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Abstract—A coding scheme for the discrete memoryless broad-
cast channel with (possible noisy) feedback is proposed, and the
corresponding achievable region derived. The scheme is based
on a block-Markov strategy where in each block the transmitter
sends fresh data and update information that allows the receivers
to improve the channel outputs observed in the previous block.
The region is analyzed for two specific broadcast channels: 1)
A generalization of Dueck’s channel, where it is shown that for
noiseless output-feedback the region coincides with the capacity
region; 2) A noisy version of Blackwell’s channel, where it is
shown that for noiseless – and in some cases noisy – output-
feedback, the region improves upon the no-feedback capacity
region.

I. I NTRODUCTION

We consider a broadcast setup where a single transmitter
communicates with two receivers, and where the transmitter
has access to a feedback signal. Specifically, we study the
capacity region of the discrete memoryless broadcast channel
(DMBC) with generalized feedback. Generalized feedback
refers to a scenario where the feedback signal can be modeled
as observing the DMBC’s inputs and outputs through a discrete
memoryless channel. Special cases of generalized feedbackare
noiseless/noisy output-feedback(noiseless/noisy feedback for
short), where the transmitter observes a noiseless/noisy version
of the receivers’ channel outputs.

Most previous results on the DMBC with feedback focus
on noiseless feedback. El Gamal [4] proved that for physically
degraded DMBCs the noiseless-feedback capacity coincides
with the no-feedback capacity. In contrast, Dueck [7] and
Kramer [8] showed by the way of examples that for other
DMBCs the noiseless-feedback capacity can exceed the no-
feedback capacity.

Determining the feedback capacity of the DMBC is still an
open problem. In fact, it is even unknown whether feedback
increases the capacity region of a general (non-physically-
degraded) DMBC. This is partly because even the no-feedback
capacity region is generally unknown, and partly since a
computable single-letter achievable region for the DMBC
with feedback is missing. Kramer [8] proposed a multi-letter
achievable region for the DMBC with noisy or noiseless
feedback.

In this paper we propose a coding scheme for the DMBC
with generalized feedback, and present a corresponding single-
letter achievable region. Our approach is motivated by Dueck’s
example [7], and is based on the following high-level idea: The

transmitter exploits feedback to identify information useful
for decoding, and describes this information efficiently on
subsequent transmissions, thereby improving the receivers’
observed channel outputs. To this end, a block-Markov strat-
egy is adopted, where in each block the transmitter sends a
combination of fresh data and compressed update information
pertaining to the previous block, using a no-feedback code.
Intuitively, this approach may be beneficial if a large part of
the update information is common to both receivers.

The region achieved by our feedback scheme is shown to
exceed the no-feedback capacity region for some DMBCs
with noisy or noiseless feedback: A generalization of Dueck’s
DMBC is discussed in Subsection VI-A, and a noisy version
of Blackwell’s DMBC [9] in Subsection VI-B.

II. CHANNEL MODEL

We describe the channel model in more detail. The goal of
the communication is that the transmitter conveys a private
MessageM1 to a Receiver 1, a private MessageM2 to a
Receiver 2, and a common messageM0 to both receivers.
The three messagesM0, M1, and M2 are assumed to be
independent and uniformly distributed over the finite sets{
1, . . . ,

⌊
2nR0

⌋}
,
{
1, . . . ,

⌊
2nR1

⌋}
, and

{
1, . . . ,

⌊
2nR2

⌋}
re-

spectively, wheren denotes the blocklength andR0, R1, R2

are the corresponding common and private transmission rates.
Communication takes place over a DMBC with generalized

feedback. This channel is characterized by a quadruple of finite
alphabetsX , Y1,Y2, andỸ, and a conditional probability law
P

Y1Y2
eY |X(y1, y2, ỹ|x) wherex ∈ X , y1 ∈ Y1, y2 ∈ Y2, and

ỹ ∈ Ỹ. Given that at timet the transmitter feeds the symbol
xt to the channel, then Receiver 1 and Receiver 2 observe the
channel outputsy1,t ∈ Y1 andy2,t ∈ Y2 respectively and the
transmitter observes the generalized feedbackỹt ∈ Ỹ, with
probabilityP

Y1Y2
eY |X(y1,t, y2,t, ỹt|xt).

Thanks to feedback, the transmitter can produce its time-t

channel inputXt as a function of the MessagesM0, M1, M2

and of the previously observed feedback outputsỸ t−1 def
=

(Ỹ1, . . . , Ỹt−1) :

Xt = ϕ
(n)
t

(
M0, M1, M2, Ỹ

t−1
)

. (1)

The DMBC and its feedback channel are memoryless which is
captured by the following Markov relation fort ∈ {1, . . . , n}:

(Y t−1
1 , Y t−1

2 , Ỹ t−1) (−− Xt (−− (Y1,t, Y2,t, Ỹt)



whereY t−1
i

def
= (Yi,1, Yi,2, . . . , Yi,t−1), for i ∈ {1, 2}.

After n channel uses Receiver i decodes its intended mes-
sagesM0 andMi for i ∈ {1, 2}. Namely, Receiveri produces
the guess:

(M̂0,i, M̂i) = Φ
(n)
i (Y n

i ), i ∈ {1, 2}. (2)

A rate triplet(R0, R1, R2) is called achievable if for every
blocklength n there exists a set ofn encoding functions{
ϕ

(n)
t

}n

t=1
and two decoding functionsΦ(n)

1 and Φ
(n)
2 such

that the probability of decoding error, i.e., the probability that

(M0, M1) 6= (M̂0,1, M̂1) or (M0, M2) 6= (M̂0,2, M̂2),

tends to 0 as the blocklengthn tends to infinity. The closure
of the set of achievable rate triplets(R0, R1, R2) is called
thegeneralized-feedback capacity regionof this setup, and we
denote it byCGenFB. The supremum of the sumR1 + R2 over
all achievable rate triplets is called itsgeneralized-feedback
sum-rate capacity, and we denote it byCGenFB,Σ.

The described generalized-feedback setup includes as spe-
cial cases theno-feedbacksetup where the feedback outputs
are deterministic, e.g.,|Ỹ | = 1; the noiseless-feedbacksetup
where the feedback output coincides with the pair of channel
outputs, i.e.,Ỹ = (Y1, Y2); and the noisy-feedbacksetup
where the feedback outputs and the channel inputs and outputs
satisfy the Markov relationXt(−−(Y1,t, Y2,t)(−−Ỹt for all
t ∈ {1, . . . , n}. In these special cases, we denote the sum-
rate capacities byCNoFB,Σ, CNoiselessFB,Σ, andCNoisyFB,Σ.

III. PRELIMINARIES

Our generalized-feedback scheme appearing in Section V-B
has two main building blocks: The Marton’s scheme for
the DMBC without feedback [6], [12], and a source-coding
scheme for a lossy version of the Gray-Wyner problem with
side-information (see [2], [3] for the lossless case). In this
section, we review the region achieved by Marton’s scheme,
and present an achievable region for the lossy Gray-Wyner
problem. We outline the coding scheme achieving this region.

We use the notion of strong typicality as defined in [1].
For a distributionPX over a finite alphabetX , we denote by
T n

δ (PX) the set of alln-length sequencesxn ∈ Xn that areδ-
strongly-typical with respect to (w.r.t.) the lawPX . Similarly,
for a law PX1···Xk

over a product alphabetX1 × · · · ×Xk we
denote byT n

δ (PX1···Xk
) the set of allk-tuples of sequences

(xn
1 ∈ Xn

1 , . . . , xn
k ∈ Xn

k ) that arejointly δ-strongly typical
w.r.t. PX1···Xk

.

A. Marton’s Achievable Region for the BC without Feedback

Theorem 1 (From [6], [12]). A nonnegative rate triplet
(R0, R1, R2) is achievable over the DMBC without feedback,
if it satisfies

R0 < min
i

I(U0; Yi)

R0 + R1 < I(U0, U1; Y1)

R0 + R2 < I(U0, U2; Y2)

R0 + R1 + R2 < I(U1; Y1|U0) + I(U2; Y2|U0)

+ min
i

I(U0; Yi) − I(U1; U2|U0)

such that (U0, U1, U2)(−−X(−−(Y1, Y2) forms a Markov
chain.

B. Lossy Gray-Wyner Coding with Side Information

Let {(Xt, Y1,t, Y2,t)}
n
t=1 be an i.i.d. sequence of triplets of

discrete random variables, with marginal distributionPXY1Y2 .
We consider a setting where a sender observes the se-
quenceXn, Receiver 1 observes the side-informationY n

1 ,
and Receiver 2 observes the side-informationY n

2 . The sender
can noiselessly communicate with the receivers by sending
a common message from the set{1, . . . , b2nR0c} to both
receivers, a private message from the set{1, . . . , b2nR1c}
to Receiver 1 only, and another private message from the
set {1, . . . , b2nR2c} to Receiver 2 only. Fix two conditional
distributionsPV1|X andPV2|X . The goal of the communication
is to ensure that for a givenδ > 0, Receiveri can construct a
sequenceV n

i such that(Xn, V n
i ) ∈ T n

δ (PXVi
) for i ∈ {1, 2},

with a probability of failure no larger thanδ. A rate triplet
(R0, R1, R2) is said to be achievable if that goal can be
attained withδ → 0 asn → ∞.

Theorem 2. A nonnegative rate triplet(R0, R1, R2) is achiev-
able for the lossy Gray-Wyner problem with side information
above, if it satisfies

R0 > max
i

I(X ; V0|Yi),

R1 > I(X ; V1|V0, Y1)

R2 > I(X ; V2|V0, Y2). (3)

where(V0, V1, V2)(−−X(−−(Y1, Y2) forms a Markov chain.

Proof. We outline the construction, see [10] for details.
1) Codebook Generation:Independently generate code-

books Ci with 2n(R′

i+Ri) codewords by randomly drawing
all the entries of the codebook i.i.d. according toPVi

, for
i ∈ {0, 1, 2} respectively. Partition each codebookCi into
2nRi bins each containing2nR′

i codewords. All codebooks
are revealed to the sender. Codebooks{C0, Ci} are revealed to
Receiver i, fori ∈ {1, 2}.

2) Lossy Gray-Wyner Encoder:The sender observes
a sequenceXn, and looks for a triplet of codewords
(V n

0 , V n
1 , V n

2 ) ∈ C0 × C1 × C2, such that(Xn, V n
0 , V n

i ) ∈
T n

δ (PXV0Vi
) for i ∈ {1, 2}. It then sends the indexJ0 of

the bin containingV n
0 over the common link, and the indices

J1, J2 of the bins containingV n
1 andV n

2 over the respective
private links. If no such triplet of codewords exists, the sender
transmits arbitrary messages, and an error is declared.

3) Lossy Gray-Wyner Decoder:Receiver i observes the
side-informationY n

i , the common messageJ0 and the private
messageJi. It seeks a codeword̂V n

0 in theJ0-th bin of code-
bookC0 and a codeword̂V n

i in the Ji-th bin of codebookCi,
such that(V̂ n

0 , V̂ n
i , Y n

i ) ∈ T n
δ (PV0ViYi

). If exactly one such
pair of codewords exists, Receiver i outputsV̂ n

i . Otherwise, it
outputs an arbitrary sequence and an error is declared.

4) Analysis Outline:We writewith high probability (w.h.p.)
to indicate a statement holds with probability→ 1 asn → ∞.
By the covering Lemma [11], ifR′

0 + R0 > I(X ; V0) then
w.h.p. the sender can findV n

0 ∈ C0 jointly typical with



Xn. Given that, and invoking the covering Lemma again,
if R′

i + Ri > I(Vi; X, V0) then w.h.p. the sender can find
V n

i ∈ Ci jointly typical with (Xn, V n
0 ). By the conditional

typicality Lemma [11] we have that w.h.p.(V n
0 , V n

i , Y n
i )

are jointly typical. Therefore, by the packing Lemma [11],
if R′

0 < I(V0; Yi) then w.h.p.V n
0 is the only codeword in

the J0-th bin of codebookC0 that is jointly typical with
Y n

i . Given that, and invoking the packing Lemma again, if
R′

i < I(Vi; V0, Yi) then w.h.p.V n
i is the only codeword in the

Ji-th bin of codebookCi that is jointly typical with(V n
0 , Y n

i ).
Hence, w.h.p. Receiver i will outputV n

i as desired. The result
follows by combining the bounds and using Markovity.

IV. M OTIVATION : DUECK’ S EXAMPLE

Our feedback scheme in Section V-B is motivated by
Dueck’s scheme in [7]. Dueck considered the following
DMBC. The channel inputs consist of triplets of bitsX =
(X1, X0, X2) and the outputs of pairs of bitsY1 = (Y1,1, Y1,0)
andY2 = (Y2,0, Y2,2). The channelPY1Y2|X is described as:

Y1,0 = Y2,0 = X0,

Y1,1 = X1 ⊕ Z, and Y2,2 = X2 ⊕ Z,

whereZ is Bern(1/2) and independent of the inputs, and⊕
denotes addition modulo 2.

Obviously, without feedback, the outputsY1,1 andY2,2 are
useless. Thus, the no-feedback-capacity is given by the setof
all nonnegative rate triplets(R0, R1, R2) satisfying

R0 + R1 + R2 ≤ 1.

With noiseless feedback, the capacity is increased.

Theorem 3 (Dueck [7]). The noiseless feedback capacity of
Dueck’s DMBC is given by the set of all nonnegative rate
triplets (R0, R1, R2) satisfying

R0 + R1 ≤ 1 and R0 + R2 ≤ 1.

The noiseless-feedback capacity is achieved by the follow-
ing simple scheme of blocklength(n + 1). In the first n

channel uses the transmitter uses Inputs{X1,t} and{X2,t} to
send lossless descriptions of the Message pairs(M0, M1) and
(M0, M2), respectively. In channel usest = 2, . . . , (n + 1),
the transmitter additionally sends the previous noise sample
X0,t = Zt−1. Since each receiver directly observes the inputs
{X0,t}

n+1
t=2 , it can recover the noise sequence{Zt}

n
t=1 and

reconstruct its desired channel inputs{X1,t}
n
t=1 or {X2,t}

n
t=1.

Based on these reconstructed channel inputs the receivers then
decode their desired pair of messages(M0, M1) or (M0, M2).
Whenever the ratesR1, R2 do not exceed 1, the described
scheme has zero probability of error.

V. M AIN RESULT

A. Achievable Region

Let R̃inner be the set of all nonnegative triplets
(R0, R1, R2) that satisfy the inequalities (4) on
the top of the next page, for some choice of
auxiliary random variables (U0, U1, U2, V0, V1, V2)
such that (U0, U1, U2)(−−X(−−(Y1, Y2, Ỹ ) and

(V0, V1, V2)(−−(X, Ỹ )(−−(Y1, Y2, U0, U1, U2) are Markov
chains. LetRinner be the closed convex hull of̃Rinner.

Theorem 4. The capacity region of the DMBC with general-
ized feedback satisfies

Rinner ⊆ CGenFB.

Proof. The proof is based on the feedback scheme discussed
in the next subsection, which concatenates Marton’s nofeed-
back scheme with the lossy Gray-Wyner scheme of Subsec-
tion III-B. When analyzing this concatenated random coding
scheme, special attention should be paid to the fact that some
of the sequences involved are not i.i.d., but only satisfy a
weaker joint typicality condition with high probability. For
details, see [10].

B. Feedback-Scheme for the DMBC (Outline)

Inspired by Dueck’s scheme, we propose the following
scheme for DMBCs with generalized feedback. Our scheme is
based on a Block-Markov strategy (as depicted in Figure 1).
This means, the blocklengthn is divided into (B + 1)
blocks of lengthn′ each, and in each blockb the trans-
mitter sends to both receivers a combination of fresh data
(M0,b, M1,b, M2,b) and update information from the previous
block (J0,b−1, J1,b−1, J2,b−1). Exceptions are the first block
where only fresh data is sent, and the last block where only
update information is sent (see Figure 1).

The receivers wait until the reception of the last block
and then apply the following backward decoding strategy. In
a first step, Receiveri, for i ∈ {1, 2}, decodes the update
information sent to it in the last blockB+1, i.e.,(J0,B , Ji,B).
In the sequel it performs the following iterative decoding steps,
starting from the second to last block and ending with the
first block. In each blockb ∈ {1, . . . , B}, Receiver i first uses
the previously decoded update information(J0,b, Ji,b) – in a
way to be explained shortly – to improve its observed channel
outputsY n′

i,b = (Yi,(b−1)n′+1, . . . , Yi,bn′), and based on these
improved outputs it then decodes the fresh data(M0,b, Mi,b)
and the update information(J0,b−1, Ji,b−1) sent in this block
b.

In what follows we elaborate on the various components of
our scheme: 1) Generation of the update information at the
transmitter; 2) Computation of the improved channel outputs
at the receivers; and 3) Encoding and decoding of the fresh
data and the update information in each block.

We first describe the generation of update informa-
tion. Notice that in our scheme the transmitter can wait
until it observed the block-b feedback-outputsỸ n′

b =

(Ỹ(b−1)n+1, . . . , Ỹbn′) to generate the update information
J0,b, J1,b, J2,b transmitted in block(b + 1). Thus, it can
compute the update information by applying thelossy Gray-
Wyner encoderin Subsection III-B2 to the block-b inputs and
the block-b feedback outputs, i.e., to the sequence of pairs
{(X(b−1)n′+k, Ỹ(b−1)n′+k)}n′

k=1.
We next describe the computation of the improved channel

outputs at Receiver i, fori ∈ {1, 2}. Recall that Receiver i



R0 ≤ min
i

I(U0;Yi, Vi) − max
i

I(V0;X, eY |Yi)

R0 + R1 ≤ I(U0, U1;Y1, V1) − I(X, eY ;V1|V0, Y1) − max
i

I(V0;X, eY |Yi)

R0 + R2 ≤ I(U0, U2;Y2, V2) − I(X, eY ;V2|V0, Y2) − max
i

I(V0;X, eY |Yi)

R0 + R1 + R2 ≤ I(U1; Y1, V1|U0) + I(U2; Y2, V2|U0) + min
i

I(U0;Yi, Vi)

−I(U1; U2|U0) − I(X, eY ;V1|V0, Y1) − I(X, eY ; V2|V0, Y2) − max
i

I(V0; X, eY |Yi) (4)

. . .

fresh datafresh data fresh data fresh data

update info. update info. update info.update info.

t=1 t=n′ t=(B+1)n′

M0(1), M1(1), M2(1) M0(2), M1(2), M2(2) M0(3), M1(3), M2(3) M0(B), M1(B), M2(B)

J0(1), J1(1), J2(1) J0(2), J1(2), J2(2) J0(B), J1(B), J2(B)J0(B−1), J1(B−1), J2(B−1)

Block 1 Block 2 Block 3 Block B Block B + 1

Fig. 1. Block-Markov strategy of our feedback-scheme.

has already decoded the update information(J0,b, Ji,b) before
it has to produce its block-b improved outputs. It can thus
compute the improved outputs as follows. It first feeds its
guess of(J0,b, Ji,b) and the observed sequenceY n′

i,b (as side-
information) to the lossy Gray-Wyner decoderin Subsec-
tion III-B3, and then combines the resulting outputsV n′

i,b with
the observed sequenceY n′

i,b . That means the improved outputs
are given by(Y n′

i,b , V n′

i,b ).
We finally outline the encoding and decoding of the fresh

data and the update information in each blockb. The transmit-
ter first forms the combined messagesM̄0,b = (M0,b, J0,b−1),
M̄1,b = (M1,b, J1,b−1), andM̄2,b = (M2,b, J2,b−1), and then
encodes these messages using Marton’s no-feedback scheme.
Receiver i first decodes the combined messages(M̄0,b, M̄i,b)
by applying Marton’s decoding rule to the previously com-
puted improved outputs(Y n′

i,b , V n′

i,b ), and then attempts to
extract messages(M0,b, Mi,b) and (J0,b−1, Ji,b−1) from its
guess of(M̄0,b, M̄i,b).

VI. EXAMPLES

A. The Generalized Dueck DMBC

Consider a generalized version of Dueck’s DMBC where
all three binary channels are (possibly) noisy, and the first
and third channels are corrupted by (possibly) different noises.
As in Dueck’s example the channel input consists of three
bits, X = (X1, X0, X2), and each output of two bits,Y1 =
(Y1,1, Y1,0) and Y2 = (Y2,0, Y2,2). The channel lawPY1Y2|X

is described by the relations:

Y1,0 = Y2,0 = X0 ⊕ Z0,

Y1,1 = X1 ⊕ Z1, and Y2,2 = X2 ⊕ Z2,

whereZ0, Z1, Z2 are binary random variables of a given law
PZ0Z1Z2 . We restrict attention to lawsPZ0Z1Z2 such that

H(Z0, Z1) ≤ 1 and H(Z0, Z2) ≤ 1. (5)

Under these conditions and when the transmitter only wishes
to send private messages but no common message, our scheme
achieves the noiseless-feedback capacity.

Theorem 5. Under condition (5) and for R0 = 0, the
noiseless-feedback capacity of the Generalized Dueck DMBC
is the set of all nonnegative rate pairs(R1, R2) satisfying

R1 ≤ 2 − H(Z0, Z1),

R2 ≤ 2 − H(Z0, Z2),

R1 + R2 ≤ 3 − H(Z0, Z1, Z2). (6)

Proof. The converse follows from the cutset bound. The direct
part follows from Theorem 4 by taking the convex hull of the
two achievable regions that result when (4) is evaluated forthe
following two choices:(U0, U1, U2) i.i.d. ∼ Bern(1/2);X0 =
U0; X1 = U1; X2 = U2; V1 = (X0, X1); V2 = (X0, X2); and
eitherV0 = (Z0, Z1) or V0 = (Z0, Z2).

Observation 1. For zero common rateR0 = 0, the no-
feedback capacity of the generalized Dueck DMBC is the set
of all nonnegative rate pairs(R1, R2) satisfying

R1 ≤ 2 − H(Z0, Z1),

R2 ≤ 2 − H(Z0, Z2),

R1 + R2 ≤ 3 − H(Z0, Z1, Z2) − I(Z1; Z2|Z0).

Observation 2. Unless the tripletZ1 − Z0 − Z2 forms a
Markov chain, noiseless feedback strictly increases the capac-
ity of the Generalized Dueck DMBC satisfying Conditions(5).

B. The Noisy Blackwell DMBC

We consider a noisy version of Blackwell’s DMBC with
noisy feedback, and evaluate the region in Theorem 4 for a
specific choice of the auxiliary random variables. We show
that the resulting inner bound on the noisy feedback capacity
region exceeds an outer bound on the no-feedback capacity
region, for small levels of noise.

The Noisy Blackwell DMBC is described as follows. The
input alphabet is ternaryX = {0, 1, 2} and both output
alphabets are binaryY1 = Y2 = {0, 1}. Let Z ∼ Bern(p) for
somep < 1

2 and independent ofX . The channel lawPY1Y2|X

is described as follows.

Y1 =

{
Z X = 0
1 − Z X = 1, 2

Y2 =

{
Z X = 0, 1
1 − Z X = 2



For simplicity, we assume a noisy feedback of the formỸ =
(Y1 + Z ′, Y2 + Z ′), whereZ ′ ∼ Bern(q) and (X, Y1, Y2) are
mutually independent. Let

V1
def
=

{
0 X = 0
1 X = 1, 2

V2
def
=

{
0 X = 0, 1
1 X = 2

V0
def
= Vi ⊕ Ỹi = Z ⊕ Z ′

Furthermore, letU0 ∼ Bern(1
2 ) and

PX|U0
=

{
(α, 1 − α − β, β) U0 = 0
(β, 1 − α − β, α) U0 = 1.

for some nonnegativeα, β satisfyingα + β ≤ 1. Finally, set
U1

def
= V1, U2

def
= V2. Note that the auxiliary outputs here

are simply the deterministic part of the channel actions on
its input. Using Theorem 4 with (4) we get the following
achievable region (for simplicity we give looser inequalities):

R0 ≤ hb

(
α + β

2

)
−

1

2
(hb(α) + hb(β)) − λ(p, q, α, β)

R0 + R1 ≤ hb

(
α + β

2

)
− λ(p, q, α, β) − hb(q)

R0 + R2 ≤ hb

(
α + β

2

)
− λ(p, q, α, β) − hb(q)

R0 + R1 + R2 ≤ hb

(
α + β

2

)
+

1 − β

2
hb

(
α

1 − β

)

+
1 − α

2
hb

(
β

1 − α

)
− λ(p, q, α, β) − 2hb(q)

where

λ(p, q, α, β)
def
= hb(p?q)+hb

(
α + β

2

)
−hb

((
α + β

2

)
? p ? q

)

Let us consider the maximal sum-rateR1 +R2 guaranteed by
the region above. To that end, we setR0 = 0 and note it is
sufficient to consider only the last inequality. We get:

CNoisyFB,Σ ≥ sup

{
1

2

(
hb(α) + hb(β) + (1 − β)hb

(
α

1 − β

)

+ (1 − α)hb

(
β

1 − α

))}
− 2hb(q) (7)

where the supremum is taken over all feasibleα, β satisfying

hb

(
α + β

2

)
−

1

2
(hb(α) + hb(β)) − λ(p, q, α, β) = 0

For comparison, let us now upper bound the correspond-
ing no-feedback sum-rate capacityCNoFB,Σ. Since the no-
feedback capacity of a DMBC depends only on the marginals
PY1|X , PY2|X , the capacity region for the Noisy Blackwell
channel remains the same if we replaceZ with Z1, Z2 for
Y1, Y2 respectively, whereZi ∼ Bern(p) are independent.
Computing the cut-set upper bound for this setting, we get

CNoFB,Σ ≤ sup
α∈(0, 1

2 )

{
H [(α(p − p̄)2 + pp̄, p̄2 + 2αp,

p2 + 2αp̄, α(p − p̄)2 + pp̄)] − 2hb(p)
}

,

(8)
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Fig. 2. Bounds on the sum-rate capacity of the noisy Blackwell DMBC

where p̄
def
= 1 − p. Figure 2 depicts the bounds (7) and (8)

together with a cut-set upper bound onCNoiselessFB,Σ, where (7)
is plotted in the noiseless case (q = 0). From the continuity of
the bound (7) with respect to the noise levelq, we conclude
the following.

Observation 3. For anyp ∈ (0, 1) and small enoughq, noisy
feedback strictly increases the capacity region of the Noisy
Blackwell-DMBC. The statement holds also for the feedback
Ỹ = (Y1 + Z ′, Y2 + Z ′′) whereZ ′, Z ′′ are independent.
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