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Abstract—Binary hypothesis testing over single and parallel
cascade channels is considered where sensors communicate with
dedicated relays, and these relays with a single final receiver. All
relays as well as the final receiver decide on the binary hypothesis
governing the joint probability distribution of the observations
at the sensors, relays, and final receiver. The quantity of interest
is the set of feasible type-II error exponents that allow for
the type-I error probabilities to vanish asymptotically as the
observation length increases. A coding scheme is proposed and
the corresponding set of feasible type-II error exponents is
analyzed by means of a modified Han-type analysis that can
account for distributed decisions based on different codebooks
and for nodes forwarding their decisions to other nodes. The
obtained exponent region is optimal in some special cases.

I. INTRODUCTION

Consider a multi-hop hypothesis testing problem where
sensors communicate with intermediate relays, which then
communicate with a single final decision center. This setup
models scenarios where intermediate relays collect infor-
mation from nearby sensors and send a sort of summary
information to a final decision center that is located farther
away. Compared to traditional architectures where the sensors
directly have to communicate with the final decision center,
this new architecture allows to reduce the energy consumption
at the sensors, because they only have to communicate with
the closer relays. Moreover, in this setup, intermediate relays
can also take decisions, which can be exploited to faster
detect certain events, though typically with reduced reliability
compared to the decisions taken at the final decision center.

In this work, we start with the simplest scenario with a
single sensor, a single relay, and a final receiver, and with
both the relay and the receiver deciding on a binary hypothesis
(H = 0 or H = 1) underlying the joint probability distribution
of the observations at the three terminals. Communication
takes place over individual noise-free bit pipes of given rates.
We present a coding scheme for this scenario and analyze its
type-II error (deciding on Ĥ = 0 when H = 1) exponent
so that the type-I error (deciding on Ĥ = 1 when H = 0)
probability vanishes as the observation length grows to infinity.
For some special cases, the proposed type-II error exponent is
optimal under the rate constraints imposed on the bit pipes.

We further propose a coding scheme for an extended setup
with two sensors, two dedicated relays, and a single common
final receiver, and analyze the type-II error exponents given
that the type-I error probabilities vanish. Again, the proposed
type-II error exponents are optimal in some special cases.

Ahlswede and Csiszár [1], Han [2], and Shimokawa, Han,
and Amari [3] studied a related setup where one or two

observers directly communicate with a single final decision
center. Upper and lower bounds were derived on the maximum
type-II error exponent under the requirement of vanishing
type-I error probability. The exact maximum type-II error
exponent was derived for “testing against independence,”
where under the alternative hypothesis H = 1, the joint
distribution of the observations is given by the product of
the marginal distributions under H = 0. A similar result for
“testing against conditional independence” was derived in [4].
Recently, also more involved communication scenarios were
considered, for example, with noisy communication channels
[5], [6] or interaction between two terminals [7]–[9]. Multiple
decision centers were considered in [10].

The results in this work are obtained by refining Han’s
construction and analysis [2]. We divide the transmitter’s
message into two parts, one for the relay’s decision, and the
other to be forwarded to the receiver. The relay’s message is
also in two parts, one coming directly from the transmitter,
and the other chosen based on both its own observation and
the message it receives. For this scheme to perform well, we
require that no joint type occurs “too often” in the codebooks.

Notation: We mostly follow the notation in [11]. Moreover,
we use tp(·) to denote the joint type of a tuple. For a joint type
πABC , we let IπABC (A;B|C) denote the conditional mutual
information assuming (A,B,C) has probability mass function
(pmf) πABC . Similarly for the entropy HπABC (A) and the
conditional entropy HπABC (A|B). When πABC is clear from
the context, we write πA and πAB for the corresponding
subtypes and sometimes even abbreviate πABC by π.

II. HYPOTHESIS TESTING OVER A SINGLE CASCADE
CHANNEL

A. Setup

Consider the cascade hypothesis testing problem with three
terminals in Fig. 1. The first terminal in the system, the trans-
mitter, observes the sequence Xn = (X1, . . . , Xn); the second
terminal, the relay, observes the sequence Y n = (Y1, . . . , Yn);
and the third terminal, the receiver, observes the sequence
Zn = (Z1, . . . , Zn). Under the null hypothesis

H = 0: (Xn, Y n, Zn) ∼ i.i.d. PXY Z (1)

whereas under the alternative hypothesis

H = 1: (Xn, Y n, Zn) ∼ i.i.d. QXY Z (2)

for two given pmfs PXY Z and QXY Z .
There is a noise-free bit pipe of rate R from the transmitter

to the relay, and a noise-free bit pipe of rate T from the relay to



the receiver. After observing Xn, the transmitter computes the
message M = φ(n)(Xn) using a possibly stochastic encoding
function φ(n) : Xn → {0, ..., 2nR} and sends it over the bit
pipe to the relay.1 The relay, after observing Y n and receiving
M , computes the message B = φ

(n)
y (M,Y n) using a possibly

stochastic encoding function φ
(n)
y : Yn × {0, ..., 2nR} →

{0, ..., 2nT } and sends it over the bit pipe to the receiver.
The goal of the above communication is that, based on

their own observations and based on the received messages,
the relay and the receiver should be able to produce their
respective guesses of H. The relay produces the guess

Ĥy = g(n)
y (Y n,M) (3)

using a decoding function g(n)
y : Yn×{0, ...., 2nR} → {0, 1},

and the receiver produces the guess

Ĥz = g(n)
z (Zn, B) (4)

using a decoding function g(n)
z : Zn × {0, ..., 2nT } → {0, 1}.

Definition 1: For each ε ∈ (0, 1), we say that the exponent-
rate tuple (η, θ, R, T ) is ε-achievable if there exists a sequence
of encoding and decoding functions (φ(n), φ

(n)
y , g

(n)
y , g

(n)
z )

such that the corresponding sequences of type-I and type-II
error probabilities at the relay

γn
∆
= Pr[Ĥy = 1|H = 0], (5)

ζn
∆
= Pr[Ĥy = 0|H = 1], (6)

and at the receiver

αn
∆
= Pr[Ĥz = 1|H = 0], (7)

βn
∆
= Pr[Ĥz = 0|H = 1], (8)

satisfy, for sufficiently large n,

αn ≤ ε, (9)
γn ≤ ε, (10)

and

− lim
n→∞

1

n
log βn ≥ θ, (11)

− lim
n→∞

1

n
log ζn ≥ η. (12)

Definition 2: For given rates (R, T ), we define the exponent
region E(R, T ) as the closure of all non-negative pairs (η, θ)
for which (η, θ, R, T ) is ε-achievable for every ε ∈ (0, 1).

B. Results on the Exponent Region

Our main achievability result is the next theorem.
Theorem 1: The above scheme achieves all nonnegative

eponent pairs (η, θ) that satisfy

η < min
P̃SUXY :

P̃SUX=PSUX
P̃SUY =PSUY

D(P̃SUXY ||PSU |XQXY ), (13)

1For notational convenience, we allow the total number of messages to be
2nR+1. Clearly, this does not change the message rate as n tends to infinity.

M

Fig. 1. Hypothesis testing over a cascade channel

θ < min
P̃SUVXY Z :
P̃SUX=PSUX
P̃SV UY =PSV UY
P̃SV Z=PSV Z

D(P̃SUVXY Z ||PSU |XPV |SUYQXY Z),

(14)

for some auxiliary random variables (U, S, V ) satisfying the
Markov chains (U, S)→ X → (Y, Z) and V → (S, Y )→ Z
and the rate constraints

R ≥ I(U, S;X), (15)
T ≥ I(X;S) + I(V ;Y,U |S). (16)

We shall prove Theorem 1 by describing and analyzing a
coding scheme. We start with some preliminaries.

Preliminaries: Fix µ > 0, an arbitrary blocklength n, and
joint conditional pmfs PSU |X and PV |SUY over finite auxiliary
alphabets S, U , and V . Define the joint pmf PSUVXY Z =
PXY ZPSU |XPV |SUY and the following nonnegative rates,
which are calculated according to PSUVXY Z for some pa-
rameter µ > 0,

Rs
∆
= I(X;S) + µ, (17)

Ru
∆
= I(U ;X|S) + µ, (18)

Rv
∆
= I(V ;Y, U |S) + µ. (19)

Later, we shall choose the joint distributions in such a way
that R ≥ Ru +Rs and T ≥ Rs +Rv .

The following lemma is key to our main result (Theorem 1).
An important aspect of the lemma is that it bounds the number
of codeword tuples with a given joint type, see point 3).
Without insisting on 3), the scheme’s error exponent would
be decreased by I(U ;V |S).

Lemma 1: For every sufficiently large blocklength n, it is
possible to create a codebook

CS =
{
sn(i) : i ∈ {1, ..., 2nRs}

}
, (20)

and for each i ∈ {1, . . . , 2nRs} the sub-codebooks

CU (i) =
{
un(j|i) : j ∈ {1, ..., 2nRu}

}
(21)

CV (i) =
{
vn(k|i) : k ∈ {1, ..., 2nRv}

}
, (22)

such that the following three properties hold:
1) Codebooks CS and CU cover the source sequence Xn

with high probability:

Pr
[
∃(i, j) : (sn(i), un(j|i), Xn) ∈ T nµ/4(PSUX)

]
> 1− ε/4. (23)



2) If codebooks CS and CU (i) cover Y n for some i, then
also codebooks CS , CU (i), and CV (i) cover Y n with
high probability:

Pr
[
∃k : (sn(i), un(j|i), vn(k|i), Y n) ∈ T nµ/2(PSUV Y )

∣∣∣
(sn(i), un(j|i), Y n) ∈ T n3µ/8(PSUY )

]
> 1− ε/4. (24)

3) No joint type πSUV is “over-represented” in the triple
of codebooks CS , CU , and CV in the sense that, for all
πSUV ,∣∣{(i, j, k) : tp(sn(i), un(j|i), vn(k|i)) = πSUV

}∣∣
≤ 2n(Rs+Ru+Rv−IπSUV (U ;V |S)+µ). (25)

Proof: See [12].
Code Construction: Choose a codebook satisfying the

three conditions in Lemma 1.
Transmitter: Given that it observes the sequence xn, the

transmitter looks for a pair of indices (i, j) such that

(sn(i), un(j|i), xn) ∈ T nµ/4(PSUX). (26)

If successful, it picks one such pair uniformly at random and
sends m = (i, j) over the bit pipe to the relay. Otherwise, it
sends m = 0.

Relay: Assume that the relay observes the sequence yn and
receives the message m. If m = 0, it declares Ĥy = 1 and
sends b = 0 over the bit pipe to the receiver. Otherwise, it
looks for an index k such that

(sn(i), un(j|i), vn(k|i), yn) ∈ T nµ/2(PSUV Y ). (27)

If such an index k exists, the relay sends the pair b = (i, k)
to the receiver. Otherwise, it sends b = 0.

Receiver: Assume that the receiver observes zn and receives
message b from the relay. If b = 0, the receiver declares Ĥz =
1. Otherwise, it checks whether

(sn(i), vn(k|i), zn) ∈ T nµ (PSV Z). (28)

If (28) is true, the receiver declares Ĥz = 0. Otherwise, it
declares Ĥz = 1.

Analysis: If M 6= 0 and B 6= 0, let I, J,K be the random
indices sent over the noise-free bit pipes. We first analyze the
type-I error probability at the receiver. For the case M 6= 0
and B 6= 0, define the following events:

ERelay : (sn(I), un(J |I), Y n) /∈ T n3µ/8(PSUY ),
ERx : (sn(I), un(J |I), vn(K|I), Zn) /∈ T nµ (PSUV Z).

The type-I error probability can then be bounded as follows:

αn ≤ Pr[M = 0 or B = 0 or ERelay or ERx]

≤ Pr[M = 0] + Pr[B = 0 or ERelay|M 6= 0]

+Pr[ERx|M 6= 0, B 6= 0] (29)
(a)

≤ ε/4 + Pr[ERelay|M 6= 0]

+Pr[B = 0|M 6= 0, EcRelay] + ε/4 (30)

(b)

≤ ε/4 + ε/4 + ε/4 + ε/4 (31)
= ε, (32)

where (a) holds because the chosen code construction satisfies
(23) and by the Markov lemma, and (b) holds because the code
construction satisfies (24) and by the Markov lemma.

We now bound the probability of type-II error at the
receiver. Let Pn be the set of all types over the product
alphabet Sn×Un×Vn×Xn×Yn×Zn. Also, let Pnµ , µ > 0,
be the subset of types πSUVXY Z ∈ Pn that simultaneously
satisfy the following conditions: for all (s, u, v, x, y, z),

|πSUX(s, u, x)− PSUX(s, u, x)| ≤ µ/4, (33)
|πSUV Y (s, u, v, y)− PSUV Y (s, u, v, y)| ≤ µ/2, (34)

|πSV Z(s, v, z)− PSV Z(s, v, z)| ≤ µ. (35)

The type-II error probability can then be bounded as

βn ≤ Pr
[
(Xn, Y n, Zn) ∈ ARx,n|H = 1

]
, (36)

where

ARx,n
∆
=
⋃
i,j,k

{
(xn, yn, zn) :

tp(sn(i), un(j|i), vn(k|i), xn, yn, zn) ∈ Pnµ
}
. (37)

We thus have

βn ≤
∑

πSUVXY Z∈Pnµ

∑
(i,j,k):

tp(sn(i),un(j|i),vn(k|i))
=πSUV∑

(xn,yn,zn):
tp(sn(i),un(j|i),vn(k|i),xn,yn,zn)

=πSUVXY Z

Pr[Xn = xn, Y n = yn, Zn = zn|H = 1]. (38)

Notice that for a triple (xn, yn, zn) of type πXY Z ,

Pr[Xn = xn, Y n = yn, Zn = zn|H = 1]

= 2−n(Hπ(X,Y,Z)+D(πXYZ ||QXYZ)). (39)

Moreover, by standard arguments, for any joint type
πSUVXY Z and any triple of sequences (sn, un, vn) of match-
ing subtype πSUV :∣∣{(xn, yn, zn) : tp(sn, un, vn, xn, yn, zn) = πSUVXY Z

}∣∣
≤ 2nHπ(X,Y,Z|S,U,V ). (40)

Also,

|Pnµ | ≤ |Pn| ≤ (n+ 1)|S|·|U|·|V|·|X |·|Y|·|Z|. (41)

Combining (38)–(41) with Property (25) in Lemma 1 yields
the following upper bound:

βn ≤(n+ 1)|S|·|U|·|V|·|X |·|Y|·|Z|

× max
πUSVXY Z∈Pnµ

[
2n(Rs+Ru+Rv−Iπ(U ;V |S)+µ)

· 2nHπ(X,Y,Z|S,U,V )



· 2−n(Hπ(XY Z)+D(πXYZ ||QXYZ))
]
. (42)

Plugging the rate expressions (17)–(19) into (42), and simpli-
fying, result in the following upper bound:

βn ≤ (n+ 1)|S|·|U|·|V|·|X |·|Y|·|Z| · 2−nθµ , (43)

where

θµ
∆
= min
πUSVXY Z∈Pnµ

[
Hπ(XY Z) +D(πXY Z ||QXY Z)

−Hπ(XY Z|SUV ) + Iπ(U ;V |S)
]

− I(X;SU)− I(Y U ;V |S). (44)

Now we let n → ∞ and µ → 0. By continuity properties of
the relative entropy and some simple manipulations, we obtain
that − 1

n log βn tends to

θ = min
P̃SUVXY Z :
P̃SUX=PSUX
P̃SV UY =PSV UY
P̃SV Z=PSV Z

D(P̃SUVXY Z ||PSU |XPV |SUYQXY Z).

(45)

Similar steps can be used also to analyze the probability of
type-I and type-II errors at the relay.

C. Optimality Results on Exponent Region

The achievable exponent region of Theorem 1 is optimal in
some special cases. We discuss three of them in the following.
For the first special case, consider a setup where the pmfs
PXY Z and QXY Z decompose as

PXY Z = PX · PY |X · PZ|Y , (46)
QXY Z = PX · PY · PZ , (47)

and where Y n can be losslessly described to the receiver:

T ≥ H(Y ). (48)

Proposition 1: If (46)–(48) hold, then the exponent region
E(R, T ) is the set of all nonnegative pairs (η, θ) that satisfy

η ≤ I(U ;Y ), (49)
θ ≤ I(U ;Y ) + I(Y ;Z), (50)

for some auxiliary random variable U satisfying the Markov
chain U → X → (Y, Z) and the rate constraint

R ≥ I(U ;X). (51)

Proof: Achievability follows by specializing Theorem 1
to S = U and V = Y . For the converse, see [12].

Next consider a setup where (48) holds and

PXY Z = PXZ · PY |Z , (52)
QXY Z = PXZ · PY . (53)

Proposition 2: If (48), (52), and (53) hold, then E(R, T ) is
the set of all nonnegative pairs (η, θ) satisfying

η ≤ I(U ;Y ), (54)
θ ≤ I(Y ;Z), (55)

M1

M2

Fig. 2. Hypothesis testing over a parallel cascade network.

for some auxiliary random variable U that satisfies the Markov
chain U → X → (Y,Z) and the rate constraint

R ≥ I(U ;X). (56)

Proof: Achievability follows again by specializing The-
orem 1 to S = U and V = Y . For the converse, see [12].

Our third special case is where

PXY Z = PX · PZ|X · PY |Z , (57)
QXY Z = PX · PY Z , (58)

T ≥ R. (59)

Proposition 3: Assuming (57)–(59), the exponent region
E(R, T ) is given by the set of all nonnegative pairs (η, θ)
such that

η ≤ I(S;Y ), (60)
θ ≤ I(S;Z), (61)

for some auxiliary random variable S satisfying S → X →
(Y,Z) such that

R ≥ I(S;X). (62)

Proof: For achievability, let S = U = V in Theorem 1.
For the converse, see [12].

Remark 1: In achieving Propositions 1 and 2, the transmit-
ter’s message is only used by the relay to produce its guess
on H, and the relay’s optimal encoding strategy is to inform
the receiver its own guess and describe Y n. For Proposition 3,
the relay does the opposite: it simply forwards the message
from the transmitter to the receiver. Both schemes are special
cases of the more general scheme used in Theorem 1.

III. HYPOTHESIS TESTING OVER A PARALLEL CASCADE
NETWORK

Consider the two-transmitter, two-relay setup in Fig. 2.
The observations at Transmitters 1 and 2, Relays 1 and 2,
and the receiver are, respectively, Xn

1
∆
= (X1,1, . . . , X1,n),

Xn
2

∆
= (X2,1, . . . , X2,n), Y n1

∆
= (Y1,1, . . . , Y1,n), Y n2

∆
=

(Y2,1, . . . , Y2,n), and Zn
∆
= (Z1, . . . , Zn). Depending on the

value of the hypothesis H, the tuple (Xn
1 , X

n
2 , Y

n
1 , Y

n
2 , Z

n)
is i.i.d. according to one of the following two distributions:

under H = 0: PX1X2Y1Y2Z , (63)



under H = 1: QX1X2Y1Y2Z . (64)

Transmitter i, i ∈ {1, 2}, can communicate with its cor-
responding Relay i over a noise-free bit pipe of rate Ri,
and Relay i in turn can communicate with the final receiver
over a noise-free bit pipe of rate Ti. Encoding and detection
functions, and probabilities of type-I and type-II errors are
defined in a similar way as for the single cascade channel in
Section II. Let η1 and η2 denote the type-II error exponents
at Relays 1 and 2, respectively, and θ that at the receiver.
As in Section II, our interest is in identifying the set of all
achievable exponent triples (η1, η2, θ) under the condition that
the type-I error probabilities at all three terminals must vanish
as the observation length tends to infinity. The exponent region
Epar-2(R1, R2, T1, T2) for this setup is defined analogously as
in Definition 2.

Theorem 2: The exponent region Epar-2(R1, R2, T1, T2) in-
cludes all nonnegative triples (η1, η2, θ) such that

ηi ≤ min
P̃SiUiXiYi :

P̃SiUiXi=PSiUiXi
P̃SiUiYi=PSiUiYi

D(P̃SiUiXiYi ||PSiUi|XiQXiYi),

i ∈ {1, 2} (65)
θ ≤ min

P̃S1U1V1S2U2V2X1Y1X2Y2Z
:

P̃SiUiXi=PSiUiXi
P̃SiViUiYi=PSiViUiYi

P̃S1S2V1V2Z=PS1S2V1V2Z

D(P̃S1U1V1S2U2V2X1Y1X2Y2Z ||
PS1U1|X1

PS2U2|X2
PV1|S1U1Y1

PV2|S2U2Y2
QX1X2Y1Y2Z)

(66)

for some auxiliary random variables (S1, S2, U1, U2, V1, V2)
satisfying, for i ∈ {1, 2}, the Markov chains (Ui, Si)→ Xi →
(Yi, Z) and Vi → (Si, Yi)→ Z and the rate constraints

Ri ≥ I(Ui, Si;Xi), (67)
Ti ≥ I(Xi;Si) + I(Vi;Yi, Ui|Si). (68)

Proof: See [12].
Remark 2: The main challenge in the analysis of the

exponent region Epar-2(R1, R2, T1, T2) is to bound the number
of codewords with a same joint type, similarly to prop-
erty 3) in Lemma 1. Without this step, the error exponent
in (66) is reduced by IP̃ (U1;V1|S1) + IP̃ (U2;V2|S2) +
IP̃ (S1, U1, V1;S2, U2, V2).

Consider the special case where the pmfs PX1X2Y1Y2Z and
QX1X2Y1Y2Z decompose as

PX1X2Y1Y2Z = PX1|Y1
· PX2|Y2

· PY1Y2
· PZ|Y1Y2

, (69)
QX1X2Y1Y2Z = PX1

· PX2
· PY1Y2

· PZ , (70)

and where (Y n1 , Y
n
2 ) can be described losslessly to the re-

ceiver:

T1 ≥ H(Y1), (71)
T2 ≥ H(Y2). (72)

Proposition 4: If (69)–(72) hold, then the exponent region
Epar-2(R1, R2, T1, T2) is given by the set of all nonnegative
triples (η1, η2, θ) such that

ηi ≤ I(Ui;Yi), i ∈ {1, 2}, (73)
θ ≤ I(U1;Y1) + I(U2;Y2) + I(Y1, Y2;Z) (74)

for some auxiliary random variables (U1, U2) satisfying, for
i ∈ {1, 2}, the Markov chains Ui → Xi → (Yi, Z) and the
rate constraints

Ri ≥ I(Ui;Xi). (75)

Proof: For achievability, let Ui = Si and Vi = Yi for
i = 1, 2 in Theorem 2. For the converse, see [12].

IV. CONCLUDING REMARKS

This paper extends Hans distributed hypothesis testing
scheme to two cascade scenarios with relay terminals that also
perform the hypothesis testing. Key components of the new
schemes are cascade source-coding techniques and a decision-
forwarding strategy where the final receiver only decides on
the null-hypothesis if all terminals also have taken this deci-
sion. The schemes attain the optimal type-II error exponent for
some special cases of testing against independence. Examples
are provided where this optimal type-II error exponent is
achieved when the cascade source-code reduces to a simple
forwarding strategy at the really or when it reduces to having
the relay sending only local data to the receiver. An extension
of the proposed coding scheme to include binning can be found
in [12].
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