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Abstract—A coding and testing scheme is presented for the
distributed hypothesis testing problem over a noisy channel. The
coding scheme combines the Shimokawa-Han-Amari hypothesis
testing scheme with Borade’s unequal error protection (UEP)
channel coding. The type-II error exponent of our scheme consists
of three competing error exponents: two of them coincide with
the exponents found by Shimokawa-Han-Amari for distributed
hypothesis testing over a noiseless link (with the rate be replaced
by the mutual information between channel input and output),
and the third includes Borade’s miss-detection exponent for UEP
over a noisy channel. Depending on the problem setup, any of the
three exponents can be active. When testing against conditional
independence, only the two Shimokawa-Han-Amari exponents
are active, and the scheme achieves the optimal type-II error
exponent found by Sreekuma and Gündüz.

I. INTRODUCTION

Consider a distributed hypothesis testing problem where a
sensor describes its collected information to a remote decision
center over a noisy channel. The decision center decides on
a binary hypothesis (H = 0 or H = 1) that determines the
joint probability distribution underlying its own observation
and the information observed at the sensor. The goal of the
communication is to maximize the type-II error (deciding Ĥ =
0 when H = 1) exponent under a constrained type-I error
(deciding Ĥ = 1 when H = 0).

The special case of this problem where communication
takes place over a noiseless link was studied in [1]–[4]. These
works present achievable type-II error exponents for general
joint probability distributions underlying the two hypotheses
and the optimal type-II error exponent for the special case
called “testing against conditional independence” [4]. Dis-
tributed hypothesis testing problems over noiseless networks
with multiple sensors or decision centers or with relays have
been considered in [4]–[8]. The work most closely related
to this paper is by Sreekumar and Gündüz [9]. It proves
that the optimal type-II error exponent for “testing against
conditional independence” over a noisy channel, coincides
with the optimal type-II error exponent of the same test over a
noiseless link of rate equal to the capacity of the noisy channel.
Their result is based on a joint hypothesis-testing and channel-
coding scheme, see also [9, Remark 6] for a discussion on this.

In this work, we propose a coding scheme for distributed
hypothesis testing over a noisy channel with general prob-
ability distributions. The coding and testing scheme applies
separate hypothesis testing and channel coding by combining
the Shimokawa-Han-Amari (SHA) hypothesis-testing scheme

Fig. 1. Hypothesis testing over a noisy channel

[3] with Borade’s unequal error protection (UEP) channel
coding [12]. The idea is to reinforce the protection of the
message that the SHA scheme produces to indicate that the
transmitter decides on the alternative hypothesis H = 1. Our
analysis in general shows three competing error exponents,
two of them coincide with the two competing error exponents
obtained for testing over a noiseless link [3] when the com-
munication rate replaced by the mutual information between
input and output of the channel. The third error exponent
depends again on this mutual information, and on Borade’s
miss-detection exponent [12] for channel coding with UEP. In
the special case of “testing against conditional independence”,
our third error exponent is not active and our overall type-II
error exponent depends on the noisy channel only through its
capacity. We thus recover the optimal exponent by Sreekuma
and Gündüz [9].

Notation: We mostly follow the notation in [10]. Moreover,
we use tp(·) to denote the joint type of a tuple. For a joint
type πAB over alphabets A×B, we denote by IπAB (A;B) the
mutual information of a pair of random variables (A,B) with
probability mass function (pmf) πAB . Similarly for entropy,
conditional entropy, and conditional mutual information. When
it is unambiguous, we may abbreviate πAB by π.

II. SYSTEM MODEL

Consider the distributed hypothesis testing problem in
Fig. 1, where a transmitter observes source sequence Xn and
a receiver source sequence Y n. Under the null hypothesis:

H = 0: (Xn, Y n) ∼ i.i.d. PXY , (1)

and under the alternative hypothesis:

H = 1: (Xn, Y n) ∼ i.i.d. QXY . (2)

for two given pmfs PXY and QXY . The transmitter can
communicate with the receiver over n uses of a discrete
memory channel (W,V, PV |W ) where W denotes the finite



channel input alphabet and V the finite channel output alpha-
bet. Specifically, the transmitter feeds inputs

Wn = f (n)(Xn) (3)

to the channel, where f (n) denotes the chosen (possibly
stochastic) encoding function

f (n) : Xn →Wn. (4)

Based on the sequence of channel outputs V n and the source
sequence Y n, the receiver decides on the hypothesis H. That
means, it produces the guess

Ĥ = g(n)(V n, Y n), (5)

by means of a decoding function

g(n) : Vn × Yn → {0, 1}. (6)

Definition 1: For each ε ∈ (0, 1), an exponent θ is said ε-
achievable, if for each sufficiently large blocklength n, there
exist encoding and decoding functions (f (n), g(n)) such that
the corresponding type-I and type-II error probabilities at the
receiver

αn
∆
= Pr[Ĥ = 1|H = 0], (7)

βn
∆
= Pr[Ĥ = 0|H = 1], (8)

satisfy

αn ≤ ε, (9)

and

− lim
n→∞

1

n
log βn ≥ θ. (10)

The goal is to maximize the type-II error exponent θ.

III. CODING AND TESTING SCHEME

We describe a coding and testing scheme for the general
distributed hypothesis testing problem over a noisy channel.
Preparations: Choose µ > 0, a sufficiently large positive
integer n, an auxiliary distribution PQ over W , a conditional
channel input distribution PW |Q, and a conditional source
distribution PS|X over a finite auxiliary alphabet S so that

I(S;X) ≤ I(S;Y ) + I(V ;W |Q). (11)

where the mutual informations in (11) are calculated according
to the following joint distribution

PSXYWVQ = PS|X · PXY · PQ · PW |Q · PV |W . (12)

Further set the positive rates

R = I(V ;W |Q)− µ, (13)
R′ = I(S;X) + µ−R. (14)

Code Construction: Construct a random codebook

CS =
{
Sn(m, `) : m ∈ {1, ..., b2nRc}, ` ∈ {1, ..., b2nR

′
c}
}
,

by independently drawing all codewords i.i.d. according to
PS(s) =

∑
x∈X PX(x)PS|X(s|x).

Generate a sequence Qn i.i.d. according to PQ. Construct
a random codebook

CW =
{
Wn(m) : m ∈ {1, ..., b2nRc}

}
superpositioned on Qn where each codeword is drawn in-
dependently according to PW |Q conditioned on Qn. Reveal
the realizations of the codebooks and the sequence Qn to all
terminals.
Transmitter: Given that it observes the source sequence Xn =
xn, the transmitter looks for a pair (m, `) that satisfies

(sn(m, `), xn) ∈ T nµ/2(PSX). (15)

If successful, it picks one of these pairs uniformly at random
and sends the codeword wn(m) over the channel. Otherwise
it sends the sequence of inputs qn over the channel.
Receiver: Assume that the receiver observes the sequences
V n = vn and Y n = yn and that the “time-sharing sequence”
Qn = qn. It first looks for an index m′ ∈ {1, . . . , b2nRc} so
that

(wn(m′), vn, qn) ∈ T nµ (PWVQ). (16)

If it is not successful, it declares Ĥ = 1. Otherwise, it
randomly picks one of the indices `′ that satisfy

Htp(sn(m′,`′),yn)(S|Y ) = min
˜̀∈{1,...,b2nR′c}

Htp(sn(m′,˜̀),yn)(S|Y ),

(17)

and checks whether

(sn(m′, `′), yn) ∈ T nµ (PSY ). (18)

If successful, it declares Ĥ = 0. Otherwise, it declares Ĥ = 1.

IV. AN ACHIEVABLE ERROR EXPONENT

Theorem 1: Every error exponent θ ≥ 0 that satisfies the
following condition (31) is achievable:

θ ≤ max
PS|X ,PQW :

I(S;X|Y )≤I(W ;V |Q)

min
{
θ1, θ2, θ3

}
, (19)

where

θ1 = min
P̃SXY :

P̃SX=PSX
P̃SY =PSY

D(P̃SXY ||QXY PS|X), (20)

θ2 = min
P̃SXY :

P̃SX=PSX
P̃Y =PY

H(S|Y )≤HP̃ (S|Y )

[
D(P̃SXY ||PS|XQXY ) + I(V ;W |Q)

− I(S;X|Y )
]
, (21)

θ3 = D(PY ||QY ) + I(V ;W |Q)− I(S;X|Y )

+
∑
q∈W

PQ(q) ·D(PV |Q=q||PV |W=q),

(22)

and all expressions are calculated with respect to the joint
distribution in (12).

Proof: Based on the scheme in Section V.



Lemma 1: It suffices to consider the auxiliary random
variable S over an alphabet S that is of size |S| = |X | + 2.
For the specical case of PY = QY , it suffices to consider
|S| = |X |+ 1.

Proof: Based on Carathéodory’s theorem. Omitted.

In the next following Section V, we present a coding and
testing scheme that combines the SHA hypothesis testing
scheme for a noiseless link [3] with Borade’s UEP channel
coding that protects the 0-message better than the other
messages [11], [12]. Recall that in the SHA scheme, the 0-
message indicates that the transmitter decides on the alter-
native hypothesis H = 1. In fact, since here we are only
interested in the type-II error exponent, it is important that
the receiver decides only on the null hypothesis H = 0 if the
transmitter shares this opinion. For this reason the 0-message
needs special protection when being sent over the channel.

The expressions in Theorem 1 show three competing error
exponents. In (20) and (21), we recognize the two competing
error exponents of the SHA scheme for the noiseless setup:
θ1 is the exponent associated to the event that the receiver
reconstructs the correct binned codeword and θ2 is associated
to the event that either the binning or the noisy channel
introduces a decoding error. The exponent θ3 in (22) is new
and can be associated to the event that the specially protected
0-message is wrongly decoded. We remark in particular that
θ3 contains the term

Emiss :=
∑
q∈W

PQ(q) ·D(PV |Q=q||PV |W=q), (23)

which represents the largest possible miss-detection exponent
for a single specially protected message at a given rate
I(W ;V |Q) [12, Th. 34].

Which of the three exponents θ1, θ2, θ3 is smallest depends
on the source and channel parameters and the choice of PS|X
and PW . Notice that the third error exponent θ3 is inactive
for channels with large miss-detection exponent (23), such as
binary symmetric channels with small cross-over probability,
or for sources where

min
P̃SXY :

P̃SX=PSX
P̃Y =PY

D(P̃SXY ||PS|XQXY ) = D(PY ||QY ), (24)

This is the case for example when “testing against conditional
independence” [4] where both terms are 0.

Corollary 1 (Lemma 5 in [9]): Consider the “testing against
independence” setup where

Y = (Ȳ , Z), (25)

and QXȲ Z decomposes as

QXȲ Z = PXZ · PȲ |Z . (26)

Error exponent θ ≥ 0 is achievable if,

θ ≤ max
PS|X , PW :

I(S;X|Z)≤I(W ;V )

I(S; Ȳ |Z), (27)

where mutual informations are calculated with respect to the
joint law PXȲ ZPS|XPWPV |W .

Proof: Fix independent random variables Q and W and
a random variable S so that I(S;X|Z) ≤ I(W ;V |Q) =
I(W ;V ). Then, Theorem 1 specializes to:

θ1 = min
P̃SXY Z :
P̃SX=PSX
P̃SY Z=PSY Z

D(P̃SXY Z ||QXY ZPS|X)

= min
P̃SXY Z :
P̃SX=PSX
P̃SY Z=PSY Z

D(P̃SXY Z ||PXZPY |ZPS|X)

= D(PSY Z ||PZPY |ZPS|Z)

= I(S;Y |Z).

Moreover, exponents θ2 and θ3 cannot be smaller than
I(S;Y |Z) because of the nonnegativity of the KL-divergence
and the mutual information and because

I(V ;W )− I(S;X) + I(S; Ȳ , Z)

= I(V ;W )− I(S;X|Z) + I(S; Ȳ |Z)

≥ I(S; Ȳ |Z), (28)

where the inequality holds because we imposed I(S;X|Z) ≤
I(W ;V ).
Notice that the error exponent in Corollary 1 is optimal [9].

We now present an example and evaluate the largest type-II
error exponents attained by our scheme. We also show that
depending on the choice of the model parameters, a different
error exponent θ1, θ2, or θ3 is active.

Example 1: Let under the null hypothesis

H = 0: X ∼ Bern(p0), Y = X ⊕N0,

N0 ∼ Bern(q0), (29)

for N0 independent of X . Under the alternative hypothesis:

H = 1: X ∼ Bern(p1), Y ∼ Bern(p0 ? q0), (30)

with X and Y independent. Assume that PV |W is a binary
symmetric channel (BSC) with cross-over probability r ∈
[0, 1/2].

For this example, Theorem 1 simplifies to:

θ ≤ max
PS|X ,PQW :

I(S;X|Y )≤I(W ;V |Q)

min
{
θ1, θ2, θ3

}
, (31)

where

θ1 ≤ D(PX ||QX) + I(S;Y ), (32)
θ2 ≤ D(PX ||QX) + I(V ;W |Q) + I(S;Y )− I(S;X),

(33)

θ3 ≤
∑
q∈W

PQ(q)D(PV |Q=q||PV |W=q)

+ I(V ;W |Q) + I(S;Y )− I(S;X). (34)

Depending on the parameters of the setup and the choice of
the auxiliary distributions, either of the exponents θ1, θ2, or



θ3 is active. For example, when the cross-over probability of
the BSC is large, r ≥ 0.4325,

D(PX ||QX) ≥
∑
q∈W

PQ(q)D(PV |Q=q||PV |W=q)

+ I(V ;W |Q), (35)

and exponent θ3 is smaller than θ1 and θ2, irrespective
of the choice of the random variables S,Q,W . It is then
optimal to choose S constant and (Q,W ) so as to maximize
the sum

∑
q∈W PQ(q)D(PV |Q=q||PV |W=q) + I(V ;W |Q). In

particular, for a scenario with parameters p0 = 0.1, q0 =
0.25, p1 = 0.2 and r = 4

9 one obtains numerically that the
optimal error exponent achieved by our scheme is θ = 0.0358.

In contrast, when the cross-over probability of the BSC
is small, the miss-detection exponent (23) is large and the
exponent θ3 is never active irrespective of the choice of the
auxiliary random variable S. The overall exponent is then
determined by the smaller of θ1 and θ2, and in particular by
a choice S,X,W that makes the two equal. In this case, for
a scenario with parameters p0 = 0.2, q0 = 0.3, p1 = 0.4,
and r = 0.1, the largest exponent achieved by our scheme is
θ = 0.19.

V. PROOF OF THEOREM 1

The proof of the theorem is based on the scheme in
Section III. Before analyzing this scheme, notice that by the
functional representation lemma, there exists a function γ
over appropriate domains and for each time t ∈ {1, . . . , n}
a random variable φt over a finite alphabet Φ so that the time-
t channel input and output satisfy:

Vt = ξ(Wt, φt). (36)

Let Pn be the set of all types over the product alphabets
Sn ×Sn ×Wn ×Wn ×Vn ×Φn ×Xn ×Yn, and let Pnµ be
the subset of types πSS′WW ′V φXY ∈ Pn that simultaneously
satisfy the following conditions:

|πSX − PSX | ≤ µ/2, (37a)
|πS′Y − PSY | ≤ µ, (37b)
|πW ′V − PWV | ≤ µ, (37c)

πV |φW = 1{V = ξ(W,φ)}, (37d)
HπS′Y (S|Y ) ≤ HπSY (S|Y ). (37e)

We first analyze the type-I error probability averaged over
the random code construction. Let (M,L) be the indices of the
codeword chosen at the transmitter, if they exist, and define
the following events:

ETx : {@(m, `) : (Sn(m, `), Xn) ∈ T nµ/2(PSX)} (38)

E(1)
Rx : {(Sn(M,L), Y n) /∈ T nµ (PSY )} (39)

E(2)
Rx : {(Wn(M), V n) /∈ T nµ (PWV )} (40)

E(3)
Rx : {∃`′ 6= L :

Htp(sn(M,`′),yn)(S|Y ) = min
˜̀
Htp(sn(M,˜̀),yn)(S|Y )}.

(41)

With these definitions, we obtain for all sufficiently small
values of µ and sufficiently large blocklengths n:

αn ≤ Pr[ETx] + Pr[E(1)
Rx |E

c
Tx] + Pr[E(2)

Rx |E
c
Tx, E

(1)c
Rx ]

+ Pr[E(3)
Rx |E

(1)c
Rx , E(2)c

Rx , EcTx] (42)
≤ ε/4 + ε/4 + ε/4 + ε/4 = ε, (43)

where the first summand of (42) can be upper bounded by
means of the covering lemma [10] and the rate constraint (14);
the second by means of the Markov lemma [10]; the third by
means of the packing lemma [10] and the rate constraint (13);
and the fourth by following similar steps as in analysis of the
type-I error probability in [5, Appendix H].

Now, consider the type-II error probability. Let Pnµ,0 be the
subset of types πS′QW ′V φXY over the alphabets Sn ×Wn ×
Wn × Vn × Φn ×Xn × Yn that satisfy (37b), (37c), and

πV |φQ = 1{V = ξ(Q,φ)}. (44a)

Define for each pair (m,m′) ∈ {1, . . . , b2nRc}2 and
(`, `′) ∈ {1, . . . , b2nR′c}2 the set:

A(m,m′, `, `′) :=
{

(ϕn, xn, yn) : tp
(
Sn(m, `), Sn(m′, `′),

Wn(m),Wn(m′), ϕn, ξn(Wn(m), ϕn), xn, yn
)
∈ Pnµ

}
;

and for each m′ ∈ {1, . . . , b2nRc} and `′ ∈ {1, . . . , b2nR′c}
the set:

A(0,m′, `′) :=
{

(ϕn, xn, yn) : tp
(
Sn(m′, `′), Qn,

Wn(m′), ϕn, ξn(Qn, ϕn), xn, yn
)
∈ Pnµ,0

}
. (45)

By ξn(wn, ϕn), here we mean the component-wise application
of the function ξ(., .) defined in (36) to the n-length sequences
wn and ϕn.

The average (over the random codebooks) type-II error
probability satisfies:

EC [βn] ≤ Pr
[
(φn, Xn, Y n) ∈ ARx,n|H = 1

]
, (46)

where ARx,n ⊆ Φn×Xn×Yn includes the acceptance region
at the receiver:

ARx,n
∆
=
⋃
m,m′

⋃
`,`′

A(m,m′, `, `′) ∪
⋃
m′,`′

A(0,m′, `′), (47)

where m and m′ take value in {1, . . . , b2nRc} and ` and `′

in {1, . . . , b2nR′c}. We can then write:

EC [βn]

≤ Pr
[
(φn, Xn, Y n) ∈⋃

m,m′

⋃
`,`′

A(m,m′, `, `′) ∪
⋃
m′,`′

A(0,m′, `′)|H = 1
]

≤ Pr
[
(φn, Xn, Y n) ∈

⋃
(m,`)

A(m,m, `, `)|H = 1
]

+ Pr
[
(φn, Xn, Y n) ∈

⋃
(m,`)6=(m′,`′)

A(m,m′, `, `′)|H = 1
]



+ Pr
[
(φn, Xn, Y n) ∈

⋃
m′,`′

A(0,m′, `′)|H = 1
]
. (48)

Consider the last term in (48). By the code construction and
Sanov’s theorem, for sufficiently large n:

Pr
[
(φn, Xn, Y n) ∈

⋃
m′,`′

A(0,m′, `′)|H = 1
]

≤
∑
m′,`′

Pr
[
(φn, Xn, Y n) ∈ A(0,m′, `′)|H = 1

]
≤ 2−nθ̃3,µ, (49)

where we define for some function δ(µ) that → 0 as µ→ 0:

θ̃3,µ := min
πS′QW ′V φXY
∈Pnµ,0

D(πS′QXY φW ′ ||PSPWQPφQXY )

−R−R′ − µ

= min
πS′QW ′V φXY ∈P

n
µ,0

[
D(πQφW ′ ||PWQPφ)

+D(πXY ||QXY ) + EπXY [D(πS′|XY ||PS)]
]

− I(S;X)− µ
(a)

≥ min
πS′QW ′V φXY ∈P

n
µ,0

[
D(πQVW ′ ||PWQPV |W=Q)

+D(πY ||QY ) + Iπ(S′;Y X)
]
− I(S;X)− µ

(b)

≥ EWQ[D(PV |W ||PV |Q) +D(PV |Q||PV |W=Q)]

+D(PY ||QY ) + I(S;Y )− I(S;X)− δ(µ)

= D(PY ||QY ) + I(V ;W |Q)

+
∑
q

PQ(q) ·D(PV |Q=q||PV |W=q)

+ I(S;Y )− I(S;X)− δ(µ)

:= θ3,µ. (50)

Here, (a) follows by defining PV |φQ = 1{V = ξ(Q,φ)} and
by the data processing inequality for KL-divergences and (b)
follows by the definition of the type class Pn0,µ and because
Iπ(S′;XY ) ≥ Iπ(S′;Y ).

Consider now the first and second probabilities in (48).
Following similar steps to above, one finds:

Pr
[
(φn, Xn, Y n) ∈

⋃
m

⋃
`

A(m,m, `, `)
]
≤ 2−nθ1,µ , (51)

and

Pr
[
(φn, Xn, Y n) ∈

⋃
(m,`)6=(m′,`′)

A(m,m′, `, `′)
]
≤ 2−nθ̃2,µ ,

(52)

where

θ1,µ := min
πSXY ∈Pnµ

D(πSXY ||QXY PS|X)− δ′(µ), (53)

θ2,µ := min
πSXY ∈Pnµ

D(πSXY ||QXY PS|X) + I(V ;W |Q)

+ I(S;Y )− I(S;X)− δ′′(µ), (54)

for functions δ′(µ) and δ′′(µ) that go to zero as µ→ 0. These
exponents are derived in detail in [5, Appendix H, Proof of
Thm 4] for a noiseless communication link.

Combining (48)–(54), proves that for sufficiently large
blocklengths n, the average type-II error probability satisfies

EC [βn] ≤ max
{

2−nθ1,µ , 2−nθ2,µ , 2−nθ3,µ
}
. (55)

By standard arguments and successively eliminating the worst
half codebooks with respect to the exponents θ1,µ, θ2,µ, and
θ3,µ, it can be shown that there exists at least one codebook
for which

βn ≤ 8 ·max
{

2−nθ1,µ , 2−nθ2,µ , 2−nθ3,µ
}
. (56)

Letting µ → 0 and n → ∞, we get θ1,µ → θ1, θ2,µ → θ2,
θ3,µ → θ3, which establishes achievability of Theorem 1.
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