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Abstract

This paper studies binary hypothesis testing with a single sensor that communicates with two decision centers over a
memoryless broadcast channel. The main focus lies on the tradeoff between the two type-II error exponents achievable at the two
decision centers. In our proposed scheme, we can partially mitigate this tradeoff when the transmitter has a probability larger
than 1/2 to distinguish the alternate hypotheses at the decision centers, i.e., the hypotheses under which the decision centers wish
to maximize their error exponents. In the case where these hypotheses cannot be distinguished at the transmitter (because both
decision centers have same alternative hypothesis or because the transmitter’s observations have same marginal distribution under
both hypotheses) our scheme shows an important tradeoff between the two exponents. The results in this paper thus reinforce the
previous conclusions drawn for a setup where communication is over a common noiseless link. Compared to such a noiseless
scenario, here however we observe that even when the transmitter can distinguish the two hypotheses, a small exponent-tradeoff
can persist, simply because the noise in the channel prevents the transmitter to perfectly describe its guess of the hypothesis to
the two decision centers.

I. INTRODUCTION

In Internet of Things (IoT) networks, data is collected at sensors and transmitted over a wireless channel to remote decision
centers, which decide on one or multiple hypotheses based on the collected information. In this paper, we study simple binary
hypothesis testing with a single sensor but two decision centers. The results can be combined with previous studies focusing
on multiple sensors and a single decision center to tackle the practically relevant case of multiple sensors and multiple decision
centers. In this paper, we consider a single sensor for simplicity and because our main focus is on studying the tradeoff between
the performances at the two decision centers. A main theme in our work is that the single sensor has to send information
over the channel that can be used by both decision centers. A simple, but highly suboptimal approach would be to time-share
communication and serve each of the two decision center only during a part of the transmission. As we will see, better schemes
are possible, and in some cases it is even possible to serve each of the two decision centers as if the other center was not
present in the system.

In this paper, we follow the information-theoretic framework introduced by [1], [2]. That means, each terminal observes
a memoryless sequence and depending on the underlying hypothesis H ∈ {0, 1}. All sequences follow one of two possible
joint distributions, which are known to all involved terminals. A priori, the transmitter however ignores the correct hypothesis
and has to compute its transmit signal as a function of the observed source symbols only. Decision centers observe outputs
of the channel, and combined with their local observations they have to make a decision on whether H = 0 or H = 1. The
performance of the decision center is measured by its type-II error error exponent, i.e., the expontial decay in the length of
the observations of the probability of deciding on H = 0 when the true hypothesis is H = 1. As a constraint on the decision
center, we impose that the type-I error probability, i.e., the probability of deciding H = 1 when the true hypothesis is H = 0,
vanishes (at any desired speed) with increasing observation lengths. The motivation for studying such asymmetric requirements
on the two error probabilities stems for example from alert systems, where the miss-detection event is much more harmful than
the false-alarm event, and as a consequence in our systems we require the miss-detection probability to decay much faster
than the false-alarm probability.

This problem statement has first been considered for the setup with a single sensor and a single decision center when
communication is over a noiseless link of given capacity [1], [2]. For this canonical problem, the optimal error exponent has
been identified in the special cases of testing against independence [1] and testing against conditional independence [3], [4].
The scheme proposed by Shimokawa-Han-Amari in [3], [4] yields an achievable error exponent for all distributed hypothesis
testing problems (not only testing against conditional independence) [3], [4], but it might not be optimal in general [5]. The
Shimokawa-Han-Amari (SHA) scheme has been extended to various more involved setups such as noiseless networks with
multiple sensors and a single decision center [2], [6], [7]; networks where the sensor and the decision center can communicate
interactively [8], [9]; multi-hop networks [10], and networks with multiple decision centers [10]–[13].

The works most closely related to the current paper are [10], [12], [13] and [14], [15]. Specifically, [10], [12], [13] consider
a single-sensor multi-detector system where communication is over a common noiseless link from the sensor to all decision
centers. Focusing on two decision centers, two scenarios can encountered here: 1) the two decision centers have same null and
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alternate hypotheses and as consequence both aim at maximizing the error exponent under the same hypothesis H; or 2) the
two decision centers have opposite null and alternate hypotheses and thus one decision center wishes to maximize the error
exponent under hypothesis H = 0 and the other under hypothesis H = 1. The second scenario is motivated by applications
where the decision centers have different goals. Hypothesis testing for scenario 1) was studied in [10], [12], [13] and the results
showed a tradeoff between the exponents achieved at the two decision centers. Intuitively, the tradeoff comes from the fact that
communication from the sensor is serving both decision centers at the same time. Scenario 2) was considered in [12], [13].
In this case, a tradeoff only occurs when the sensor’s observation alone provides no advantage in guessing the hypothesis.
Otherwise, a tradeoff-free exponents region can be achieved by the following simple scheme: The sensor takes a tentative guess
on the hypothesis based only on its local observations. It communicates this tentative guess to both decision centers using a
single bit and then dedicates the rest of the communication using a dedicated SHA scheme only to the decision center that
wishes to maximize the error exponent under the hypothesis that does not correspond to its guess. The other decision center
simply keeps the transmitter’s tentative guess and ignores the rest of the communication.

In this paper, we extend these previous works to memoryless broadcast channels (BC). Hypothesis testing over BCs
was already considered in [10], however only for above scenario 1 and in the special case of testing against conditional
independence, in which case the derived error exponents were proved to be optimal. Interestingly, when testing against
conditional independence over noisy channels, only the capacity of the channel matters but not the properties, see [14],
[15]. General hypothesis testing over noisy channels is much more challenging and requires additional tools, such as joint
source-channel coding and unequal error protection (UEP) coding [16]. The latter can in particular be used to specially
protect the communication of the sensor’s tentative guess, which allows to avoid a degradation of the performance of classical
hypothesis testing schemes.

We present general distributed hypothesis testing schemes over memoryless BCs, and we analyze the performances of these
schemes with a special focus on the tradeoff in exponents they achieve for the two decision centers. We propose two different
schemes, depending on whether the sensor can distinguish with error probability 6= 1/2 the two null hypotheses at the two
decision centers. If a distinction is possible (because the decision centers have different null hypothesis and the sensor’s
observations follow different marginal distributions under the two hypotheses), then we employ a similar scheme as proposed
in [12], [13] over a common noiseless link, but where the SHA scheme is replaced by the UEP-based scheme for DMCs in
[14]. That means, the sensor makes a tentative guess about the hypothesis and conveys this guess to both decision centers
using an UEP mechanism. Moreover, the joint source-channel coding scheme in [14] with dedicated codebooks is used to
communicate to the decision center that aims to maximize the error exponent under the hypothesis that does not correspond
to the sensor’s tentative guess. This scheme shows no tradeoff between the exponents achieved at the two decision centers in
various interesting cases. Sometimes however a tradeoff arises because even under UEP the specially protected messages can
be in error and because the decision centers can confuse the codwords of the two different sets of codebooks. For the case
where the sensor cannot reasonably distinguish the alternate hypotheses at the two decision centers (because both decision
centers have same alterate hypotheses or the sensor’s observations have same marginal observations under both hypotheses)
we present a scheme similar to [10] but again including UEP. In this scheme, a tradeoff between the exponents achieved at
the two decision centers naturally arises and mostly stems from the inherent tradeoff in distributed lossy compression systems
with multiple decoders having different side-informations.

A. Notation

We mostly follow the notation in [17]. Random variables are denoted by capital letters, e.g., X, Y, and their realizations
by lower-case letters, e.g., x, y. Script symbols such as X and Y stand for alphabets of random variables, and Xn and Yn
for the corresponding n-fold Cartesian products. Sequences of random variables (Xi, ..., Xj) and realizations (xi, . . . , xj) are
abbreviated by Xj

i and xji . When i = 1, then we also use Xj and xj instead of Xj
1 and xj1.

We write the probability mass function (pmf) of a discrete random variable X as PX ; to indicate the pmf under hypothesis
H = 1, we also use QX . The conditional pmf of X given Y is written as PX|Y , or as QX|Y when H = 1. The term D(P‖Q)
stands for the Kullback-Leibler (KL) divergence between two pmfs P and Q over the same alphabet. We use tp(an, bn) to
denote the joint type of the pair of sequences (an, bn), and cond tp(an|bn) for the conditional type of an given bn. For a
joint type πABC over alphabet A × B × C, we denote by IπABC (A;B|C) the mutual information assuming that the random
triple (A,B,C) has pmf πABC ; similarly for the entropy HπABC (A) and the conditional entropy HπABC (A|B). Sometimes
we abbreviate πABC by π. Also, when πABC has been defined and is clear from the context, we write πA or πAB for the
corresponding subtypes. When the type πABC coincides with the actual pmf of a triple (A,B,C), we omit the subscript and
simply write H(A), H(A|B), and I(A;B|C).

For a given PX and a constant µ > 0, let T nµ (PX) be the set of µ-typical sequences in Xn as defined in [8, Sec. 2.4].
Similarly, T nµ (PXY ) stands for the set of jointly µ-typical sequences. The expectation operator is written as E[·]. We abbreviate
independent and identically distributed by i.i.d.. The log function is taken with base 2. Finally, in our justifications, we use
(DP) and (CR) for “data processing inequality” and “chain rule”.
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II. SYSTEM MODEL

Consider the distributed hypothesis testing problem in Fig. 1, where a transmitter observes sequence Xn, Receiver 1 sequence
Y n1 , and Receiver 2 sequence Y n2 . Under the null hypothesis:

H = 0: (Xn, Y n1 , Y
n
2 ) i.i.d. ∼ PXY1Y2

, (1)

and under the alternative hypothesis:

H = 1: (Xn, Y n1 , Y
n
2 ) i.i.d. ∼ QXY1Y2

, (2)

for two given pmfs PXY1Y2
and QXY1Y2

. The transmitter can communicate with the receivers over n uses of a discrete
memoryless broadcast channel (W,V1 × V2, PV1V2|W ) where W denotes the finite channel input alphabet and V1 and V2 the
finite channel output alphabets. Specifically, the transmitter feeds inputs

Wn = f (n)(Xn), (3)

to the channel, where f (n) denotes the chosen (possibly stochastic) encoding function

f (n) : Xn →Wn. (4)

Each Receiver i ∈ {1, 2} observes the BC ouputs V ni , where for a given input Wt = wt,

(V1,t, V2,t) ∼ ΓV1V2|W (·, ·|wt), t ∈ {1, . . . , n}. (5)

Based on the sequence of channel outputs V ni and the source sequence Y ni , Receiver i decides on the hypothesis H. That
means, it produces the guess

Ĥi = g(n)(V ni , Y
n
i ), (6)

for a chosen decoding function
g

(n)
i : Vni × Yni → {0, 1}. (7)

There are different possible scenarios regarding the requirements on error probabilities. We assume that each receiver is
interested in only one of the two exponents. For each i ∈ {1, 2}, let hi ∈ {0, 1} be the hypothesis whose error exponent
Receiver i wishes to maximize, and h̄i the other hypothesis, i.e., h̄i ∈ {0, 1} and hi 6= h̄i. (The values of h1 and h2 are fixed
and part of the problem statement.) We then have:

Definition 1: An exponent pair (θ1, θ2) is said achievable over a BC, if for each ε1, ε2 ∈ (0, 1) and sufficiently large
blocklengths n, there exist encoding and decoding functions (f (n), g

(n)
1 , g

(n)
2 ) such that:

α1,n
∆
= Pr[Ĥ1 = h1|H = h̄1], α2,n

∆
= Pr[Ĥ2 = h2|H = h̄2], (8)

β1,n
∆
= Pr[Ĥ1 = h̄1|H = h1], β2,n

∆
= Pr[Ĥ2 = h̄2|H = h2], (9)

satisfy

αi,n ≤ εi, i ∈ {1, 2}, (10)

and

− lim
n→∞

1

n
log βi,n ≥ θi, i ∈ {1, 2}. (11)

Definition 2: The fundamental exponents region E is the set of all exponent pairs (θ1, θ2) that are achievable.

ΓV1V2|W

Fig. 1. Hypothesis testing over a noisy BC.
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Remark 1: Notice that both α1,n and β1,n depend on the BC law ΓV1V2|W only through the conditional marginal distribution
ΓV1|W . Similarly, α2,n and β2,n only depend on ΓV2|W . As a consequence, also the fundamental exponents region E depends
on the joint laws PXY1Y2 and QXY1Y2 only through their marginal laws PXY1 , PXY2 , QXY1 , and QXY2 .

Remark 2: As a consequence to the preceding Remark 1, when PX = QX one can restrict attention to a scenario where
both receivers aim at maximizing the error exponent under hypothesis H = 1, i.e., h1 = h2 = 1. In fact, under PX = QX the
fundamental exponents region E for arbitrary h1 and h2 coincides with the fundamental exponents region E for h′1 = 1 and
h′2 = 1 if one exchanges pmfs PXY1

and QXY1
in case h1 = 0 and one exchanges pmfs PXY2

and QXY2
in case h2 = 0.

To simplify notation in the sequel, we use the following shorthand notations for the pmfs PXY1Y2 and QXY1Y2 . For each
i ∈ {1, 2}:

if h̄i = 0 =⇒
(
piXY1Y2

:= PXY1Y2
and qiXY1Y2

:= QXY1Y2

)
(12a)

and
if h̄i = 1 =⇒

(
piXY1Y2

:= QXY1Y2
and qiXY1Y2

:= PXY1Y2

)
. (12b)

We propose two coding schemes yielding two different exponent regions, depending on the whether

∀x ∈ X : p1
X(x) = p2

X(x), (13)

or
∃x ∈ X : p1

X(x) 6= p2
X(x). (14)

Notice that (13) always holds when h1 = h2. In contrast, given (14), then obviously h1 6= h2.

III. RESULTS ON EXPONENTS REGION

Before presenting our main results, we recall the achievable error exponent over a discrete memoryless channel reported in
[14, Theorem 1].

A. Achievable Exponent for Point-to-Point Channels

Consider a single-receiver setup with only Receiver 1 that wishes to maximize the error exponent under hypothesis h1 = 1.
For simplicity then, we drop the user index 1 and simply call the receiver’s source observation Y n and its channel outputs V n.

Theorem 1 (Theorem 1 in [14]): Any exponent θ satisfying the following condition is achievable:

θ ≤ max min{θstandard(PS|X), θdec(PS|X , PT , PW |T ), θmiss(PS|X , PT , PW |T )}, (15)

where the maximization is over pmfs PS|X , PT , and PW |T such that the joint law PSWVXY := PXY PS|XPTPW |TPV |W
satisfies

I(S;X|Y ) ≤ I(W ;V |T ), (16)

and where the exponents in (15) are defined as:

θstandard(PS|X) := min
P̃SXY :

P̃SX=PSX
P̃SY =PSY

D(P̃SXY ‖PS|XQXY ), (17)

θdec(PS|X , PT , PW |T ) := min
P̃SXY :

P̃SX=PSX
P̃Y =PY

HP (S|Y )≤HP̃ (S|Y )

D(P̃SXY ‖PS|XQXY )− I(S;X|Y ) + I(W ;V |T ), (18)

θmiss(PS|X , PT , PW |T ) := D(PY ‖QY ) + EPT
[
D
(
PV |T ‖ΓV |W=T

)]
− I(S;X|Y ) + I(W ;V |T ). (19)

Here, all mutual information terms are calculated with respect to the joint pmf PSWVXY defined above.

The exponent in Theorem 1 is obtained by the following scheme, also depicted in Figure 2. The transmitter attempts to
quantize the source sequence Xn using a random codebook consisting of codewords {Sn(m, `)}. If the quantization fails
because no codeword is jointly typical with the source sequence, then the transmitter applies the UEP mechanism in [16] by
sending an IID PT -sequence Tn over the channel. Otherwise it sends the codeword Wn(m) for m indicating the first index
of the Sn(m, `)-codeword that is jointly typical with its source observation Xn. The receiver jointly decodes the channel and
source codeword by verifying the existence of indices (m′, `′) such that Wn = Wn(m′) is jointly typical with its channel
outputs V n and there is no other codeword Sn(m′, ˜̀) with smaller conditional empirical entropy given Y n than Sn(m′, `′).
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Wn = Wn(m)

Wn = Tn

Dec. and Reconstruct Yes

No

Fig. 2. Coding and testing scheme for hypothesis testing over a DMC.

If the decoded codeword Sn(m′, `′) is jointly typical with the receiver’s observation Y n, then the it produces Ĥ = 0, and
otherwise Ĥ = 1.

The three competing type-II error exponents in Theorem 1 can be understood in view of this coding scheme as follows.
Exponent θstandard indicates the event that a random codeword Sn(m, `) is jointly typical with the transmitter’s observation Xn

and with the receiver’s observation Y n while being under H = 1. This is also the error exponent in Han’s scheme [2] over a
noise-less communication link and does not depend on the channel law ΓV |W . Exponent θdec is related to the joint decoding
which checks joint typicality of both the source codeword as well as of the channel codeword and applies a conditional
minimum entropy decoder. A similar error exponent is observed in the SHA scheme [3], [4] over a noiseless link if the
mutual information I(W ;V |T ) is replaced by the rate of the link. The third exponent θmiss finally indicates an event where the
transmitter sends Tn (so as to indicate the receiver to decide for Ĥ = 1) but the receiver detects a channel codeword Wn(m′)
and a corresponding source codeword Sn(m′, `′). This exponent is directly related to the channel transition law ΓV |W and not
only to the mutual information of the channel and does not occur when transmission is over a noiseless link.

We now explain our achievable exponents region, where we distinguish the two cases 1) h1 6= h2 and PX 6= QX ; and 2)
(h1 = h2) or PX = QX .

B. Achievable Exponents Region when h1 6= h2 and PX 6= QX

Theorem 2: If h1 6= h2 and PX 6= QX , i.e., (14) holds, then all error exponent pairs (θ1, θ2) satisfying the following
condition are achievable:

θi ≤ min{θstandard,i θdec,i, θcross,i, θmiss,i}, i ∈ {1, 2}, (20)

where the union is over pmfs piS|X , pT , piTi|T , and piW |Ti , for i ∈ {1, 2}, so that the joint pmfs p1, p2, q1, q2 defined through
(12) and

piSXY1Y2TTiWV1V2
:= piS|X · p

i
XY1Y2

· pT · piTi|T · p
i
W |TTi · ΓV1V2|W . (21)

satisfy constraints
Ipi(S;X|Yi) < Ipi(W ;Vi|T, Ti). (22)

and where the exponents in (20) are defined as:

θstandard,i := min
P̃SXYi :

P̃SX=piSX
P̃SYi=p

i
SYi

D(P̃SXYi‖piS|Xq
i
XYi), (23)

θdec,i := min
P̃SXYi :

P̃SX=piSX
P̃Yi=p

i
Yi

Hpi (S|Yi)≤HP̃ (S|Yi)

D(P̃SXYi‖piS|Xq
i
XYi)− Ipi(S;X|Yi) + Ipi(W ;Vi|T, Ti), (24)

θmiss,i := D(piYi‖q
i
Yi) + EpT

[
D
(
piVi|T ‖ΓVi|W=T

)]
− Ipi(S;X|Yi) + Ipi(W ;Vi|T, Ti), (25)

θcross,i := min
P̃SXYi :

P̃Yi=p
i
Yi

Hpi (S|Yi)≤HP̃ (S|Yi)

EqiXS
[
D
(
P̃Yi|XS‖q

i
Yi|X

)]
− Ipi(S;X|Yi) + Ipi(W ;Vi|T, Ti)
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+ min
P̃TTiW :

P̃TW=qiTW
P̃TTi=p

i
TTi

EP̃TiW
[
D(piVi|T,Ti‖ΓVi|W )

]
. (26)

Proof: See Section A.

In Theorem 2, the exponent triple θstandard,1, θdec,1, θmiss,1 can be optimized over the pmfs p1
S|X , p1

T1|T and p1
W |T1

and
independently thereof the exponent triple θstandard,2, θdec,2, θmiss,2 can be optimized over the pmfs p2

S|X , p2
T2|T and p2

W |T,T2
.

The pmf pT is common to both optimizations. However, whenever the exponents θcross,1 and θcross,2 are not active, Theorem 2
depends only on piS|X , piTi and piW |Ti , for i = 1, 2, and there is thus no tradeoff between the two exponents θ1 and θ2. In other
words, the same exponents θ1 and θ2 can be attained as in a system where the transmitter communicates over two individual
DMCs ΓV1|W and ΓV2|W to the two receivers, or equivalently each receiver achieves the same exponent as if the other receiver
was not present in the system.

The scheme achieving the exponents region in Theorem 2 is described in detail in Section IV and analyzed in Appendix A.
The main feature is that the sensor makes a tentative decision on H and conveys this decision to both receivers through its
choice of the codebooks and a special coded time-sharing sequence indicating this choice. The receiver that wishes to maximize
the error exponent corresponding to the hypothesis guessed at the sensor directly decides on this hypothesis. The other receiver
should compare its own observation to a quantized version of the source sequence observed at the sensor. The sensor uses the
quantization and binning scheme presented in [14] tailored to this latter receiver using either codebooks {Sn(1;m, `)} and
{Wn(1;m)} or codebooks {Sn(2;m, `)} and {Wn(2;m)}, respectively. The overall scheme is illustrated in Fig. 3.

Exponents θstandard,i, θdec,i, and θmiss,i have similar explanations have in the single-user case. Exponent θcross,i corresponds to
the event that the transmitter sends a codeword from {W (j;m)}, for j = 3− i, but Receiver i decides that a codeword from
{W (i;m)} was sent and a source codeword S(i;m, `) satisfies the minimum conditional entropy condition and the typicality
check with the observed source sequence Y ni . Notice that setting Ti a constant, decreases error exponent θcross,i.

For the special case where the BC consists of a common noiseless link, Theorem 2 has been proved in [12], [13]. (More
precisely, [12] considers the more general case with K ≥ 2 receivers and M ≥ K hypotheses.) In this case, the exponents
(θmiss,1, θcross,1) and (θmiss,2, θcross,2) are not active.

C. Achievable Exponents Region for h1 = h2 or PX = QX

Define for any pmfs PT , PSU1U2|XT and function

f : S × U1 × U2 ×X →W (27)

the joint pmfs

piSU1U2XY1Y1TV1V2
:= PSU1U2|XT · p

i
XY1Y2

· PT · ΓV1V2|SU1U2X , (28)

and

ΓV1V2|SU1U2X := ΓV1V2|W (v1, v2|f(s, u1, u2, x)), ∀s ∈ S, u1 ∈ U1, u2 ∈ U2, x ∈ X , (29)

V n
1

Y n
1Rx 1

Sn(1;m′, ℓ′)

Quantize 1
Decode and Reconstruct 1 Test 1

p1SX

Sn(1;m, ℓ)
Wn = Wn(1;m)

Decode and Reconstruct 2

Fail

Fail

p2SX
Wn = Wn(2;m)

Fig. 3. Coding and testing scheme for hypothesis testing over a BC.
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and for each i ∈ {1, 2} the four exponents

θstandard,i := min
P̃SUiXYiTVi :

P̃SUiXT=piSUiXT

P̃SUiYiTVi=p
i
SUiYiTVi

D
(
P̃SUiXYiTVi

∥∥∥piSUi|XqiXYiPTΓVi|SU1U2X

)
, (30)

θadec,i := min
P̃SUiXYiTVi :

P̃SUiXT=piSUiXT

P̃YiTVi=p
i
YiTVi

Hpi (S,Ui|Yi,T,Vi)≤HP̃ (S,Ui|Yi,T,Vi)

D
(
P̃SUiXYiTVi

∥∥∥piSUi|XqiXYiPTΓVi|SU1U2X

)
− Ipi(S,Ui;X|T ) + Ipi(S,Ui;Yi, Vi|T ),

(31)

θbdec,i := min
P̃SUiXYiTVi :

P̃SUiXT=piSUiXT

P̃SYiTVi=p
i
SYiTVi

Hpi (Ui|S,Yi,T,Vi)≤HP̃ (Ui|S,Yi,T,Vi)

D
(
P̃SUiXYiTVi

∥∥∥piSUi|XqiXYiPTΓVi|SU1U2X

)
− Ipi(Ui;X|S, T ) + Ipi(Ui;Yi, Vi|S, T ),

(32)

θmiss,i := EPT
[
D
(
piYiVi|T

∥∥∥qiYiΓVi|W=T

)]
− Ipi(S,Ui;X|T ) + Ipi(S,Ui;Yi, Vi|T ). (33)

.
Theorem 3: If h1 = h2 or PX = QX , i.e., (13) holds, then the union of all nonnegative error exponent pairs (θ1, θ2)

satisfying the following conditions are achievable:

θi ≤ min
{
θstandard,i, θ

a
dec,i, θ

b
dec,i, θmiss,i

}
, i ∈ {1, 2}, (34a)

θ1 + θ2 ≤ min
{
θstandard,1 + θstandard,2, θstandard,1 + θadec,2, θstandard,1 + θbdec,2,

θstandard,2 + θadec,1, θstandard,2 + θbdec,1, θmiss,1 + θmiss,2

}
− Ip1(U1;U2|S, T ), (34b)

θ1 + θ2 ≤ min
{
θadec,1, θ

b
dec,1

}
+ min

{
θadec,2, θ

b
dec,2

}
− 2Ip1(U1;U2|S, T ), (34c)

where the union is over pmfs PT , PSU1U2|XT and functions f as in (27) so that the pmfs (28) and (29) satisfy for i ∈ {1, 2}:

Ipi(S,Ui;X|T ) ≤ Ipi(S,Ui;Yi, Vi|T ), (35a)
Ipi(Ui;X|S, T ) ≤ Ipi(Ui;Yi, Vi|S, T ), (35b)

Ip1(S,U1;X|T ) + Ip1(S,U2;X|T ) + Ip1(U1;U2|S, T ) ≤ Ip1(S,U1;Y1, V1|T ) + Ip2(S,U2;Y2, V2|T ), (35c)
Ip1(U1;X|S, T ) + Ip1(U2;X|S, T ) + Ip1(U1;U2|S, T ) ≤ Ip1(U1;Y1, V1|S, T ) + Ip2(U2;Y2, V2|S, T ), (35d)
Ip1(U1;X|S, T ) + Ip1(S,U2;X|T ) + Ip1(U1;U2|S, T ) ≤ Ip1(U1;Y1, V1|S, T ) + Ip2(S,U2;Y2, V2|T ), (35e)
Ip1(S,U1;X|T ) + Ip1(U2;X|S, T ) + Ip1(U1;U2|S, T ) ≤ Ip1(S,U1;Y1, V1|T ) + Ip2(U2;Y2, V2|S, T ), (35f)

Proof: The coding and testing scheme achieving these exponents is described in Section V. The analysis of the scheme
is similar to the proof of [14, Theorem 4] and omitted for brevity. In particular, error exponent θstandard,i corresponds to the
event that Receiver i decodes the correct cloud and satellite codewords but wrongly decides on Ĥi = 0. In contrast, error
exponents θadec,i and θbdec,i correspond to the events that Receiver i wrongly decides on Ĥi = 0 after wrongly decoding both the
cloud center and the satellite or only the satellite. Error exponent θmiss,i corresponds to the miss-detection event. Because of
the implicit rate-constraints in (49), the final constraints in (34) are obtained by eliminating the rates R0, R1, R2 by means of
Fourier-Motzkin elimination. Notice that in constraint (34c) the mutual information Ip1(U1;U2|S, T ) is multiplied by a factor
2 whereas in (34c) it appears without a factor. The reason is that the error analysis includes union bounds over the codewords
in a bin and when wrongly decoding the satellite codewords (which is the case of exponents θadec,i and θbdec,i) then the union
bound is over pairs of codewords whereas under correct decoding it is over single codewords. In the former case we have the
factor 22nR′

i in the error probability and in the latter case the factor 2nR
′
i . The auxiliary rates R′1 and R′2 are then eliminated

using the Fourier-Motzkin elimination algorithm.

For each i ∈ {1, 2}, exponents θstandard,i, θ
a
dec,i, θ

b
dec,i, and θmiss,i have the same form as the three exponents in [14, Theorem

1] for the DMC. There is however a tradeoff between the two exponents θ1 and θ2 in above theorem because they share the
same choice of the auxiliary pmfs PT and PSU1U2|XT and the function f . In [10], the above setup is studied in the special
case of testing against conditional independence, and the mentioned tradeoff is illustrated through a Gaussian example. It is
further proved that in some special cases, above theorem yields the optimal exponent.
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IV. CODING AND TESTING SCHEME WHEN p1
X 6= p2

X

Fix µ > 0, a sufficiently large blocklength n, auxiliary distributions pT , p1
T1|T and p2

T2|T over W , conditional channel input
distributions p1

W |TT1
and p2

W |TT2
, and conditional pmfs p1

S|X and p2
S|X over a finite auxiliary alphabet S such that for each

i ∈ {1, 2}:
Ipi(S;X|Yi) < Ipi(W ;Vi|T, Ti). (36)

The mutual information in (22) is calculated according to the joint distribution:

piSXY1Y2TTiWV1V2
= piS|X · p

i
XY1Y2

· pT · piTi|T · p
i
W |TTi · ΓV1V2|W . (37)

For each i ∈ {1, 2}, if Ipi(S;X) < Ipi(W ;Vi|T, Ti), choose rates

Ri := Ipi(S;X) + µ, (38)
R′i := 0. (39)

If Ipi(S;X) ≥ Ipi(W ;Vi|T, Ti), then choose rates

Ri := Ipi(W ;Vi|T, Ti)− µ, (40)
R′i := Ipi(S;X)− Ipi(W ;Vi|T, Ti) + 2µ. (41)

Again, all mutual informations in (38)–(41) are calculated with respect to the pmf in (37).
Code Construction: Generate a sequence Tn = (T1, . . . , Tn) by independently drawing each component Tk according to

pT . For each i ∈ {1, 2}, generate a sequence Tni = (Ti,1, . . . , Ti,n) by independently drawing each Ti,k according to piTi|T (.|t)
when Tk = t. Also, construct a random codebook

CiW =
{
Wn(i;m) : m ∈ {1, ..., b2nRic}

}
(42)

superpositioned on (Tn, Tni ) where the k-th symbol Wk(i;m) of codeword Wn(i;m) is drawn independently of all codeword
symbols according to piW |TTi(·|t, ti) when Tk = t and Ti,k = ti. Finally, construct a random codebook

CiS = {Sn(i;m, `) : m ∈ {1, . . . , b2nRic}, ` ∈ {1, . . . , b2nR
′
ic}}, i ∈ {1, 2}, (43)

by independently drawing the k-th component Sk(i;m, `) of codeword Sn(i;m, `) according to the marginal pmf piS .
Reveal all codebooks and the realizations tn, tn1 , t

n
2 of the sequences Tn, Tn1 , T

n
2 to all terminals.

Transmitter: Given source sequence Xn = xn, the transmitter looks for indices (i,m, `) ∈ {1, 2} × {1, . . . , b2nR1c} ×
{1, . . . , b2nR′

ic} such that codeword sn(i;m, `) from codebook CiS satisfies

(sn(i;m, `), xn) ∈ T nµ/2(piSX), (44)

and the corresponding codeword wn(i;m) from codebook CiW satisfies the following:

(tn, tni , w
n(i;m)) ∈ T nµ/2(piTTiW ). (45)

(Notice that when µ is sufficiently small, then Condition (44) can be satisfied for at most one value i ∈ {1, 2}, because
p1
X 6= p2

X .) If successful, the transmitter picks uniformly at random one of the triples (i,m, `) that satisfy (44), and it sends
the sequence wn(i;m) over the channel. If no triple satisfies Conditions (44) and (45), then the transmitter sends the sequence
tn over the channel.

Receiver i ∈ {1, 2}: Receives vni and checks whether there exist indices (m′, `′) such that the following three conditions
are satisfied:

1)

(tn, tni , w
n(i;m′), vni ) ∈ T nµ (piTTiWVi), (46)

2)

Htp(sn(i;m′,`′),yni )(S|Yi) = min
˜̀
Htp(sn(i;m′,˜̀),yni )(S|Yi), (47)

3)

(sn(i;m′, `′), yni ) ∈ T nµ (piSYi). (48)

If successful, it declares Ĥi = h̄i. Otherwise, it declares Ĥi = hi.
Analysis: See Appendix A.
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V. CODING AND TESTING SCHEME WHEN p1
X = p2

X

In this case, the scheme is based on hybrid source-channel coding. Choose a large positive integer n, auxiliary alphabets S,
U1, and U2, and a function f as in (27). Choose an auxiliary distribution PT overW , and a conditional distribution PSU1U2|XT
over S ×U1×U2 so that for i ∈ {1, 2} inequalities (35) are satisfied with strict inequality. Then, choose a positive µ and rates
R0, R1, R2 so that

R0 = Ip1(S;X|T ) + µ, (49a)
Ri > Ip1(Ui;X|S, T ), i ∈ {1, 2}, (49b)

R1 +R2 > Ip1(U1;X|S, T ) + Ip1(U2;X|S, T ) + Ip1(U1;U2|S, T ), (49c)

and

R0 +Ri ≤ Ipi(S,Ui;Yi, Vi|T ), (49d)
Ri ≤ Ipi(Ui;Yi, Vi|S, T ). (49e)

Generate a sequence Tn i.i.d. according to PT and construct a random codebook

CS =
{
Sn(m0) : m0 ∈ {1, ..., b2nR0c}

}
superpositioned on Tn where each codeword is drawn independently according to p1

S|T conditioned on Tn. Then, for each
index m0 and i ∈ {1, 2}, randomly generate a codebook

CUi(m0) =
{
Uni (m0,mi) : mi ∈ {1, ..., b2nRic}

}
superpositioned on (Tn, Sn(m0)) by drawing each entry of the n-length codeword Uni (m0,mi) i.i.d. according to the
conditional pmf p1

Ui|ST (.|Sk(m0), T ) where Sk(m0) denotes the k-th symbol of Sn(m0). Reveal the realizations of the
codebooks and the sequence Tn to all terminals.
Transmitter: Given that it observes the source sequence Xn = xn, the transmitter looks for indices (m0,m1,m2) that satisfy

(sn(m0), un1 (m0,m1), un2 (m0,m2), xn, tn) ∈ T nµ/2
(
p1
SU1U2XT

)
. (50)

If successful, it picks one of these indices uniformly at random and sends the codeword wn over the channel, where

wk = f (sk(m0), u1,k(m0,m1), u2,k(m0,m2), xk) , k ∈ {1, . . . , n}, (51)

and where (sk(m0), u1,k(m0,m1), u2,k(m0,m2)) denote the k-th components of codewords (sn(m0), un1 (m0,m1), un2 (m0,
m2)). Otherwise, it sends the sequence of inputs tn over the channel.
Receiver i ∈ {1, 2}: After observing V ni = vni and Y ni = yni , Receiver i ∈ {1, 2} looks for indices m′0 ∈ {1, . . . , b2nR0c} and
m′i ∈ {1, . . . , b2nRic} that satisfy the following conditions:

1)

(sn(m′0), uni (m′0,m
′
i), y

n
i , t

n, vni ) ∈ T nµ (piSUiYiTVi). (52)

2)

Htp(sn(m′
0),uni (m′

0,m
′
i),y

n
i ,t

n,vni )(S,Ui|Yi, T, Vi) = min
m̃0,m̃i

Htp(sn(m̃0),uni (m̃0,m̃i),yni ,t
n,vni )(S,Ui|Yi, T, Vi), (53)

If successful, Receiver i declares Ĥi = h̄i. Otherwise, it declares Ĥi = hi.
Analysis: Similar to [14, Appendix D] and omitted.

VI. SUMMARY AND CONCLUSIONS

The paper studies general distributed hypothesis testing over memoryless broadcast channels. A similar phenomenon is
observed as for setups with common noisefree communication links from the sensor to all decision centers: while a tradeoff
arises when the transmitter cannot distinguish the alternative hypotheses at the two decision centers, such a tradeoff can almost
completely be mitigated when such a distinction is possible. In contrast to the noise-free link scenario, under a noisy broadcast
channel model, a tradeoff can still arise because receivers can confuse to whom the communication is dedicated. In this paper,
we proposed and analyzed general distributed hypothesis testing schemes both for the case where the sensor can distinguish
the two null hypotheses and where it cannot not. Our general schemes recover all previously studied special cases.

Interesting directions for future research include information-theoretic converse results and extensions to multiple sensors or
more than two decision centers.
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APPENDIX A
PROOF OF THEOREM 2

The proof is based on the scheme of Section IV. Fix a choice of blocklength n, the small positive µ and the (conditional)
pmfs pT , p1

T1|T , p2
T2|T , p1

W |TT1
, p2

W |TT2
, p1

S|X and p2
S|X so that (22) holds. Assume that Ip1(S;X) ≥ Ip1(W ;V1|T, T1) and

Ip2(S;X) ≥ Ip2(W ;V2|T, T2) in which case R1, R2, R
′
1, R

′
2 are given by (40) and (41). Also, set for convenience of notation:

piS′(s) = piS(s), ∀s ∈ S, (54)
piW ′|TTi(w|t, ti) = piW |TTi(w|t, ti), ∀t, ti, w ∈ W. (55)

The analysis of type-I error probability is similar as in [14, Appendix A]. The main novelty is that because p1
X(x) 6= p2

X(x)
for some x ∈ X , for sufficiently small values of µ > 0, the source sequence cannot lie in both Tµ/2(p1

X) and Tµ/2(p2
X). Details

are omitted.
Consider the type-II error probability at Receiver 1 averaged over all random codebooks. Define the following events for

i ∈ {1, 2}:

ETx,i(m, `) : {(Sn(i;m, `), Xn) ∈ T nµ/2(piSX), (Tn, Tni ,W
n(i;m)) ∈ T nµ/2(piTTiW ), Wn(i;m)) is sent}, (56)

ERx,i(m
′, `′) : {(Sn(i;m′, `′), Y n) ∈ T nµ (piSYi), (Tn, Tni ,W

n(i;m′), V ni ) ∈ T nµ (piTTiWVi),

Htp(Sn(i;m′,`′),Y n1 )(S|Yi) = min
l̃
Htp(Sn(i;m′,˜̀),Y ni )(S|Yi)}. (57)

Notice that

EC [β1,n] = Pr[Ĥ1 = 0|H = h1] ≤ Pr

 ⋃
m′,`′

ERx,1(m′, `′)

∣∣∣∣∣H = h1

 . (58)

Above probability is upper bounded as:

Pr

 ⋃
m′,`′

ERx,1(m′, `′)
∣∣H = h1

 ≤ Pr

 ⋃
m′,`′

ERx,1(m′, `′)

 ∩
⋃
m,`

ETx,1(m, `)

∣∣∣∣∣H = h1


+ Pr

 ⋃
m′,`′

ERx,1(m′, `′)

 ∩
⋂
m,`

EcTx,1(m, `)

 ∩
⋃
m,`

ETx,2(m, `)

∣∣∣∣∣H = h1


+ Pr

 ⋃
m′,`′

ERx,1(m′, `′)

 ∩
⋂
m,`

EcTx,1(m, `)

 ∩
⋂
m,`

EcTx,2(m, `)

∣∣∣∣∣H = h1

 . (59)

The sum of above probabilities can be upper bounded by the sum of the probabilities of the following events:

B1 : {∃(m, `) s.t. (ETx,1(m, `) and ERx,1(m, `))} , (60)
B2 : {∃(m, `, `′) with ` 6= `′ s.t. (ETx,1(m, `) and ERx,1(m, `′))} , (61)
B3 : {∃(m,m′, `, `′) with ` 6= `′ and m 6= m′ s.t. (ETx,1(m, `) and ERx,1(m′, `′))} , (62)
B4 :

{
∀(m, `) EcTx,1(m, `)

}
∩ {∃(m,m′, `, `′) s.t. ETx,2(m, `) ∩ ERx,1(m′, `′)} , (63)

B5 :
{
∀(m, `) EcTx,1(m, `) and EcTx,2(m, `)

}
∩ {∃(m′, `′) s.t. ERx,1(m′, `′)} . (64)

Thus, we have

EC
[
β1,n

]
≤

5∑
i=1

Pr
[
Bi
∣∣H = h1

]
. (65)

The probabilities of events B1, B2, B3 and B5 can be bounded following similar steps to [14, Appendix A]. This yields:

Pr
[
B1

∣∣H = h1

]
≤ 2−n(θµ,standard,1−δ1(µ)), (66)

Pr
[
B2

∣∣H = h1

]
≤ 2−n(θµ,dec,1−δ2(µ)), (67)

Pr
[
B3

∣∣H = h1

]
≤ 2−n(θµ,dec,1−δ′2(µ)), (68)

Pr
[
B5

∣∣H = h1

]
≤ 2−n(θµ,miss,1−δ4(µ)), (69)

for some functions δ1(µ), δ2(µ), δ′2(µ) and δ4(µ) that go to zero as n goes to infinity and µ→ 0, and where we define:

θstandard,i := min
P̃SXYi :

|πSX−piSX |<µ/2
|πSYi−p

i
SYi
|<µ

D(πSXYi‖piS|Xq
i
XYi), (70)
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θdec,i := min
P̃SXYi :

|πSX−piSX |<µ/2
|πYi−p

i
Yi
|<µ

Hpi (S|Yi)≤Hπ(S|Yi)

D(πSXYi‖piS|Xq
i
XYi)− Ipi(S;X|Yi) + Ipi(W ;Vi|T, Ti), (71)

θmiss,i := D(piYi‖q
i
Yi) + EpT

[
D
(
piVi|T ‖ΓVi|W=T

)]
− Ipi(S;X|Yi) + Ipi(W ;Vi|T, Ti). (72)

Consider event B4:

Pr
[
B4|H = h1

]
≤
∑
m,`

∑
m′,`′

Pr
[
(Sn(2;m, `), Xn) ∈ T nµ/2(p2

SX), (Tn,Wn(2;m)) ∈ T nµ/2(p2
TW ), Wn(2;m) is sent,

(Sn(1;m′, `′), Y n1 ) ∈ T nµ (p1
SY1

), (Tn, Tn1 ,W
n(1;m′), V n1 ) ∈ T nµ (p1

TT1WV1
)

Htp(Sn(1;m′,`′),Y n1 )(S|Y1) = min
˜̀
Htp(Sn(1;m′,˜̀),Y n1 )(S|Y1)

∣∣H = h1

]
(a)

≤
∑
m,`

∑
m′,`′

Pr
[
(Sn(2;m, `), Xn) ∈ T nµ/2(p2

SX), (Sn(1;m′, `′), Y n1 ) ∈ T nµ (p1
SY1

),

Htp(Sn(1;m′,`′),Y n1 )(S|Y1) = min
˜̀
Htp(Sn(1;m′,˜̀),Y n1 )(S|Y1)

∣∣H = h1

]
· Pr

[
(Tn, Tn1 ,W

n(1;m′), V n1 ) ∈ T nµ (p1
TT1WV1

), (Tn,Wn(2;m)) ∈ T nµ/2(p2
TW )

∣∣
Wn(2;m) is sent, H = h1

]
(b)

≤ 2n(R1+R′
1+R2+R′

2) · max
πSS′XY1 :

|πSX−p2SX |<µ/2
|πS′Y1−p

1
SY1
|<µ

Hπ(S′|Y1)≤Hπ(S|Y1)

2−n(D(πSS′XY1‖p
2
Sp

1
S′q

1
XY1

)−µ)

· max
πTT1W ′WV1

:

|πTW−p2TW |<µ/2
|πTT1W ′V1−p

1
TT1WV1

|<µ

2
−n

(
D
(
πTT1W ′WV1

‖pT p1T1|T p
1
W ′|TT1

p2W |TΓV1|W

)
−µ

)
, (73)

where (a) holds because the channel code is drawn independently of the source code and (b) holds by Sanov’s theorem.
Define

θ̃µ,cross,1 := min
πSS′XY1 :

|πSX−p2SX |<µ/2
|πS′Y1−p

1
SY1
|<µ

Hπ(S′|Y1)≤Hπ(S|Y1)

D
(
πSS′XY1

‖p2
Sp

1
S′q1

XY1

)

+ min
πTT1W ′WV1

:

|πTW−p2TW |<µ/2
|πTT1W ′V1−p

1
TT1WV1

|<µ

D
(
πTT1W ′WV1

‖pT p1
T1|T p

1
W ′|TT1

p2
W |TΓV1|W

)
−R1 −R2 −R′1 −R′2 − 2µ, (74)

and notice that

θ̃µ,cross,1
((40)&(41))

= min
πSS′XY1 :

|πSX−p2SX |<µ/2
|πS′Y1−p

1
SY1
|<µ

Hπ(S′|Y1)≤Hπ(S|Y1)

D
(
πSS′XY1‖p2

Sp
1
S′q1

XY1

)

+ min
πTT1W ′WV1

:

|πTW−p2TW |<µ
|πTT1W ′V1−p

1
TT1WV1

|<µ

D
(
πTT1W ′WV1

‖pT p1
T1|T p

1
W ′|TT1

p2
W |TΓV1|W

)
− Ip1(S;X)− Ip2(S;X)− 4µ
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(c)
= min

πSS′XY1 :

|πSX−q1SX |<µ/2
|πS′Y1−p

1
SY1
|<µ

Hπ(S′|Y1)≤Hπ(S|Y1)

D
(
πSS′XY1

‖q1
Sp

1
S′q1

XY1

)

+ min
πTT1W ′WV1

:

|πTW−q1TW |<µ
|πTT1W ′V1−p

1
TT1WV1

|<µ

D
(
πTT1W ′WV1

‖pT p1
T1|T p

1
W ′|TT1

q1
W |TΓV1|W

)
− Ip1(S;X)− Iq1(S;X)− 4µ

(CR)
= min

πSS′XY1 :

|πSX−q1SX |<µ/2
|πS′Y1−p

1
SY1
|<µ

Hπ(S′|Y1)≤Hπ(S|Y1)

[
D
(
πSXY1

‖q1
S|Xq

1
XY1

)
+ EπSXY1

[
D(πS′|SXY1

‖p1
S′)
] ]
− Ip1(S;X)

+ min
πTT1W ′WV1

:

|πTW−q1TW |<µ
|πTT1W ′V1−p

1
TT1WV1

|<µ

[
D(πTT1W ′W ‖p1

TT1
p1
W ′|TT1

q1
W |T )

+ETT1W ′W

[
D(πV1|TT1W ′W ‖πV1|TT1

) +D(πV1|TT1
‖ΓV1|W )

] ]
− 4µ

(DP)
≥ min

πSS′XY1 :

|πSX−q1SX |<µ/2
|πS′Y1−p

1
SY1
|<µ

Hπ(S′|Y1)≤Hπ(S|Y1)

[
D
(
πSXY1‖q1

S|Xq
1
XY1

)
+ EπY1

[
D(πS′|Y1

‖p1
S′)
] ]
− Ip1(S;X)

+ min
πTT1W ′WV1

:

|πTW−q1TW |<µ
|πTT1W ′V1−p

1
TT1WV1

|<µ

[
EπTT1W ′

[
D(πV1|TT1W ′‖πV1|TT1

) +D(πV1|TT1
‖ΓV1|W )

]
− 4µ

(d)
= min

πSXY1 :

|πY1−p
1
Y1
|<µ

Hp1 (S|Y1)≤Hπ(S|Y1)

Eq1XS
[
D
(
πY1|XS‖q

1
Y1|X

)]
+ Ip1(S;Y1)− Ip1(S;X)

+Ip1(V1;W |T, T1) + min
πTT1WV1

:

|πTW−q1TW |<µ
|πTT1V1−p

1
TT1V1

|<µ

EπTT1W
[
D(p1

V1|TT1
‖ΓV1|W )

]
− δ3(µ)

= θµ,cross,1 − δ3(µ) (75)

for a function δ3(µ) that goes to zero as µ→ 0 and

θµ,cross,1 := min
πSXY1 :

|πY1−p
1
Y1
|<µ

Hp1 (S|Y1)≤Hπ(S|Y1)

Eq1XS
[
D
(
πY1|XS‖q

1
Y1|X

)]
+ Ip1(S;Y1)− Ip1(S;X)

+Ip1(V1;W |T, T1) + min
πTT1WV1

:

|πTW−q1TW |<µ
|πTT1V1−p

1
TT1V1

|<µ

EπTT1W
[
D(p1

V1|TT1
‖ΓV1|W )

]
. (76)

Here (c) holds because the condition p1
X 6= p2

X implies that h1 = h̄2 and thus p2 = q1, and (d) holds by the constraints in the
minimizations.
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Combining (73), (74) and (75), establishes:

Pr
[
B4

∣∣H = h1

]
≤ 2−n(θµ,cross,1−δ3(µ)). (77)

Considering (65)–(69) and (77), we get:

EC
[
β1,n

]
≤ max{2−n(θµ,standard,1−δ1(µ)), 2−n(θµ,dec,1−δ2(µ)), 2−n(θµ,dec,1−δ′2(µ)), 2−n(θµ,cross,1−δ3(µ)), 2−n(θµ,miss,1−δ4(µ))}. (78)

By standard arguments and successively eliminating the worst half of the codewords with respect to α1,n and the exponents
θµ,standard,1, θµ,dec,1, θµ,cross,1 and θµ,miss,1, it can be shown that there exists at least one codebook for which

α1,n < ε, (79)

β1,n ≤ 32 ·max{2−n(θµ,standard,1−δ1(µ)), 2−n(θµ,dec,1−δ2(µ)), 2−n(θµ,dec,1−δ′2(µ)), 2−n(θµ,cross,1−δ3(µ)), 2−n(θµ,miss,1−δ4(µ))}. (80)

Letting µ → 0 and n → ∞, we get θµ,standard,1 → θstandard,1, θµ,dec,1 → θdec,1, θµ,cross,1 → θcross,1 and θµ,miss,1 → θmiss,1. A
similar bound can be found for θ2. This concludes the proof.

REFERENCES

[1] R. Ahlswede and I. Csiszár, “Hypothesis testing with communication constraints,” IEEE Trans. on Info. Theory, vol. 32, pp. 533–542, Jul. 1986.
[2] T. S. Han, “Hypothesis testing with multiterminal data compression,” IEEE Trans. on Info. Theory, vol. 33, no. 6, pp. 759–772, Nov. 1987.
[3] H. Shimokawa, T. Han, and S. I. Amari, “Error bound for hypothesis testing with data compression,” in Proc. IEEE Int. Symp. on Info. Theory, Jul.

1994, p. 114.
[4] H. Shimokawa, Hypothesis testing with multiterminal data compression. Master’s Thesis, 1994-.
[5] N. Weinberger and Y. Kochman, “On the reliability function of distributed hypothesis testing under optimal detection,” IEEE Transactions on Information

Theory, vol. 65, no. 8, pp. 4940–4965, 2019.
[6] M. S. Rahman and A. B. Wagner, “On the optimality of binning for distributed hypothesis testing,” IEEE Transactions on Information Theory, vol. 58,

no. 10, pp. 6282–6303, Oct. 2012.
[7] W. Zhao and L. Lai, “Distributed testing against independence with multiple terminals,” in Proc. 52nd Allerton Conf. Comm, Cont. and Comp., Monticello,

IL, USA, Oct. 2014, pp. 1246–1251.
[8] Y. Xiang and Y. H. Kim, “Interactive hypothesis testing against independence,” in Proc. IEEE Int. Symp. on Info. Theory, Istanbul, Turkey, Jun. 2013,

pp. 2840–2844.
[9] G. Katz, P. Piantanida, and M. Debbah, “Collaborative distributed hypothesis testing with general hypotheses,” in 2016 IEEE International Symposium

on Information Theory (ISIT), 2016, pp. 1705–1709.
[10] S. Salehkalaibar, M. Wigger, and R. Timo, “On hypothesis testing against independence with multiple decision centers,” IEEE Trans. on Communications,

Jan. 2018.
[11] S. Salehkalaibar, M. Wigger, and L. Wang, “Hypothesis testing over the two-hop relay network,” IEEE Transactions on Information Theory, vol. 65,

no. 7, pp. 4411–4433, 2019.
[12] P. Escamilla, M. Wigger, and A. Zaidi, “Distributed hypothesis testing with concurrent detection,” in Proc. IEEE Int. Symp. on Info. Theory, Jun. 2018.
[13] P. Escamilla, M. Wigger, and A. Zaidi, “Distributed hypothesis testing: Cooperation and concurrent detection,” IEEE Transactions on Information Theory,

vol. 66, no. 12, pp. 7550–7564, 2020.
[14] S. Salehkalaibar and M. Wigger, “Distributed hypothesis testing based on unequal error protection codes,” IEEE Trans. on Info. Theory, vol. 66, no. 7,

pp. 4150–4182, 2020.
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