
on Information Theory, Seoul, Korea, 2009.

[25] B. Ahmadi, R. Tandon, O. Simeone, and H. V. Poor, “On the Heegard-
Berger problem with common reconstruction constraints,” in proceed-
ings IEEE International Symposium on Information Theory, MIT, Cam-
bridge, MA, 2012.

[26] B. N. Vellambi and R. Timo, “The Heegard-Berger problem with com-
mon receiver reconstructions,” in IEEE Information Theory Workshop,
Seville, Spain, 2013.

[27] R. W. Yeung, Information theory and network coding. Springer, 2008.
[28] A. El Gamal and T. Cover, “Achievable rates for multiple descriptions,”

IEEE Transactions on Information Theory, vol. 28, no. 6, pp. 851–857,
1982.

[29] C. Nair, “Capacity regions of two new classes of two-receiver broadcast
channels,” IEEE Transactions on Information Theory, vol. 56, no. 9, pp.
4207–4214, 2010.

[30] J. Villard and P. Piantanida, “Secure multiterminal source coding with
side information at the eavesdropper,” IEEE Transactions on Information
Theory, vol. 59, no. 6, pp. 3668 – 3692, 2013.

[31] G. Kramer, “Teaching IT: an identity for the Gelfand-Pinsker converse,”
IEEE Information Theory Society Newsletter, vol. 61, no. 4, pp. 4–6,
2012.

[32] ——, “Topics in multi-user information theory,” Foundations and Trends
in Communications and Information Theory, vol. 4, no. 45, pp. 265–444,
2008.


	Introduction
	A Lemma
	The Heegard-Berger Problem
	Operational Definition of the RD Function
	Existing Results
	New Results

	Successive Refinement with Side Information
	Problem Formulation
	Three Stages with Y3 better than Y2 better than Y1 (starting from X Y3 Y2 Y1)
	Two Stages with Y1 better than Y2 (starting from X   Y1 Y2)

	Appendix A: Proof of Lemma ??
	Appendix B: Proof of Cardinality Bounds in Lemma ??
	Appendix C: Proof of Lemma ??
	Assertion (i)
	Assertion (ii)

	Appendix D: Proof of Lemma ??
	Appendix E: Proof of Corollary ??
	Appendix F: Proof of Lemmas ?? and ??
	Proof of Lemma ??
	Proof of Lemma ??

	Appendix G: Proof of Lemma ??
	Appendix H: Proofs of Theorem ??
	Assertion (i)
	Assertion (ii)

	Biographies
	Roy Timo
	Tobias J. Oechtering
	Michèle Wigger

	References

