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Abstract—This paper considers a K−user Gaussian broadcast
channel (BC) where receivers are equipped with cache memories.
Lower and upper bounds are established on the capacity-memory
tradeoff, i.e., the largest rate achievable for given cache-memories.
The lower bound is based on a joint cache-channel coding scheme
which generalizes the recently proposed piggyback coding to
Gaussian BCs with unequal cache sizes. This paper also estab-
lishes lower and upper bounds on the global capacity-memory
tradeoff, i.e., the maximum capacity-memory tradeoff over all
possible cache assignments subject to a total cache memory
constraint. The bounds match when the total cache memory is
sufficiently large. It is shown that significantly larger rates can be
achieved by carefully assigning larger cache memories to weaker
receivers. In particular, cache allocation allows communication at
rates that are (fundamentally) impossible to achieve with equal
cache assignment. This shows the merit in carefully designing
the cache size allocation in conjunction with channel qualities.

I. INTRODUCTION

Introducing cache memory at various nodes in a network is
a promising solution to increase performance of future com-
munication networks. The idea is to prestore during periods
of low network congestion popular content directly in cache
memories at the end users or at closeby servers, so as to
improve performance at peak-traffic periods. A main challenge
is that when prestoring contents it is not yet known which files
the users will request in the peak-traffic periods.

In traditional cache-aided system designs, the gain from
caching is local; i.e., the gain is due to the fact that the
transmitter does not need to send the fraction of the files
already stored at the end users. Recently, Maddah-Ali and
Niesen [1] showed that a smart design of the content of the
caches lets the server send coded data in the delivery phase
and simultaneously serve multiple users. This scheme thus
offers a global caching gain that scales with the total memory
sizes in the network, and is beyond the local caching gain.
Following this work, improved caching and communication
strategies have been proposed in [2]–[4], and fundamental
converse results in [1, 5]–[8].

Maddah-Ali and Niesen model the peak-traffic communi-
cation channel by a noise-free rate-limited communication
link. An alternative, and perhaps more realistic approach is
to recognize that the channel is noisy and that the users have
different channel statistics and observe noisy versions of the
signal sent from the transmitter. In this work, we will take this
approach and consider that the peak-traffic communication,
i.e., the delivery phase, takes place over a Gaussian broadcast

channel (BC). Noisy BCs with caching receivers have been
addressed in other recent works, e.g., [9, 10, 12]–[16]. Under
this model further global caching gains can be attained by joint
cache-channel coding [9, 10] where the cache contents not
only determine what messages the transmitter sends, but also
how it transmits them. Joint cache-channel coding schemes
were introduced in [9, 10] for erasure BCs, and have also
been used in [11]. In this paper we extend the scheme in
[9, 10], termed piggyback coding1, to Gaussian BCs with
unequal cache sizes. A main novelty of this work is thus the
devise of a coding scheme for networks where receivers are
equipped with unequal cache sizes. Most previous work has
assumed either a uniform cache allocation across all users, or
that some receivers have equal cache memory sizes and others
have no caches at all [9, 10]. Exceptions are [17] and [18],
but in these works the BC is a noise-free bitpipe (as in [1]).

The present paper also provides a new converse result under
an arbitrary fixed cache assignment. It is often tighter than the
previous converse results in [10, 12]. Moreover, it suggests that
receivers can benefit from cache memories at weaker receivers
but not at stronger receivers. This intuition is supported by our
joint cache-channel coding schemes where thanks to the data
stored in weak receivers cache memories, stronger receivers
can piggyback information onto the communication to the
weak receivers. These results thus suggest that assigning larger
cache memories to weaker receivers is highly beneficial, more
than in simply resolving the rate-bottleneck caused by the
weak receivers.

To make this statement more precise, we derive upper and
lower bounds on the global capacity-memory tradeoff of the
Gaussian BC, where one is allowed to optimize over the
cache assignment subject to a total cache constraint. The
bounds are generally close and meet when the total cache
memory exceeds a certain threshold. Numerical evaluation of
the bounds suggest that this global capacity-memory tradeoff
is substantially larger than the capacity-memory tradeoff under
a uniform cache assignment.

II. PROBLEM DEFINITION

Consider a transmitter and K receivers k = 1, . . . ,K. The
transmitter has access to a library with D independent files

1By recasting the cache contents as side-information, piggyback coding can
be seen as a simplified version of the joint source-channel coding scheme for
BCs in [20].



(messages) W1, . . . ,WD, each uniformly distributed over the
set2

{
1, . . . , 2nR

}
. So, R ≥ 0 denotes the rate of transmission

and n the transmission blocklength.
Each receiver is equipped with a cache memory, and

communication takes place in two phases: a caching phase
(also called placement phase) that occurs before the receivers
demands are known, and a delivery phase after receivers
request messages of their interest. We denote the message
demanded by receiver k with Wdk , dk ∈ {1, . . . , D}, and
refer to the vector (d1, . . . , dK) as the demand vector d.

Each receiver k ∈ {1, . . . ,K} is equipped with a cache
of certain size, described by a nonnegative integer Mk. In
the caching phase, the demand vector d is not known. The
transmitter places in cache k

Vk := gk(W1, . . . ,WD), (1)

for some function gk : {1, . . . , 2nR}D →
{

1, . . . , 2nMk
}

.
The caching phase occurs during a low congestion period,

and as in all caching models we too assume that Vk is reliably
conveyed to receiver k’s cache, for each k ∈ {1, . . . ,K}.

The delivery phase occurs during a high congestion period,
which we model by a Gaussian BC. So in channel use t
receiver k’s output is

Yk,t = Xt + Zk,t, (2)

where Xt is the input to the channel and {Zk,t} is a Gaussian
random variable with zero mean and variance σ2

k > 0.
The channel inputs are subject to an average block-power
constraint P and we assume without loss of generality

σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
K .

At the beginning of the delivery phase, each receiver k
demands message Wdk , dk ∈ {1, . . . , D}, and the transmitter
and all the receivers get informed of the demand vector
d = (d1, . . . , dK). Using this information, the transmitter
forms the channel input sequence Xn = (X1, . . . , Xn) as

Xn := fd(W1, . . . ,WD) (3)

for some encoding function fd : {1, . . . , 2nR}D → Xn.
Receiver k ∈ {1, . . . ,K} observes the channel output

sequence Y nk = (Yk,1, . . . , Yk,n). Given demand vector d,
cache content Vk and channel outputs Y nk , it produces

Ŵk := ϕk,d(Y nk ,Vk), (4)

its estimate of the desired message Wdk , by means of a de-
coding function ϕk,d : Ynk ×

{
1, . . . , 2nMk

}
→ {1, . . . , 2nR}.

The worst-case probability of error at any receiver and any
demand d is given by

Pe := P

[ ⋃
d∈D

K⋃
k=1

{
Ŵk 6= Wdk

} ]
.

A rate-memory tuple (R,M1, . . . ,MK) is said achievable
if for any ε > 0 there exists a sufficiently large blocklength n

2For simplicity, 2nRd is assumed to be integer.

and caching, encoding, and decoding functions as in (1), (3),
and (4) so that Pe ≤ ε.

Definition 1: The capacity-memory tradeoff
C(M1, . . . ,MK) is the largest symmetric rate R for which
the rate-memory tuple (R,M1, . . . ,MK) is achievable:

C(M1, . . . ,MK) := sup{R : (R,M1, . . . ,MK) achievable}.

The main goal is to optimize the cache assignment
(M1, . . . , MK) to attain the largest capacity-memory tradeoff
C(M1, . . . ,MK) under the total cache constraint:

K∑
k=1

Mk ≤ M. (5)

Definition 2: The global capacity-memory tradeoff C?(M)
is defined as:

C?(M) := max
M1,...,MK>0:∑K

k=1 Mk≤M

C(M1, . . . ,MK). (6)

III. RESULTS

A. Preliminaries and Notation

In the absence of cache memories, M1 = . . . = M2 = 0,
the capacity-memory tradeoff C(M1 = 0, . . . ,MK = 0) is
well known: It is the largest symmetric rate R with which K
independent messages can be reliabily sent to the K users and
is given as follows.

C0 := C(M1 = 0, . . . ,MK = 0)

=
1

2
log2

(
1 +

β1P∑K
k=2 βkP + σ2

1

)
(7)

for the unique choice of parameters β1, . . . , βK ≥ 0 summing
to 1 and satisfying

β1P∑K
k=2 βkP + σ2

1

=
βiP∑K

k=i+1 βkP + σ2
i

, ∀i ∈ {2, . . . ,K}.

We will also need the following notation. For a subset S ⊆
{1, . . . ,K} of receivers, CS denotes the largest symmetric rate
that can be achieved in a BC with receivers in S assuming no
cache memories. Let

S := {s1, . . . , s|S|} ⊆ {1, . . . ,K}, s1 < · · · < s|S|. (8)

We have

CS :=
1

2
log2

(
1 +

β1P∑|S|
k=2 βkP + σ2

1

)
, (9)

where β1, . . . , β|S| form the unique choice of |S| real numbers
in [0, 1] that sum to 1 and satisfy

β1P∑K
k=2 βkP + σ2

1

=
βiP∑K

k=i+1 βkP + σ2
si

, ∀i ∈ S. (10)

We will use the abbreviation

Ck := C{k} =
1

2
log

(
1 +

P

σ2
k

)
, k ∈ {1, . . . ,K}. (11)

Notice C{1,...,K} = C0.



Throughout the paper, we will use the following short-hand
notations for any choice of t ∈ {1, . . . ,K − 1}:

τ (t) :=

(
K

t

)
, (12)

N (t) :=

(
K

t+ 1

)
. (13)

Let G(t)
1 ,G(t)

2 , . . . ,G(t)

τ(t) denote the τ (t) subsets of {1, . . . ,K}
that are of size t, and S(t)

1 ,S(t)
2 , . . . ,S(t)

τ(t+1) the N (t) subsets
of {1, . . . ,K} that are of size t+ 1. We define

µ(t) :=

N(t)∑
j=1

∏
k∈S̄(t)

j

Ck, (14)

where S̄(t)
j := {1, . . . ,K}\S(t)

j .

B. Lower Bounds on Capacity-Memory Tradeoffs
Similarly to [19], we have:
Proposition 1 (Local caching gain): For any ∆ > 0,

C?(M + ∆) ≥ C?(M) +
∆

K ·D
· (15)

In Sections IV and V ahead we present two coding schemes
for appropriate choices of cache memory allocations. They
immediately yield two lower bounds on the global capacity-
memory tradeoff, see the following Theorems 2 and 3.

Let β̃1, . . . , β̃K be nonnegative parameters summing to 1
and so that the following K − 1 inequalities hold:

1

2
log

(
1 +

(β̃1 + β̃2)P

σ2
2 +

∑K
i=3 β̃iP

)
− 1

2
log

(
1 +

P

σ2
1

)

=
1

2
log

(
β̃kP

σ2
k +

∑K
i=k+1 β̃iP

)
, ∀k ∈ {2, . . . ,K}. (16)

Theorem 2: Given cache memory

M :=
D · C{2,...,K}
C{2,...,K} + C1

·

(
1

2
log

(
1 +

(β̃1 + β̃2)P

σ2
2

∑K
i=3 β̃iP

)
− C1

)
,

(17)

the global capacity-memory tradeoff is lower bounded as

C(M1, . . . ,MK) ≥
C{2,...,K}C1

C{2,...,K} + C1
+
M

D
. (18)

Proof: See the scheme in Section IV.
Theorem 3: For each parameter t ∈ {1, . . . ,K − 1}, given

a total cache memory

M(t) = D
t

µ(t)

τ(t)∑
`=1

( ∏
k∈Ḡ(t)

`

Ck

)
, (19a)

the global capacity-memory tradeoff is lower bounded by

C?
(
M(t)

)
≥ 1

µ(t)

τ(t)∑
`=1

( ∏
k∈Ḡ(t)

`

Ck

)
, (19b)

where Ḡ(t)
` := {1, . . . ,K}\G(t)

` .
Proof: See the scheme in Section V.

C. Upper Bounds on the Global Capacity-Memory Trade-off
We present two upper bounds. The first is based on an upper

bound on the capacity-memory tradeoff in [10, Theorem 9].
The second requires proving a new converse and is often
tighter, but more cumbersome to evaluate, than the first bound.

Theorem 4: For each t ∈ {1, . . . ,K}, the global capacity-
memory tradeoff is upper bounded by

C?(M) ≤ 1

τ (t)

τ(t)∑
`=1

C
0,G(t)

`

+
t ·M
K ·D

· (20)

Proof: Fix t ∈ {1, . . . ,K}. Specialize Theorem 9 in [10]
to S = G(t)

` , for ` = 1, . . . τ (t), and take the average of the
τ (t) obtained constraints.

Specializing Theorem 4 to t = 1 and to t = K results in
the following corollary.

Corollary 4.1:

C?(M) ≤ C0 +
M

D
(21a)

C?(M) ≤
K∑
k=1

Ck
K

+
M

K ·D
· (21b)

The upper bound in (21a) performs better for small values of
M and the upper bound in (21b) is better for large values of M.
The latter is in fact tight when M exceeds a certain threshold,
see Corollary 6.1 ahead.

Before presenting our second upper bound, we intro-
duce some notation. Consider fixed cache memory sizes
M1, . . . ,MK . For any subset of receivers S as defined in (8),
let R?S be the largest rate so that the rate tuple(

R− αS,1, R− αS,2, . . . , R− αS,|S|
)
,

where

αS,k =

∑k
i=1 Msi

D − k + 1
, (22)

lies in the capacity region of the Gaussian BC to receivers in
S (assuming no cache memories).

Proposition 5: For fixed cache memory sizes M1, . . . ,MK ,

C(M1, . . . ,MK) ≤ min
S⊆{1,...,K}

R?S .

Proof: Omitted.
The proposition immediately gives an implicit upper bound on
the global capacity-memory tradeoff.

Theorem 6:

C?(M) ≤ max
M1,...,MK>0:∑K

k=1 Mk≤M

min
S⊆{1,...,K}

R?S . (23)

D. Exact Results and Comparisons
1) Exact Results: When M is sufficiently large, bound (21b)

coincides with the lower bound in Theorem 3.
Corollary 6.1:

C?(M) =

∑K
k=1 Ck
K

+
M

KD
,

M

D
≥ (K−1)

K∑
k=1

Ck. (24)

Proof: Follows from the upper bound in (21b) and the
lower bound in (19) specialized to t = K − 1.
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2) Upper Bounds on the Capacity-Memory Trade-off for
Equal Cache Assignment: For comparison, consider a scenario
where the total cache memory size M is assigned uniformly
among all users, irrespective of their channel statistics:

M1 = M2 = · · · = MK =
M

K
· (25)

From Proposition 5 we obtain:
Corollary 6.2: Under equal cache assignment, a rate R is

achievable only if the tuple(
R− M

KD
, . . . , R− kM

K(D − k + 1)
, . . . , R− M

D −K + 1

)
lies in the capacity region without cache memories of the
Gaussian BC to receivers 1, . . . ,K.

3) The Benefits of Cache-Assignment: Figure 1 shows
our upper and lower bounds on the global capacity-memory
tradeoff C?(M) for a 4-user Gaussian BC. Theorem 6 is
only evaluated for the marked points. For comparison we
have also plotted an upper bound on the capacity-memory
tradeoff C(M/K,M/K, . . . ,M/K) when all receivers have
equal cache memory. We make the following observations:
• Our upper and lower bounds on C?(M) are close and

coincide for sufficiently large cache memory M.
• Optimizing the cache assignment significantly increases

the capacity-memory tradeoff compared to the upper
bound on the capacity memory tradeoff for any scheme
with uniform cache assignment.

• The second left-most rate-memory point on the blue line
is achieved by assigning all cache memory to the weakest
receiver. Given how close our upper and lower bounds
lie in the low-cache memory regime, we conclude that
in this regime all cache memory should be assigned to
the weakest receiver. All other rate-memory points on

the blue-line are achieved by assigning positive cache
memories to all receivers.

IV. SUPERPOSITION PIGGYBACK-CODING

We generalize the piggyback coding for erasure BCs in [10,
12] to Gaussian BCs by introducing superposition coding. We
piggyback information of multiple stronger receivers on that
of a single weak receiver. The scheme is interesting when a
receiver is strictly weaker than the others.

Preliminaries: Define

γ1 :=
C{2,...,K}

C{2,...,K} + C1
and γ2 := 1− γ1. (26)

The delivery-phase communication takes place in two sub-
phases. Sub-phase 1 comprises the first bγ1nc and sub-phase 2
the last bγ2nc channel uses.

Let ε > 0 be arbitrarily small, and define the rates

R(A) := γ1C1 =
C{2,...,K} · C1

C{2,...,K} + C1

R(B) := γ1

(
1

2
log

(
1 +

(β̃1 + β̃2)P

σ2
2 +

∑K
i=3 β̃iP

)
− C1

)
. (27)

The total rate of the messages is

R := R(A) +R(B)

=
C{2,...,K}

C{2,...,K} + C1

(
1

2
log

(
1 +

(β̃1 + β̃2)P

σ2
2 +

∑K
i=3 β̃iP

))
. (28)

Allocate cache size

M1 := D ·R(B)

=
DC{2,...,K}

C{2,...,K} + C1

(
1

2
log

(
1 +

(β̃1 + β̃2)P

σ2
2 +

∑K
i=3 β̃iP

)
− C1

)
.

(29)

at the weakest receiver 1, and no cache size at the other
receivers. The total cache size is thus M = M1.

Split each message Wd, d ∈ {1, . . . , D} into two parts

Wd = (W
(A)
d ,W

(B)
d ), (30)

which are of rates R(A) and R(B).
Code constructions: For the communication in the first sub-

phase, we use a Gaussian K-level superposition code C1,
where each codebook of a level k is generated with power
β̃kP and contains{⌊

2nR
(A)⌋

codewords, if k = 1,⌊
2nR

(B)⌋
codewords, if k = 2, . . . ,K.

(31)

Denote by xγ1n(wK |w1, . . . , wK−1) the codeword in the
highest level of this superposition code that corresponds to
the message tuple (w1, . . . , wK).

For the communication in the second sub-phase, we con-
struct a code C2 of length bγ2nc and that achieves rate
C{2,...,K} to all receivers 2, . . . ,K.

Caching Phase: Store all messages W (B)
1 , . . . ,W

(B)
D in the

cache memory of receiver 1. This is possible by (29).



Delivery Phase: Transmission takes place in two sub-
phases. In sub-phase 1, which is of length bγ1nc, the trans-
mitter sends the codeword

xnγ1
(
WB
dK

∣∣W (A)
d1

,W
(B)
d2
, . . . ,W

(B)
dK−1

)
.

In sub-phase 2, which is of length bγ2nc, the transmitter
uses codebook C2 to send messages W (A)

d2
, . . . ,W

(A)
dK−1

,WA
dK
.

Decoding is as follows. For k ∈ {2, . . . ,K}, Receiver k
decodes its desired message parts W

(A)
dk

and W
(B)
dk

using
standard super-position decoding. I.e., in both sub-phases, each
of these receivers decodes all levels up to the level containing
its desired message part, while treating higher levels as noise.

Receiver 1 only has to decode W (A)
d1

, because it can retrieve
W

(B)
d1

directly from its cache memory. To decode W
(A)
d1

it
performs the following steps:

1) It retrieves messages W (B)
d2
, . . . ,W

(B)
dK−1

,W
(B)
dK

from its
cache memory.

2) It forms the subcodebook C1,1 ⊆ C1 that contains all
highest-level codewords that are “compatible” with the
retrieved messages:

C1,1 :=
{
xnγ1

(
WB
dK

∣∣w,W (B)
d2
, . . . ,W

(B)
dK−1

)}2nR(A)

w=1
(32)

3) It decodes its desired message W
(A)
d1

by restricting
attention to subcodebook C1,1.

Analysis: In sub-phase 2 the probability of decoding error
tends to 0 as n → ∞ by the way we constructed codebook
C2 and because nR(A) ≤ bγ2ncC{2,...,K}.

In sub-phase 1, Receivers k ∈ {2, . . . ,K} can reliably
decode their message W (B)

dk
because (16) and (27) ensure that

nR(A)+nR(B) ≤ bnγ1c
1

2
log(1+

(β̃1 + β̃2)P

σ2
2 +

∑K
i=3 β̃iP

) (33)

nR(B) ≤ bnγ1c
1

2
log(1 +

β̃kP

σ2
k+
∑K
i=k+1 β̃iP

). (34)

Finally, Receiver 1 can decode with arbitrarily small proba-
bility of error because subcodebook C1,1 contains 2nR

(A)

Gaus-
sian codewords of average power P and nR(A) ≤ bnγ1cC1.

V. MULTI-PIGGYBACK CODING

Next, we generalize the Maddah-Ali & Niesen coded
caching scheme of [1] to receivers with unequal cache sizes
and we combine it with the piggyback coding idea from [9, 10]
to account for different channel conditions at the various
receivers.

The scheme is parametrized by an integer number t ∈
{1, . . . ,K}, which indicates in how many cache memories
each message-part is stored.

Preliminaries: Split each message Wd into τ (t) independent
submessages:

Wd =
{
W
d,G(t)

`

: ` = 1, . . . , τ (t)
}
,

with each message W
d,G(t)

`

being of rate3

R` :=
1

µ(t)

∏
k∈Ḡ(t)

`

Ck. (35)

The total message rate is

R :=

τ(t)∑
`=1

R` =
1

µ(t)

τ(t)∑
`=1

∏
k∈Ḡ(t)

`

Ck. (36)

Assign to receiver k ∈ {1, . . . ,K} a cache memory of size

Mk = D
∑{

` : k∈G(t)
`

}R`. (37)

Caching Phase: For each d ∈ {1, . . . , D}, store the tuple{
W
d,G(t)

`

: k ∈ G(t)
` , ` = 1, . . . , τ (t)

}
(38)

in the cache memory of Receiver k ∈ {1, . . . ,K}. This is
possible by the choice of Mk in (37).

Delivery Phase: If t = K, there is nothing to send in the
delivery phase. We thus assume in the following that t < K.

Transmission takes place in N (t) periods, where each Pe-
riod j ∈ {1, . . . , N (t)} consists of

nj =

⌊
n ·

∏
k∈S̄(t)

j
Ck

µ(t)

⌋
(39)

consecutive channel uses.
For the transmission in Period j, we construct a power-P

Gaussian codebook Cj of length nj and rate

Rper−j =

(
max
k′∈S(t)

j

Ck′

)
· 1

µ(t)

∏
k∈S̄(t)

j

Ck. (40)

The transmitter computes the channel inputs for period j ∈
{1, . . . , N}, as a function of the messages{

W
dk,S(t)

j \{k}
: ∀k ∈ S(t)

j

}
(41)

as follows.
1) It zero-pads the binary representation of each message

in (41) to the same length njRper−j bits, and creates the
XOR of these zero-padded messages:

W̄XOR,S(t)
j

=
⊕
k∈S(t)

j

W̄
dk,S(t)

j \{k}
, (42)

where W̄
dk,S(t)

j \{k}
denotes the zero-padded version of

message W
dk,S(t)

j \{k}
.

2) It encodes the XOR message W̄XOR,S(t)
j

using codebook
Cj , and sends the resulting codeword over the channel
during period j.

3To be precise, to ensure that the probability of error of our scheme tends
to 0 as n → ∞ the rate should be slightly smaller than what is indicated in
(35). We ignore this technicality for ease of exposition.



Each Receiver k ∈ {1, . . . ,K} can retrieve submessages{
W
dk,G(t)

`

: k ∈ G(t)
` , ` = 1, . . . , τ (t)

}
(43)

directly from its cache, see (38). It thus only has to decode
the remaining submessages of Wdk .

Receiver k observes the channel outputs Y nk =
(Yk,1, . . . , Yk,n), which it decomposes into N (t) subsequences
of outputs observed at each period j ∈

{
1, . . . , N (t)

}
:

Y
nj

k,per−j :=
(
Yk,

∑j−1

j′=1
nj′+1, . . . , Yk,

∑j

j′=1
nj′

)
.

For every j ∈ {1, . . . , N (t)} so that k ∈ S(t)
j , Receiver k

performs the following steps to decode message W
dk,S(t)

j \{k}
:

1) It retrieves messages{
Wdk′ ,Sj\{k′} : ∀k′ ∈ S(t)

j \{k}
}

(44)

from its cache memory, and pads their binary represen-
tations to the same maximum length njRper−j bits. So,
it computes the tuple{

W̄
dk′ ,S

(t)
j \{k′}

: ∀k′ ∈ S(t)
j \{k}

}
. (45)

2) It extracts a subcodebook Cj,k from Cj by restricting to
codewords that are “compatible” with the zero-padded
submessages in (45). Let Rj,k be the rate of the desired
submessage W

dk,S(t)
j \{k}

, and let W̄j,k denote the set

of the binary representations of {1, . . . , 2njRj,k} zero-
padded to length njRper−j . Then,

Cj,k :=
{
x
nj

j

(
w̄

⊕
k′∈S(t)

j \{k}

W̄
dk′ ,S

(t)
j \{k′}

)}
w̄∈W̄j,k

.

3) It decodes the XOR message W̄XOR,Sj using the re-
stricted codebook Cj,k.

4) From ˆ̄wXOR,Sj and the messages in (45), it forms

ˆ̄w
dk,S(t)

j \{k}
= ˆ̄wXOR,Sj

⊕
k′∈S(t)

j \{k}

W̄
dk′ ,S

(t)
j \{k′}

, (46)

and retrieves the zero-padding from ˆ̄w
dk,S(t)

j \{k}
to

obtain w̄
dk,S(t)

j \{k}
.

After the last period N (t), each Receiver k produces the
estimate Ŵdk that corresponds to the retrieved tuple in (43)
and to the decoded tuple{

ŵ
dk,G(t)

`

: k /∈ G(t)
` , ` = 1, . . . , τ (t)

}
, (47)

and declares this as its estimate of message Wdk .

Analysis: When every padded XOR-message W̄XOR,Sj is
decoded correctly by all its intended receivers, then all re-
ceivers 1, . . . ,K produce the correct estimate of their desired
messages Wd1 , . . . ,WdK .

Fix j ∈ {1, . . . , N (t)} and consider the probability of
decoding error of W̄XOR,Sj at a specific receiver k ∈ Sj . Let
` be such that

G(t)
` = S(t)

j \{k}.

The probability of the considered decoding error tends to 0
as n (and thus nj) tends to ∞ because the subcodebook Cj,k
contains 2nR` Gaussian codewords and because nR`

nj
= Ck,

see (35) and (39).

VI. CONCLUSION

We studied K-user Gaussian broadcast channels with re-
ceiver cache assignment and established lower and upper
bounds on their global capacity-memory tradeoffs. We pro-
posed a joint cache-channel coding scheme that can benefit
from unequal cache sizes at the receivers and account for
different channel qualities. By carefully assigning larger cache
memories to weaker receivers we can achieve rates that are
impossible to achieve with equal cache assignment.
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