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Noisy Broadcast Networks with Receiver Caching
Shirin Saeedi Bidokhti, Michèle Wigger and Roy Timo

Abstract

We study noisy broadcast networks with local cache memories at the receivers, where the transmitter can pre-store information
even before learning the receivers’ requests. We mostly focus on packet-erasure broadcast networks with two disjoint sets of
receivers: a set of weak receivers with all-equal erasure probabilities and equal cache sizes and a set of strong receivers with
all-equal erasure probabilities and no cache memories. We present lower and upper bounds on the capacity-memory tradeoff of this
network. The lower bound is achieved by a new joint cache-channel coding idea and significantly improves on schemes that are
based on separate cache-channel coding. We discuss how this coding idea could be extended to more general discrete memoryless
broadcast channels and to unequal cache sizes. Our upper bound holds for all stochastically degraded broadcast channels.

For the described packet-erasure broadcast network, our lower and upper bounds are tight when there is a single weak receiver
(and any number of strong receivers) and the cache memory size does not exceed a given threshold. When there are a single weak
receiver, a single strong receiver, and two files, then we can strengthen our upper and lower bounds so as they coincide over a
wide regime of cache sizes.

Finally, we completely characterise the rate-memory tradeoff for general discrete-memoryless broadcast channels with arbitrary
cache memory sizes and arbitrary (asymmetric) rates when all receivers always demand exactly the same file.

I. INTRODUCTION

We address a one-to-many broadcast communications problem where many users demand files from a single server during
peak-traffic times — periods of high network congestion. To improve network performance, the server can pre-place information
in local cache memories near users at the network edge. This pre-placement of information is called the caching communications
phase, and it occurs during off-peak times when the communications rate is not a limiting network resource. The server typically
does not know in advance which files the users will demand, so it can try to cache information that is likely to be useful for
many users during the delivery communications phase (the peak-traffic time when the users demand files from the server).
For example, researchers at Huawei Laboratories [4] recently used machine learning techniques to predict user behavior and
proactively cache data to improve user request satisfaction ratios and reduce backhaul loads during the delivery phase.

The above caching problem is particularly relevant to video-streaming services in mobile networks. Here network operators
pre-place information in clients’ caches (or, on servers near the clients) to improve latency and throughput during peak-traffic
times. The network operator does not know in advance which movies the clients will request, and thus the cached information
cannot depend on the clients’ specific demands. It is now widely expected that there will be a nine-fold increase in mobile data
traffic by 2020, and around 60 percent of this traffic will be mobile video [5]. Smart data caching strategies, new bandwidth
allocations, reduced cell sizes and new radio-access technologies will all be needed to meet these growing demands [6].

The information-theoretic aspects of cache-aided communications have received significant attention in recent years [7]–[36].
Maddah-Ali and Niesen [7] considered a one-to-many broadcast problem where the receivers have independent caches of equal
sizes and the delivery phase takes place over a noiseless broadcast communications link. They showed that a smart design of
the cache contents enables the server to send coded (XOR-ed) data during the delivery phase that can simultaneously meet
the demands of multiple receivers with a single transmission. This coded caching scheme, by simultaneously satisfying user
demands, allows the server to reduce the delivery rate beyond the obvious local caching gain (the data rate that each receiver
can immediately retrieve from its cache without using coded caching). Intuitively, this performance improvement occurs because
the receivers can profit from other receivers’ caches, and was thus termed [7] global caching gain.

Improved caching and delivery strategies for the Maddah-Ali and Niesen model were presented in [8]–[10]. Fundamental
converse (lower) bounds on the total required delivery rate were presented in [7], [11]–[16]. It was shown in [17] that the
coded caching scheme of Maddah-Ali and Niesen is optimal among schemes that have uncoded caching placement when there
are more files than users.

The Maddah-Ali and Niesen model considers a worst-case scenario, meaning that the goal is to satisfy all possible user
demands. The caching problem has also been studied in average-case scenarios [14]–[16] where the receivers’ demands follow
a given probability distribution and the delivery rate is averaged over this demand distribution.
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In contrast to [7], we will assume in this paper that the delivery phase takes place over a noisy broadcast channel (BC),
and we will see that further global caching gains can be achieved by joint cache-channel coding. Intuitively, when the BC is
noisy the cache content not only determines what to transmit but also how to transmit it.

We will focus on packet erasure broadcast channels that provide a first order model1 of packet losses in congested networks.
The importance of including a noisy channel model for the delivery phase was also observed in [1], [18]–[28]. For example,
[22] and [23] illustrate interesting interplay between feedback or channel state information with caching, and [24] and [25] show
that caches at the transmitter-side and receiver-side allow for load-balancing and interference mitigation in noisy interference
networks. The works in [22]–[25] focus on the high signal-to-noise ratio regime.

Our main interest in this paper is to characterize some of the fundamental rate-memory tradeoffs for cache-aided broadcast
networks; that is, we wish to determine the set of rates at which messages can be reliably communicated for given cache sizes.
We focus on a worst-case (worst-demand) setup and consider two different communication scenarios.

Scenario 1: We assume that the receivers’ demands are arbitrary2 and the messages are all of equal rate. We focus on the
packet-erasure BC illustrated in Figure 1, and divide the K receivers into two sets:
• A set of Kw weak receivers with equal “large” BC erasure probabilities δw > 0. These receivers are each equipped with

an individual cache of equal memory M .
• A set of Ks = K−Kw strong receivers with equal “small” BC erasure probabilities δs ≥ 0 with δs ≤ δw. These receivers

are not provided with caches.

Tx

Packet Erasure Broadcast Channel

Xn

Library: W1, W2, . . . , WD

Rx Kw+1Rx Kw

Y n
Kw+1Y n

Kw

Rx K

Y n
K

Rx 1

Y n
1

Cache1

Rx 2

Y n
2

Cache2

nM bitsnM bits nM bits

. . . . . .

erasure probability �w

erasure probability �s < �w
. . . CacheKw

Fig. 1: K user packet-erasure BC with Kw weak and Ks strong receivers and where the weak receivers have cache memories.

This scenario is motivated by previous studies [1], [19] that showed the benefit of prioritizing cache placements near weaker
receivers. In practical systems, this means that telecommunications operators with a limited number of caches might first place
caches at houses that are further away from an optical fiber access point. Or, they might place caches at pico or femto base
stations in heterogenous networks that are located in areas with notoriously bad coverage. Scenario 1 also arises as part of a
more complex system model in which every receiver is equipped with a cache. Suppose, for example, that the stronger receivers
want to decode additional data that will never be demanded by the weak receivers (see also Section VI). This additional data
might represent, for example, a higher resolution of a video. A practical solution in this case is to separate transmission of
files from the two libraries [32]–[34]: A first transmission sends the files that are of interest to all receivers, and a second
transmission sends only files from the additional library to the strong receivers. The question is now how to divide the cache
memory between the two transmissions. Based on the results we obtain in this paper, we propose to assign all the cache
memory at the strong receivers to the second transmission, because through a careful design of the first transmission scheme,
the strong receivers can already benefit from the weak receivers’ caches without accessing their own cache memories.

The fundamental rate versus cache memory tradeoff of interest in Scenario 1 is the largest rate R at which all messages
can be reliably transmitted (in the usual Shannon sense) for a given cache size M at the weak receivers. This largest rate is
called the capacity-memory tradeoff and will be denoted by C(M).

We present general achievable (lower) and converse (upper) bounds on the capacity-memory tradeoff C(M). Our achievable
bound on C(M) is based on a joint cache-channel coding scheme that builds on the ‘piggyback’ coding idea in [39] (see
Subsection III-D). The basic idea of piggyback coding is to carry messages to strong receivers on the back of messages to the

1Here we can assume that bit-level errors within a packet are handled on a link-by-link basis using physical layer error-correction techniques, and packets
arrive at the users promptly or are lost due to, for example, buffer overflows.

2Each user can choose any file from the server.
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weak receivers. These messages can be carried for “free” if the server pre-places appropriate “message side information” in
the weak receivers’ caches. We will see that joint cache-channel coding provides substantial gains over separate cache-channel
coding with Maddah-Ali and Niesen’s coded caching scheme [7] and a capacity achieving scheme for the packet-erasure BC.
For example, if the library has D messages of rate R and M is smaller than approximately DR(δw−δs)

Kw+Ks
(i.e., a ‘small-memory’

regime), then

C(M) ≥ R0 +
M

D
· γlocal · γglobal,sep · γglobal,joint. (1)

Here R0 represents the capacity of the network without caches, and γlocal ≤ 1, γglobal,sep ≥ 1 and γglobal,joint ≥ 1 are constants
(depending on the number of receivers and erasure probabilities). The exact expressions of the three constants are presented
later in (34), but they have the following interpretations. If we employ a standard capacity-achieving coding scheme to transmit
the parts of the demanded messages that are not already stored in the intended receivers’ caches, then we achieve a rate equal
to R0 + M

D · γlocal. This strategy achieves only a local caching gain, and hence the subscript “local” for this factor. When some
receivers in the network have no caches (Ks ≥ 1), then γlocal < 1. A scheme that combines Maddah-Ali and Niesen’s coded
caching algorithm with a capacity-achieving scheme for the packet-erasure BC attains the lower bound R0+ M

D ·γlocal ·γglobal,sep.
The factor γglobal,sep thus describes the global caching gain obtained by a separate cache-channel coding scheme, and hence the
subscript “global,sep”. Whenever Kw > 1, we have γglobal,sep > 1. Finally, our joint cache-channel coding scheme achieves the
lower bound (1), and the parameter γglobal,joint describes this scheme’s gain over the previous separate cache-channel coding.
In other words, the factor

γglobal,joint = 1 +
2Kw

1 +Kw
· Ks(1− δw)

Kw(1− δs)
(2)

describes the further global caching gain that is possible using our joint cache-channel coding scheme (that was not achievable
with the aforementioned separate cache-channel coding scheme). By (2), the improvement of our joint cache-channel coding
scheme over the separate cache-channel coding scheme is not bounded for small cache sizes. In particular, it is strictly increasing
in the number of strong receivers Ks.

Our general lower and upper bounds match for

Kw = 1 and M ≤ FD (1− δs)(δw − δs)

Ks(1− δw) + (1− δs)
· (3a)

For the special case Kw = Kw = 1 and D = 2, we present a refined lower bound on C(M) as well as a refined upper
bound. The idea is to cache also the XOR of a part of the two messages in the library, similarly to [7, Appendix]. Our refined
bounds coincide when

Kw = Ks = 1; D = 2; δw = δs (3b)

and
Kw = Ks = 1; D = 2; M ≥ F ((1− δs) + (δw − δs)). (3c)

Scenario 2: In our second scenario (section VIII) we allow for general discrete memoryless broadcast channels (DMBCs),
arbitrary cache sizes {Mk}Kk=1, and non-equal rates of the various messages R1, . . . , RD. However, we impose that each
receiver demands exactly the same message. For this scenario we completely characterize the entire rate-memorry tradeoff
(R, . . . , RD,M1, . . . ,Mk).

The remainder of this paper is organised as follows. In Sections II and III, we state the problem setup and some auxiliary
results that are helpful in the design of our joint cache-channel coding scheme. Section IV summarizes our main results for the
first scenario. We describe and analyze our joint source-cache channel coding scheme in Section V and sketch how our scheme
can be extended to more general scenarios with arbitrary cache sizes and arbitrary DMBCs in Section VI. In Section VII, we
prove an upper bound on the capacity-memory tradeoff of general (stochastically) degraded BCs with caches at the receivers.
Our second scenario is discussed in section VIII.

II. PROBLEM DEFINITION

A. Notation

Random variables are identified by uppercase letters, e.g. A, their alphabets by matching calligraphic font, e.g. A, and
elements of an alphabet by lowercase letters, e.g. a ∈ A. We also use uppercase letters for deterministic quantities like rate
R, capacity C, number of users K, memory size M , and number of files in the library D.

The Cartesian product of A and A′ is A×A′, and the n-fold Cartesian product of A is An. Vectors are identified by bold
font symbols, e.g., a, and matrices by the font A. We use the shorthand notation An for the tuple (A1, . . . , An). LHS and
RHS stand for left-hand side and right-hand side.

Finally, we use the notation W1

⊕
W2 to denote the bitwise XOR over the binary strings corresponding to the messages

W1 and W2, which are assumed to be of equal length.
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B. Message and channel models

Consider a broadcast channel (BC) with a single transmitter and K receivers as depicted in Figure 1. We have two sets of
receivers: Kw weak receivers that statistically have a bad channel and Ks = K −Kw strong receivers that statistically have
a good channel. (The meaning of good and bad channels will be explained shortly.) For convenience of notation, we assume
that the first Kw receivers are weak and the subsequent Ks receivers are strong, and we define the sets

Kw := {1, . . . ,Kw}
and

Ks := {Kw + 1, . . . ,K}.
We model the channel from the transmitter to the receivers by a memoryles packet-erasure BC with input alphabet

X := {0, 1}F

and equal output alphabet at all receivers
Y := X ∪ {∆}.

Here F ≥ 0 is a fixed positive integer, and each input symbol x ∈ X is an F -bit packet. The output erasure symbol ∆ models
loss of a packet at a given receiver. Each receiver k ∈ K := {1, . . . ,K} observes the erasure symbol ∆ with a given probability
δk ≥ 0, and it observes an output yk equal to the input, yk = x, with probability 1− δk. The marginal transition laws3 of the
memoryless BC are thus described by

P[Yk = yk|X = x] =

 1− δk if yk = x
δk if yk = ∆
0 otherwise

∀ k. (4)

We will assume throughout that

δi =

{
δw if i ∈ Kw
δs if i ∈ Ks

(5)

for fixed erasure probabilities4 0 < δs ≤ δw ≤ 1. Since δs ≤ δw, the weak receivers have statistically worse channels than the
strong receivers, hence the distinction between good and bad channels. In the sequel, we will assume that each weak receiver
is provided with a cache memory of size nM bits. The strong receivers are not provided with cache memories. We explain
shortly how the cache memory at the weak receivers can be exploited.

C. Message library and receiver demands

The transmitter has access to a library with D ≥ K messages

W1, . . . ,WD. (6)

These messages are all independent of each other and each of them is uniformly distributed over the message set {1, . . . , b2nRc},
where R ≥ 0 is the rate of each message and n the blocklength of transmission.

Each receiver will demand (i.e., request and download) exactly one of these messages. Let

D := {1, . . . , D}.
We denote the demand of receiver 1 by d1 ∈ D, the demand of receiver 2 by d2 ∈ D, etc., to indicate that receiver 1 desires
message Wd1 , receiver 2 desires message Wd2 , and so on. For most of the time in this manuscript we assume that the demand
vector

d := (d1, . . . , dK) (7)

can take on any value in DK .
Communication takes place in two phases: a first caching phase where information is stored in the weak receivers’ cache

memories and a subsequent delivery phase where the demanded messages are delivered to all the receivers. The next two
subsections detail these two communication phases.

3As will become clear in the following, for our problem setup only this marginal transition law is relevant, but not the joint transition law.
4Though, in principle, we allow δs = δw, our main interest will be δs < δw.
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D. Caching phase

During the first communication phase the transmitter sends caching information Vi to each weak receiver i ∈ Kw, who then
stores this information in its cache memory. The strong receivers do not take part in the caching phase.

The demand vector d is unknown to the transmitter and receivers during the caching phase, and, therefore, the cached
information Vi cannot depend on the users’ specific demands d. Instead, Vi is a function of the entire library:

Vi := gi(W1, . . . ,WD) i ∈ Kw

for some function
gi :
{

1, . . . , b2nRc
}D → V, i ∈ Kw, (8)

where
V := {1, . . . , b2nMc}.

The caching phase occurs during a low-congestion period. We therefore assume that this phase incurs no erasures or other
types of errors, and each weak receiver i ∈ Kw can store Vi in its cache memory.

E. Delivery phase

The transmitter is provided with the demand vector d, and it communicates the corresponding messages Wd1 , . . . ,WdK over
the packet-erasure BC. The entire demand vector d is assumed to be known to the transmitter and all receivers5.

Depending on the demand vector d, the transmitter chooses an encoding function

fd : {1, . . . , b2nRc}D → Xn (9)

and it sends
Xn = fd(W1, . . . ,WD), (10)

over the packet-erasure BC.
Each receiver k ∈ {1, . . . ,K} observes Y nk according to the memoryless transition law in (4). Each weak receiver attempts

to reconstruct its desired message from it channel output, cache contents and demand vector d. Similarly, each strong receiver
attempts to reconstructs its desired message from its channel output and the demand vector d. More formally,

Ŵi :=

{
ϕi,d(Y ni , Vi) if i ∈ Kw

ϕi,d(Y nj ) if i ∈ Ks

(11a)

where
ϕi,d : Yn × V → {1, . . . , b2nRc} i ∈ Kw (11b)

and
ϕj,d : Yn → {1, . . . , b2nRc} j ∈ Ks. (11c)

F. Capacity-memory tradeoff

An error is said to occur whenever

Ŵk 6= Wdk for some k ∈ {1, . . . ,K}. (12)

For a given demand vector d the probability of error is thus

Pe(d) := P
[ K⋃
k=1

Ŵk 6= Wdk

]
. (13)

We consider a worst-case probability of error over all feasible demand vectors:

Pe
worst := max

d∈DK
Pe(d). (14)

In definitions (8)-(14), we sometimes add a superscript (n) to emphasise the dependency on the blocklength n.
We say that a rate-memory pair (R,M) is achievable if for every ε > 0 there exists a sufficiently large blocklength n and

caching, encoding and decoding functions as in (8), (9) and (11) such that Pe
worst < ε. The main problem of interest in this

paper is to determine the following capacity versus cache memory tradeoff.
Definition 1: Given cache memory size M , we define the capacity-memory tradeoff C(M) as the supremum of all rates R

such that the rate-memory pair (R,M) is achievable.

5It takes only dlog(D)e bits to describe the demand vector d. The demand vector can thus be revealed to all terminals using zero transmission rate.
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G. Trivial and non-trivial memory sizes

The capacity-memory tradeoff C(M) is trivially upper bounded by the capacity of the packet-erasure BC to the strong
receivers only (see Proposition 1 in Section III-A ahead):

C(M) ≤ F
(

1− δs

Ks

)
∀ M ≥ 0. (15)

For M = DF (1− δs)/Ks, this upper bound is also achievable because the weak receivers can store the entire library in their
caches and the transmitter thus needs to only serve the strong receivers during the delivery phase. Therefore,

C(M) = F

(
1− δs

Ks

)
, ∀ M ≥ DF

(
1− δs

Ks

)
. (16)

We will henceforth restrict attention to nontrivial cache memories

M ∈
[
0, DF

(1− δs)

Ks

]
.

III. PREVIOUS RELATED RESULTS

This section reviews capacity results and coding schemes for three related scenarios that form the basis for our new bounds
on the capacity-memory tradeoff C(M) and the joint cache-channel coding scheme that we present in Section V ahead.

A. Capacity of packet-erasure BCs

Temporarily consider the K receiver packet-erasure BC illustrated in Figure 2. The BC is characterised by (4) with arbitrary
erasure probabilities 0 < δ1, δ2, . . . , δK ≤ 1. Suppose that the are no caches (i.e., M = 0), and that each receiver k wishes
to learn an independent message Wk that is uniformly distributed over the set {1, . . . , b2nRkc}. Notice that, in contrast to
previous sections, messages have different rates, and it is a priori known which message is intended for which receiver. Let
Ŵk denote receiver k’s reconstruction of message Wk.

Tx

Packet Erasure Broadcast Channel

Xn

W1, W2, . . . , WK

Rx K

Y n
K

Rx 1

Y n
1

Rx 2

Y n
2

. . . . . .

�1 �K�2

Ŵ1 Ŵ2 ŴK

Fig. 2: Standard K-user packet-erasure BC with arbitrary erasure probabilities and no caches.

The capacity region of this standard packet erasure-BC is achieved by time-sharing capacity-achieving point-to-point
codes [37]. The point-to-point capacity of the channel from the transmitter to receiver k ∈ {1, . . . ,K} is

Ck = (1− δk)F. (17)

Proposition 1: The capacity region of the packet-erasure BC to K receivers with erasure probabilities δ1, δ2, . . . , δK is the
closure of the set of nonnegative rate-tuples (R1, . . . , RK) that satisfy [37]

K∑
k=1

Rk
(1− δk)F

≤ 1.
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Tx

Xn

Library: W1, W2, . . . , WD

Rx 1

Cache1

Rx 2

Cache2

nM bitsnM bits nM bits

. . .

. . .

Rx K

CacheK

Fig. 3: BC with a common noise-free pipe of rate F to all K̃ receivers, which all have a cache memory of nM bits.

B. Coded caching over a BC with noise-free common bit-pipe

We briefly explain the Maddah-Ali and Niesen’s coded caching scheme in [7]. The scheme has two parameters:
• a positive integer K̃ (representing the number of users with caches) and
• an index t̃ ∈ {1, . . . , K̃}.

Coded caching applies to the noiseless communication scenario illustrated in Figure 3. This scenario coincides with our original
scenario in Section II in the special case where

Kw = K = K̃ and δw = 0.

As in (6), the messages (W1,W2, . . . ,WD) depicted in Figure 3 have a common rate R.
It will be convenient to describe coded caching using the following methods:
• Method Ca describing the caching phase for the setup in Figure 3.
• Method En describing the delivery-phase encoding.
• Methods {Dek; k = 1, 2, . . . , K̃} describing the delivery-phase decoding at each user.
1) Preliminaries: Let

G1, . . . ,G(K̃
t̃ )

denote the
(
K̃
t̃

)
subsets of {1, . . . , K̃} of size t̃. Split each message Wd into K̃ choose t̃ independent submessages,

Wd =

{
Wd,G` : ` = 1, . . . ,

(
K̃

t̃

)}
.

Each of these submessages is of equal rate

Rsub := R

(
K̃

t̃

)−1
. (18)

2) Method Ca: This method takes the entire library W1, . . . ,WD as an input, and it outputs the cache contents V1, V2, . . . , VK̃
where

Vk =
{
Wd,G` : d ∈ {1, . . . , D} and k ∈ G`

}
, k ∈ {1, . . . , K̃}. (19)

In other words, during the caching phase, the tuple(
W1,G` , W2,G` , . . . , WD,G`

)
is stored in the cache memory of every receiver in G`.

3) Method En: This method takes the entire library W1, . . . ,WD and the demand vector d as inputs, and it outputs{
WXOR,S : S ⊆ {1, . . . , K̃} and |S| = t̃+ 1

}
, (20)

where
WXOR,S :=

⊕
s∈S

Wds,S\{s}. (21)
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4) Methods Dek (for k = 1, . . . , K̃): This method takes as inputs the demand vector d; the XOR-messages {WS : k ∈ S}
produced by method En; and the cache content Vk produced by method Ca. It outputs the

(
K̃
t̃

)
-tuple reconstruction

Ŵdk :=
(
Ŵdk,G1 , . . . , Ŵdk,G(K̃

t̃ )

)
, (22)

where

Ŵdk,G` =

{
Wdk,G` if k ∈ G`(⊕

s∈G` Wds,G`∪{k}\{s}
)⊕

WXOR,G`∪{k} if k /∈ G`.
(23)

Notice that all the (XOR) messages on the right are inputs of this method, because they are either part of the cache content Vk
produced by method Ca or part of the XOR messages {WXOR,S : k ∈ S} produced by method En.

5) Analysis: We now analyse the three methods above for Figure 3.
Lemma 2: Consider the scenario in Figure 3. The XOR messages {WXOR,S} produced by method En can be sent over the

common noise-free pipe if and only if the rate of the pipe satisfies

F ≥
(

K̃

t̃+ 1

)
Rsub = R

K̃ − t̃
t̃+ 1

. (24)

Moreover, each receiver k ∈ {1, . . . , K̃} can store the cache content Vk if, and only if, the cache memory size satisfies

M ≥ D
(
K̃ − 1

t̃− 1

)
Rsub = D

t̃

K̃
R. (25)

Proof: Inequality (24) follows because there are
(
K̃
t̃+1

)
XOR messages WS of rate Rsub and by (18). Inequality (25) follows

because each Vk produced by method Ca, consists of D
(
K̃−1
t̃−1
)

messages of rate Rsub, see (19).

C. Separate cache and channel coding for packet-erasure BCs (and the proof of Proposition 6)

Starting from Maddah-Ali and Niesen’s coded-caching scheme one readily obtains a separation-based coding scheme for
the packet-erasure BC with caches described in Section II. Details are as follows.

Choose K̃ = Kw and an arbitrary t̃ ∈ {1, . . . ,Kw}. For the caching phase: Apply Method Ca to the library W1, . . . ,WD;
take the resulting V1, . . . , Vw; and store each Vk the cache memories of receiver k. The delivery-phase transmitter proceeds in
two steps:
T1: The transmitter applies method En to the library W1,W2, . . . ,WD and demand vector dw := (d1, d2, . . . , dKw).
T2: The transmitter sends the XOR-messages produced in step T1 together with the messages that are demanded by receivers

in Ks using a capacity-achieving scheme for the packet-erasure BC.
The strong receivers decode their intended messages using an optimal decoding method for the packet-erasure BC. The weak
receivers decode in two steps:
R1: Each weak receiver uses an optimal decoder for the packet-erasure BC to recover all XOR-messages generated by method

En.
R2: It applies method De to the XOR messages decoded in step R1.

This separate cache and channel coding scheme can be easily analysed using Lemma 2 and Proposition 1, and from this
analysis one obtains Proposition 6 in Section IV.

D. “Piggyback” coding for BCs with message side information

Consider the two-user BC with message side-information [40], [41] illustrated in Figure 4.
The transmitter observes two independent messages W1 and W2 of rates R1 and R2. Message W1 is intended for receiver 1

and message W2 for receiver 2. Suppose that receiver 1 is given W2 prior to communications and the BC has arbitrary transition
probabilities PY1Y2|X . The capacity region of this BC with message side-information at receiver 1 can be derived6 from [41,
Thm. 3].

We now present a specific random coding scheme for the BC in Figure 4, which we call piggyback coding.
1) Code Construction: Fix a distribution PX on the input alphabet of the BC, a small ε > 0 and a large blocklength n.

Randomly generate a codebook C with b2nR1c × b2nR2c codewords of length n by independently picking each entry of each
codeword using PX . We place the codewords into a matrix with b2nR1c columns and b2nR2c rows, and denote the codeword
in column w1 and row w2 by xn(w1, w2). Figure 5 sketches the codebook: Each dot represents a codeword; message W1

determines the column of the codeword to pick and W2 determines the row. The codebook is given to the transmitter and both
receivers.

6Kramer and Shamai assume in [41, Thm. 3] that receiver 1 not only needs to decode message W1 but also W2. However, since receiver 1 has message
W2 as side information, this additional requirement is not a limitation and the two setups have identical capacity regions.
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Tx

Xn
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W1, W2

Y n
2Y n

1

Ŵ1 Ŵ2

Broadcast Channel
PY1Y2|X

W2

Fig. 4: Standard two-user BC with message side-information at receiver 2.

W1

W2

W2 = 4

Fig. 5: Codebook C where the dots represent the codewords xn(w1, w2) arranged in a matrix array. Columns encode message
W1 and rows encode message W2. Receiver 1 knows the value of message W2 and thus can restrict its decoding to a single
row of the codebook.

2) Encoding: Given that the transmitter wishes to send messages W1 = w1 and W2 = w2, it transmits the codeword
xn(w1, w2) over the channel.

3) Decoding at receiver 1 (the receiver with side information): Since receiver 1 knows W2 = w2, it can restrict attention
to the w2-th row of the codeword. For example if W2 = 4, then it needs only to consider the codewords (dots) that lie in the
highlighted row of Figure 5.

Given that receiver 1 observes the channel outputs Y n1 = yn1 , it looks for a unique index ŵ1 ∈ {1, . . . , b2nR1c} satisfying

(xn(ŵ1, w2), yn1 ) ∈ T nε (PXY1
),

where T nε (PXY1
) denotes the typical set as defined in [42]. If there is no such index ŵ1, then receiver 1 declares an error.

4) Decoding at receiver 2 (the receiver without side information): Receiver 2 will attempt to decode both messages W1

and W2. Given that it observes channel outputs Y n2 = yn2 , it looks for the unique pair of indices (ŵ1, ŵ2) ∈ {0, . . . , 2nR1 −
1} × {0, . . . , 2nR2 − 1} satisfying

(xn(ŵ1, ŵ2), yn2 ) ∈ T nε (PXY2).

If there is no such pair of indices, then receiver 2 declares an error.
5) Analysis & discussion: By the covering lemma [42] and because receiver 1 restricts attention to a single row in the

codebook, the probability of decoding error at receiver 1, P[Ŵ1 6= W1], tends to 0 as n→∞ whenever

R1 < I(X;Y1). (26a)

Moreover, by this covering lemma and because receiver 2 decodes both messages, the probability of error at receiver 2,
P[Ŵ2 6= W2], tends to 0 as n→∞ whenever

R1 +R2 < I(X;Y2). (26b)

We have the following proposition.
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(1 � �1)F

(�1 � �2)F

Fig. 6: The gray area depicts the rate-region achieved with piggyback coding over a two-user packet-erasure BC with message
side-information at receiver 1 when receiver 2 has smaller erasure probability than receiver 1, i.e., δ2 < δ1. The dashed line
indicates the border of the capacity region without message side-information. The figure shows that the message side-information
allows to piggyback information to receiver 2 without reducing the achievable rate to receiver 1.

Proposition 3: For a DMBC PY1Y2|X with message side-information at receiver 1 shown in Figure 4, piggyback coding
achieves all nonnegative rate-pairs (R1, R2) satisfying (26) for some channel input distribution PX .

Specialising this proposition to the packet-erasure BC, we obtain the following.
Proposition 4: For the two-user F bit packet-erasure BC, with erasure probabilities δ1, δ2 and message side information at

receiver 1, piggyback coding achieves all rate-pairs (R1, R2) that satisfy

max

{
R1

(1− δ1)F
,
R1 +R2

(1− δ2)F

}
≤ 1. (27)

The achievable region in Proposition 4 is illustrated in Figure 6. This region covers the entire capacity region of the two-user
F -bit packet-erasure BC with message side-information at receiver 1 whenever δ2 < δ1.

Remark 1: The piggyback coding scheme does not achieve the entire capacity region of an arbitrary DMBC with message
side-information at receiver 1. Consider, for example, a degenerate DMBC in which the channel to receiver 2 is useless (i.e.,
PY2|X has 0 point-to-point capacity) and receiver 1’s channel PY1|X has positive capacity. Over such a channel the piggyback
coding achieves no positive rates because (26b) constrains the sum-rate to 0. It is clear that with a different scheme positive rates
R1 > 0 can be achieved. The optimal coding scheme splits message W1 into (W1,p,W1,c) and combines piggyback coding
with superposition coding: in the cloud center it sends (W1,c,W2) as in piggyback coding, and in the satellite it sends W1,p.

IV. NEW RESULTS FOR ARBITRARY DEMANDS

In this section we assume that the demand vector

d can take on every value in DK .
Our main results are a general lower bound and a general upper bound on the capacity-memory tradeoff C(M). The bounds
are tight in certain regimes of M when Kw = 1. We further present improved lower and upper bounds for the special case
Ks = Kw = 1 and D = 2. These bounds match except for a small regime of M ’s.

A. General lower bounds

Define Kw + 2 rate-memory pairs {(Rt,Mt); t = 0, 1, . . . ,Kw + 1} as follows:
(i)

R0 := F

(
Kw

1− δw
+

Ks

1− δs

)−1
, M0 := 0; (28)

(ii) For each t ∈ {1, . . . ,Kw}:

Rt :=

F (1− δw)

(
1 +

Kw − t+ 1

tKs

δw − δs

1− δw

)
Kw − t+ 1

t

(
1 +

Kw − t
(t+ 1)Ks

δw − δs

1− δw

)
+Ks

1− δw
1− δs

,

Mt := Rt
D

Kw

(
t−
(

1+
Kw−t+1

tKs

δw−δs

1− δw

)−1
)

; (29)
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(iii)

RKw+1 := F
1− δs

Ks
, MKw+1 := DF

1− δs

Ks
. (30)

Theorem 5 (Lower bound): The upper convex hull of the Kw + 2 rate-memory pairs {(Rt,Mt); t = 0, 1, . . . ,Kw + 1} in
(28)–(30) forms a lower bound on the capacity-memory tradeoff:

C(M) ≥ upper hull
{

(Rt,Mt) : t = 0, . . . ,Kw + 1
}
. (31)

Proof outline: The pair (R0, M0 = 0) corresponds to the case without caches, and the achievability of R0 follows from
the usual capacity result for packet-erasure BCs, see Proposition 1 in the previous section III-A. Achievability of the pair
(RKw+1, MKw+1) follows from (16).

The remaining pairs (Rt,Mt), t = 1, . . . ,Kw, are more interesting and are achieved by the joint cache-channel coding
scheme in section V ahead. The upper convex hull of {(Rt,Mt); t = 0, 1, . . . ,Kw + 1}, finally, is achieved by time-sharing.

To better illustrate the strength of our lower bound, and thus of our joint cache-channel coding scheme in section V, consider
the following separation-based lower bound:

Proposition 6: The upper convex hull of the rate-memory pairs {(Rt,sep,Mt,sep); t = {0, . . . ,Kw}
}

is achievable, where

Rt,sep := F

(
Kw − t

(t+ 1)(1− δw)
+

Ks

(1− δs)

)−1
, (32a)

Mt,sep := D
t

Kw
Rt,sep. (32b)

Proof: For t = 0, no cache memory is used and the achievability of R0,sep follows simply by the standard capacity region
of the packet-erasure BC, Proposition 1 in section III-A. For t ∈ {1, . . . ,Kw} achievability of the pair (Rt,sep,Mt,sep) can be
shown by trivially combining the Maddah-Ali & Niesen coded caching [7, Algorithm 1] with a capacity-achieving scheme for
the packet-erasure BC without caching, see the previous section III-C.

Of special interest is the regime of small cache size M . In this regime, Theorem 5 specializes as follows:
Corollary 6.1: For small cache memory sizes, M ≤M1, the capacity-memory tradeoff is lower bounded as

C(M) ≥ R0 +
M

D
· γlocal · γglobal,sep · γglobal,joint, M ≤M1, (33)

where R0 is defined in (28) and

γlocal :=
Kw(1− δs)

Kw(1− δs) +Ks(1− δw)
, (34a)

γglobal,sep :=
1 +Kw

2
, (34b)

γglobal,joint := 1 +
2Kw

1 +Kw
· Ks(1− δw)

Kw(1− δs)
. (34c)

If in the above lower bound one replaces the product γglobal,sep ·γglobal,joint by 1, then one obtains the lower bound that corresponds
to a coding scheme with only local caching gain. If only the factor γjoint is replaced by 1, then one obtains the lower bound
implied by Proposition 6. The factor γglobal,sep is thus due to the separation-based Maddah-Ali & Niesen coded caching idea.
In contrast, the last factor γglobal,joint is due to our joint cache-channel coding scheme. Notice that this factor γglobal,joint is
unbounded when one increases the number of strong receivers Ks or more generally the ratio Ks(1−δw)

Kw(1−δs)
.

B. General upper bound

We now present our upper bound. Define for each kw ∈ {0, . . . ,Kw}

Rkw(M) := F

(
kw

1− δw
+

Ks

1− δs

)−1
+
kwM

D
·

Theorem 7 (Upper bound): The capacity-memory tradeoff C(M) is upper bounded as

C(M) ≤ min
kw∈{0,...,Kw}

Rkw(M). (35)

Proof: In section VII we derive an upper bound on the capacity-memory tradeoff for a general degraded BC with arbitrary
cache sizes at the receivers, see Theorem 9. We then specialize this upper bound to packet-erasure BCs with arbitrary cache
sizes and erasure probabilities in Corollary 9.1, and we show how the upper bound in (35) is obtained from this corollary.

We numerically compare our upper and lower bounds on the capacity-memory tradeoff in Figures 7 and 8.
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Fig. 7: Bounds on the capacity-memory tradeoff C(M) for Kw = 4, Ks = 16, D = 50, δw = 0.8, δs = 0.2, and F = 10.
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Fig. 8: Bounds on capacity-memory tradeoff C(M) for Kw = Ks = 10, D = 50, δw = 0.8, δs = 0.2, and F = 50.

C. Special case of Kw = 1

We first evaluate our bounds for a setup with a single weak receiver and any number of strong receivers. Let

Γ1 := F
(1− δs)

Ks

(δw − δs)

(Ks(1− δw) + (1− δs))
, (36)

Γ2 :=
(1− δs)

Ks
F, (37)

Γ3 := F
(1− δs)

Ks

(1− δs)

(Ks(1− δw) + (1− δs))
. (38)

Notice that 0 ≤ Γ1 ≤ Γ3 ≤ Γ2. From Theorems 5 and 7 we obtain the following corollary.
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Fig. 9: Bounds on the capacity-memory tradeoff for Kw = 1, Ks = 10, D = 22, δw = 0.8, δs = 0.2, and F = 10.

Corollary 7.1: If Kw = 1 the capacity-memory tradeoff is lower bounded by:

C(M) ≥
{
F (1−δw)(1−δs)
Ks(1−δw)+(1−δs)

+ M
D , if M

D ∈ [0,Γ1]

F (1−δs)
1+Ks

+ M
(1+Ks)D

, if M
D ∈ (Γ1,Γ2],

(39)

and upper bounded by:

C(M) ≤
{
F (1−δw)(1−δs)
Ks(1−δw)+(1−δs)

+ M
D , if M

D ∈ [0,Γ3]

F (1−δs)
Ks

if M
D ∈ (Γ3,Γ2].

(40)

Figure 9 shows these two bounds and the bound in Proposition 6 for Kw = 1, Ks = 10, D = 22, D = 10, δw = 0.8, δs = 0.2,
and F = 10.

We identify two regimes. In the first regime 0 ≤ M
D ≤ Γ1, the cache memory allows reducing the rate R to each receiver

by M
D . This is the same performance as when a naive uncoded caching strategy is used in a setup where all Ks + 1 receivers

have cache memories of rate M . In the first regime, our joint cache-channel coding scheme thus enables all receivers to profit
from the single cache memory and provides the best possible global caching gain. In the second regime Γ1 <

M
D ≤ Γ2 the

gains are not as significant as in the first regime, but increasing the cache size still results in an improved performance. This
won’t be the case for M

D > Γ2.
In the first regime, 0 ≤ M

D ≤ Γ1, our joint cache-channel coding scheme of section V achieves the capacity-memory
tradeoff C(M).

D. Special case Kw = Ks = 1 and D = 2

For this special case we present tighter upper and lower bounds on C(M). These new bounds meet for a large range of
cache memory sizes M . Let

Γ̃1 := F
(1− δw)2 + (1− δs)

2 − (1− δw)(1− δs)

(1− δw) + (1− δs)
, (41)

Γ̃2 :=
1

2
F ((1− δs) + (δw − δs)) . (42)

Theorem 8: If Kw = Ks = 1 and D = 2, the capacity-memory tradeoff is upper bounded as:

C(M) ≤


F (1−δw)(1−δs)

(1−δw)+(1−δs)
+ M

2 , if M
2 ∈ [0, Γ̃1]

F 1
3 (2− δs − δw) + M

3 , if M
2 ∈ (Γ̃1, Γ̃2]

F (1− δs) if M
2 ∈ (Γ̃2,Γ2].

(43)
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Fig. 10: Bounds on the capacity-memory tradeoff for Kw = 1, Ks = 1, D = 2, δw = 0.8, δs = 0.2, and F = 10.

and lower bounded as:

C(M) ≥


F

(1− δw)(1− δs)

(1− δw) + (1− δs)
+
M

2
,

M

2
∈ [0,Γ1]

(1− δs)

3(1− δs)− (1− δw)
(F (1−δs) +M) ,

M

2
∈ (Γ1, Γ̃2]

F (1− δs)
M

2
∈ (Γ̃2,Γ2].

(44)

Proof: Lower bound (44) coincides with the upper convex hull of the three rate-memory pairs: (R0, M0) in (28); (R1, M1)
in (29); and (F (1 − δs), 2Γ̃2). Achievability of the former two pairs follows from Theorem 5. Achievability of the last pair
is proved in appendix D. The upper bound is proved in appendix E.

Figure 10 shows the bounds of Theorem 8 for δw = 0.8, δs = 0.2, and F = 10.
Corollary 8.1: The minimum cache size M for which communication is possible at the maximum rate F (1− δs) is 2Γ̃2.
Upper and lower bounds of Theorem 8 coincide in the case of equal erasure probabilities δw = δs:
Corollary 8.2: If Kw = Ks = 1, D = 2 and δw = δs = δ:

C(M) =

{
F 1

2 (1− δ) + M
2 , if M

2 ∈
[
0, 1

2F (1− δ)
]

F (1− δ) if M
2 ∈

(
1
2F (1− δ), Γ2

]
.

(45)

Proof: It follows from Theorem 8 because for δw = δs: Γ̃1 = Γ̃2 = 1
2F (1 − δ), and in the regime M

2 ∈ (Γ1, Γ̃2] lower
bound (44) specialises to C(M) ≥ F 1

2 (1− δ)+M
2 .

V. A JOINT CACHE-CHANNEL SCHEME FOR ARBITRARY DEMANDS

We describe a joint cache-channel coding scheme parameterised by

t ∈ {1, . . . ,Kw}. (46)

We show in subsection V-D that, for parameter t, this scheme achieves the rate-memory pair (Rt,Mt) in (29).

A. Preparations

For each d ∈ {1, . . . , D}, split message Wd into two parts:

Wd =
(
W

(t−1)
d , W

(t)
d

)
(47)

of rates

R(t−1) = R

(
1 +

Kw − t+ 1

tKs
· δw − δs

1− δw

)−1
(48a)
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R(t) = R

(
1 +

tKs

Kw − t+ 1
· 1− δw

δw − δs

)−1
(48b)

where R(t−1) +R(t) = R.

B. Caching phase

The first step is to cache information about both parts of each message in (47) at the weak receivers. Specifically, we first
apply Method Ca with K̃ = Kw and t̃ = t to messages W (t)

1 , . . . ,W
(t)
D . We then apply Method Ca with K̃ = Kw and t̃ = t−1

to messages W (t−1)
1 , . . . ,W

(t−1)
D .

In the following, we will use the superscript (t) to identify the outputs of Methods Ca, En, and Dei with t̃ = t. Similarly, we
will use the superscript (t− 1) to identify these outputs for t̃ = t−1. We use the notation that we introduced in Section III-B.

Consider an arbitrary weak receiver i ∈ Kw. The total cache content at this receiver is

Vi = V
(t)
i ∪ V (t−1)

i

=
{
W

(t)

d,G(t)
`

: d ∈ {1, . . . , D} and k ∈ G(t)`
}

⋃{
W

(t−1)
d,G(t−1)

`

: d ∈ {1, . . . , D} and k ∈ G(t−1)`

}
. (49)

C. Delivery phase

The delivery phase takes place in three subphases consisting of β1n, β2n, and β3n channel uses, where β1, β2, β3 ≥ 0 and

β1 + β2 + β3 = 1. (50)

1) Delivery subphase 1: Here we only consider the weak receivers, and we communicate the “t parts” of their demanded
messages (see (47)) using separate source and channel coding. (The strong receivers will not participate in this subphase.)

The transmitter proceeds in two steps:
T1: The transmitter applies Method En with K̃ = Kw and t̃ = t to demand vector (d1, . . . , dKw) and to messages{

W
(t)
di

: i ∈ Kw

}
.

Let {
W

(t)
XOR,S : S ⊆ {1, . . . ,Kw}, |S| = t+ 1

}
(51)

denote the output of Method En.
T2: The transmitter uses a capacity-achieving code for the packet-erasure BC to send the XORs in (51) to the weak receivers.

Each weak receiver i ∈ Kw decodes in two steps:
R1: Receiver i recovers all transmitted XOR messages in (51) using an appropriate channel decoder.
R2: Receiver i applies method Dei with K̃ = Kw and t̃ = t to demand vector (d1, . . . , dKw) and to the XOR messages

produced in step R1. For i ∈ Kw, let

Ŵ
(t)
di

=
(
Ŵ
di,G(t)

1
, Ŵ

di,G(t)
2
, . . . , Ŵ

di,G(t)

(Kw
t )

)
(52)

denote the output produced by Dei.
2) Delivery subphase 2: Here we consider all receivers. To the strong receivers: We communicate the “t parts” of

their demanded messages. To the weak receivers: We communicate the “(t − 1) parts” of their demanded messages. Both
communications will be done simultaneously using joint cache-channel coding (via piggyback coding).

The transmitter proceeds in two steps:
T1: The transmitter applies Method En with K̃ = Kw and t̃ = t− 1 to demand vector (d1, . . . , dw) and messages{

W
(t−1)
di

: i ∈ Kw

}
.

Method En outputs an XOR message for each size-t subset of {1, . . . ,Kw}, for example, see (21). We denote these XOR
messages by7 {

W
(t−1)
XOR,G(t)

`

: ` = 1, . . . ,

(
Kw

t

)}
. (53)

7The messages in (53) have the superscript (t− 1), because they correspond to the output of Method En with the parameter t̃ = t− 1. In contrast, {G(t)` }
have superscript (t) because they correspond to subsets of size t̃ = t.
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T2: Time-sharing is performed over
(
Kw
t

)
different periods, where each period is associated with a size-t subset of

{1, 2, . . . ,Kw}. Consider the `-th subset G(t)` . First recall that the subset G(t)` of weak receivers has{
W

(t)

dj ,G(t)
`

: j ∈ Ks

}
stored as “side information” in their cache memories. The transmitter uses piggyback coding to send{

W
(t)

dj ,G(t)
`

: j ∈ Ks

}
(54a)

to all strong receivers Ks and the XOR message

W
(t−1)
XOR,G(t)

`

(54b)

to all weak receivers in G(t)` .
Each strong receiver j ∈ Ks performs piggyback decoding (for the receiver without side-information) for all

(
Kw
t

)
transmission

periods. It forms the
(
Kw
t

)
-tuple estimate

Ŵ
(t)
dj

:=
(
Ŵ

(t)

dj ,G(t)
1

, . . . , Ŵ
(t)

dj ,G(t)

(Kw
t )

)
, j ∈ Ks. (55)

Each weak receiver i ∈ Kw proceeds in two steps:
R1: Receiver i considers each subset G(t)` of size t to which it belongs (i.e., each G(t)` ⊆ {1, . . . ,Kw} such that G(t)` 3 i), and

it decodes the XOR message W (t)

XOR,G(t)
`

by applying piggyback decoding (for the receiver with side-information) to the

channel outputs of the period associated with G(t)` .
R2: Receiver i then applies Method Dei with K̃ = Kw and t̃ = t − 1 to demand vector (d1, . . . , dw), the XOR messages

decoded in step R1 and its cache content Vi. Let

Ŵ
(t−1)
di

, i ∈ Kw (56)

denote the output of Method Dei.
3) Delivery subphase 3: Here we consider only the strong receivers, and we will communicate the remaining “(t−1) parts”

of their demanded messages. (The weak receivers will not participate in this subphase.) The transmitter communicates{
W

(t−1)
dj

: j ∈ Ks

}
to the strong receivers using a capacity-achieving code for the packet-erasure BC. Each receiver uses an optimal decoding
method to produce the estimate

Ŵ
(t−1)
dj

, j ∈ Ks. (57)

4) Final decoding: Each receiver k ∈ {1, . . . ,K} outputs

Ŵdk =
(
Ŵ

(t−1)
dk

, Ŵ
(t)
dk

)
. (58)

D. Analysis

Fix t ∈ {1, . . . ,Kw}. We show that the above scheme achieves the rate-memory pair (Rt,Mt) in (29).
1) Caching phase: By (25), our caching strategy requires a cache memory size of

M = R(t) ·D t

Kw
+R(t−1) ·Dt− 1

Kw

= R · D
Kw

(
t−
(

1 +
Kw − t+ 1

tKs
· δw − δs

1− δw

)−1)
. (59)

We now analyse the probability of decoding error. We present conditions under which the probability that the estimates
produced in Subphases 1–3, (52), (55), (56), and (57) are not equal to the corresponding submessages in (47) tends to 0 as
n→∞.

2) Delivery subphase 1: Proposition 1 combined with Lemma 2 and (48b), prove that the probability that the estimates
in (52) are incorrect tends to 0 as n→∞, whenever

R · Kw−t
t+1(

1 + tKs
Kw−t+1 · 1−δw

δw−δs

)
· F (1− δw)

< β1. (60)
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3) Delivery subphase 2: Consider a single period with the transmission of message in (54). Since all weak receivers and
all strong receivers are statistically equivalent, the probability that the estimates in (55) and (56) are incorrect is at most t ·Ks
times larger than the probability of error in (55) and (56) for a single weak and a single strong receiver. By Corollary 4 and
Lemma 2, this latter probability of error tends to 0 (and thus also the original probability of error tends to 0) as n → ∞,
whenever

max

{
R(t−1) · Kw−t+1

t

F (1− δw)
,
R(t−1) · Kw−t+1

t +R(t)Ks

F (1− δs)

}
< β2. (61)

By our choice (48) the two terms in the maximization are equal, and thus by (48a) we conclude that the probability of producing
an error in (55) or (56) tends to 0 as n→∞, whenever

RKw−t+1
t(

1 + Kw−t+1
tKs

· δw−δs
1−δw

)
F (1− δw)

< β2. (62)

4) Delivery subphase 3: Proposition 1 combined with (48a) prove that the probability of producing a wrong guess in (57)
tends to 0 as n→∞, whenever

RKs(
1 + Kw−t+1

tKs
· δw−δs

1−δw

)
F (1− δs)

< β3. (63)

5) Overall scheme: Combining (60), (62), and (63) and using (50), after some algebraic manipulations, we see that the
probability of decoding error tends to 0 as n→∞, whenever

R < F (1− δw) ·
1 + Kw−t+1

tKs
· δw−δs

1−δw

Kw−t+1
t

(
1 + Kw−t

(t+1)Ks
· δw−δs

1−δw

)
+Ks

1−δw
1−δs

.

Together with (59), this proves achievability of the rate-memory pair (Rt, Mt) in (29).

VI. EXTENSIONS OF OUR JOINT CACHE-CHANNEL CODING SCHEME

The scenario in Section II allowed for a compact exposition of our new joint cache-channel coding idea. This idea however
extends also to more general scenarios. In the following subsections we present some ideas.

A. Weak receivers have different erasure probabilities:

For simplicity, assume that the weak receivers are ordered so that δ1 ≥ δ2 ≥ . . . ≥ δKw holds. The scheme of section V
may be modified as follows: For each XOR message sent in delivery phase 1, set the rate of the codebook to be equal to the
capacity of the weakest receiver to whom the XOR message is intended.

B. Strong receivers have different erasure probabilities:

For simplicity, assume that the strong receivers are ordered so that δKw+1 ≥ δKw+2 ≥ . . . ≥ δK . We split the set of strong
receivers into a set of moderately strong receivers Kw + 1, . . . , j? and a set of very strong receivers j?, . . . ,K, where j? is
chosen depending on the various erasure probabilities and cache sizes. We now time-share two schemes whose lengths need
to be optimized: In the first period, a standard capacity-achieving coding scheme for the packet-erasure BC is used to serve
only the moderately strong receivers Kw + 1, . . . , j?. In the second period, our joint cache-channel coding scheme is used to
serve all other receivers.

C. Some weaker receivers do not have caches:

We time-share two schemes whose lengths need to be optimized. In the first period, a standard capacity-achieving code for
the packet-erasure BC is used to serve the weak receivers without caches. In the second period, our joint cache-channel coding
scheme is used to serve all other receivers.

D. Weak receivers have different cache sizes:

For simplicity, assume that the weak receivers are ordered so that M1 ≥ M2 ≥ . . . ≥ MKw , where Mi denotes the cache
memory size at receiver i ∈ Kw.

We time-share Kw schemes of equal length. In period i ∈ Kw, we treat the weak receivers i + 1, . . . ,Kw assuming that
they have no zero cache memories and we treat the weak receivers 1, . . . , i assuming that they have cache memories of size
(Mi −Mi+1). We thus apply the coding scheme that we sketched in the previous subsection.
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E. Strong receivers have cache memories

For simplicity, assume that all strong receivers in Ks have cache memories of equal size M > Ms > 0. We time-share two
schemes. In the first period of length n

(
1− Ms

M

)
we suppose that the strong receivers have no caches: we thus use our joint

cache channel coding scheme. In the second period of length nMs
M we suppose that all receivers in the network have cache

memory M : we apply separate cache-channel coding combining Maddah-Ali & Niesen coded caching over all K receivers
with capacity-achieving code for the packet-erasure BC.

F. Strong receivers have cache memories and are served additional data

The strong receivers have cache memories of size Ms as in the previous subsection. There are two libraries now:

library A: files W (A)
1 , . . . ,W

(A)
D

and
library B: files W (B)

1 , . . . ,W
(B)
D .

Each weak receiver i ∈ Kw demands only file W (A)
di

from library A, whereas each strong receiver demands a file W (A)
dj

from

library A and a file W (B)
dj

from library B.
We time-share two schemes whose lengths need to be optimized. In the first period, we suppose that the strong receivers

have no cache memories and use our joint cache-channel coding scheme for library A. In the second period, we only serve
the strong receivers from library B. To this end, we apply separate cache-channel coding combining Maddah-Ali & Niesen
coded caching over all K receivers with capacity-achieving code for the packet-erasure BC.

In the scheme that we propose, the caches at the strong receivers are used only to cache messages from library B, but not
from library A. The idea is that when the strong receivers are sufficiently strong, then our joint cache-channel coding scheme
is as performant as if all receivers in the network had caches. One might therefore choose to dedicate the caches at the strong
receivers entirely to the transmission of files from library B.

G. General DMBCs

Packet-erasure BCs are simpler than general BCs because time-sharing of optimal point-to-point codes for various receivers
achieves capacity without caches. For our joint cache-channel coding scheme to be effective on more general DMBCs, we will
have to partially replace time-sharing by superposition coding (and more generally Marton coding). More specifically, we use
superposition coding and superpose the codewords sent in delivery subphase 3 on the piggyback codeword sent in delivery
subphase 2 and on the codewords sent in delivery subphase 1. When there is no clear notion of “weaker” and “stronger”,
i.e., the channel is neither degraded, less noisy, more capable, or essentially less noisy, then we use Marton coding where the
piggyback codewords serve as cloud centers and the other codewords as satellites.

VII. UPPER BOUND FOR GENERAL DEGRADED BCS UNDER ARBITRARY DEMANDS

We consider a more general setup for the upper bound, where each receiver i has a cache of size Mi, and where the
broadcast channel is a discrete memoryless degraded BC with input alphabet X and equal output alphabets Y1, . . . ,YK . The
joint transitional law of the memoryless BC is given by PY1Y2···YK |X(y1, . . . , yK |x). We assume that the BC is degraded, i.e.,
the transition law satisfies the Markov chain

X − YK − YK−1 − · · · − Y1. (64)

For our problem setup, only the marginal transition law is relevant. Therefore our upper bound holds also for stochas-
tically degraded BC, i.e., for transition laws PY1,...,YK |X for which there exists a conditional probability distribution
P̃Y2|Y1

, P̃Y3|Y2
, . . . , P̃YK−1|YK

that satisfies

PY1Y2···YK |X(y1, . . . , yK |x)

= PYK |X(yk|x)P̃YK−1|YK
(yk−1|yk) . . . P̃Y1|Y2

(y1|y2) (65)

for all (x, y1, y2, . . . , yK) ∈ X × Y1 × Y2 × · · · × YK . Note that the packet-erasure BC that we study falls in the class of
(stochastically) degraded BCs.

The library and the probability of worst-case error Pe
worst is defined as before. A rate-memory tuple (R, M1, . . . ,MK) is

said achievable if for every ε > 0 there exists a sufficiently large blocklength n and caching, encoding and decoding functions
as in (8)–(11) such that Pe

worst < ε. The capacity-memory tradeoff C(M1, . . . ,MK) is defined as the supremum over all rates R
so that (R,M1, . . . ,MK) are achievable.

For each S ∈ K, let Rsym,S denote the largest equal-rate that is achievable over a BC with receivers in S when there are no
cache memories. We prove the following upper bound on C(M1, . . . ,MK):
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Tx

Xn

Library: W1, W2, . . . , WD

Rx 1

Y n
1

Cache1

nM1 bits

. . .
Rx K�1 Rx K

Y n
K

CacheK

nMK bits

Rx 2

Y n
2

. . .

Cache2

nM2 bits

Y n
K�1

Degraded DMBC PY1Y2...YK |X

Fig. 11: Degraded K-user BC PY1Y2···YK |X where each Receiver k ∈ K has cache memory of size nMk bits.

Theorem 9: The capacity-memory tradeoff C(M1, . . . ,MK) of a degraded BC is upper bounded as follows:

C(M1, . . . ,MK) ≤ min
S⊆{1,...,K}

(
Rsym,S +

MS
D

)
,

where MS =
∑
k∈SMk is the total cache size at receivers in S.

Remark 2: Theorem 9 also holds for stochastically degraded BCs.
Before proving Theorem 9, let us specialize it to packet-erasure BCs by using Proposition 1 (to find Rsym,S ):
Corollary 9.1: The capacity-memory tradeoff C(M1, . . . ,MK) of the packet-erasure BC with packet size F , erasure

probabilities δ1, . . . , δK ≥ 0, and cache memory sizes M1, . . . ,MK , is upper bounded as follows:

C(M1, . . . ,MK) ≤ min
S⊆{1,...,K}

(
F

(∑
k∈S

1

1− δk

)−1
+
MS
D

)
. (66)

We now consider our original setup of section II, where all weak receivers i ∈ Kw have the same erasure probability δw
and the same cache memory Mi = M and where all strong receivers j ∈ Ks have the same erasure probability δs ≤ δw and
no cache memory Mj = 0. In this case, (66) simplifies to

C(M) ≤ min
kw∈{0,...,Kw}
ks∈{0,...,Ks}

(
F

(
kw

1− δw
+

ks

1− δs

)−1
+
kwM

D

)
. (67)

Since the right-hand side of inequality (67) is decreasing in ks, the tightest upper bound is given by ks = Ks. This also
concludes the proof of Theorem 7.

Notice that the choice of kw in (66) that leads to the tightest upper bound depends on the cache memory size M . For small
values of M the choice kw = Kw leads to the tightest bound, and for increasing cache sizes smaller values of kw lead to
tighter bounds.

A. Proof of Theorem 9

For ease of exposition, we only prove the bound corresponding to S = K:

C(M1, . . . ,MK) ≤
(
Rsym,K +

1

D

K∑
k=1

Mk

)
, (68)

where here Rsym,K denotes the largest symmetric rate that is achievable over the BC PY1Y2···YK |X when there are no caches.
The inequalities in the theorem that correspond to other subsets S ⊆ {1, . . . ,K} can be proved in an analogous way.

We start the proof of (68). Fix the rate of communication

R < C(M1, . . . ,MK).

Since R is achievable, for each sufficiently large blocklength n and for each demand vector d, there exist K caching
functions

{
g
(n)
i

}
, an encoding function {f (n)d }, and K decoding functions

{
ϕ
(n)
i,d

}
so that the probability of worst-case error

Pe
(n)(d) tends to 0 as n→∞. For each n let

V
(n)
k = g

(n)
k (W1, . . . ,WD), k ∈ {1, . . . ,K},

denote the cache contents for the chosen caching functions.
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Lemma 10: For any ε > 0, any demand vector d = (d1, . . . , dK) with all different entries, and any blocklength n that is
sufficiently large (depending on ε), there exist random variables (U1,d, . . . , UK,d, Xd, Y1,d, . . . , YK,d) such that

U1,d − U2,d − · · · − UK,d −Xd − YK,d − YK−1,d · · · − Y1,d (69)

forms a Markov chain, and given Xd = x ∈ X :

(Y1,d, Y2,d, . . . , YK,d) ∼ PY1···YK |X(· · · |x),

and so that the following K inequalities hold:

R− ε ≤ 1

n
I
(
Wd1 ;V

(n)
1 , . . . , V

(n)
K

)
+ I
(
U1,d;Y1,d

)
, (70a)

R− ε ≤ 1

n
I
(
Wdk ;V

(n)
1 , . . . , V

(n)
K |Wd1 , . . . ,Wdk−1

)
+ I
(
Uk,d;Yk,d|Uk−1,d), ∀k ∈ {2, . . . ,K}. (70b)

Proof: The proof is similar to the converse proof of the capacity of degraded BCs without caching [42, Theorem 5.2]. It
is deferred to Appendix A.

Fix ε > 0 and a blocklength n (depending on this ε) so that Lemma 10 holds for all demand vectors d that have all different
entries. We average the bound obtained in (76) over different demand vectors. Let Q be the set of all the

(
D
K

)
K! demand

vectors whose K entries are all different. Also, let Q be a uniform random variable over the elements of Q and independent
of all other random variables. Define: U1 := (U1,Q, Q); Uk := Uk,Q, for k ∈ {2, . . . ,K}; Xk := XQ; and Yk := Yk,Q for
k ∈ {1, . . . ,K}. Notice that they form the Markov chain

U1 → U2 → · · · → UK → X → (Y1, . . . , YK) (71)

and given X = x ∈ X satisfy
(Y1, Y2, . . . , YK) ∼ PY1···YK |X(· · · |x). (72)

Averaging inequalities (76) over the demand vectors in Q and using standard arguments to take care of the time-sharing random
variable Q, we obtain:

R− ε ≤α1 + I
(
U1;Y1

)
, (73a)

R− ε ≤αk + I
(
Uk;Yk|Uk−1), ∀k ∈ {2, . . . ,K}, (73b)

where we defined α1, . . . , αK as follows:

α1 :=
1(

D
K

)
K!

∑
d∈Q

1

n
I(Wd1 ;V

(n)
1 , . . . , V

(n)
K ), (74a)

αk :=
1(

D
K

)
K!

∑
d∈Q

1

n
I(Wdk ;V

(n)
1 , . . . , V

(n)
K |Wd1 , . . . ,Wdk−1

). (74b)

Lemma 11: Parameters αk, k = 1, . . . ,K, defined in (74), satisfy the following constraints:

αk ≥ 0, k ∈ {1, . . . ,K} (75a)
αk′ ≤ αk, k, k′ ∈ {1, . . . ,K}, k′ ≤ k, (75b)∑

k∈K
αk ≤

K

D

∑
k∈K

Mk. (75c)

Proof: See Appendix B.
Taking ε→ 0, by (73) and (74) and by Lemma 11, we conclude that the capacity-memory tradeoff C(M1, . . . ,MK) is upper
bounded by the following K inequalities:

C(M1, . . . ,MK) ≤ α1 + I
(
U1;Y1

)
, (76a)

C(M1, . . . ,MK) ≤ αk + I
(
Uk;Yk

∣∣Uk−1), ∀k ∈ {2, . . . ,K}, (76b)

for some α1, . . . , αK satisfying (75) and some U1, . . . , UK , X, Y1, . . . , YK satisfying (71) and (72).
Lemma 12: Replacing each and every real number α1, . . . , αK in (76) by 1

D

∑
k∈{1,...,K}Mk leads to a relaxed upper bound

on C(M1, . . . ,MK).
Proof: See Appendix C.
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Thus,

C(M1, . . . ,MK)− 1

D

∑
k∈{1,...,K}

Mk ≤ I
(
U1;Y1

)
, (77a)

C(M1, . . . ,MK)− 1

D

∑
k∈{1,...,K}

Mk ≤ I
(
Uk;Yk

∣∣Uk−1), ∀k ∈ {2, . . . ,K}, (77b)

for some U1, . . . , UK , X, Y1, . . . , YK satisfying (71) and (72).
All K constraints in (77) have the same LHS, and their RHSs coincide with the rate-constraints of a degraded BC without

caches. Therefore, the choice of the auxiliaries (U1, . . . , UK) that leads to the most relaxed constraint on C(M1, . . . ,MK)
coincides with the choice of auxiliaries that determines the largest symmetric rate-point of the degraded BC without caches.
This establishes the equivalence of (77) with the desired bound in (68), and thus concludes the proof.

VIII. NEW RESULTS FOR ALL-EQUAL DEMANDS

In this section we consider the optimistic case where all receivers demand the same message. This corresponds to

d1 = d2 = · · · = dK ∈ D.
Restricting to such “all-equal demands” allows us to treat arbitrary (unequal) message rates and arbitrary DMBCs. So, we
consider the scenario in figure 12 where the transmitter communicates with K receivers over a DMBC PY1...YK |X and where
each receiver k ∈ {1, . . . ,K} has a cache memory of size Mk ≥ 0. The messages W1, . . . ,WD are independent of each
other and each message Wd, for d ∈ {1, . . . , D}, is uniformly distributed over the set {1, . . . , b2nRdc} for some positive rate
Rd ≥ 0.

Tx

DMBC PY1Y2...YK |X

Xn

Library: W1, W2, . . . , WD

Rx 1

Y n
1

Cache1

nM1 bits

. . .
Rx K�1 Rx K

Y n
K

CacheK

nMK bits

Rx 2

Y n
2

. . .

Cache2

nM2 bits

Y n
K�1

Fig. 12: K user DMBC where each Receiver k ∈ {1, . . . ,K} has cache memory of size nMk bits.

The probability of worst-case error Pe
worst is defined as before. A rate-memory tuple (R1, . . . , RD, M1, . . . ,MK) is said

achievable if for every ε > 0 there exists a sufficiently large blocklength n and caching, encoding and decoding functions as
in (8)–(11) (accounting for the different rates) such that Pe

worst < ε.
Under the assumption that all receivers demand the same message, we can completely characterize the set of all achievable

rates-memory tuples.
Theorem 13: A rate-memory tuple (R1, . . . , RD,M1, . . . , MK) is achievable under all-equal demands if and only if

Rd ≤ max
PX

min
k∈{1,...,K}

(
I(X;Yk) +Mk,d

)
, d ∈ {1, . . . , D}

for some nonnegative real numbers {Mk,d} that satisfy
D∑
d=1

Mk,d ≤Mk, k ∈ {1, . . . ,K}. (78)

Clearly, one wishes to allocate small cache sizes to strong receivers and large cache sizes to weak receivers.
If we used separate cache-channel codes, constraint (78) had to be replaced by

max
k∈{1,...,K}

(Rd −Mk,d) ≤ max
PX

min
k∈{1,...,K}

I(X;Yk), (79)

and the benefit of having unequal cache sizes {Mk} at the different receivers would disappear.
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A. Proof of Achievability of Theorem 13

We propose the following scheme. For each d ∈ {1, . . . , D} and each k ∈ {1, . . . ,K}, fix a positive integer number

Mk,d ≤ Rk (80)

so that for every k ∈ {1, . . . ,K}:
N∑
d=1

Mk,d ≤Mk. (81)

Fix a probability distribution PX over the channel input alphabet X . Construct a codebook C containing b2nRc codewords of
length n by drawing all symbols of all codewords i.i.d. according to the probability distribution PX . Reveal codebook C to
the transmitter and to all receivers.
Caching phase: For each receiver k ∈ {1, . . . ,K}, cache the first bnMk,dc bits of each Message Wd in receiver k’s cache.
By (81) this caching strategy satisfies the cache memory constraint.
Delivery phase: Let d? = d1 = . . . = dK . The transmitter picks the codeword from codebook C that corresponds to message
Wd? and sends it over the channel.

Each receiver k decodes the same desired message Wd? . Since it knows the first nMk,d? bits of Wd? , in its decoding it
restricts attention to the part of the codebook corresponding to messages starting with these bits.
Error analysis: The probability of error (averaged over codebooks and messages) at receiver k is the same as if only the last
n(R −Mk,d?) bits of message Wd? had been sent. Thus, by the packing lemma [42], the probability of decoding error at
receiver k tends to 0 as n→∞, whenever

Rd? −Mk,d? ≤ I(X;Yk), d?∈ {1, . . . , D}, k ∈ {1, . . . ,K}.
This proves achievability of Theorem 13.

B. Proof of Converse to Theorem 13

Let (R1, . . . , RN ,M1, . . . ,MK) be an achievable rate-memory tuple. For each sufficiently large n and demand d ∈
{1, . . . , D} fix K caching functions

{
g
(n)
i

}
, an encoding function {f (n)d }, and K decoding functions

{
ϕ
(n)
i,d

}
so that the

probability of worst-case error Pe
worst tends to 0 as n → ∞. Fix now a blocklength n, a demand d? ∈ {1, . . . , D}, and a

receiver k ∈ {1, . . . ,K}. We have

Rd? ≤
1

n
H(Wd?)

=
1

n
I(Wd? ;Y nk , V

(n)
k ) +

1

n
H(Wd? |Y nk , V (n)

k )

≤ 1

n
I(Wd? ;Y nk |V (n)

k ) +
1

n
I(Wd? ;V

(n)
k ) + εn

=
1

n

n∑
t=1

(
H(Yk,t|V (n)

k , Y t−1k )−H(Yk,t|Wd?,Y
t−1
k , V

(n)
k )

)
+Mk,d? + εn

≤ 1

n

n∑
t=1

(
H(Yk,t)−H(Yk,t|Xk,t)

)
+Mk,d? + εn

=
1

n

n∑
t=1

I(Yk,t;Xk,t) +Mk,d? + εn, (82)

where we defined

Mk,d ,
1

n
I(Wd;V

(n)
k ), k ∈ {1, . . . ,K}, d ∈ {1, . . . , D}.

The second inequality above follows by Fano’s inequality; the third inequality holds because conditioning does not increase
entropy and because (Md, Y

t−1
k , V

(n)
k )→ Xt → Yk,t forms a Markov chain.

Moreover, for each k ∈ {1, . . . ,K},
N∑
d=1

Mk,d =
1

n

D∑
d=1

I(Wd;V
(n)
k )

≤ 1

n

D∑
d=1

I(Wd;V
(n)
k |W1, . . . ,Wd−1)
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=
1

n
I(W1, . . . ,WD;V

(n)
k )

≤ 1

n
H(V

(n)
k ) ≤Mk, (83)

where the first inequality follows because messages W1, . . . ,WD are independent.
Letting n→∞, and thus εn → 0, establishes the desired converse.

APPENDIX A
PROOF OF LEMMA 10

Fix a small ε > 0 and a demand vector d with all different entries. Then, let the blocklength n be sufficiently large as will
be come clear in the following. Also, let

V
(n)
i = g

(n)
i (W1, . . . ,WD), i ∈ {1, . . . ,K}, (84)

Xn
d = f

(n)
d (W1, . . . ,WD) (85)

denote cache contents and the input of the degraded BC for demand vector d ∈ DK and for above chosen caching and encoding
functions. Also, let Y nk,d denote the corresponding channel outputs at Receiver k.

By Fano’s inequality, by the independence of the messages W1, . . . ,WD, and because the caching, encoding, and decoding
functions have been chosen so that the worst case probability of error tends to 0 for increasing blocklengths, we obtain that
that for all sufficiently large n the following K inequalities hold:

R−ε ≤ 1

n
I
(
Wd1 ;Y nk,d, V

(n)
1 , . . . , V

(n)
K

)
=

1

n
I
(
Wd1 ;V

(n)
1 , . . . , V

(n)
K

)
+

1

n
I
(
Wd1 ;Y nk,d

∣∣V (n)
1 , . . . , V

(n)
K

)
(86a)

and for all k ∈ {2, . . . ,K}:

R−εn ≤
1

n
I
(
Wdk ;Y nk,d, V

(n)
1 , . . . , V

(n)
K

∣∣Wd1 , . . . ,Wdk−1

)
=

1

n
I
(
Wdk ;V

(n)
1 , . . . , V

(n)
K

∣∣Wd1 , . . . ,Wdk−1

)
+

1

n
I
(
Wdk ;Y nk,d

∣∣V (n)
1 , . . . , V

(n)
K ,Wd1 , . . . ,Wdk−1

)
(86b)

We further develop the second summands in (86a) and (86b). For the second summand in (86a) we obtain

1

n
I
(
Wd1 ;Y nk,d

∣∣V (n)
1 , . . . , V

(n)
K

)
=

1

n

n∑
t=1

I
(
Wd1 ;Yk,d,t

∣∣V (n)
1 , . . . , V

(n)
K , Y t−1k,d

)
=

1

n

n∑
t=1

I
(
Y t−1k,d ,Wd1 ;Yk,d,t

∣∣V (n)
1 , . . . , V

(n)
K

)
= I
(
U1,d,T ;Yk,d,T

∣∣V (n)
1 , . . . , V

(n)
K , T

)
≤ I
(
U1,d;Yk,d

∣∣V (n)
1 , . . . , V

(n)
K

)
, (87)

where T denotes a random variable that is uniformly distributed over {1, . . . , n} and independent of all other random variables,
and where we defined

U1,d,T := (V
(n)
1 . . . , V

(n)
K ,Wd1 , Y

t−1
1,d ),

U1,d := (U1,d,T , T ),

Yk,d := Yk,d,T , k ∈ {1, . . . ,K}.
We also define for k ∈ {2, . . . ,K}:

Uk,d,T := (V
(n)
1 . . . , V

(n)
K ,Wd1 ,Wd2 , . . . ,Wdk , Y

t−1
1,d , . . . , Y t−1k,d ),

Uk,d := Uk,d,T ,

in order to expand the second summand in (86b) as follows:

1

n
I
(
Wdk ;Y nk,d

∣∣V (n)
1 , . . . , V

(n)
K ,Wd1 , . . . ,Wdk−1

)
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=
1

n

n∑
t=1

I
(
Wdk ;Yk,d,t

∣∣V (n)
1 , . . . , V

(n)
K ,Wd1 , . . . ,Wdk−1

, Y t−1k,d

)
=

1

n

n∑
t=1

I
(
Wdk ;Yk,d,t

∣∣V (n)
1 , . . . , V

(n)
K ,Wd1 , . . . ,Wdk−1

, Y t−11,d , . . . , Y t−1k−1,d, Y
t−1
k,d

)
≤ 1

n

n∑
t=1

I
(
WdkY

t−1
k,d ; Yk,d,t

∣∣V (n)
1 , . . . , V

(n)
K ,Wd1 , . . . ,Wdk−1

, Y t−11,d , . . . , Y t−1k−1,d
)

= I
(
Uk,d,T ;Yk,d,T

∣∣Uk−1,d,T , T )

= I
(
Uk,d;Yk,d

∣∣Uk−1,d) (88)

where the second equality follows from the degradedness of the outputs, see (64).
Notice that if we also define Xd := Xd,T , then (69) and (76) hold. Combining this observation with (86)–(88) concludes

the proof.

APPENDIX B
PROOF OF LEMMA 11

Constraint (75a) follows by the nonnegativity of mutual information. To prove Constraint (75b), we fix a demand vector d ∈
Q, and consider the cyclic shifts of this vector. For ` ∈ {0, . . . ,K − 1}, let

−→
d (`) be the vector obtained from

−→
d when the

elements are cyclically shifted ` positions to the right. (E.g., if d = (1, 2, 3) then
−→
d (2) = (2, 3, 1).) For each ` ∈ {0, . . . ,K−1}

and k ∈ {1, . . . ,K}, let
−→
d

(`)
k denote the k-th index of demand vector

−→
d (`). So,

−→
d

(`)
k = d(k−`) mod K (89)

where for each positive integer ξ the term (ξ mod K) takes value in {1, . . . ,K} so that

ξ mod K = ξ − bK for some positive integer b. (90)

For each ` ∈ {1, . . . ,K−1} and k, k′ ∈ {2, . . . ,K}, k′ ≤ k:

I(Wd1 ;V
(n)
1 , . . . , V

(n)
K )

(a)
= I(W−→

d
(k′−1)

k′
;V

(n)
1 , . . . , V

(n)
K )

(b)

≤I(W−→
d

(k′−1)

k′
;V

(n)
1 , . . . , V

(n)
K |W−→

d
(k′−1)
1

, . . . ,W−→
d

(k′−1)

k′−1

)

(a)
= I(W−→

d
(k−1)
k

;V
(n)
1 , . . . , V

(n)
K |W−→

d
(k−1)
2

, . . . ,W−→
d

(k−1)
k−1

)

(b)

≤I(W−→
d

(k−1)
k

;V
(n)
1 , . . . , V

(n)
K |W−→

d
(k−1)
1

, . . . ,W−→
d

(k−1)
k−1

), (91)

where (a) follows by (89) and (b) is by the independence of messages.
Fix a demand vector d ∈ Q and sum up the above inequality (91) over all K cyclic shifts d(0),d(1), . . . , d(K−1) of d to

obtain:
K−1∑
`=0

I(W−→
d

(`)
1

;V
(n)
1 , . . . , V

(n)
K )

≤
K−1∑
`=0

I(W−→
d

(`)

k′
;V

(n)
1 , . . . , V

(n)
K |W−→

d
(`)
1

, . . . ,W−→
d

(`)

k′−1

)

≤
K−1∑
`=0

I(W−→
d

(`)
k

;V
(n)
1 , . . . , V

(n)
K |W−→

d
(`)
1

, . . . ,W−→
d

(`)
k−1

). (92)

Since the set Q can be partitioned into subsets of demand vectors that are cyclic shifts of each others and all cyclic shifts of
a demand vector in Q are also in Q, we conclude from (92):∑

d∈Q
I(Wd1 ;V

(n)
1 , . . . , V

(n)
K )

≤
∑
d∈Q

I(Wdk′ ;V
(n)
1 , . . . , V

(n)
K |Wd1 , . . . ,Wdk′−1

)

≤
∑
d∈Q

I(Wdk ;V
(n)
1 , . . . , V

(n)
K |Wd1 , . . . ,Wdk−1

). (93)
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This proves (75b).
We proceed to prove Constraint (75c). For each d ∈ Q:

I(Wd1 ;V
(n)
1 , . . . , V

(n)
K )

+

K∑
k=2

I(Wdk ;V
(n)
1 , . . . , V

(n)
K |Wd1 ,Wd2 , . . . ,Wdk−1

)

= I(Wd1 ,Wd2 , . . . ,WdK−1
;V

(n)
1 , . . . , V

(n)
K ). (94)

So, ∑
d∈Q

[
I(Wd1 ;V

(n)
1 , . . . , V

(n)
K )

+

K∑
k=2

I(Wdk ;V
(n)
1 , . . . , V

(n)
K |Wd1 ,Wd2 , . . . ,Wdk−1

)

]
=
∑
d∈Q

I(Wd1 ,Wd2 , . . . ,WdK ;V
(n)
1 , . . . , V

(n)
K )

(a)
=
∑
d∈Q

[
H(Wd1) +H(Wd2) + . . .+H(WdK )

−H(Wd1 , . . . ,WdK |V (n)
1 , . . . , V

(n)
K )

]
(b)
=
K

D
|Q|H(W1, . . . ,WD)

−
∑
d∈Q

H(Wd1 , . . . ,WdK |V (n)
1 , . . . , V

(n)
K )

(c)

≤K
D
K!

(
D

K

)
H(W1, . . . ,WD)

− K

D
K!

(
D

K

)
H(W1, . . . ,WD|V (n)

1 , . . . , V
(n)
K )

(b)
=
K

D
K!

(
D

K

)
I(W1, . . . ,WD;V

(n)
1 , . . . , V

(n)
K )

≤K
D
K!

(
D

K

)
n

K∑
k=1

Mk,

where (a) holds by the chain rule of mutual information, (b) by the independence and uniform rate of messages W1, . . . ,WD

and the definition of the set Q, which is of size
(
D
K

)
K!, and (c) by the generalized Han-Inequality (the following Proposition 14).

Proposition 14: Let L be a positive integer and A1, . . . , AL be a finite random L-tuple. Denote by AS the subset {A`, ` ∈ S}.
For every ` ∈ {1, . . . , L}:

1(
L
`

) ∑
S⊆{1,...,L}:|S|=`

H(AS)

`
≥ 1

L
H(A1, . . . , AL). (95)

Proof: See [44, Theorem 17.6.1].

APPENDIX C
PROOF OF LEMMA 12

Fix random variables U1, U2, . . . , UK , X satisfying the Markov chain (71) and real numbers α1, . . . , αK satisfying (75).
We will show that if αk̃ 6= αk̃+1 for some k̃ ∈ K, then we can find new random variables Ū1, Ū2, . . . , ŪK , X̄ satisfying the
Markov chain (71) and real numbers ᾱ1, . . . , ᾱK satisfying (75) so that the upper bound on C(M1, . . . ,MK) in (76) is relaxed
if we replace

(U1, U2, . . . , UK , X) and (α1, . . . , αK)

by
(Ū1, Ū2, . . . , ŪK , X̄) and (ᾱ1, . . . , ᾱK).
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This proves that we obtain a relaxed upper bound on C(M1, . . . ,MK) if in (76) we replace all numbers α1, . . . , αK by the
same number α. By (75c) this number α ≤ 1

D

∑
k∈{1,...,K}Mk, and by the monotonicity of the RHSs of (76) in α1, . . . , αK

the choice α = 1
D

∑
k∈{1,...,K}Mk leads to the most relaxed upper bound. This will conclude the proof.

Assume that αk̃ 6= αk̃+1 for some k̃ ∈ {1, . . . ,K − 1}. By (75b), the strict inequality

αk̃ < αk̃+1 (96)

must hold. Choose

ᾱk = αk, k ∈ K, k /∈ {k̃, k̃ + 1}, (97)

ᾱk̃ = ᾱk̃+1 =
1

2
(αk̃ + αk̃+1), (98)

Ūk = Uk, k ∈ K, k 6= k̃. (99)

The choice of Ūk̃ depends on whether

I(Uk̃;Yk̃|Uk̃−1) ≤ I(Uk̃+1;Yk̃+1|Uk̃), (100a)

or
I(Uk̃;Yk̃|Uk̃−1) > I(Uk̃+1;Yk̃+1|Uk̃). (100b)

If (100a) holds, choose
Ūk̃ = Uk̃. (101)

If (100b) holds, let E ∈ {0, 1} be a Bernoulli-β random variable independent of everything else, where

β :=
1

2
+

1

2

I(Uk̃+1;Yk̃+1|Uk̃)

I(Uk̃;Yk̃|Uk̃−1)
. (102)

Choose

Ūk̃ =

{
(Uk̃, E), if E = 0

(Uk̃−1, E), if E = 1.
(103)

The proposed choice satisfies the Markov chain Ū1 − Ū2 − · · · ŪK −X . Moreover, by (103) and (102):

I(Ūk̃;Yk̃|Ūk̃−1)

=
1

2

(
I(Uk̃+1;Yk̃+1|Uk̃) + I(Uk̃;Yk̃|Uk̃−1)

)
. (104)

Trivially, for k /∈ {k̃, k̃ + 1}, constraint (76) is unchanged if we replace (U1, U2, . . . , UK , X) by (Ū1, Ū2, . . . , ŪK , X̄) and
(α1, . . . , αK) by (ᾱ1, . . . , ᾱK).

If (100a) holds, then the proposed replacement relaxes constraint (76) for k = k̃ and it tightens it for k = k̃ + 1. However,
the new constraint for k = k̃+ 1 is less stringent than the original constraint for k = k̃. We conclude that when (100a) holds,
the upper bound on C(M1, . . . ,MK) in (76) is relaxed if everywhere one replaces (U1, U2, . . . , UK , X) and (α1, . . . , αK) by
(Ū1, Ū2, . . . , ŪK , X̄) and (ᾱ1, . . . , ᾱK).

If (100b) holds, then the new constraint obtained for k = k̃ coincides with the average of the two original constraints for
k = k̃ and for k = k̃ + 1, see (98) and (104). This average constraint cannot be more stringent than the most stringent of
the two original constraints. The new constraint obtained for k = k̃ + 1 is more relaxed than the new constraint obtained for
k = k̃, because of (98) and because

I(Ūk̃+1;Yk̃+1|Ūk̃)

(a)
= βI(Uk̃+1;Yk̃+1|Uk̃) + (1− β)I(Uk̃+1;Yk̃+1|Uk̃−1)

(b)
= βI(Uk̃+1;Yk̃+1|Uk̃) + (1− β)I(Uk̃+1, Uk̃;Yk̃+1|Uk̃−1)

(c)
= I(Uk̃+1;Yk̃+1|Uk̃) + (1− β)I(Uk̃;Yk̃+1|Uk̃−1)

(d)

≥ I(Uk̃+1;Yk̃+1|Uk̃) + (1− β)I(Uk̃;Yk̃|Uk̃−1)

(e)
=

1

2
I(Uk̃+1;Yk̃+1|Uk̃) +

1

2
I(Uk̃;Yk̃|Uk̃−1)

(f)
= I(Ūk̃;Yk̃|Uk̃−1), (105)

where (a) follows by the definition of Ūk̃ and Ūk̃+1; (b) by the Markov chain (71); (c) by the chain rule of mutual information;
(d) by the degradedness of the channel (71); (e) by the definition of β in (102); and (f) by (104).

We can thus conclude that also when (100b) holds, the upper bound on C(M1, . . . ,MK) in (76) is relaxed if one replaces
(U1, U2, . . . , UK , X) and (α1, . . . , αK) by (Ū1, Ū2, . . . , ŪK , X̄) and (ᾱ1, . . . , ᾱK).
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APPENDIX D
ACHIEVABILITY PROOF FOR RATE-MEMORY PAIR (F (1− δs), 2Γ̃2)

The following scheme achieves the rate-memory pair

R = F (1− δs) and M = 2Γ̃2. (106)

Split messages W1 and W2 into two independent submessages

Wd = (W
(1)
d ,W

(2)
d ), d ∈ {1, . . . , D}

of rates

R(1) := F (δw − δs) (107a)
R(2) := F (1− δw)− ε, (107b)

for an arbitrarily small ε > 0.
Caching Phase: Cache the pair

V1 :=
(
W

(1)
1 ,W

(1)
2 ,W

(2)
1

⊕
W

(2)
2

)
(108)

in the weak receiver’s cache.
Delivery Phase: Use piggyback coding, see subsection III-D, to send W (1)

d2
to the strong receiver and W (2)

d2
to the weak receiver

who already has side-information W (1)
d2

.
The strong receiver applies piggyback decoding (for the receiver without side-information), where it in fact decodes both

transmitted messages. This way it produces the estimate

Ŵd2 :=
(
Ŵ

(1)
d2,Rx2, Ŵ

(2)
d2,Rx2

)
. (109)

The weak receiver applies piggyback decoding (for the receiver with side-information), which produces Ŵ (2)
d2,Rx1. Using its

cache content V1, it produces the guess

Ŵd1 :=


(
W

(1)
d1
, Ŵ

(2)
d2,Rx1

)
if d1 = d2(

W
(1)
d1
, Ŵ

(2)
d2,Rx1

⊕
W

(2)
1

⊕
W

(2)
2

)
, if d1 6= d2.

(110)

Analysis: By Corollary 4 and due to the choice of rates R(1) and R(2) in (107), the probability of error tends to 0 as the
blocklength n tends to infinity. Since ε > 0 can be chosen arbitrarily close to 0, we have proved achievability of the rate-memory
pair in (106).

APPENDIX E
PROOF OF THEOREM 8

The first and last terms in (43) are special cases of (7) with kw = 1 and kw = 0, respectively. Here, we prove the second
term by showing that for every achievable memory-rate pair (R, M),

3R ≤M + (1− δw)F + (1− δs)F. (111)

Since the capacity-memory tradeoff only depends on the conditional marginal distributions of the channel law (4), we will
assume that the packet-erasure BC is physically degraded. So, for each t ∈ {1, . . . , n},

Xt → Y2,t → Y1,t. (112)

For all sufficiently large blocklengths n, choose caching functions {g(n)i } as in (8), encoding functions f (n)d as in (9), and
decoding functions {ϕ(n)

i,d} as in (11) so that the probability of worst-case error Pworst
e tends to 0 as the blocklength n→∞.

Consider now a fixed blocklength n that is sufficiently large for the purposes that we describe in the following. Let

V
(n)
1 = g

(n)
1 (W1, . . . ,WD), (113)

Xn
d = f

(n)
d (W1, . . . ,WD) (114)

denote cache contents and the input of the packet-erasure BC for a given demand vector d ∈ D2 and for above chosen caching
and encoding functions. Also, let Y n1,d and Y n2,d denote the corresponding channel outputs at the weak and strong receivers.

We focus on the two demand vectors

d1 := (1, 2) and d2 := (2, 1).
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So, W1 should be decodable from (Y n1,d1
, V

(n)
1 ) and from Y n2,d2

, and W2 should be decodable from (Y n1,d2
, V

(n)
1 ). Thus, by

Fano’s inequality, for all ε1, ε2, ε3 > 0 and sufficiently large blocklength n, we have

nR ≤ I(W1;V
(n)
1 , Y n1,d1

) + nε1 (115a)
nR ≤ I(W1;Y n2,d2

) + nε2 (115b)

nR ≤ I(W2;V
(n)
1 , Y n1,d1

, Y n1,d2
|W1) + nε3, (115c)

where for the last inequality we also used the independence of messages W1 and W2.
We first develop the second constraint using the chain rule of mutual information and [43, Lemma 1]:

nR ≤
n∑
t=1

I(W1;Yd2,t|Y t−12,d2
) + nε2

≤ (1− δs)

n∑
t=1

I(W1;Xd2,t|Y t−12,d2
) + nε2. (116)

We then jointly develop the first and the third constraints, where we also define ε′ := ε1 + ε3:

2nR

≤I(W1,W2;V
(n)
1 , Y n1,d1

) + I(W2;Y n1,d2
|W1, V

(n)
1 , Y n1,d1

) + nε′

(a)

≤ I(W1,W2;V
(n)
1 ) + I(W1,W2;Y n1,d1

|V (n)
1 )

+ I(W2;Y n2,d2
|W1, V

(n)
1 , Y n1,d1

) + nε′

≤ I(W1,W2;V
(n)
1 ) +

n∑
t=1

I(W1,W2;Y1,d1,t|V (n)
1 , Y t−11,d1

)

+

n∑
t=1

I(W2;Y2,d2,t|W1, V
(n)
1 , Y n1,d1

, Y t−12,d2
) + nε′

≤ I(W1,W2;V
(n)
1 ) + (1− δw)

n∑
t=1

I(W1,W2;Xd1,t|V (n)
1 , Y t−11,d1

)

+ (1− δs)

n∑
t=1

I(W2;Xd2,t|W1, V
(n)
1 , Y n1,d1

, Y t−12,d2
) + nε′

≤ I(W1,W2;V
(n)
1 ) + (1− δw)

n∑
t=1

I(W1,W2;Xd1,i|V (n)
1 , Y t−11,d1

)

+ (1− δs)

n∑
t=1

I(W1,W2, V
(n)
1 , Y n1,d1

;Xd2,t|W1, Y
t−1
2,d2

) + nε′

≤ nM + n(1− δw)F

+ (1− δs)

n∑
t=1

I(W2, V
(n)
1 , Y n1,d1

;Xd2,t|W1, Y
t−1
2,d2

) + nε′. (117)

In (a), we used that the physically degradedness of the channel in (112) implies the Markov chain

(W1,W2, V
(n)
1 , Y n1,d1

)→ Y n2,d2
→ Y n1,d2

.

Adding up (116) and (117) and letting ε1, ε2, ε3 tend to 0, we obtain the missing converse bound in (111), because

I(W2, V
(n)
1 , Y n1,d1

;Xd2,t|W1, Y
t−1
2,d2

) + I(W1;Xd2,t|Y t−12,d2
)

= I(W1,W2, V
(n)
1 , Y n1,d1

;Xd2,t|Y t−12,d2
)

≤ H(Xd2,t) ≤ F. (118)
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