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Abstract—New achievable rate regions are derived for
the two-user additive white Gaussian multiple-access chan
nel with noisy feedback. The regions exhibit the follow-
ing two properties. Irrespective of the (finite) Gaussian

feedback-noise variances, the regions include rate points

that lie outside the no-feedback capacity region, and when

the feedback-noise variances tend to 0 the regions converge

to the perfect-feedback capacity region.
The new achievable regions also apply to the partial-

feedback setting where one of the transmitters has a noisy

feedback link and the other transmitter has no feedback
at all. Again, irrespective of the (finite) noise variance
on the feedback link, the regions include rate points that

« hoisy partial feedbackvhere one of the two trans-

mitters has a noisy feedback link whereas the other
transmitter has no feedback at all;

« perfect partial feedbackwhere one of the two

transmitters has a perfect (noise-free) feedback link
whereas the other transmitter has no feedback at all;
and

« noisy feedback with receiver side-information

where both transmitters have noisy feedback links
and the receiver (but not the transmitters) is cog-
nizant of the feedback-noise sequences.

lie outside the no-feedback capacity region. Moreover, in
the case of perfect partial feedback, i.e., where the only The last setting arises, for example, when the receiver
feedback link is noise-free, for certain channel parametes  actively feeds back a quantized version of the channel
the new regions include rate points that lie outside the output over perfect feedback links, and the feedback
Cover-Leung region. This answers in the negative the . N ] .
question posed by van der Meulen as to whether the Cover- noises mO(.jeI the quantlzathn n0|ses_, which are known
Leung region equals the capacity region of the Gaussian t0 the receiver. (The MAC with quantized feedback has
multiple-access channel with perfect partial feedback. also been considered in [16] but under the assumption
Finally, we propose new achievable regions also for a of a rate limitation on the feedback links and for the
setting where the receiver is cognizant of the realizations (jgcrete memoryless case.) We show that in all these
of the noise sequences on the feedback links. settings the capacity region is strictly larger than the no-
Index Terms—Capacity, concatenated codes, Gaussianfeedback capacity region. Moreover, we show that for
noise, linear feedback schemes, multiple-access channelnoiSy feedback the capacity region tends to Ozarow's
noisy feedback, partial feedback. perfect-feedback capacity region [13] as the feedback-
noise variances tend to zero. Finally, in the case of per-
fect partial feedback we show that for certain channel pa-
rameters the capacity region strictly contains the Cover-
In [5] Gaarder and Wolf showed that perfect feedteung region [4], a region that was originally derived for
back from the receiver to the transmitters increases tfige perfect-feedback setting and that was later shown by
capacity of some memoryless multiple-access channéarleial [2] and (for the discrete memoryless case) by
(MACs). That this also holds for the two-user additivayillems and van der Meulen [21] to be achievable also
white Gaussian noise (AWGN) MAC was shown byin the perfect partial-feedback setting. This answers in
Ozarow in [13], where he also determined the capacitiie negative the question posed by van der Meulen in
region of this channel with perfect feedback. Herg18] as to whether the Cover-Leung region equals the

we study the capacity region of the two-user AWGNapacity region of the AWGN MAC with perfect partial
MAC when the feedback is imperfect. We consider thigzedback.

following settings:

|. INTRODUCTION

To derive these results we propose coding schemes
« noisy feedbackvhere the feedback links are corfor the described settings and analyze the rates that they

rupted by AWGN; achieve. The idea behind our schemes is to generalize
Ozarow's capacity-achieving perfect-feedback scheme
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w
drawback of the scheme is that it is extremely sensitive o

to noise on the feedback links: it does not achieve any Vit

positive rate if the feedback links are not noise-free [9]. < N

To overcome this weakness, we propose to apply an outé&y Trans.1

code around a modified version of Ozarow’s scheme X1

where the transmitters—rather than refining the message Y, A
points—successively refine the input symbols from the —=>|Receive <M1>
outer code. We further modify Ozarow’s scheme by Mz
allowing the transmitters to refine the input symbols Xou

by sending arbitrary linear updates (i.e., not necessarily Zy

LMMSE-updates) and by allowing the number of re}2 Trans.2l o

finements of each input symbol to be a constant, which
can be optimized and which does not grow with the
blocklength. These modifications yield a scheme which W,
achieves high rates also for channels with imperfect
feedback. In particular, for noisy feedback and for noisf/g' =
partial feedback our scheme exhibits the following key

properties: - . . describes the channel models in more detail; Section Il

. for ‘T’I” finite feedb.ack—n0|se-varlanges, our SChem&scusses some previous achievability results; Section IV

ach_|eves_ rate points that lie outside the CapaCIH’escribes our results and the new coding schemes for the
rgg|on without feedback, and setting with noisy feedback; Section V for the setting
for noisy feedback with noisy or perfect partial feedback; and Section VI
« the scheme achieves rate regions that convergeft® the setting with noisy feedback where the receiver
Ozarow's perfect-feedback capacity region wheRas side-information; Section VII finally summarizes the
the feedback-noise variances tend to zero. paper.

Previous achievable regions for the AWGN MAC In the following A’ denotes the column vector
with imperfect feedback were given by Carleial [2], by A1, As, ..., A,)T; diag (a1,...,ar) denotes the diago-
Willems et al. [23}, and by Gastpar [6]. Carleial [2] nal matrix with diagonal entries,...,as; |, denotes
and Willems et al. [23] generalized the Cover-Leunthe ¢ x ¢ identity matrix; A" denotes the transpose of a
coding scheme [4]. Gastpar’s result is also based amatrix A, |A| its determinant, and {A) its trace. Also,
Ozarow’s scheme and on the idea of modifying it téor zero-mean random vecto& and T we define the
use only a finite number of refinements which does nobvariance matriceks + = E[ST"] andKg = E[SS"].
grow with the blocklengtR. All these regions collapse For a two-dimensional rate regigtwe denote by oR)
to the no-feedback capacity region when the feedbaadks closure and byé its interior.
noise variances exceed a certain threshold. Moreover, as
the feedback-noise variances tend to zero the regions in
[2] and [23] converge to the Cover-Leung region, which Il. CHANNEL MODEL

's a strict subset of Ozarow's region [3]. This paper focuses on the AWGN MAC with two

. Kramer studied the discrete memoryle_ss MAC wit ansmitters that wish to transmit messadés and M,
imperfect feedback, and presented a coding scheme 8'a single receiver. The two messages are assumed to be

th|gstetu%thatd|s bastid on COd_te tree_s [12]f, t[t%O].AWG independent and uniformly distributed over the discrete
uter bounds on the capacity region of the nite setsM; and M.

MAC with noisy feedback were derived by Gastpar . .
and Kramer [7] and Tandon and Ulukus [17] based on To describe the channel model (see Figure 1), we

the idea of dependence-balance [8]. These outer bourllr&troduce the sequende, } of independent and identi-

do not in general coincide with any known achievablga'ﬁy distributed (1ID) zero-mean variangé- Gaussian
regions 9 y random variables that will be used to model the addi-

The rest of the paper is outlined as follows. Thilve noise at the receiver. Using this sequence we can

section is concluded with remarks on notation; Section ﬂesc_rlbe the t|me-(_:hannel output; corresponding to
the time¢ channel inputs:; ; andxz ; by

Vot

AWGN MAC with noisy feedback.

1The result in [23] is for the discrete memoryless case, beasly
extends to the Gaussian case. Y, =1, + 22, + Z4.
2The idea of using a finite number of refinements was already

mentioned in [15]. However, only in combination with zerderar The sequence{Z} is assumed to be indepen-
nonvanishing probability of error. t

31t can be shown that the achievable rate region in [6] corstg dent of the message@M_l, M2) Also, we 'ntrOduce_
Ozarow's region when the feedback-noise variances tendto 0 the 1ID sequence of bivariate zero-mean Gaussians



{(W1,,Way)} of covariance matrix
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where 01,02 > 0 and o € [-1,1]. The sequence
{(W1,,Wa,)} is used to model the additive noise cor- Xos
rupting the feedback links. The timefeedback output ’ Zs
V.. at Transmitters can then be modeled as M Tfa”5-2< h
Vu,t :}/t—i_Wl/,tﬁ Ve {112} Vot
The sequencég(W; ., W)} is assumed to be indepen- Wat

dent of (M7, M2, {Z:}).
The transmitters observe the feedback outputs inF4- 2 AWGN MAC with noisy partial feedback.
causal fashion, i.e., they compute their timehannel
inputs X; ; and X, , after observing all prior feedback
outputsVi 1,...,Vi—1 and Va1, ..., Vo 1. Thus, for
v € {1,2}, Transmitterv computes its channel inputs

by mapping the Messag¥/,, and the previous feedbackregl_'ﬁn and '2 iengtE%NOiSVFB(Pl’ PdQ’ ]tv’ tKhW”’V?)'_ |
outputsV, 1,...,V,+—1 into the time¢ channel input € caseyy = o3 = U corresponds 1o the Special case
X, when the feedback links are noise-free. We refer to this

setting as the “perfect-feedback” setting and denote the
Xy = <p,(,’ft) (M), Vo1, s Voio1), te{l,...,n}, capacity region byCpertectrd P1, P2, N), i.€.,

2
( ) CPerfecthPhPQaN) £ CNOiSyFB(P17P27N70)

tends to O as the blocklengthh — oo. The set of all
achievable rate pairs for this setting is called the capacit

for some sequences of encoding functions

sﬁl(/nt)i M, xR SR, tef{l,....n}, @) where0 |s the2 x 2 aII-_zero matrix. .

’ In addition to the noisy-feedback setting we also con-
where ndenotes the blocklength of the scheme. Weider the “partial-feedback” setting (see Figure 2) where
only allow encoding functions that satisfy the powebnly one of the two transmitters has feedback. We as-
constraints sume that the transmitter with feedback is Transmitter 2.
1 () 2 For the partial-feedback setting (2) and (3) are modified
EZE[(%M (Mvanla---vVv,t—l)) } <k, (4 by requiring that the sequendeX; 1,...,X1,,} be a

=1 function of Messagée\/; only. Since the sole feedback
where the expectation is over the messages and {lik can be noisy we shall refer to this setting also as
realizations of the channel, i.e., the noise sequencefisy partial feedback” and denote its capacity region

{Z:}, {Wi}, and{Ws,}.2 by Cnoisypartiaire P1, P2, N, 03), wheres3 > 0 denotes
A blocklengthn powers¢Py, ) feedback-cod®f  the noise variance on the feedback link to Transmitter 2.
rate pair (;; log(| M), ;; log(|M2])) is a triple In the special case of2 = 0, i.e., when the sole
)™ )™ () feedback link is noise-free, we refer to the setting as
({wlvt }t:I ' {SDW }t:I ¢ ) “perfect partial feedback” (see Figure 3) and denote the
where capacity region bYCeertectpartialré 1, 2, N).
o™ R™ = My x Mo By the “no-feedback” setting we refer to the classical

MAC where neither transmitter has a feedback link.
and wher waBi and {44 | are of the form (3) and In this case (2) and (3) have to be modified so both
satisfy (4). In the following we say that a rate paisequenceq X 1,...,X1,} and{Xz1,...,X2,} are
(R1, R2) is achievable if for everyy > 0 and every functions of the respective messages only. We denote
sufficiently largen there exists a blocklengthpowers- the capacity region of this MAC b@nors( P, P, N).

(P, P,) feedback code of rates exceediRg — 6 and Finally, we also consider a noisy-feedback setting
Ry — 6 such that the average probability of a decodinghere the receiver perfectly knows the realizations of the
error, Gaussian noise sequendd¥’ ;. } and{W, ;} corrupting

the feedback signals (see also Figure® Ve refer
Pr[gb(") (m,...,Yn)#Ml,MQ)} gnals ( gure” A

5Since we do not consider any delay constraints and the mrceiv
4The achievability results in this paper remain valid alseewfthe cannot actively feed back a signal, it does not matter whethe
expected average block-power constraints (4) are replayeaerage receiver learns the feedback-noise sequengdds ;} and {12 ¢}
block-power constraints that hold with probability 1. causally or acausally.



1 P
Ry < 7 log (1 + NQ) : (5b)
1 P+ P
M| Trans.1 Ri+ Ry < =log (1 n 1+ 2) ' (5¢)
X1t 2 N
Y; . The capacity region of the AWGN MAC with per-
—=Receive (M1> fect feedbackCpertectrd P1, P2, N) was determined by
M>
Ozarow [13]:
X
> Z Crerfectrd P1, P2, N) = U RE,(P1,P>,N), (6)
Mo Trans.z< p€[0,1]

where R, (P1, P, N) is the set of all rate pairs
(Ry1, R2) satisfying
Fig. 3. AWGN MAC with perfect partial feedback.

1 P (1-p?
Wit R < 5 log (1 + % ) (7a)
Vit 2
) 1 P (1 —p )
Ry < -log|14+ ——= ], (7b)
M Trans.l< + 2 ( N
1 P+ P+ 2P P
X1, R1+R2§—1Og<1+ 1+ 1+ 1 2P>. (7¢)
Y: . 2 N
. My . . .
—=>|Receive <M2> We next describe some properties of the regions
Rgz(Pl , Py, N) and CPerfecthPI , Py, N) that will be
Xa,¢ . needed in subsequent sections. Some of the properties,
Mo| Trans.2 ' Remarks I11.2—-111.4 and Remark 1II.8, were reported in
< + [13].
Vot

Definition Ill.1. The parameterp*(Py, P>, N) (for
o shortp*) is defined as the unique solution in the interval

[0, 1] of the following quartic equation ip
Fig. 4. AWGN MAC with noisy feedback and receiver side-

information. N(N + P, + P, + 2/ P Pyp)
— (N4 P(1= ) (N + Po(1— ). (8)

to this setting as the “noisy feedback with receiveRemark 111.2. Equation(8) is equivalent to the right-

side-information” setting. For this setting the formahang side (RHS) of7c) being equal to the sum of the
description of the communication scenario is the sam@qss of(7a) and (7b).

as in the noisy-feedback setting, except for the decoder

¢(37) which is of the form That (8) has a unique solution in the inter‘{lall] can
be seen as follows. Ab = 0 the left-hand side (LHS)
(ST) : R™ x R" x R" — M x Mo, of (8) is smaller than its RHS, whereas for= 1 the
(Y, WE,WE) —s (J\Zfl,Mg). LHS is larger. Since the expressions on both sides of

(8) are continuous, by the Intermediate Value Theorem

We denote the capacity region of the MAC withthere must exist at least one solution to (8f(n1]. The
noisy feedback and perfect receiver side-information Byniqueness of the solution follows by noting that the
Choisyresi(P1s Poy N, Kwyw, ). LHS of (8) is strictly increasing irp whereas the RHS
is strictly decreasing i € [0, 1].

Next, we discuss the regioRQ,(P:, P, N) and ex-
amine the rate constraints (7) defining the region. The

We survey some previous results that are needed RHS of single-rate constraint (7a) and the RHS of (7b)
the sequel. are both strictly decreasing ip € [0, 1], whereas the

The capacity region of the classical AWGN MACRHS of the sum-rate constraint (7c) is strictly increasing
without feedbackCnors(P1, P2, N) was independently in p. By these properties, by Definition I1l.1, and by
determined by Cover [3] and Wyner [25] and is giveilRemark 111.2 we have:
by the set of all rate pair&R;, R») satisfying

Ill. PREVIOUSRESULTS

Remark 111.3. For p = p* the sum of the RHSs of the
single-rate constraint¢7a) and (7b) equals the RHS of
the sum-rate constrainf7c); for p € [0, p*) the sum of

Py

1
< Z -
Ry 5 log (1 + N> , (5a)



Ry

2
Rgﬁ%log(l—i—M).

RY 0g(P1, P2, N) N

R2,(P1, P2, N)

§< Notice that by Remark III.4,R’1’TOZ(P1,P2,N) =
: RS oy(P1, P, N) = RE,(P1, Py, N). Also, for ev-
Boundary point of ery p € [0,p] the regions RY o,(P1, P2, N) and
R o(P1, P2, N) are rectangles with dominant corner
N point equal to one of the dominant corner points of
RE o, (P1, Pa, N) RS,(P1, P>, N), see Figure 5. By these observations and
’ by Remark I11.5 we obtain:

1 Pq+ P
sum-rate> 5 log(l-i-%)

Ry

Remark IIl.7. The perfect-feedback capacity region can
be expressed as

Fig. 5. Perfect-feedback capacity region with an example qupe rfectFl{ PP N)
) )

Rz R oz @NdRY o, for 0 < p < p*.
= U (R oalPr P2 N)URS ol P1, P2, N) ) (9)
p€[0,p*]

the RHSs of7a)and (7b)is strictly larger than the RHS  The final remark follows from Remark I11.5 and from

of (7c), and for p € (p*, 1] the sum of the RHSs §7a) the strict monotonicity irp of the RHS of the sum-rate
and (7b) is strictly smaller than the RHS d{7c). constraint (7¢).

Remark 11.4. For everyp € [0,p") the rate region Remark 11.8. The dominant corer point of the rect-
Ro,(P1, P2, N) has the shape of a pentagon and foangleR2 (Py, P», N) is the only rate point of maximum

everyp € [p*,1] the rate regionRg,(Pr, P>, N) has sum-rate inCpertectrd Pi, Po, V).

the shape of a rectangle. Furthermore, all rectangles i ) -

RS, (P, Py, N) for p € (p*,1] are strictly contained ~We next first present an achievability result for gengral
in the rectangleR%,(Py, P, N), and thus in(6) it is discrete memoryless MACs and AWGN MACs with

enough to take the union over alle [0, p*]. perfect f_eedback due to Cover a}nd Leung [4] The
scheme is known to achieve capacity for a specific class

For the next two observations we introduce the n@f discrete memoryless MACs with perfect feedback

tation of a dominant corner point as in [14]. A cornef20]. However, for general channels it can be suboptimal,
point of a given rate region is callebminantif it is of e.g., for Gaussian channels. For Gaussian channels the

maximum sum-rate in the considered region. optimization problem defining the Cover-Leung region

is solved by jointly Gaussian inputs, see [19], [1], and

Remark 1iIl.5. To every —boundary —point of therefore the Cover-Leung region is given b
Cpertectrd P1, P2, N) that has sum-rate larger or greg 9 y
equal to 1 log (1 + £24£2) there exists ap € [0, p*] Rel(Py, Py, N) = U REP2)(PL, Py, N),
such that this point is a dominant corner point of the p1,p2€0,1]

region RQ,(P1, P2, N) (see Fig.5).
~ where Réﬁl’pz)(Pl,PQ,N) comprises all rate pairs
Remark 111.5 follows by Remark 111.4, by continuity (Ry1, R») satisfying

considerations, and by the monotonicities of the con-

straints (7a)—(7c), see Remark I11.3. To state the next 1 P (1-p3)
observation we define: Ry < glog {1+ ——% v (10a)
Definition Il.6. For each p € [0,p*], we define 1 Py (1—p3)
R 02(P1, P2, N) as the set of all rate pair§R;, Ry) Ry < glog {1+ ——— |, (10b)
satisfying
1 P+ P+ 2P P
1 P1(1 —p2) Ri+ Ry < Elog <1+ 1 2 - 1 2P102> .
Ry < -log (1—!—7),
2 N (10c)
1 P+ P+ 2P P, N . . .
Ry < 3 log ( ! +P12(;_— p2)1+2]<;+ ) . Carleial [2] and Willems [21] independently proved that

to achieve the Cover-Leung regidRcL(P1, P2, N) it

Similarly, R% o,(P1, P2, N) as the set of all rate pairs Suffices that only one of the two transmitters have a per-
’ 2,0z\+ 1,42, p . .

(Ry, Ry) satisfying fect feedback link, i.e., they proved that the Cover-Leung

region is achievable also in a perfect partial-feedback

1 P+ P+2yPPop+ N setting. Thereupon, van der Meulen in a survey paper on
R < -log , : .
2 Py(1—p2) + N multiple-access channels with feedback [18] posed the



guestion whether the Cover-Leung region equals the oa- Results

pacity region for discrete memoryless MACs or AWGN |, thjs section we present our results for noisy feed-
MACs with perfect partial feedback. We will answeryack. We begin with some definitions. For given positive
this question in the negative for Gaussian channels 'iW[eger n; n-dimensional column-vectora,,a,; and

proving that for certain channel parametéfy, P, N) 1 % n-matricesB1 , B, we define the; x 2 matrix
there exist rate pairs that lie outside the Cover-Leung

region ReL(Pr, P2, N) but that are achievable in the A £ (a1 ap), (11)
perfect partial-feedback setting.

For the AWGN MAC with perfect partial feedback
Willems, van der Meulen, and Schalkwijk proposed a Ag 2 <a1 0> 7 (12)
coding scheme [22] which is based on the scheme by 0 a
Schalkwijk and Kailath [15]. Unfortunately, the achievthe » x 2 matrix
able rate region can only be stated in an implicit form

the 21 x 2 matrix

and is difficult to evaluate analytically and to compare B £ (Bl B2) ’ (13)
to the Cover-Leung region. the 21 x 1 matrix

In [2] Carleial proposed a coding scheme for the B
discrete memoryless MAC and the AWGN MAC with B. £ ( 1> , (14)
“generalized” feedback. In the Gaussian case, “general- B2

ized” feedback includes as special cases noisy feedbattle 2 x 2n block-diagonal matrix

noisy partial feedback, and perfect partial feedback. We B 0

present Carleial’s region for the AWGN MAC with noisy Bq = ( 01 B ) ; (15)
feedback in Appendix A, where we also prove that 2

if the feedback noise variances and o3 exceed a and the2n x 2n matrix

certain threshold depending on the channel parameters . (B; B

Py, P,, and N, then Carleial’s region collapses to the By = (52 52) : (16)

no-feedback capacity region in (5) (Proposition A.3 ] ) ) ) _
in Appendix A). For perfect partial feedback and for Our first achievable region for noisy feedback is
perfect feedback Carleial’s scheme equals the Cov&btained by evaluating _the rates that are achieved by the
Leung regiorRe, (P1, P2, N). Hence, in the case of per_con_catenated s_cheme in Sec.tlon IV-C1 ghegd. (An alter-
fect feedback Carleial’s scheme is known to be strictijative f.ormulatlon of th|§ achievable region is presented
suboptimal for the two-user AWGN MAC. in Section D-A, Appendix D.)

Another coding scheme for the MAC with imperfecDefinition IV.1. Let n be a positive integer, lea;, ay
feedback was proposed by Willems et al. in [23]. Alpe 5-dimensional vectors, leB,,B, be n x n strictly
though proposed for discrete memoryless channels, tlever-triangular matrices, and letC be a 2 x 7
modifications to treat the Gaussian case are straightatrix. Depending on the matri the rate region
forward, and we state their achievable rate region fg@ (\V, Ky, w,; 71, a1, as, B1, B2, C) is defined as follows.
the AWGN MAC with noisy feedback in Appendix B. , |t the product CC is nonsingulaf then
Like Carleial's scheme, Willems et al's scheme collapses R (N, Ky, w,:7,a1,a2,B1,B2,C) is  defined
to the no-feedback capacity region when the feedback- a5 the set of all rate-pairgR;, R.) satisfying the
noise variances; and o5 exceed a certain threshold  ihree rate constraint¢18) on top of the next page,
(Proposition B.3 in Appendix B), and for perfect feed-  \yhere A, and B, are defined in(11) and (13) and
back or perfect partial feedback the region equals the \hereg denotes the Kronecker product.
Cover-Leung region. Thus, for very noisy feedback, , | the productCCT is singular butC # 0, then
for perfect feedback, and for perfect partial feedback 7 (N Ky, 11,19, a1, a2, By, By, C) is defined as the
Carleial's region and Willems et al.’s region coincide. set of all rate pairs(Ry, R.) satisfying(18) when

the 2 x  matrix C is replaced by the)-dimensional
row-vector obtained by choosing one of the non-
IV. NoIsy FEEDBACK zero rows ofC.’
o If C =0, then’R(N, KW]WZ;n,al,ag,Bl,Bg,C)

In this section we focus on the setup with noisy feed- IS defined as the set containing only the origin.
back. For this setup we present new achievable regions,
and based on these new regions we derive new qualitativBwhenever; € N is larger than %1 therg_is no loss :n optimality in
propertes of the capaity region (Section IV=4). We al{FEISin Seton o oL so (iCC s onangr, Louever
present the coding schemes corresponding to our NEVA\henCCT is singular then the two rows @ are linearly dependent
achievable regions (Sections I1V-B-IV-D). and it does not matter which non-zero row is chosen.



Definition IV.2. Define the rate region 2) GivenKy,w, = 0 andN > 0, it is continuous in

R (Py, P2, N,Kw,w,) (or for shortR) as P, and P, i.e., for all P, P, > 0:

R (P, Po, N, Ky, w,) CI(U R(P1—5ap2—5aNaKW1W2)>
A 6>0

=cl U R(NvKW1W2;777alaa23813827C) :R(PlaPQaNaKW1W2)-

n,a1,az2,B1,B2,C ) .
(17) 3) Given P, P, N > 0, it converges to the perfect-

feedback achievable regid® (P;, P2, N, 0) as the
where the union is over all tuple@y, a;, as, By, By, C) feedback-noise variances tend to O irrespective of
satisfying the trace constrain{d9) on top of the next the feedback-noise correlations, i.e.,
page, and where the matricesq, B¢, By, and By are

defined in(12), (14), (15), and (16).2 cl U ﬂ R (P1, Ps, N, K)

Theorem IV.3 (Noisy Feedback) The capacity re- 02>0 K=0:tr(K)<o?
gion Cnoisyra(P1, P2, N, Ky, w, ) Of the two-user AWGN =R (P, P, N,0). (20)
MAC with noisy feedback contains the rate region

: Proof: See Section IV-EL1. [ |
R (P17 P27 Na KW1W2)1 l.e.,

Specializing Theorem 1V.3 to symmetric channels, i.e.,
CNOiSyFB(PlaPQaNa Kw,w,) 2 R (Pr, Po, N, Ky, ) - to P, :-PQ =P andcr% = 0'% = ¢2, and ton = 2 and
the choice of parametess, as, By, B2, andC presented
Proof: The proof is based on the concatenateith Section E-A in Appendix E yields the following
scheme in Section IV-C1. As will be described aheaorollary IV.6.
for each choice of parametersa;,as, By, By, C our

) . I IV.6 (S tric Noisy Feedback Ch I-
concatenated scheme achieves the capacity regCoro ary (Symmetric Noisy Feedbac anne

PN QQSub—Optimal Choice of Parameterdjhe capacity
of the AWGN MAC &, — (:1752) in (37) region Cnoisyra( P, P, N, Ky, w, ) of the symmetrictwo-
scaled by a factom;~!, i.e., it achieves the regionuser AWGN MAC with noisy feedback, i.e., where
R (N, KW1W2§777 ai,aq, By, Bo, C) The details of the 2 2

) o o-p
proof are omitted. [ | Kwiw, = <02g 02) ,

7Rzer1r31ar1kD ]I\Y i Evaluating tthke) (;;\_:fhle\liable r€0ION - ntains all rate pairs (R, Re) satisfying the rate
: (Pr, P, N, W%W2) Seems fo be difficult even NUMETe ., gyaints 21 on top of the next page. In particular, it
ically. More easily computable (but possibly smalle

; . . ; . ontains the equal-rate poififz, R) whenever it satisfies
achievable regions are obtained by taking the union o 2) oln top of?ﬁe next Eagﬁe yw vert ISt

the RHS of(17) only over a subset of the parameter:
n,a1,as, By, By, C satisfying(19). In Appendices E and From Corollary IV.6 it is easily seen that the capacity

F we present two such subsets and their correspondin§the symmetric noisy-feedback setup is larger than the
achievable regions (Corollaries E.3 and F.2). In Secdo-feedback capacity, no matter how large (but finite) the
tion IV-C2, we present more general guidelines on hof@edback-noise variance® is. The following stronger

to choose the parametersa;, as, By, Bo, C. result holds:

Proposition IV.5 (Monotonicity and Convergence of theTheorem IV.7 (Noisy Feedback is Always Beneficial)
regionR). The achievable regioR (P, P», N, Ky,w,) For every feedback-noise covariance matkiy, w,

satisfies the following three properties:
_ g fhiee properties: Chors(P1, P2, N) C Croisyre(Pr, Pa, N, Kivaws),
1) Given Py, P,, N > 0, it is monotonically decreas- ] o ]
ing in Ky, w, with respect to the Loewner order,Where the inclusion is strict.

i.e., for positive semidefinite matricéSy, v, and Proof: Follows by Theorem V.6 ahead, which es-
Ky ws: tablishes that noisy partial feedback always increases
) capacity, and by observing that—since Transmitter 1 can
(levv2 = KW1W2) == always ignore its feedback—noisy feedback cannot be
worse than noisy partial feedback, i.e., for all covariance

(R(P1,P2,N, Kwywz) : o} 01020
matricesKw,w;, = { 01 o o2 )
C R (Py, P2, N, Kiriw,) ). 1020 02

Chnoisyrs (P1, Po, N, Ky, w, )

2
) CNoisyPartialePh P, N, ‘72)-
8Since By and By are strictly lower-triangular, the matrix
(I2y; — Bp) is nonsingular and its inverse exists. | ]



1 |C(asa] + N, + Bo(Kwyw, ©1,)B) )
R, < —1lo 18a
L= 5 8 IO (N, + B (Kwaws @ 1)B7) (182)
1 |C(asa) + N + Be(Kww, © 1,)BY) ')
Ry < —1lo 18b
2= 5 8 T IC(VT, + B (Kwyw, @ 1)BY) O] (180)
1 AAT + NI B/ (K 1,)BT) C"
Rl +R2 S —10g |C( r\r + 77+ I’( WiWs ® 77) I’)C | (18C)

2n |C(NI77+BT(KW1W2 ®|U)B-rr) CTl

_ —
(1 0) (12— Bo) ™" (AoAG + NBABL + Bl 1,089 (2~ 8" (7)) <orr 299)
/{0

(0 1) (2~ Bo) ™" (AoAG + NBBL + Bl 1,089 (g~ B) " () ) <up aob)

Ry, R <110 (1+E>+110 1+ P (21a)

PR TN )T U T 2P N) (P N 102 + (02 — g0?))

1 2P\ 1 2p?
Ri+Ry<zlog (145 )+-log 1+ 21b
! 2—20g( N) 4°g< (2P+N)(P+N+02+%(02_Q02))> (21b)
1 2P 1 2pP?

R<-log 1+ ) +<log 1+ 22
—4°g( N> 8Og< (2P+N)(P+N+a2+%a2(1—g))> (e2)

Specializing Theorem 1V.3 to perfect feedback, i.esum-rate in the perfect-feedback capacity region.
Kw,w, = 0, and to the choice of parameters presented in
Section F-A in Appendix F yields the following remark.

Remark V.8 (Perfect Feedback)For the two-user
AWGN MAC with perfect feedback our concatenat

scheme achieves all rate pairs inside the reg|ornegion R(Py, Py, N,K) is replaced by the union

RE (P1, Py, N), ie., 3 !
(UWGNRH(PLPQ,N,K)), where  the  regions

P \
R (P1, P, N,0) 2 Roy(P1, P, N). R, (P1, P, N,K) are defined in Definiton F1 in

Proof: Is based on the specific choice of parametepgppendix F, and represent the regions achieved by
in Section F-A, i.e., on the region®, (P, P2, N,0) our concatenated scheme for the specific choice of
in Remark F.3 in Appendix F. For details, see Segarameters presented in Section F-A (Appendix F).
tion IV-E2. [ |

We next consider the noisy-feedback setting in the OUr 1ast achievability result for noisy feedback is
asymptotic regime where the noise variances on bogSed on the rate-splitting scheme in Section IV-D1.
feedback links vanish. Proposition IV.9 ahead Shov\%efore stating the result in Proposition 1V.13, we define:
that our achievable regions in Theorem IV.3 convergBefinition IV.11. For fixedn € N; fixed n-dimensional
to the point of maximum sum-rate @perecrsWhen the  vectors a;, ay; n x n strictly lower-triangular matri-
feedback-noise variances tend to O, irrespective of thes B;,B,; and 2 x n matrix C define the region
feedback-noise correlation. Rrs1 (Pf, N,Kw,w,;n, a1, a2, B1, Bs, C) as the set of
@II rate pairs (Ri, R2) that for some nonnegative
R cs, R1ne SUMmMIng toR; satisfy the following two

Proof: Follows directly by Proposition IV.5, Part 3),
and by Remark 1V.8. ]

e%emark IV.10. We can strengthen Proposition V.9
follows: Inclusion (23) remains valid if the

Proposition IV.9 (Convergence to Maximum Sum-Rat
of Cperectrd- Our achievable region satisfies

conditions:
| U | R(P,P:uNK) (Ri,cs, R2) € R(N + Py, Kwyw,im,a1,a2,B1,B2,C)
02>0 K*EO:II”(K)SG'2 and
2 Roy(Pr, Po, N). (23) [ (|P{In+Nln+Br(KW1W2®In)B}|>
Thus, by Remark 111.8 our achievable regions in Theo- MNE= o & INT, + Br(Kw,w, @ 1,;)B]|

rem 1V.3 asymptotically approach the point of maximum (24)



whereB; is defined in(13). and Ky, -
Similarly, define the region ,
Rrsz2 (P, N, Kw,w,;7m,a1,a2,B1,B2,C) analogously (KW1W2 = KW1W2) =
to the regionRrs 1 (Pf, N, Kw,w,; 7, a1, as, B1,Ba, C), P
but with exchanged indices 1 and 2. (RRSl (Py, Py, oy N K )

Definiton ~ IV.12. Define the rate region C Rrs1 (P, Py Poy N, Ky s, ) )
Res1 (P, P{', P2, N, Kwyw,) (or for short Res1)  2) GivenKyy,w, = 0 and N > 0, it is continuous in
as P{,P/', and P, i.e., for all P, P/, P, > 0:
Rrs1 (P, P/, P2, N,Kyw,w,)
2cl ( URRs,l (P1, N, Kwyw,5m, a1, a2, By, B, C)) c (gRRS’l (Fi=8, B =8, =6, KWlWZ))
where the union is over all tuple@), a;, as, By, By, C) =Rrs1 (P, Py, P2, N, Ky, w,) -

H H i /!
satisfying the trace constraint§19) for powers P| 3) Given P, P! Py N

. ) . > 0, it converges
and P, noise variance(N + P;), and feedback-noise

to the perfect-feedback achievable region

g;varia;c;/mjitﬁile\(fwsz. Simila][Iy, dr(]efir;;:‘athe region Rrsi (Pl P!, P,,N,0) as the feedback-noise
rs2 (P, Py, Py, N, Kw,w,) (or for short Res») as variances tend to 0 irrespective of the feedback-
Rrsz (P1, Py, Py, N, Kw,w,) noise correlations, i.e.,
écl( Rrsa (Ph N, Ky ,a,a,B,B,c)

U rs2 (P WwiWa3 ), a1, az, Bi, Ba, C) l U m Rest (Pl Pl', P, N, K)
where the union is over all tuple@), a;, as, B, Bs, C) 02>0 Kx0: tr(K)<o?
satisfying the trace constrain{d9) for powersP; and =Rrs1 (P}, P}, Ps,N,0).

Py, noise variance(N + Pj), and feedback-noise co-

H H / /!
variance matrixKy, i, . Similarly, for Rrs2 (P1, Py, Py, N, K, ws, )-

Proposition V.13 (Rate-Splitting for Noisy Feedback) _Proof: Follows from Proposition IV.5 and be_c"’?use
The capacity regionCheisyrs(P1, Pa, N, Kiy,w,) CON- for fixed a;, a5, B1, B, andC the RHS of (24) satisfies

tains the regionRrs1 (P, (P, — P!), Ps ]\1[ |2W ) the following three properties. It is monotonically de-
for any P| € [0, P, a7nd it coniain’s £he 1region creasing inKyy, 1, With respect to the Loewner order, it

Rrsz2 (P, Py, (P, — P}),N,Kw,w,) for any P; e is continuous inP{, and it converges tg log (1 + %{)

[0, P as the feedback-noise variances tend to O irrespective of
the feedback-noise correlations. The details are omitted.
Choisyrs(P1, P2, N, Ky, w,) -
2 U Rersi (Pi, (P1 — P{), Py, N,Kw,w,) With the rate-splitting extension in Section 1V-D1
Pl€[0,Py] and Propositions V.13 and V.14, Remark IV.8 and

Proposition IV.9 can be generalized to all the boundary

and points of the capacity regio@perfectrs

Cnoisyra(P1, P2, N, Kwyw) Remark IV.15 (Perfect Feedback)For the two-
) U Rrsz2 (P1, Py, (P, — P3), N,Kw,w,). user AWGN MAC with perfect feedback our rate-
P€[0,Ps] splitting scheme in Section IV-D1 achieves all rate

Proof: The rate region is achieved by the ratepairs in Ozarow's perfect-feedback capacity region

splitting scheme in Section IV-D1. The analysis is basegPereetrel F1, P, V):

on Theorem V.3, on the capacity of a Gaussian multi-Cpesectrd P1, P, N)

input antenna/multi-output antenna channel with noise

sequences that are temporally-white but correlated across. U Rrs1 (Pl (P, — P]), Py, N,0)
the antennas, and on a genie-aided argument as in [14] '

; . P{E[0,Py]
and [24, p. 419]. The details are omitted. ]

Proposition 1V.14 (Monotonicity and Convergence of U U Rrs2 (P, Py, (P, — Py), N,0)
Regions Rrs1 and Rgrs2). The achievable region PLe[0,Py)
Rrs1 (P, P{', N, Kw,w,) satisfies the following three (25)
properties:
1) Given P/, P/', P,, N > 0, it is monotonically de-
creasing inKyy, w, with respect to the Loewner or-
der, i.e., for positive semidefinite matricksy, yv, Rrsi1 (P (p), (PL — P{(p)), P2, N,0)

In fact, for eachp € [0, p*] there exists & (p) € [0, Pi]
so that
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2R’f7OZ(P1,P2,N), (26a) Prior to communication a blocklength- rates;
codebookC; and a blocklengtht, ratef2; codebook

/
and aP;(p) € [0, P] so that C, are generated and revealed to both transmitters

Rrsz2 (P1, P3(p), (P2 — P5(p)), N, 0) and to the receiver. The codewords of codebook
' C, are chosen independently with the components
D RE o, (P1, Pa, N). 26b !
2 Ro0r( 1, 2, N) (26D) E11(m1),...,E1.n(m1) of them;-th codeword chosen

Proof: By Remark IIl.7, Equality (25) follows di- 11D zero-mean unit-variance Gaussian. The codehliok
rectly from (26). For a proof of (26), see Section IV-E3is drawn similarly. Message®/; and M- are then trans-

B mitted over2n channel uses by sending each symbol of
the n-length codeword&? (M;) and=% (M) over two
consecutive channel uses. More preusely, at odd time
stepst =2(k—1)+1, fork € {1,...,n}, Transmitter 1

Proposition V.16 (Convergence to Boundary of
Cpertectrg. FOr everyp € [0, p*(Py, P>, N)] we can find
someP;(p) € [0, P1] so that

sends
X1 2(k—1)+1 = 1,151k, (28)
cl Rrs1 (P ( - P Py, N,K _
2U ﬂ rs1 (P1(), (1 1)), P2 ) and Transmitter 2 sends
02>0 K*O0: ,
tr(K)<o _

X _ = a9 159 k. 29

>R o (Pi, Po, N). (27a) 2,2(k—1)+1 2,122,k (29)

o ) At even time stepst = 2k, for £k € {1,...,n},
Similarly, for everyp € [0, p*(P1, P2, N)] we can find transmitter 1 sends

someP;(p) € [0, P| so that
X2k = a1,281k — 01V12(k—1)41, (30)

and Transmitter 2 sends
| U [ Resz (P, Psp). (P2 = Py(p)), N.K) -
0250 K>=0: Xook = a2282 k — baVo o(p—1)41- (31)
tr(K)<o?

i 2n
> RE o,(Py, P, N). (27b) To ensure that the two input sequendges; ,};, and

{X5}7n, satisfy the power constraints (4), the param-
Thus, by Remark II1.5 and Definition 1I1.6 our achievableeters ay 1, a1 2, a2,1,a2.2,b1, and b2 are chosen as to
regions in Proposition IV.13 asymptotically approach alkimultaneously satisfy

boundary points of the perfect-feedback capacity region.
yp P P yreg %1"‘((11 2—b1a1,1)2+b%(a§71+N+of) <2P (32&)
Proof: See Section IV-E4.

Propositions 1V.13 and I1V.16 combined with Re and
mark 111.7 yield the following continuity result. a§71+(a272—b2a271)2+b§(a%,1+N+a§) < 2P,. (32b)
Theorem IV.17 (Continuity of Noisy-Feedback CapacityThe receiver uses an optimal decoding rule to decode
Region) For all Py, P>, N > 0: Messages\/; and M, based on the observed sequence
of channel outputd7i, ..., Ys,.
cl U ﬂ Choisyrs(P1, Po, N, K) To describe the performance of the scheme, let

220 K3=0:tr(K) <o E_l, Ho, Zodds and_Zeven be independent zero-mean Gaus-
— Crertecttd P1, Ps, N). sian random variables, V\(he?iq and=, are of variancé
B and Zyqq and Zeyen Of varianceN. Independent thereof,
Proof: See Section IV-E5 for details. m let the pair(Wy, Ws) be a zero-mean bivariate Gaussian
of covariance matriXKyy, v, as defined in (1). Also, let

B. Simple Scheme Yodd and Yeven be defined as

We present a simple coding scheme for the noisyYodd = a1,1Z1 + a2,1Z2 + Zoda,
feedback setting. It is a special case of tomcatenated y,.,2 a12Z1 + a2.252 — b1 Vi odd — b2V odd + Zeveri
schemean Section IV-C1 ahead: the simple scheme with
parameters,; 1, a1 2, a2 1, a2, b1, by coincides with the and V1 odd @nd V2 oad be defined as

concatenated scheme for noiTsy feedback with parame- Viyodd 2 Yoda + W, ve{1,2}.
tersn = 2,a; = ((111 az1) ,ay = (azy ag2),

0 0 0 0 The performance of the simple scheme is then described
Bi=1{y o) B2 b, o) © =l We present a5 follows. The scheme achieves all nonnegative rate

the simple scheme here separately, because it is eagieirs (R:, R2) that simultaneously satisfy

and yet powerful enough to establish Corollary 1V.6 and 1. _
Theorem IV.7. Ry < 51(:1;Yodd, Yeven=2), (33a)
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Ry < 31(52; Yodd, YeverlZ1), (33b) are then linearly mapped by the inner decoder to a pair of
% estimateg=,, =»), and the estimates are fed to the outer
Ri + Ro < —I(E1, Z2; Yodd, Yeven), (33c) decoder. Thus, the outer decoder is fed with a vector

2 in R? everyn channel uses. Based on the sequence of

or equivalently—as obtained by evaluating the mutual iRrectors produced by the inner decoder, the outer decoder
formation expressions on the RHSs of (33)—it achievgfen decodes the transmitted messages.

all nonnegative rate pairsi?, Rz) that simultaneously  consequently, the inner encoders and the inner de-

satisfy coder transform each subblock af channel uses of
1 a? the original MAC into a single channel use of a “new”

R < ZIOg (1 + T time-invariant and memoryless MAC which for given
inputs §§ € R and & € R produces the channel

207 T 0202 + 2bibaooros + N 1,6 +— (21,5). We can then think of the overall

a?, ) output (Z;,25)" € R2. We denote the new MAC by
scheme as ano-feedback schemever the new MAC

Ry < llog (1 L% €1,& — (21,52). As a consequence, the capacity of
— 4 N the original MAC with feedback, which we denote by
9 x1, T2 — Y, isinner bounded by the capacity of the new
FE— 42,2 MAC &1, & — (21, 2,) without feedback but scaled by
biot + bz03 + 2b1b2go102 + N n~! to account for the fact that to send the symbols
and 5_1,52 over the new MAC the original channel is used
times.
Ri + Ry We first sketch some of the properties of the inner
1 a3 + a3, encoders and the inner decoder and postpone their de-
< Zlog I+ T tailed description to after the description of the outer
) ) encoders and decoder. We choose the inner encoders and
n aj o+ a3 the inner decoder so that the MAR, &, — (=2, Z2) can
bio? + b3o3 + 2b1bogoios + N be described by
4 (01,102,2 - 02,101,2) él 51
N(b202 + b302 + 2b1by00109 + N) (:2) =A (52) + T, (34)

for some choice of the parameter%v

011, 12,031, az.9, b1, by satisfying (32). hereA is a deterministi@ x 2 matrix and wherel'

is a bivariate Gaussian whose law does not depend on
the pair of inputs(¢1,&2). Also, the inner encoders are
C. Concatenated Scheme designed so that if both outer encoders satisfy a unit
We first present our concatenated coding scheme waerage block-power constraint (over time and messages)
general parameters in Section IV-C1; in Section IV-Cand if at every epoch the symbols produced by the
we then give guidelines on how to choose the paramet@gter encoders are zero-mean (when averaged over the
of this concatenated scheme. messages), then the channel inputs to the original MAC
1) Scheme:We propose an encoding scheme witkr1, 22 — Y satisfy the average power constraints (4).
a concatenated structure where each of the encoder§or the outer code (encoders and decoder) we choose
and the decoder consists of an outer part and an inrgercapacity achieving zero-mean code for the MAC
part. (Here the inner parts are the parts that are clogeréz — (Z1,Z2) under an average block-power con-
to the physical channel, see Figure 6.) In our schenstraint of 1. Note that there is no loss in optimality
the various parts fulfill the following tasks. The outein restricting ourselves to zero-mean codes because
encoders map the messages into codewords (withsubtracting the mean of the code can only reduce its
using the feedback) and feed these codewords to thaiterage power (averaged over time and messages) and
corresponding inner encoders. The inner encoders prpes not change the performance on an additive noise
duce for every fed symbol a sequenceyahannel inputs MAC such as (34). We shall need the property that the
to the MAC with feedback, for some positive integeputer encoders produce zero-mean symbols in the power-
n. In particular, when fed the symbgl, € R, Inner analysis of the input sequences to the original channel
Encoder 1 produces inputs which depend og; and z1,22 — Y.
on the observed feedback outputs; all symbols fed toFor the inner encoders and the inner decoder we
the inner encoder are treated in the same way. Inngoose linear mappings. To obtain a compact description
Encoder 2 is analogously defined. Thaymbols which of the linear mappings we stack thechannel inputs,
the MAC outputs for every pair of input symbdl$;,¢2)  X,1,...,X,,, produced by Inner Encoder in an -
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! 1
' 1%
' “new” MAC 2t :
_______________________________________ 1
Fig. 6. Structure of concatenated scheme.
dimensional column vector In the following we describe the MAG,& +—

N . (21,E5) as induced by, a;, as, By, By, andD. Given
Xy = Xogso Xom)'s ve{l2} inputs&q, &, € R, it produces the vector of estimates
and similarly we stack then feedback outputs,

Vii,..., Vi, observed by Inner Encoder in the 7- <El) =A (51) + T, (37)

dimensional vector =5 &2
V= Vots-oos Vo), ve{l,2}. where the2 x 2-matrix A is given by
We can then describe our choice of the inner encoders A=D(l, — (B + 32))—1 A, (38)
as follows. When fed the input symbgl € R, Inner
Encoderv produces whereA; is defined in (11), and where the noise vector

T is a zero-mean bivariate Gaussian
Xz/ - augu + B,,Vl,, Ve {L 2}7 (35)

where a, are n-dimensional column vectors and, T =D(ly — (B1 +B2)) ™ (B1W1 + By W> + Z), (39)
are n x n matrices which are strictly lower-triangularg W, N (Wit W), Wy 2
(because the feedback is causal). Also, as previou Lo W), and Z’ ’é (’Zl ” ,Z )", (Notice
mentioned, we restrict the inner encoders to produ%gat’ ;incé Bl’" a,nd B, are striétly ’Iocver—triangulér

sequences of inputs to the original MAG, 2> = Y matrices, the matrix(l,, — (B1 + Bz)) is nonsingular

that satisfy the average block-power constraints (4) Wh%lﬁd the inverse exists.) Defining the< , matrix
the outer encoders feed them with zero-mean sequences

of unit average block-pow_er. By (35) this_ is_ the case C2D(l,— (B +By)?, (40)

whenever the trace constraints (19) are satisfied. Thus, in

the following we only allow for vectora; anda, and for we can express the matrik in (38) as

strictly lower-triangular matrice®; and B,y satisfying

(19). A = CA, (41)
To describe our linear choice of the inner de- , i

coder, we stack then outputs Yi,...,Y;, which and the noise vector in (39) as

the original MAC produces for the pairs of inputs

. . . T=C(BiW1+BW3+7Z). 42

(X11,X21),..., (X1, X2,), into the n-dimensional (B1W1 + B W +2) (42)

column vector For fixed n, By, By, the mapping (40) fromD to C
Y2 (W, Y, is one-to-one, and thus we can parameterize our con-

catenated scheme for noisy feedback by the parameters
We can then express the estimates produced by the oufes, , a,, B, B,, C.
decoder by Note that by choosing = 1,a; = /P, a2 = /P,
=3 andC as the2 x 1 matrix with unit entries, our scheme
(; > =Dy, (36) reduces to the capacity-achieving scheme for the original
MAC x4, z2 — Y without feedback subject to the power
for some matrix of our choic® € R2*", constraints (4).

=2
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5Ty and7r271, ey T2y,

eters P, P, N,Kw,w,, determining for each rateIn fact, every choice of parameters not satisfying (45)
pair in R(P, Py, N,Ky,w,) a set of parameterscan be strictly improved (with an appropriate choice of
7,a1,az, By, By, C that achieves this rate pair seems t€) so as to achieve a larger region, see Appendix C.
be analytically intractable. Instead, we present guiéslin  For general noisy feedback, it is not optimal to
on how to choose parameters and discuss the two choichsosea;, a;, B1, By as in (45) when the channel out-

of parameters in Section E-A (Appendix E) and

Section F-A (Appendix F) that lead to Corollary IV.6V; 1, ..

and Proposition 1V.8.

iputsYy,...,Y,_, are replaced by the feedback outputs
S Vig—1 and Vo q,..., V1. Intuitively, the
reason is that with such a choice the inner encoders

For the purpose of describing our guidelines, througlntroduce too much feedback noise into the forward

out this section, we replace the symbdls and &

communication.

fed to the inner encoders by the independent standard~or the general setup it seems infeasible to de-

Gaussiang&; and=,.

rive the set of optimal parametera;,as, B, Bs.

We start with the matrixC. Given parameters However, it is easily proved that the parameters
n,ai,ag, By, and By, the matrix C should be chosen a;, a>,B;,B, have to be chosen so that they satisfy

asC = C uwmsE, where
CLMMSE £ A: (ArA: + N|n + Br(KW1W2 X IU)B:)il .
(43)
By (36), (41), and (42) this choice implies that

o)

and hence we call the matri&, ymse the LMMSE-
estimation matrix The choice C Cimmse IS
optimal in the sense that the corresponding

Yi,.... Y|, (44)

both power constraints (19a) and (19b) with equal-
ity, since otherwise there exists a choice of parame-
ters which corresponds to a larger achievable region.
This readily follows from the alternative formulation
of R (N, Kw,w,;n,a1,as,B1,Bs, C) in Section D-A
(Appendix D), because the RHSs of (148) (which de-
termineR (N, Kw,w,;n, a1, a2, B1, B2, C)) can always
be increased by changing the last entryagf i.e., a; ,,
or the last entry ohy, i.e., az .

We finally consider the choice of. If the goal is
rd0 maximize the single rates, it is trivially optimal to

gion R (N, Ky, w,;7,a1, a2, By, By, Clumse) contains choosern = 1 irrespective of the channel parameters

all regionsR (N, Kw,w,;n, a1, az, B1,Ba, C) that cor-

Py, Py, N, Ky, w,. If in contrast the goal is to maximize

respond to other choices . The optimality of the the sum-rate it seems infeasible to derive the optimal
LMMSE-estimation matrix can be argued as followsHowever, numerical results indicate that the larger the

When (44) holds, then even additionally revealiigor

feedback-noise variances are, the smaller the parameter

any linear combinations thereof) to the outer decodgrshould be chosen. Itis easily proved that in the extreme

does not increase the set of achievable rates in

dase of no feedback the sum-rate is maximized by choos-

scheme. Obviously, choositfg= UC_wwse for any non- g n = 1. In contrast, in the extreme case of perfect
Singu|ar 2-by-2 matrixU is also 0pt|ma| In particu|ar, feedback we prove in Section IV-E2 that with the choice

whenn = 2 every non-singular matrix is an optimalof parameters suggested in Section F-A the maximum

choice forC.

sum-rate of our concatenated scheme converges to the

We next consider the choice of parametergerfect-feedback sum-rate capacity as the paramgter
a;,ay,B1,B, and first focus on the special casdends to infinity.
of perfect feedback. This special case is in view of In the remaining, we discuss the two specific choices
Ozarow’s capacity result [13] only of limited interest, buff the parameters;,as,B1,B2,C givenn € N pre-
it provides insight on how to choose the parameters f§ented in Section E-A (Appendix E) and in Sec-
other settings, e.g., the perfect partial-feedback gettiion F-A (Appendix F). For both choices, the parameter
(See Section V.C2) and the noisy feedback-setting WI% is the LMMSE-estimation matrix and the parameters

receiver side-information (Section VI-B2).

aj,as, By, By are such that when specialized to perfect

For perfect feedback and a fixeg the parameters feedback they satisfy (45). In the choice in Section E-A,

a;,as, B1, By should be chosen such that Inner Eneach inner encoder allocates the same power for all
coderv, for v € {1,2}, produces as itg-th channel channel inputs. The achievable region corresponding to

input a scaled version of the LMMSE-estimation erroihis choice is presented in Corollary E.3, and includes
of £, when observingY, ..., Y, 1), i.e., as special case the result on the symmetric setup in

Corollary IV.6. In the choice in Section F-A, the inner

Xip=m (51 -E [:1|y’3 1]) ’ te{l,....n, encoders use the power-allocation strategy suggested by
(45a) [11] for perfect feedback. The corresponding achievable

and region is presented in Corollary F.2, and includes as

Xoy = may (22 — E[S2|Y1]), ¢e{1,...,n}, special case the achievable region for perfect feedback

(45b) in Remark F.3 used in the proof of Propositions 1V.9 and
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IV.16 and Theorem IV.17. which picks the codeword, (m1 cs) £ (E1,15--560)"
corresponding tom; cs from its codebook and feeds
D. Extensions of the Concatenated Scheme it to Inner Encoder 1. Similarly, givenM/; = mo,
) ) Transmitter 2 feeds, to Outer Encoder 2, which picks
In th_e following three subsections we present thr%e codewordt, (ms) 2 (€21, ..., &) corresponding
extensions of our concatenated scheme by rate—spllttl{Hgn,L2 and feeds it to Inner Encoder 2. Denoting the

it with other schemes. The idea of rate-splitting WaSarameters of the inner encoderséy as, B,, and B,

introduced in [_2]_ and _[13]' . respectively, Inner Encoder 1 forms thedimensional
1) Rate-Splitting with No-Feedback Schene:this | ociors

first extension we combine our scheme with a no-
feedback scheme employing IID Gaussian codewords. aréyr +Bi Vi, ke{l,...,n}, (46)
This extension was inspired by the rate-splitting scheme . .
proposed by Ozarow for perfect feedback [13]. Only on nd Inner Encoder 2 forms thgdimensional vectors
transmitter applies the rate-splitting. For the desauipti aséa ), + BaVay, ke{l,...,n}, (47)
we assume it is Transmitter 1. Thus, Transmitter 1 splits
Message)M; of rate R, into two independent parts: Where foru e {1,2}:
MessageM; ne Of rate Ry ne and Messagél cs of A Vo, (k=1yn+15 -+ Vokn)"
rate Ry cs, Where R; ne and Ry cs sum up to R;.
Here, NF stands for “no-feedback” and CS stands fdihe signal transmitted by Transmitter 1 is the sum of
“concatenated scheme”. the vectors in (46) and the vectors

We first present a rough overview of the scheme. We A .
start with the encodings. Transmitter 1 uses a fraction "% — (Uge—1y41s- - Ukn)' kefl,....n},
of its available powerP], for some0 < P} < Pj, to j.e.,
produce a sequence by encoding Mess&feyr using
Gaussian codewordigwithout using the feedback). With X1k = Wk +a1&1 k + B1 Vi, kedl,....n},

the rest of the powetP; — P;) it produces a sequence of (48)
the same length by encoding Messal cs using our Where
concatenated scheme and the outputs of the feedbg&h 2 (X (hetymsts > X pn)Ts ke{l,...,n}

link. It sends the sum of the two produced sequences’
over the channel. If the concatenated scheme is e signal transmitted by Transmitter 2 is described by
parameter and its outer code is of blocklength then the vectors in (47) as follows:
both sequences are of length. Transmitter 2 produces _
a sequence of equal length by encoding Messkfe Kok = 22l2 + BaVar, kefl,....nk, (49)
with power P, using the concatenated scheme and sengsere
this sequence.
; Xox 2 (Xo coy Xo )T
We next present a rough overview of the decod- 2,k 2,(k=1)n+15 -+ - A 2.kn

ing at the receiver. The receiver first decodes the Pifptice that if a;, a0, Bi, B, satisfy (19) for powers
(Mics, M2) by using the inner and the outer decodefp, _ pr) and p,, noise variancéN +P!) and feedback-
of our concatenated scheme and treating the transmissifise covariance matrikyy 1w, and if the outer code’s

e n . 1vvV2
of Messagel/, nr as additional noise. From its guess ofqgewords are zero-mean and average block-power con-
(M nr, Ms) the receiver cannot recover the sequencegained to 1, then for sufficiently large blocklength

produc_ed by our concatenate(_j scheme becausg itis input sequences (48) and (49) satisfy the power
incognizant of the feedback noise. Nevertheless, it ca@nstraint (4) with arbitrary high probability.

form an estimate of both produced sequences (pretendingye next describe the decoding. The receiver first
that its guess ofM; cs, M>) is correct) and subtract the yacodes the pair(M, cs, M) based on the tuple
sum of the estimates from the received signal. Bas%grl Y, by treatin’g the codewordJ(M; ) as

on the resulting di.fference the receiver finglly decodegyditional noise and by applying the inner and outer
messagel/; nr, which concludes the decoding. decoders of the concatenated scheme.Nilgs and M,

In the following we describe the scheme in MOr@enote the receiver's guesses of the messages and
detail. GivenM; ne = mq N, Transmitter 1 picks the 2(RX) 2(Rx) 2(Rx) 2(Rx)
2,1

) M, and let( = ) and (2 )
codewordu(mming) = (us,. .., uyn)" corresponding to de2note the coriéls’ onc,iinl’ncodewords in ,the ,ouzt’gr codes
mine from its Gaussian codebook. Givel; cs = P 9 ’

: The receiver then attempts to estimate and subtract the
, Transmitter 1 feedsn to Outer Encoder 1, .
mies 1.CS influence of the concatenated scheme (see (46) and (47))
°To satisfy the powers constraints the Gaussian codeworasish Y computing for eacht € {1,...,n} the difference

be of variance slightly less tha®;. However, this is a technicality - ~(R ~(R
which we ignore. Yy = (In -B; - BQ) Yy — 3155,1:) - 325512(), (50)
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where then-dimensional vectolY;, is defined as to encode message{S\/[,,,csb}f:1 it uses our concate-
. . nated scheme. More specifically, before the transmission
Yi = (Yo—1yn+1- -5 Vo) in Block b € {1,..., B} starts, Transmitter chooses

If the receiver decoded/; cs and M, correctly, i.e., if the codewords for messaged, c. b, Mictp-1, and

y y M. _; from the corresponding Gaussian codebooks
M cs = M; cs and My = Mo, then (50) corresponds " 2,CL0—1 p g
toLCS hes ? ? 50) P and produces amn-length sequence of powdr,, for

some0 < P/ < P,, by taking a linear combination
Uy +BiW i + BoWo, + Zy, ke{l,...,n}. of the chosen codewords. It also produces;ardength

sequence of powe(P, — P)) by encoding message
Finally, the receiver decodes Messalja nr based on 7, g, using the outer and inner encoders of our
the differences{Y;}7, using an optimal decoder for concatenated scheme wheyeis the parameter of the
a Gaussiam-input antennaj-output antenna channelinner code and: is the blocklength of the outer code. It
where the noise sequences are white but correlated acresgds the sum of the two produced sequences in Block
antennas. Notice that because of the correlation of theBlock (B + 1) Transmitter picks the codewords for
noise sequences across antennas, the scheme mighﬁb@sageMl_,CLyB and M ¢, from the corresponding
improved if correlated Gaussian codewords are used ¢faussian codebooks and sends a linear combination of
transmit Messagé/; nr. power P! of these codewords.

2) Rate-Splitting with Carleial's Schem@ur second  After each Blockb € {1, ..., B} the receiver decodes
extension is based on modifying Carleial’s rate-splittinghessagesi/; csy, Mo cssMicLp—1, and Mo cip—1.
scheme [2]. Carleial's scheme combines a variation @f first decodes message¥; cs;, and M cs;, using
the Cover-Leung scheme [4] with a no-feedback schemsher and outer decoder of our concatenated scheme and
by means of rate-splitting. Here, we propose to modifyeating the sequences produced by encoding messages
his scheme by replacing the no-feedback scheme Witl, ¢\ , 1, My ¢ 1, My cLp andM, e as additional
our concatenated scheme. Since fo= 1,a1 = P1, noise. From its quess df\V/; csp, Mo css) the receiver
anda, = /P, our concatenated scheme results in agannot recover the sequences produced by our concate-
optimal no-feedback scheme, our proposed extensigited scheme because it is incognizant of the feedback
includes Carleial's scheme as a special case. In the fabise. Nevertheless, it can form an estimate of both
lowing we roughly sketch the idea behind our extendgstoduced sequences (pretending that its guess is correct)
scheme. For more details see Appendix H. and subtract the sum of the estimates from the received

Our scheme is a Block-Markov scheme of blocksignal. Based on the resulting difference and based on
length . Each block ofn’ channel uses is divided similar differences which resulted in the previous block,
into (B + 1) blocks, each of lengtyn for positive it then decodes message®li cip—1, Ma.cLy_1). After
integersn andn, i.e., we assume that' = (B + 1)nyn. the last block(B + 1) the receiver decodes the pair
Each transmitter splits its message into two sequenqges; ¢, M2 cL 5). More general decoding orders at
of independent submessages: Transmitterfor v € the receiver could be considered, but for simplicity, we
{1, 2}, splits its messagé/, into a sequence of inde- restrict attention to this order.
pendent submessag¢d/, ci 1,...,M,cL s} Of rates  3) Interleaving & Rate-Splitting with Carleial’s
R, cL and into a sequence of independent submessagas/er-Leung SchemeDur third extension is based on
{M,cs1,...,M,csp} of ratesR, cs. The ratesR, c.  rate-splitting an interleaved version of Carleial’s Cover
and R, cs should be nonnegative and sum & 2, Leung scheme with an interleaved version of our con-
but otherwise can be chosen arbitrary depending on tbatenated scheme. We only describe here the general
parameters of the setting. Similarly, for Transmitter Ztructure of the scheme. For more details see Appendix I.
(Here, the subscript CL stands for “Cover-Leung” and Our scheme is a Block-Markov scheme of block-
the subscript CS stands for “concatenated scheme”.) lenght »’. Each block ofn’ channel uses is divided

As in Carleial's scheme, after each blogk € into (B + 1) blocks, each of lengthyn and each
{1,...,B} Transmitter 1 and Transmitter 2 decodesuch block is further divided into; subblocks of
the other transmitter’s submessaie c., andM; cL, length n. Thus, it is assumed thaB,n, and n are
based on their feedback outputs. The two transmittepssitive integers such that’ = (B + 1)yn. Simi-
can accomplish the decodings in two different waysdarly, each transmitter splits its message into two se-
Transmitter 1 either directly decodes Messadec.,»,» quences of independent submessages: Transmitfer
or it first decodes\M, cs, before decoding the desiredv € {1,2}, splits its messagél/, into a sequence
messagé\l> cL,. Which alternative is better depends omf independent submessage¥/, ic. 1, ..., MyicLyB}
the specific parameters of the setting. and into a sequence of independent submessages

The encoding is performed as follows. To encodéM, cs1,--., M, cs g} Notice that the first sequence
messageg M, cL b}b , Transmitterv, for v € {1,2}, of submessages is of lengjti, and the second of length
uses Carleial's variation of the Cover-Leung scheme arigl Messages{M,,,,C,”(b_1)n+g}l§:1 are of rateR, icL ¢,
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and Message$M,,,.cs,b}f:1 of rate Ry cs. The rates codeword symbol is encoded intosubsequent symbols

RyicL1s-- -5 RujcL,y, andR, cs should be nonnegative at positions¢—1)n+1 to ¢n, the modified inner encoder
and sum toR, Bgl, but otherwise can be chosen arbiencodes thé-th fed codeword symbol into thesymbols

trary depending on the parameters of the setting. (Thépositions,n+/¢,...,(n—1)n+¢,forl € {1,...,n}.
subscript ICL stands for “interleaved Cover-Leung” and Notice that the chosen interleaving of the modified
the subscript ICS stands for “interleaved concatenat@ther encoders preserves the causality of the feedback.
scheme”.) Moreover, it implies that in the interleaved sequence the

Similar to the previous extension and similar t$YMPOIS in Subblock, forb e {(b—1)n+1,...,0n},
Carleial's scheme, the transmitters decode part of tR8!y depend on feedback outputs of previous subblocks
other transmitter's messages based on their feedbdek: -+ —1 @nd not on feedback outputs of the current

outputs. Specifically in this scheme, after each subblogtPPlockd. This is the“ reason ”vvhy the modified inner
b e {1,...,Bn}, Trasmitter 1 and Transmitter 2 de_encoder can use the “cleaned” feedback instead of the

code the other transmitter's submessayeg ., ; and original feedback.

i i i T transmi The receiver first decodes Messagell,  : }77
M oL ;- Following this decoding step, the transmitters 1IcL, b p—1
compute “cleaned” feedback outputs, i.e., they mitiga@nd {MQJCL,B}gfl and only thereafter decodes
the influence of the Cover-Leung messag¥s - ;, Messages {Ml_,|cs,b}5:1 and {MQJCSJ,}{?:l. More
My o5 My L j—y> @AM,y ¢ 5, transmitted in this specifically, the receiver first decodes Messages
block on the observed feedback outputs. Transmltter{lML.CL_,(b,l)nﬂ,M2_,|CL_,(b,1)n+1)}f:1, followed by
computes its “clean_ed” feedback output more speciﬂMessage_s{(M17|C,_,(b_1),7+2,M27|C,_,(b_1),7+2)}f:1, etc.
cally as follows. It first reconstructs the sequence thahe receiver then reconstructs the sequences produced
was produced by Transmitter 2 in this subblocko to encode these messages (pretending its guesses are
encode message¥, o ;. M o 5_,» and M, 5, correct) and subtracts them from the received signal.
(pretending that its guesses 8f, ., ; and M, ., ; , Based on the resulting difference, which we call the
are correct). It then subtracts this reconstructed segueticleaned” output signal, the receiver decodes Messages
and the sequence it produced itself in this subbl_ock I{WLmS,b}f:l and {MQJCSJ,}{?:T To this end, it first
encodeM, ¢ 5, M, ¢ 5, @Nd M, ;_, from its reverses the interleaving and then applies the inner and
observed feedback outputs. Similarly for Transmitter 2uter decoders of our concatenated scheme.

The encoding is performed as follows. To encode Notice Et}hat in the pregented scheme, Messages
Messages{M,j,.ch}Zfl, Transmitterv, for v € {1,2}, M1‘2|C37b}b:1" and {M27_|C5,b}b:1 are decoded based on
uses an interleaved version of Carleial’s Cover-Leur\tﬁe “cleaned _output signal and“they are“encoded using
scheme, and to encode Messagés,, s} 2, it uses the “cleaned” feedbacks. The “cleaned” output signal

an interleaved version of our concatenated scheme. Wad the “cleaned” feedbacks correspond to the output
describe these encodings in more detail. In a fixedgnals and the feedbacks in a situation where only the
block b € {1,...,B}, Transmitterv sends the sum interleaved concatenated scheme is employed but not the

of two nn-length sequences. The first sequence is B‘fterleaved .version of Carleial's Coye_r—Leung scheme.
power P!, for some0 < P, < P,, and consists of Therefore, in t_he _presented rate—sphttln_g scheme there

(s no degradation in performance of the interleaved con-
¢ € {1,...,n}, Transmitter chooses the-length code- catenated scheme due to the rate-splitting with Carleial’s

words for Messages\,, icL,(b—1)n+¢: Mi,icL, (b—2)n-+¢: Cover-Leung scheme. _
codebooks and takes a linear combination of thefae sum of the two sequences produced to encode

chosen codewords. We notice that here each pair Y£ssages\i cs, and Ms ics; is of different power in
messages M, c j» My i)s for b € {1,...,Bn}, each of the) subblocks. Thus, these sequences introduce

is encoded into Subblocks and b + 7, and not—as different noise levels on the receiver’s dnecodlng of
Messages{ (M, icL,(b—1)n+e> MaicL,(b—1)n+¢) }¢—1» @nd

in Carleial’s original scheme—into SubblocKs and consequently the rat i and (R v
b + 1. The second sequence is of powe?; — P} et icL e}y 2,ICL, LS p=1
- a PO ) should be chosen depending 6n

and produced as follows: Transmitterfirst applies its
outer encoder to encode Messadg, cs,, and then
feeds the outcome to a modified version of its inneé Proofs

encoder. The inner encoder is modified as described

by the following two items. 1.) Instead of the original 1) Proof of Proposition IV.5:We first prove Part 1).
feedback the modified inner encoder uses the “cleanettj this end, we show that for every fixegd € N and
feedback mentioned above, where the influence of tfiged n-dimensional vectora;, as, n x n-dimensional
interleaved Cover-Leung type scheme is mitigated. 2natricesBy, B>, and 2 x n-dimensional matrixC, the
Unlike the original inner encoder where theth fed following two statements hold:

n subblocks. Thel-th subblock of the sequence, fo
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i) For all positive semidefinite matrice$y,w, and Based on these properties and the definihgn® a;aj

K, w, - the following sequence of implications can be proved:
(KW1W2 = Ké’V] Wz) = (KW1W2 = KQ/V1W2)
(R (N, Kw,w,;n,a1, a2, B1, B, C) - ((KW1W2 ® 1) = (Kw,w, ® |n)) (58)
C R (N, Ky, w,i s a1,a2,B1, By, C) ) - ((Bf (Kwyws @ 1y) BY) = (Br (Kiw,w, @ 1) BI))
. . (59)
ii) If the choice of parameters), a;,as, By, Bs, C ;
satisfies the power constraints (19) for a covariance ~ ( (N1 + Br(Kwawe, @ 1)By)
matrix Ky, w,, then it also satisfies these power « (NI / T )
. X . +B ®1,)B 60
constraints for all covariance matrict$; ., for = (N o+ Br(Kowyw, ©10)87) (60)
which Kiw,w, = Kiy, i, - — (1, + Bi(Kwyw, 2 1)B)C)

By Definition 1V.2, Statements i) and ii) imply that
Y ) and 1) imply = (C(Nly + Be(Kiy,w, @ 1,)BNCT) ) (61)

/
(Ko = K ) = — ((C(N1, + Bi(Kw,w, @ 1,)B)CT)
/

(R (P o, N, Kuawa) € R (Pr, o, N Ko, ) )’ = (C(N1y + Br(Kyy, w, @ 'n)BDCT)il) (62)
and thus conclude the proof of Part 1). =

We start by proving Statement i). Fix a tuple( (ly + CA;C" (C(NI,; + B/(Kw,w, ® In)BI)CT)fl)
(n,a1,az,B1, B, C). We only prove Statement i) for the ]
case wher€C" is nonsingular. For the case whei€' is = ('2 + CALC" (C(N, + Be(Kiyw, @ 19)B1)CT) ) )
singular butC # 0 the proof is analogous and therefore (63)
omitted; for C = 0 the proof is trivial. To establish
Statement i) whenCC™ is nonsingular, it suffices to where (58) follows by the linearity of the Kronecker
show that all three RHSs of (18) are monotonicallproduct®@ and because for every positive semidefinite
decreasing irKyy, w, with respect to the Loewner order.matrix K also the Kronecker produét © I, is positive
We only prove the monotonicity of the RHS of (18a)semidefinitd% where (58) follows by (52); where (60)
the monotonicities of the RHSs of (18b) and (18c) caf®llows by (53) and becausé&Vl, = 0; where (61)
be shown analogously. Thus, in the following we fix twdollows by (52); where (62) follows by (55); where (63)
positive semidefinite x 2 matricesKw, w, andKj,. ,, ~ follows by (54) and (55) and because > 0, and thus,

satisfying K, w;, = Kiy, 1y, and we show that: by (52), alsoCA,C" = 0.
Inequality (51) follows then from (63), from (56),
1 o ([C(aiag + Ny + Br(Kwyw, @ 1)B7)CT| from the monotonicity of théog-function, and from the
2n |C(N1, + Br(Kw,w, ® 1,)BI)CT| fact that for every2 x 2 positive semidefinite matrik,
i T : )
N 1 og \C(ala] + Ny + Be(Kiy, 1y, ® wBDCT‘ for A; as defined above, and whéI€" is nonsingular:
ez [C(N1, + Be(Kiy, w, @ 1,)B)CT] 1. <|<:<a1a; + NIy +B(K® 'u)BI)CT|>
(51) 27 |C(N1, +Bi(K® 1,))B})CT|
1
Before proving (51) we recall the following well- — 2—7710g (}|2+CA1CT
known properties of positive semidefinite matrices. For , oy —1
all positive semidefinite. x n matricesK, Ky, Ky satisfy- ’ (C(M" + Br(Kw,w, ®17)Br)C ) D

ing K; = Ky and for allm x n matricesM the following

ies hold which holds because for all nonsingular square matrices
properties hold:

M; and My of the same dimensioﬁ\%} = [MM .
(52) This concludes the proof of Statement i).

MKiMT™ = MKyM™ . :
We next prove Statement ii). It suffices to show that

)

K+ Kz K+ Ky, 53) for fixed parameters), a;, as, B, Bo, C, the left-hand
KKy = KKa, (54) sides of the power constraints (19) are monotonically
Kt < K1, (55) increasing inKyy, v, with respect to the Loewner order.
and 10ThatK = 0 implies (K®1) = 0 can be seen as follows. For every
2n-dimensional vectorx £ (z1,...,22,)T, where we definex; £
|K1| > |K2|, (56) (z2i—1,x2;)  fori € {1,...,n}, and every2x 2 positive semidefinite

matrix K the termx" (K ® I,;) x can be written asy_! | xTKx;,
tr (Ky) > tr (Ka). (57) which is nonnegative sinck is positive semidefinite.
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Similarly to the proof of Statement i), this can be shownf the power constraints (19) and using the fact that
by a sequence of implications based on (52), on (53)e parameterg’, a, a}, B}, B,, C' satisfy these power
on (57), on the fact thaKy,w, = Kiy y, implies constraints for powers” and P,. Statement ii) fol-
(Kwawe, @ 1y) = (Kiy,w, @1y), and on the fact that lows because for given parametersB;, B2, and C
the trace of a sum equals the sum of the traces. Ttiee RHSs of Constraints (18)—which define the region
details are omitted. R (P1, P2, N,Kw,w,;) whenC # 0—are continuous in
We prove Part 2). The inclusion of the LHS in thehe entries oh; andas, and because(d) tends to 1 as
RHS is trivial, because for every positiveall choices ¢ | 0.
of parametersy, a;, as, By, By, C satisfying the power We finally prove Part 3), i.e., Equality (20). The
constraints (19) for powers’; —¢) and (P, —¢) satisfy inclusion of the LHS in the RHS is trivial, because
the power constraints also for powefs and P;. replacing the intersection on the LHS by the specific
The inclusion of the RHS in the LHS is proved aghoiceK = 0 can only increase the region, and because
follows. We fix a rate pair( RS, RS) in the interior of the regionR (P, P, N,0) is closed. The interesting

R (P, P2, N, Ky, w,), i.€., inclusion is that the LHS contains the RHS. To prove
o 1o o this inclusion, we first notice that
( 11R2)€R(P11P27N7KW1W2)1 (64)
and show that for all sufficiently smadl > 0 the rate U m R (P1, Py, N,K)
pair can also be achieved with powdts—d and P, — ¢,

. 02>0 K0:tr(K)<o?
l.e.,
(RS,RS) € R(Py — 0, Py — 6, N,Ki,w,).  (65) 2| U (1 R(PLP,Ntr(K)ly)

. 2>0 K-0:tr(K)<o?2
We first choose parameterg,a),a), B}, B}, C' so 7 =0:(K)<o

that the power constraints (19) are satisfied for powers _ ol < U R (Pl,Pg,N, 02|2)> 7

P, and P, and so that 20

(R}, R3) € R(N,Kw,w,i7',a}, a5, B],B5,C'). (66) where the inclusion and the equality both follow by the

By (64), such a choice always exists. Moreover, fgnonotonicity proved in Part 1). Thus, it remains to show

such a choice the matri<’ differs from the all-zero &t

matrix and both vectorm) and a), differ from the )

all-zero vector. This can be argued as follows. It i€ U R (P1, P2, N,o’lz) | 2 R (Py, P2, N, 0) .(68)
easily shown that ifC’ = 0, aj = 0, ora, = 0 7*>0

then the regionR (N, Ky, w,;n’,a},a,, B,B,, C') is To prove (68), we fix a rate paifR{,R3) in the
degenerate, i.e., eithé@; = 0 for all points in the region interior of R (P, P>, N,0), and show that for all suf-
or R, = 0 for all points in the region. Consequentlyficiently smallo? > 0 there exists a set of parameters
the regionR (N, Ky, w,;n’,a},as, B}, By, C') cannot 7,ai1,az,B1, By, C satisfying the following two state-
contain any interior points ofR (P1, P>, N,Kw,w,), ments.

thus contradicting (66). i) The parametersn,a;,az,B1,By,C satisfy the
We next define for each > 0 the quantities<;(J) power constraints (19) for feedback-noise covari-
and k2(6) as in (67) on top of the next page, and we ance matrixKy,w, = o%ly and powersP; and
define Ps.
k(0) = min{k1(9), k2(0)}. i) The rate pair (Ry,R3) lies in the region

2.
Sincea/, anda), both differ from0, the denominators in R (N,0%l3;7, 21, 82, B4, B2, C).

(67a) and (67b) are non-zero and the quantitie§), We first notice th_at by Part_2), _for aII_suff_icientIy
ro(d), andx(d) are well defined. Moreover(§) tends small § > 0 the pair (R, I25) lies in the interior of
to 1 asd | 0. R (P —94,P,—6,N,0), ie.,

The desired inclusion (65) is then established by show- (RS, RS) € R (P, —6,P,—6,N,0).
ing that for all sufficiently smald > 0 the following two

statements hold. This implies that for all sufficiently small

. 0 > 0 there exists a set of parameters
i) The parameters’, x(d)a], x(d)as, B}, B), C’ sat-

isfy the power constraints (19) for powe(B; — &) (n(9),21(3), 22(9), B1(9), B,Q((S)’ C(9)) so that -,

and (P, — ). o the power .constralr_lts (29) are satisfied for
i) The rate pair (RS, R3) lies in the region feedback-noise covariance mat#y, 1, = 0 and

RN, Ky 11 s 1(0)al, k(8)al, BY, BY, C') . powers(P; — ¢) and (P, — ¢); and

1,22 N ° ° _
Statement i) is easily verified by substituting the pa- ° the rate pair( iy, 1t3) satisfies

rametersy’, k(d)a}, k(d)a), B}, B, C' into the LHSs (R7, R3)
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a1 tr ((l,, 0) (I — Bb)fszg (g — Bp) ™" ('g)) e
A 5
e 1o [0 e ZdA& oo () (67b)

o

€ R(N,0;n(5),a1(d),a2(d),B1(d), B2(d),C(4)). and where- is the unique solution ifD, 1] to (185), i.e.,

(69) to
The proof is then established by fixing a suffi- r2P Py = p*(Py, Ps, N).
cienty small § > 0, and showing that for all (rPr + N)(rP; + N)

sufficiently small 02 > 0 the choice of parame-
ters (n(d),a;1(0),az2(0),B1(4),B2(d), C(d)) satisfies the
above Statements i) and ii).

Statement i) holds because fdtw,w, = o’ pe = (=1)'p*(Py, Ps,N), £€N. (74)
the LHSs of the power constraints (19) are con-
tinuous in 2 > 0, and because the parameThis implies that for al € N larger than 1:
ters (n(d),a;1(d),a2(d),B1(0),B2(48),C(5)) satisfy the ) v
power constraints for feedback-noise covariance matrix Pi-1=P
Kw,w, = 0 and powers(P, — §) and (P, — §). (=) ppy = p*,
Statement ii) holds because sy, w, = ol> the RHSs i s
of Constraints (18)—which define the region regio@nd hence for fixed) € N the regionR, (P, P2, N, 0)
R (N, Ky, w,:7, a1, a2, By, B2, C) when C # 0—are contains all rate pairsR;, R») satisfying:
continuous ina2, and because of Inclusion (69).

We shall shortly prove that the solution to the recur-
sion (73) is

1 TPl
2) Proof of Remark IV.8:Fix P;,P,, N > 0. Spe- Ry < EIOg (1 + W)
cializing our concatenated scheme to the specific choice 1 Pl — p*2)
of parameters in Remark F.3 in Appendix F obviously +77 log (1 + i) , (75a)
cannot outperform our concatenated scheme for general . 21 P N
parameters. Thus, Ry < —log (1 + T_2>
2n N
. -1 Py(1 — p*2
cl (U R, (P1, Py, N, 0)) C R (P, P, N,0). (70) +77277 log (1 n %) . (75b)
neN
1 TPl + TPQ
We shall show in the following that Rt Rz < 21 log (1 TN >
77—1 ( P1—|—P2—|—2\/P1P2p*)
. . + log [ 1+ )
RE,(P1, Py, N) Ccl | | Ry (P, Py, N,0) |, (71) 2n N
neN (75C)

which combined with (70) establishes the remark. ~ Notice that whem tends to infinity, the RHSs of (75a)-
Recall that for fixed n € N the region (75c¢) tend to the RHSs of the three Constraints (7a)—(7c)

R, (Pi,P»,N,0) is defined as the set of all rateévaluated forp = p*. Since Constraints (7a)—(7c) eval-

pairs (Ry, R,) satisfying Constraints (72) on top of theuated forp = p* determine the regioRg,(Pr, P2, N),

next page where Inclusion (71) follows immediately by (75) and by letting
n tend to infinity.
p1=—p"(P1, P2, N) (73a) In the remaining, we prove (74) in two steps. In the

first step we show thap*(P;, Py, N) is a fix point of

and forf € {2,...,n—1}: the functionh(-) defined as

_ N (D)TWVRR( - pf ) he [0, R
pPe = s ) ) ,
VP =P ) + N\ [Pl = pf_ )+ N h) VPP (1= ) = pN

(73b) VRO NVBI-P) TN
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1 rPy 1 Pi(1—p?,)
R < —log(1+—= —log (1 72a
! _%f%(+N>+%¥n%<+ ~ (72a)
1 TP 1 Py(1—pf_y)

R < —log(1+—2 —log (1 72b
) —2n°g<+N>+§2n°g<+ ~ (72b)
1 P, +rP, 1 P+ Py + 2P P (—1)tp,
}ﬁ+R2<—40(1+T1+T2 +§:—4%<1+ 1+ Pt VR R (ED) Ml) (72¢)

n N = 2n N

Notice thath(-) has at least one fix point {0, 1] because
h(0) > 0 whereash(l) < 0, and becauséi(-) is
continuous. Further notice that every fix point if-)
must also be a solution to

1- h(p)2 =1- p27
i.e., a solution to

N(N+P1+P2+2\/P1P2p) (1—p2) _ (1—p2)
(N +Pi(1=p?)(N + P2(1-p?)) (76')
The solutions in[0, 1] to (76) are given by = 1 and
by the solutions to

N(N + Py + Py + 2/ P Pap)
= (N+ Pi(1=p*))(N + P(1 = p?)). (77)

Since p = 1 is not a fix point of h(-) and since
p*(P1, Py, N) is the unique solution if0, 1] to (77) (see
Definition III.1), p*(Py, P>, N) must be a fix point of
h(-). This concludes the first step.

In the second step we use the derived fix-point pro

3) Proof of Remark V.15 :We only prove Inclu-
sion (26a); Inclusion (26b) can be proved analogously.
Fix p € [0, p*], and definex(p) as the unique solution

in [0,1] to

2
P1+P2+2\/P1PQP+N_ PQ(l_lfia) (82)
Pi(1—-p2)+N B aPL+N

That (82) has exactly one solution ijo,1) follows
by the Intermediate Value Theorem and the following
observations: The RHS of (82) is continuous and strictly
decreasing iny; for « = 0 the RHS of (82) is larger
or equal to the LHS because < p < p* and by
Remark 111.3; and fora tending to1 the RHS tends
to —oo and thus is smaller than the LHS.

Further, define

P{ £ a(p) Py,
P £ (1—ap)h,
N'£ P/ + N,
_r

1 —a(p)
Rmd notice that by these definitions:

ra

p

erty of h(-) to prove (74). The proof is lead by induction.

For ¢ =1 Condition (74) holds by definition. Assuming
that (74) holds for some fixedl > 1, we have

Pe+1

_ —(=D)"VPiP(1 = |pe*) + peN

VP pP) NPl o) + N
VPLP(1 = |pel?) = |pe|l N

VP = [pe?) + Ny/Po(1 = [pe?) + N

(78)

_ (_1)€+1

(79)
= (=1 h(|pe)) (80)
= (—1)é+1p*(P1,P2,N), (81)

where (78) follows by the definition of the sequence

{p¢} for £ > 1; (79) follows because by the induction
assumption sigip,) = (—1)% (80) follows by the
definition of the functioni(-); and finally (81) follows
because by the induction assumptign| = p* and

because*, as shown in the first step, is a fix point of

h(-). Thus, (74) holds also fo{¢ + 1), which concludes
the induction step and the proof of the remark.

N'(N'+ P+ P, + 2\/P]'P2yp’)
= (N'+ P/'(1—p*)(N' + P,(1—p"?), (83)
and hence
pl = p*(Pll/v Py, N/)'

Also, define (R o,, RS o,) as the dominant corner
point of the rectangl&Ry ,(P1, P, N). The following
two remarks on(RY o,, RS o,) are from [13], and based
on (83). 7 '

Remark 1V.18. The rate point(RY o,, RS ,) can be
expressed as

P _ pP 14
Rl,Oz - Rl,l,Oz + R1,2,Oz’

1 Pg(l - pl2)
RQ,OZ = 5 lOg (1 + T ;
where
1 P
51,02 £ 3 log (1 + ﬁ) ,
1 Pl(1 - p?)
52’02 £ 5 lOg (1 + T .
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Remark IV.19. The rate point(RY, o,, 5 o,) corre-  The D-direction, i.e.,
spgnds to the dominant corner point of the rectangle
RE,(P{', P, N'), wherep' = p*(P}', Py, N').

cl Choisyrs (P1, Po, N, K
We are now ready to prove Inclusion (26a). For O_go KOO; NoisyFa (F1, P )

Kw,w, = 0 the RHS of (24) equalg log (1 n %) r(K) <o
irrespective of the parametess, ay, B;, By, C. There- 2 Cpertectrd P1, P2, N),
fore, the regiorRgs1 (P;, P{’, P2, N, 0) is given by the
set of all rate pair$ R, R2) which for some nonnegative
R cs, R1 ne SUMMING toR; satisfy

follows from the sequence of inclusions (87)—(90) on
top of the next page. Inclusion (87) follows from Propo-
sition 1V.13; (88) follows by basic rules on sets; (89)

(Rics, R2) € R(P/,Ps,N',0), (84a) follows from Proposition IV.16; and (90) follows by
’ 1 p! Remark 111.7.
Rine < log (1 + Wl) . (84b)
_ V. PARTIAL FEEDBACK
Since by Remark IV.19 and Remark IV.8: We now focus on the setup with noisy or perfect
RC. . RP ) e R (P’ Py, N0 part.ial feedbagk. For this setup we again presept new
( 1,2,022772,02 (P, Py ) achievable regions, and based on these new regions we
and by Remark IV.18: derive new qualitative properties of the capacity region
(Section V-A). We also present the coding schemes
1 Py corresponding to these new achievable regions (Sec-
R o, < =log (14 L), P 9 g
” 2 N tions V-B-V-D). They are obtained from the noisy-

. ) , ) o feedback schemes in Sections IV-B—IV-D by restricting
the triple (Rm,ma RY 500 Rz,OZ) satisfies (84), and the set of parameters and in the case of the extended
hence schemes by additionally specializing Carleial’s scheme

to noisy partial feedback.
(RIIJ,OZ’ RS,OZ) € Rrsi1 (P1/7 Plllv Py, N, O) : (85)

Inclusion (26a) finally follows becausgR! o,, RS o, A. Results
is the dominant corner point of the rebtangle We first present results for noisy partial feedback
R} os(P1, P2, N), and therefore (85) implies that (Section V-A1) and then results that hold only for perfect

the entire regionR? o (Py, Py, N) is contained in Partial feedback (Section V-A2). _
Rrs1 (P, P!', Py, N,0). 1) Results for Noisy Partial FeedbackEvaluating

4) Proof of Proposition IV.16 We only prove Inclu- the rates achieved by our concatenated scheme with

sion (27a); Inclusion (27b) can be proved analogoushdeneral parameters in Section V-C1 ahead leads to the
To this end, fix g € [0, p*(P1, P>, N)] and choose a achievability result in Theorem V.3. Before stating the

power P| € [0, P;] such that result we define:
Definition V.1. Let n be a positive integer, leh;, a,
be n-dimensional vectors, leB, be a strictly lower-

Notice that by Remark IV.15 such a pow#f always triangular 7 x 1, matrix, and letCp be a2 x 1 ma-
exists. Inclusion (27a) follows then because by Propod[iX- Then, depending on the matrl the rate region
tion 1V,14, Part 2.: Rp (N,03;n,a1,a2,Bs,Cp) is defined as follows:
o If the product CpCh is nonsingulat! then
Rp (N, 03;m,a1,a2,B2,Cp) is defined as the set

Rrs1 (P/, (Pr — P{), P, N,0) 2 Rf o,(P1, P2, N).(86)

cl U ﬂ Rrsi1 (P, (P — P}), P2, N,K) of all rate pairs (R;, Ro) satisfying
o0 K 1 |Cp (asa] + N1, + 03B2B}) Cf|
r(K)<e R < —log 3 — )
= Res1 (P, (P1 — P{), P2, N,0). 2n |Cp (N1 +03B2B3) i o1a)
a
5) Proof of Theorem IV.17:Fix P;,P,,N > 0. 1 |Cp (azal + N1, + 03B2BY) C|
The proof of theC-direction follows trivially because Ry < o-log 2R RT) (T g
. . : - 2n |Cp (N1, + 05B2B}) Cf|
replacing the intersection on the LHS by the specific (91b)
choice K = 0 can only increase the region, because Ri4R
CNoisyFB(Pla P21 Na 0) = CPerfecthPI 5 P27 N), and be- . 2

cause by definition the regio@perfectre P1, 2, V) IS 1\Whenever, € N is larger than 1, there is no loss in optimality in
closed. restricting attention to matriceGp so thathCL is nonsingular.
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cl U ﬂ Chnoisyr (P1, P2, N, K)

02>0 Kx0:tr(K)<o?

QCI U ﬂ U RRS,I(Plla(Pl_Pll)aPQaNaK)
02>0 K>0:tr(K)<o? P/€[0,P]
U U RRS,Q(PLPQ/a(PQ_PQI)aNaK) (87)
PLE[0,Ps]

oo U ol U (1 Resi(P{,(Pr—P)), Py, N,K)

P{€[0,P1] 02>0 K=0:tr(K)<o?
vel| U o U (1 Rrs2 (PP}, (P,— P}),N,K) (88)
P}e0,Ps] 02>0 K=0:tr(K)<o?
Dl U RY (P, P2, N) | U el U RS o(P1, P2, N) (89)
pE[O,p*(Pl,Pz,N)] pE[O,p*(Pl,Pz,N)]
= CPerfectFE(Pla P27 N)a (90)

< ilog |Cp (AAT + N1, + 03B2B}) Cp| Theorem V.3 (Noisy Partial Feedback)The capac-

~ 27 |Cp (N1, +035B2By) Cpl 7 ity region Choisypartiaire P1, P2, N, 03) of the two-user

(91c) AWGN MAC with noisy partial feedback to Transmitter 2
contains the rate regioRp (P, P2, N,03), i.e.,

whereA; is defined in(11).
« If the productCpCy, is singular butCp # 0, then Cnoisypartialrd P1, P2, N,03) 2 Rp (P1, P2, N, 03) .
Rp (N,03;n,a1,2a2,B,,Cp) is defined as the set
of all rate pairs (R;, R2) satisfying(91) when the
2 x i matrix Cp is replaced by the)-dimensional
row-vector obtained by choosing one of its non-zerBemark V.4. Evaluating the achievable region

Proof: Follows from Theorem V.3 by choosing,
as the all-zero matrix. ]

rOws. Rp (P, P2,N,03) seems to be difficult even
e If Cp = 0, then Rp (N,O'%;n,al,aQ,BQ,Cp) is  numerically. More easily computable (but possibly
defined as the set containing only the origin. smaller) achievable regions are obtained by taking

the union on the RHS 0f92) only over a subset
of the parametersy, a;,as, By, Cp satisfying (93).
In Remark E.1 in Appendix E we present such a

An alternative formulation of the region
Rp (N, 03;n,a1,a2, B, Cp) is presented in Section D-B

in Appendix D. subset of parameters. In Section V-C2 we present
Definition V.2. Define general guidelines on how to choose the parameters
Re (P, P, N, 03) m,a1,32, By, C.
Specializing Theorem V.3 to equal powers channels,
2 ¢ U Re (N, 0%;m,a1,22,B2,Cp) | , (92) ie, P, = P, = P, and ton = 2 and the choice of
.a1.a3.Bs,Co the parameters presented in Section E-A (Appendix E)

L ields the following Corollary V.5.
where the union is over all tuple§, a;,as, B2, Cp) y 9 y

satisfying the trace constraints Corollary V.5 (Equal Powers and Noisy Partial Feed-
back) The capacity regiofCnoisypartiaire P, P, N, 05) of

aja; < nP (932)  the two-user ANGN MAC with noisy partial feedback to
and Transmitter 2 and equal powe®, = P, = P contains
all rate pairs (R, R2) satisfying Constraint§94) on top
tf(('n —By)™! (3235 + BoajajBj of the next page.

From Corollary V.5 it follows immediately that for

2 T —T
HN+ 02)8282) (ly = B2) ) < nP,. (93b) equal-powers channels noisy partial feedback increases
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1 2P\ 1 Pyoa3
Ry < -1 1+— +-log[1- 94a
1—4°g< N 4°g< 2P+N 2P+ N + 02 + Lo2) (P+ N + 02 + Lo2) (94a)
1 2P 1 P
Ry<-log(1+2)+>log|1 94b
2—4°g< +N 4°g< +2P+N PYN+ol+ %U%) (94b)
Ri+Ro < Slog (1422
1= g8 N
1 P(P+N
+-log [ 1+ N+ o) S -1
4 2P+N P+N+02 Lo2)
(P+N)2P+ N
+( ) FNEPEN oy (94c)
2P+N) 2P+ N +02+Lo2)(P+ N +03 + Lo3)

the capacity, no matter how large the noise variarce
0 is. The following stronger result holds:

With this Corollary V.8 at hand we can answer the

Theorem V.6 (Noisy Partial Feedback is Always Beneyestion by van der Meulen in [18] whether the Cover-

ficial). For all N, P;, P, >0 ando3 > 0
CNOFB(PlaPQa ) C CNoisyPartiaIFE(Pla P21 Na U%)a
where the inclusion is strict.

Proof: See Section V-E1. [ |

2) Results for Perfect Partial Feedbackpecializing

Theorem V.3 to perfect partial feedback, i.e.,op= 0
yields:

(95)

Corollary V.7 (Perfect Partial FeedbackThe capacity
N) of the two-user AWGN

region CPerfectPartlaIFépla Py,

Leung region equals the capacity region of the MAC
with perfect partial feedback.

Theorem V.9. Consider a two-user AWGN MAC with
perfect partial feedback. For some powels, P, and
noise varianceN the inclusion

ReL(Pr, P2, N) C Crerfectrartiairg P1, P2, N)

is strict.

Proof: The inclusion is proved in Section V-E2 by

MAC with perfect partial feedback to Transmltter showing that for powers”, = 1,P, = 5 and noise

contains the rate regiofRp (P1, P2, N,0), i
CPeﬁectPartiaIFlﬁpla P27 N) ) RP (P11P27 N7 0) .

Specializing Corollary V.7 te) = 2 and the choice of

parameters in Section E-A in Appendix E, yields:

Corollary V.8. The
CPerfectPartiaIFépla P27 N) of

capacity
the two-user

contains all rate pairs(R;, R2) satisfying

1 2P,
< -1 14+ ==
R1_4og( + N)

Py (2+ 5ty
N )

1
Rggzlog 1+

R+ Ro
1 P+ P
< -1 1
<3 og( T s )

P
_;’_llog(l_’_PlPJfPﬁ_FPQ
4

N

Y - N
2\/P1P2 P1+N P +P+N

N

+

varianceN = 5 the region in Corollary V.8 contains rate
points that lie strictly outside the Cover-Leung region.
|
The last two results are achieved by modifying
the rate-splitting schemes for noisy feedback in Sec-
tions IV-D2 and IV-D3 so as to apply also for perfect

region hartial feedback. For details see Section V-D.
AWGN

MAC with perfect partial feedback to Transmitter 2Proposition

V.10 (Rate-Splitting for Perfect
Partial Feedback 1) The capacity region
CPerfectPart|a|FéP1 5 P2, N) Of the two-user AWGN

MAC with perfect partial feedback to Transmitter 2
contains all rate pairs (Ry, R2) which for some
nonnegative Ry ¢, Ri1.cs summing toR;, for some
nonnegativeR; ci, R cs summing toRz, and for some

choice ofpy, p2 € [0,1] and P| € [0, PA], P} € [0, P]
satisfy

(RicL, RocL) € R(m #2)(P{, P3, N),

(Rics, Racs) € Re((Pr—P,), (P, — P;), Ncs),

where Ncs 2 (N + P| + Py +2\/PP}p1p2).

Proof: The rate region is achieved by modifying
the rate-splitting scheme for noisy feedback in Section
IV-D2 as described in Section V-D. Here, the version of
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the scheme in Section IV-D2 is chosen where Transmit- llog (1 n @ n a3 5 )
ter 2 decodes the submessages encoded with the concate- N = b33+ N

nated scheme before decoding the submessages encoded 5 5 9 9
with Carleial's Cover-Leung scheme. The analysis of thez, + p, llog 1+ @ig F a1 0121022
rate-splitting scheme is based on a genie-aided argument 4 N b305 + N

as in [14] and [24]. The details are omitted. [ ] (a1102.2 — @z 1a1.2)?
TTTNWI T V) )

IN

Proposition V.11  (Rate-Splitting for Perfect
Partial Feedback II) The capacity region ,
Crerectparialcé P, P2, N)  Of the two-user AWGN for.sorne choice of parametets 1,a12, 021,022, b2
MAC with perfect partial feedback to Transmitter atsfying

contains all rate pairs(R;, R2) which for nonnegative a?, +a?, <2P,
(R1,icL1, R icL,2, R1,1cs) summing toR;; nonnegative ’ ’

(Ra.cL.1, Ra.cL 2, Ra.ics) summing taR,; and for some and

choice ofpy, p2 € [0,1] and P} € [0, P1], Py € [0, P,] 02, + (ans — baan1)? + b2(a2, + N + o) < 2P,

satisfy all the 11 constraint$96) on top of the next !
page, where The simple scheme for noisy partial feedback is in-

N , , cluded as a special case in the concatenated scheme for
N1 =P - P +P— P, noisy partial feedback described in the next-following

a (P-P)(—-P)+N o section. However, the simple scheme suffices to prove
Ng = + (PZ P2)

(Ph—P{+P,—Py+N)
. \/ (P~ P))? (P, — Fy)?
(

Corollaries V.5 and V.8 and Theorem V.9.

P,—P +N)(P,— P +P,—P,+N) C. Concatenated Scheme

1) Scheme:lf in the concatenated scheme for noisy
edback in Section IV-C1 the paramekyr is restricted

0 be the all-zero matrix, then this scheme applies also
noisy partial feedback. In this case, applying the inner
coders with parametersa;,as,B; = 0,B,, andD
induces a “new” MACty, & — (21, Zs) of channel law

Proof: The rate region is achieved by modifyingfe
the rate-splitting scheme for noisy feedback in Se
tion 1V-D3 so as to apply also for perfect partial feedbac,
(see Section V-D), and by choosing the parameters &I]
the concatenated scheme as= 2 and as described
in Remark E.1 in Appendix E. The proof follows by
accordingly combining Corollary V.8 and the rate con- =h _A & LT
straints which arise from the decodings in Carleial’s =)~ P& P
variation of the Cover-Leung scheme. Again, a genie- . L
aided argument is used in the analysis. The details é/}/gere the2 x 2 matrix A is given by

omitted. | Ap=D(l, —B2) " Ay (98)

Remark V.12. In the case of perfect partial feedbackwhereA, is defined as in (11); and where the noise vector
for all channel parameters’;, P, N > 0, the achiev- Ty is a zero-mean bivariate Gaussian

able regions by Carleial [2] and Willems et al. [23] 1
(Appendices A and B) correspond to the Cover-Leung Tp=D(l, —B2)  (B2W2+17Z). (99)
region Re(Py, P2, N) (see, e.g., the explanation in [Z*Defining the2 x 7 matrix

Section II-C]). Since irrespective d?;, P,, N > 0, the

Cover-Leung region is contained in the two achievable Cp2D(l,—By) ", (100)
regions in Propositions V.10 and V.11, we conclude th

Propositions V.10 and V.11 include also Carleial's an@s
Willems et al’s regions for perfect partial feedback.

(97)

=2

e channel matrix in (98) and the noise vector in (99)
an be expressed as

Ap = CpA, (101)

B. Simple Scheme Tp=Cp(B2W2 +Z). (102)

If in the simple scheme for noisy feedback in Sed~or fixed  and B, the mapping (100) fromD to
tion IV-B the parameteb; is restricted to be 0, then Cp is one-to-one, and thus we can parameterize our
the scheme applies also to noisy partial feedback. toncatenated scheme for noisy partial feedback by the

particular, in this case it achieves all nonnegative rafmrameters), a;, as, Bs, Cp.
pairs (R1, R2) that satisfy Specializing also the power constraints (19) to the

) ) choice B; = 0 and to noisy partial feedback we see
Ry < llog I , “22-,2 that only parameters, a;,as, and B, satisfying (93)
4 N  bio5 +N are allowed.
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1 2(P; — P!
Rics < 1 log (1 + %) (96a)
P,— P}
1 (P —P3)(2+ 77/)
Ry cs < 1 log (1 + (N i bl (96Db)
1 Pi—P+P,—P)\ 1 N
< Z Z )
Rijcs+ Raics < 1 log (1 + N + 1 log | 1+ N (96¢)
1 1—p3P!
RijcLy < 1 log (1 + (P{%) (96d)
2
Rici: < 11 O+“_ﬁwﬁ+11 14 (VAP + ViAF) (96e)
— 10, _— — 10, e
LicL,L = 7708 Ni+ N 1% Ni+ N+ 01— )P +(1—-pd)P,
1 1— p2)P}
RajcLy < 1 log (1 + (M#) (96f)
1 P| + P} +2\/P[ P32 3
RijcLy +Rojce < 1 log (1 + - 2N1 n Nl 2012 (969)
1 (1-p)) P
RijcL2 < —log (1 t+ (96h)
1 Plpfiy + N
2
R <1 O+(L”@H)+11 1+ ( it @g) (96i)
- RS EAul - [
LieL,2 = o8 No+ N 1% No+ N+ (1- )P+ (1 p2) P
1 1— p2)P} .
RojcL2 < 1 log (1 + (]\72%) (96j)
1 P} + P} + 2/ P! P} p? p2
RijcL2+ RogcLz2 < 1 log <1 + - 2N2 i Nl 2P1P% (96Kk)
2) Choice of Parametersin the following we de- Choosing Cp = CpLvmmse IS optimal in

scribe guidelines on how to choose the parameterstbe  sense that the  corresponding region
the concatenated scheme for noisy partial feedbadkp (a%,N;n,al,ag,Bg,Cp,LMMSE) contains all regions
The guidelines parallel the guidelines presented in SeRp (o%,N;al,ag, B, Cp) corresponding to other
tion 1V-C2 for noisy feedback. Similarly, the proofs whychoices of the parameté€ir. ChoosingCp = UCp | mmse
some of these guidelines are optimal parallel those far some non-singular 2-by-2 matrid is also optimal,
Section IV-C2 and are omitted. and forn = 2 choosingCp as any non-singular matrix
Let P;,P,, N > 0, o5 > 0 be given, and for the is optimal.

purpose of description replace the symbglsand & We next consider the choice of the parameters
fed to the inner encoders by the independent standard a,, Bo, and first focus on the special case of perfect

Gaussiang&; and =,. partial feedback. For perfect partial feedback the param-
We start with the matrixCp. Given parameters etersa;, as, Bo should be chosen so that the inputs pro-
n,ar,az, Bo the matrix Cp should be chosen a& = duced by Inner Encoder 2 correspond to scaled versions

CpLmmse, Where of the LMMSE-estimation errors &> when observing

the past feedback outputs. Thus, fof {1,...,n}, they

', (103) should satisfy

Chimmse = A7 (A/AT + N1, + 03B2BY) .

The matrix Cp muse in (103) is called the LMMSE- Xo =m0 (22 —E[E2|Y1,...,Yi1]), (104)
estimation matrix, since by (97), (101), and (102), choos-
ing Cp = Cp, mvise implies: for some real numberssy i, ..., ,. Otherwise there

exists a choice of parameters satisfying (104) that—
with an appropriate choice of the matrix—strictly
improves on the original choice, i.e., corresponds to a

=) -[E)
=2 =2

Yl,...,Yn}
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larger region than the original choice. in Appendix E, by Corollary V.5 (where we replade

A similar choice for noisy partial feedback is notby %) and by the capacity of a AWGN single-user
optimal, and it seems analytically infeasible to determinghannel, the described rate-splitting/time-sharing sehe
the optimal choice of the parametets,as,B1,Bs. achieves the rate paitRy = Ri1 + Ri2, R2) where
However, it is easily seen that for noisy partial feedback; 1, R; 2, and R, are given by Equations (105) on top
the parametera;, as, B, Bo should be chosen so thatof this page. The proof of (95) follows then by noting
both power constraints (93a) and (93b) are satisfied withat for everyP;, P,, N > 0 and everys3 > 0 the rate
equality; otherwise there exists a choice of parameteguair (R;, R2) has a sum-rate which is strictly larger than
satisfying (93a) and (93b) that strictly improves on thé log (1 + £1£22), and therefore lies strictly outside the
original choice. no-feedback capacity regidtinors(P1, P2, N).

In Remark E.1 (Appendix E), we present for every 2) Proof of Theorem V.9:We consider an AWGN
n € N a specific (suboptimal) choice of the parametelAC with powers P, = 1,P, = 5, noise variance
aj, a, By, andCp. For this specific choice, the parametev = 5, and with perfect partial feedback. We prove
Cp is the LMMSE-estimation matrix, the parametersne theorem by showing that for this channel the rate
n,a1,a2,By satisfy the power constraints (93a) angboint (R, R»),
(93b) with equality, and when specialized to perfect

partial feedbaclk; , as, B, satisfy (45b). We present the R (Z)
. . : 1= —1og
corresponding achievable region fgr= 2 and equal 4 5
powers, i.e.,P, = P, = P, in Corollary V.5 and for ] 3 92 /11
n = 2 and perfect partial feedback in Corollary V.8. Ry = 1 log | 3+ = + e )
D. Extensions of Concatenated Scheme —which by Corollary V.8 is achievable—lies outside the

The schemes in Sections IV-D apply also to noisy pafover-Leung regiorRei (P1, P», N). This implies that
tial feedback, if the parametd; is restricted to be the the capacity regiorCperiecipartialré 1, 2, V) is strictly
all-zero matrix, and if Carleial's variation of the Coverdarger than the Cover-Leung regiGcy (P, P», N) for
Leung scheme is specialized to noisy partial feedbacki =1 andP» =N =5 ..

For more details see Section H-A in Appendix H and Before starting with the proof, we have a closer look

Section I-A in Appendix . at the regionRc. (Py, P2, N) and show the following
lemma.
E. Proofs Lemma V.13. For P, P,, N > 0 and for everyp, €

1) Proof of Theorem V.6We distinguish between the [0, 1) which satisfies
case of equal powers and of unequal powers. In the
case of equal powersP’, = P, = P, we consider
the achievable region in Corollary V.5, and notice that,
irrespective of P,N > 0 and 62 > 0, the RHS of . .
the sum-rate constraint (94c) iQS smaller than the sulfié rate PoNt(iy (p1), 2(p1)) given by
of the RHSs of the single-rate constraints (94a) and 1 P, (1 —p2)

(94b). Thus, for equal powers the achievable region in Ri(p1) = 3 log (1 + Tl> ,  (107)

Corollary V.5 is a pentagon (and not a rectangle) and

there exist achievable paiff?;, R2) of sum-rate equal

to the RHS of (94c), which is larger thanlog (1 + 22).

This concludes the proof in the case of equal powers
In the case of unequal powerB; # P,, we use the

2

P1
>
St (106)

o)

2

=1

and by Equation(108) on top of the next page. lies on
the boundary ofRc (P1, P2, N) in the sense that for
everye > 0

following rate-splitting/time-sharing strategy. We asg (Ri(p1), Ra(p1) + €) ¢ Rer(Pr, Pa, N).
P, > P,; the caseP;, < P, can analogously be
treated. Transmitter 1 splits its messayjg into two Proof: As a first step we examine Expression (108)

independent submessages: submességeof rate R11  and characteriz&, (p;) more explicitly. To this end, we
and submessag¥/ » of rate R; ». During a fraction of consider a fixegh; € [0, 1] that satisfies (106). Then, we
time £.—£2 Transmitter 1 sends Messagé, » using an notice that in the minimization in (108) the first term
optimal no-feedback scheme of pow@?, + P») while s strictly decreasing i, € [0, 1] whereas the second
Transmitter 2 is quiet. During the remaining fractionerm is strictly increasing irpy. Also, for p, = 1 the

of time Pffpz Transmitters 1 and 2 use equal powerfirst term in the maximization in (108) is smaller than
% to send messaged; ; and M, with the concate- the second term, whereas by Condition (106)49e= 0
nated scheme in Section IV-C1. Choosing the parameténg second term is smaller. Thus, for fixed € [0, 1]

of the concatenated scheme as proposed in Remark Eatisfying (106) the maximum in (108) is achieved when
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P —P P +P
R171:217210g (1+ s 2), (105a)

(P1+P2) N
P 1+ P2
Ry =Ry = log [ 1+
2= M2 %H+&)g( )
P DitP (Pt Py | 2 lp P2
+———l——mg<y+ 1  (Cy 2+ Nty -1 3P+ Po)
4(Py +P2) (P142rP2 —|—N—|—O’%+ P12JJFVP20'%) (PL+P,+ N)

(Bgfe)” (B4 + N)
(PL+ Py + N)2 (B2 4 N + 03 + Ditl262)
(PL+ P, + N +03)
.(P1+P2+N+U%+%O'§))
(105b)

)1 Py (1-p3)\ 1 P+ P, +2/P1 Pop1p2 + N
Ralp1) = Tlog (14 2L 4y 108
2(1) pgﬁﬁ{mm{2og<*_ N %8 P(l—p?)+N > (108)

both terms are equal, i.e., fgr, given by the unique p; < p2. In case 1) the rate poirfiR;(p1), R2(p1)) lies

solution in [0, 1] to outside the regioﬂzé’f’p;)(Pl,PQ,N) becauseR; (p1)
1 P (1 _ 2) violates the single-rate constraint, see (10a) and (109a).
Zlog <1+ 2 P2 ) Similarly, /in/case 2) the rate point lies outside the
2 N regionR(C’T_l’pz)(Pl,Pg, N) because in this casBs(p;)

1 1 P+ P+ 2P Pop1ps + N violates the single-rate constraint, see (10b) and (109b).
398 Pi(1-p3)+ N Finally, in case 3) the rate point lies outside the region
(P1:P2) g ;
This implies that the rate paifR;(p1), R2(p1)) sat- Rep " (P, Py, N) because the produpt - is strictly

isfies all three rate constraints defining the rectang maller than the _produc,bl P2, and thus the_ sum
R(pl,@)(Pl Py, N) with equality, i.e 1(p1) + Ra2(p1) violates the sum-rate constraint, see
CL 9 ) 3 1y

(10c) and (109c). ]
1 P (1-p3) We are now ready to prove that the achievable
Ri(p1) = Elog I+ —=— (109a) rate point (R, R,) lies outside the Cover-Leung re-
gion RcL (P, P>, N). To this end, we choose; =
1 P, (1 — (52)2) V6 — /35 and notice that it satisfies Condition (106)
Ra(p1) = Jlog | 14+ ——F— | (109b) for P, = N = 5. Hence, Lemma V.13 applies and the
rate point(R¥, RY),
d
an ol -
Rl =3 1Og = ]
Ri(p1) + Ra(p1) 2 5
1 P+ P+ 2/ P Pap1p2
= — . 1
2 log <1 + N (109¢) RE 2 max { min{— log (1 + (1 — pg)) ,
p2€[0,1] 2
Hence, (R1(p1), R2(p1)) is the dominant corner point
of the rectanglé’%g’Ll’”)(Pl,Pg,N), and for alle > 0 1 | 11+ 24/5(6 — v/35)p2
the rate point(Ri(p1), Rz2(p1) + €) lies outside the 508 /35

rate regionR(C’f’pz)(Pl,PQ,N). In the remaining we
show that the rate pointR;(p1), R2(p1)) also lies

outside the region®, ’pz)_(Ph{DmN) forall p1,p5 € Jlies on the boundary of the Cover-Leung region
[0,1] not equal to the paifpy, p2), and therefore also R (P, P,, N), and in particular for every > 0 the

(R1(p1), Ra(p1) +e) lies outside these regions for everyate point(RE, RS + ¢) lies strictly outside the Cover-
e > 0. This will then conclude the proof of the lemmay eyng regiorRc, (71, P2, N). Since

We distinguish the following three cases:)> p; and -
ph arbitrary; 2)p; < p; andpl, > p2; and 3)p} < p; and RB = Ry,

(110)



in order to show that the rate poifiR;, R») lies strictly
outsideRcL(P1, P2, N) it suffices to show that
R5 < R». (111)

To prove (111) we could computg,—the value of
p2 Which maximizes (110)—and?5 and then check

Condition (111). However, it is easier—and sufficient—;

to show that for allps € [0, 1] either

1 Py(1 - p3) 1
510g(1+T2 = §1og(2—pg)
< RQ (112)
or

110 <P1 + P+ 2/ P1 Poprpo + N>
2 %8 P(1-pH)+ N

1 114 24/5(6 — v/35)p

= —log ( ez
2 V35

To this end, note first that the LHS of (112) is decreasing

in po € [0,1], and therefore for all\/g < pp < 1it
follows that

1 9 1 3 1 _
— —p) <= = .
210g(2 p2)_4log<3+7+49)<R2

On the other hand, the LHS of (113) is increasingin

and thus for all0 < py < ﬁ

1 11+ 24/5(6 — v/35)p2

—lo

9 %8 /35

(5.3 44,/3 (6 — V/35)

e R T 35
+$(30—5\/£)

35

1 3 21 22

—Clog(3+2+ 2 L+ == /6-35

4°g<+7+7<10+\/ﬁ( va5)

< R27

where the inequality follows because

1 2 12 5 11
===V 292402
0t EVE-v+T \ﬁ V%

This concludes the proof of the theorem.
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VI. NoIsy FEEDBACK WITH RECEIVER

SIDE-INFORMATION

For the setup with receiver side-information we
present a new achievable region (Section VI-A) and a
scheme that achieves this region (Section VI-B). The
proposed scheme is an extension of the concatenated
scheme for noisy feedback in Section IV-C and ex-
ploits the side-information at the receiver. The simple
scheme in Section IV-B and the extended schemes in
Section IV-D can analogously be extended to this setup
with receiver side-information. For brevity, we omit the
description of these latter extensions.

A. Results

Definition VI.1. Let n be a positive integes;,as
be n-dimensional vectors;B;,Bs be strictly lower-
triangular n x n matrices; andCs; be a2 x n ma-
trix. Depending on the matrixCg, the rate region
Rsi (N, Kw,w,; 1, a1, az, B1,Ba, Cg)) is defined as fol-
lows:
« If the product CsCL, is nonsingulat? then
Rsi (N,03;n,a1,a2,Bs, Cg)) is defined as the set
of all rate pairs (R1, R2) satisfying

|Csi (a1a] + Nl,)) Cg)|

1
R < —1 114
1> 277 0og N|CSICTS|| ) ( a)
1 |Cs| (agag + N|n) CTS||
Ry < —1 114b
SRETRC e AR
1 |Csi (AJA] + N1,) Cg
Ri+ Ry < —1 114
1 + 2 = 277 0og N|CS|CTS|| ) ( C)
whereA; is defined in(11).
o If CgCg is singular but Cgy # 0, then

Rsi (N,03;n,a1,a2,Bs, Cg)) is defined as the set
of all rate pairs(R1, Re) satisfying(114)when the
2 x n matrix Cg is replaced by the)-dimensional
row-vector obtained by choosing one of the non-
zero rows ofCg.

o If Cg = 0, then Rsi (N, ag;n,al,aQ, BQ,CS|) is
defined as the set containing only the origin.

(An alternative formulation the region
Rsi (N, Kwyw,; 1, a1, a2, B1, B2, Cg)) presented
in Section D-C in Appendix D.)

of
is

Definition VI.2. Define the region

Rsi (Pr, Pay N, Ky w, )

2cl (U Rsi (N, Kwyw,;m, a1, a2, By, By, CSI)) ; (115)

where the union is over all tuplég, a;, as, B1, Bs, Cg))
satisfying the trace constrain{49).

Theorem VI3
Side-Information)

(Noisy Feedback with Receiver
The capacity region

12Whenever € N is larger than 1, there is no loss in optimality in
restricting attention to matriceSg; so thatCS|CgI is nonsingular.
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Chnoisyrsi(P1, P2, N, Ky, w,) of the two-user AWGN come about from the feedback-noise sequences, i.e., an
MAC with noisy feedback where the receiver is cognizaaptimal choice ofD; andD- satisfies
of the realization of the feedback-noise sequences .

D1 = —Do(l, — (B1 +B2))™"By,  (117a)

contains the rate regioRs (Py, P2, N, Ky, w,), i.e.,
Dy = —Do(l, — (B1 + B2)) 'Ba.  (117b)

Choisyrasi(P1, P2, N, Kw,w, ) ) ) o
> Re (P1, Poy N, Kivaws, ) - Such a choice leads to the following description of the

“new” MAC 51,52 — (El, EQ):
Proof: The achievability result is based on the -

concatenated scheme in Section VI-B1. It is obtained <il) = Ag (51) + Tsi, (118)
from Theorem IV.3 by settingg? = 03 = 0 in the =2 &2
rate expressions in (18) (but not in the power constrainfghere the2 x 2 matrix A is given by
(19)). The reason why in (18) we may set = 03 =0 .
is because in the scheme in Section VI-B1, prior to Asi = Do (I — (B1 +B2)) " Ar, (119)
the decoding, the receiver subtracts off the influence WhereAr
the feedback-noise sequendgd ;} and {IW,,}. The T
details of the proof are omitted. [ ]

is defined as in (11), and where the noise vector
is a zero-mean bivariate Gaussian

—1
Remark VI.4. Evaluating the achievable region Tsi = Do (Iy = (BL +B2))  Z. (120)
Rsi (P1, Pa, N, Kw,w,) seems to be difficult even nu-n the following we shall always assume thzt andD»
merically. More easily computable (but possibly smallerire optimally chosen so that the “new” MAC is given
achievable regions are obtained by taking the union dfy (118)—(120). We define th x n matrix
the RHS of(115) only over a subset of the parameters A 1
n,a1, a2, By, By, Co satisfying(19). In Section G-A we Csi=Do(ly —(B1+B2)) ", (121)
present such a subset of parameters and its correspongiy hence\g, in (119) and the noise vect@s in (120)
ing achievable region (Corollary G.2). In Section VI-BZ5n he expressed as
ahead we present more general guidelines on how to
choose the parameters, a;,as, By, By, Cg for noisy As) = CsiAr, (122)
feedback with receiver side-information. Tg = CqZ. (123)

For fixed n, By, B2 the mapping (121) fromD,, to

Cg) is one-to-one, and thus we can parameterize our
1) Scheme:in this section we extend our concateconcatenated scheme for noisy feedback with receiver

nated scheme to noisy feedback with receiver sidside-information by, a;,as, B1, By, Cs).

information. We use the same outer code and the sameall parameters), a;, a, B;, B, that satisfy the power

inner encoders as in the setting without side-informatiogonstraints (19) are allowed.

The difference is only in the inner decoder. Thus, when 2) Choice of ParametersAs in the previously stud-

fed the pair of symbolg¢;,¢&2), the inner encodersjed setups we present guidelines on how to choose

produce, as before, sequences of channel inputs the parameters, a;, a,, By, Bo, Cg of the concatenated

scheme. The guidelines parallel the guidelines for noisy

B. Concatenated Scheme

Xy =ab +BVy, vei{l2h (116) feedback and noisy partial feedback in Sections IV-C2
where X, = Xo1,.., X)), V, £ and V-C2; likewise, also the proofs of optimality parallel
(Vuis...,Vuy—1)', and wherea;, a, aren-dimensional the proofs in Section IV-C2 and are omitted.

vectors andB,, B, are strictly lower-triangulamn x n Let P, P>, N > 0 and Ky,w, = 0 be given, and

matrices satisfying the power constraints (19). But, wir the purpose of describing our guidelines replace

modify the structure of the inner decoder so that the symbolsé;, &, fed to the inner encoders by the

computes the estimatés,, =,) not only as a function independent standard Gaussi&hs =».

of the output sequence but also of the feedback-noiseWe first present the optimal choice of the parameter

sequences. Again, we choose a linear mapping, i.€si. Givenn, a;, as, B1, B2 the paramete€s should be

forY £ (V1,...,Y,), Wi & (Wyiq,...,Wi,)7, and chosen a<s = CgiLmmse, Where

A T i

W, (WQJA, ..., Wa,)T, the inner decoder computes Contmmse = AT (AAT + Nln)fl , (124)

(;1) =DoY + D1 W; + DaWy, since the corresponding achievable region contains all
=2 regions corresponding to other choices of the maigix

for 2 x n matrices Dy, D1,D2 of our choice. Given The matrix Cg  mmse is called theLMMSE-estimation

ay, ag, By, Bo, andDy an optimal choice for the matricesmatrix with side-informationsince by (118), (122), and

D; and D, subtracts off the contributions tOY that (123) the choice in (124)—combined with the optimal
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choices ofD; and D, defined by (117) and (121)— For each of these settings we have presented a coding
implies that scheme (called concatenated scheme) with general pa-
(A — rameters, and we have stated the corresponding achiev-

=1 =

:2) =2

YW, W;] .

able regions (Theorem 1V.3, Theorem V.3, Corollary V.7,
and Theorem VI.3). We have improved the concatenated
Obviously, also choosin@s; = UCg, mmse for some
non-singular 2-by-2 matrix) is optimal, and form = 2

choosingCg| as any non-singular matrix is optimal.
We next consider the choice of

scheme by rate-splitting it either with a simple no-
feedback scheme or with Carleial’s version of the Cover-
Leung scheme. The achievable regions corresponding

parameter® these improvements are stated in Proposition 1V.13

ai,as, By, By and focus on the following two special (noisy feedback) and Propositions V.10 and V.11 (perfect

cases:

a) n € N is arbitrary andp = 1, i.e., the feedback

noises are perfectly correlated,
b) n=2andp € [-1,1) arbitrary.

partial feedback).

The two achievable regions for noisy feedback in The-
orem V.3 and Proposition 1V.13 exhibit the following
three properties: 1. They are monotonically decreasing in

In these cases, given parametee N, the parameters the feedback-noise covariance matrix with respect to the
a;,as, By, By should be chosen so that the inner erl-0ewner order (Propositions IV.5 and 1V.14). 2. They are

coders produce

Xie=me (G —E[EVTY),  Le{l,....n}
(125a)

and

Xog=moe (B2 —E[ZV; ']),  Le{l,....n},
(125b)

for some real numbers; 1,..., 7, andma 1, ..., T2 ,.

continuous in the transmit-powers (Propositions V.5 and
IV.14). 3. They converge to Ozarow’s perfect-feedback
regions when the feedback noise-variances tend to O,
irrespective of the feedback-noise correlations (Propo-
sitions IV.9 and IV.16).

We have further presented guidelines for choos-
ing the parameters of our concatenated schemes (Sec-
tions IV-C2, V-C2, and VI-B2), and have suggested

Otherwise, there exists a choice of parametetsuboptimal) specific choices of the parameters (Sections

7,a1,as, By, By, Cg of the form (125) that strictly im-

proves on the original choice.

E-A, F-A, and G-A in Appendices E-G). The achievable
regions corresponding to these specific choices are pre-

In general, it seems difficult to determine the optimegented in Corollary 1V.6, Corollary V.5, Corollary V.8,
choice of the parametess;, ay, B;, B,. However, it is Corollary E.3, Corollary F.2, Remark F.3, and Corol-

easily proved that the parameteysa;, as, By, B2, Cg)

lary G.2.

should be chosen so as to satisfy the power constraintsThese achievable regions—combined with the previ-
(19a) and (19b) with equality; otherwise there exists @usly described properties of the achievable regions for
choice of parameters satisfying (19a) and (19b) withoisy feedback in Theorem IV.3 and Proposition 1V.13—

equality that strictly improves on the original choice.
In Appendix G, we present a specific choice of the

parametersa;, as, B, Bo, Cg) that guarantees thdig

is the LMMSE-estimation matrix with side-information,
the power constraints (19) are satisfied with equality,

and n,a,as, By, By satisfy (125) for allp € N and

o € [-1,1]. We present the corresponding achievable

region in Corollary G.2 in Appendix G.

VIl. SUMMARY

We have studied four different kinds of two-user

AWGN MACs with imperfect feedback:

« noisy feedbackwhere the feedback links to both

transmitters are corrupted by AWGN;

« noisy partial feedbackwhere one transmitter has

noisy feedback and the other no feedback;

allowed us to infer:

1) Feedback—no matter how noisy—is strictly better

than no feedback. l.e., irrespective of the feedback-

noise variances, the capacity region with one or two
noisy feedback links is strictly larger than the no-

feedback capacity region (Theorems IV.7 and V.6).

2) The noisy-feedback capacity region converges
to the perfect-feedback capacity region as the
feedback-noise variances on both links tend to
O—irrespective of the feedback-noise correlations
(Theorem IV.17).

3) The Cover-Leung region in general does not equal
capacity for perfect partial feedback channels (The-
orem V.9). This answers in the negative a question
posed by van der Meulen in [18].

« perfect partial feedbagkwhere one transmitter has
noise-free feedback and the other no feedback; and

« noisy feedback with

receiver side-informatjon
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APPENDIXA < llog <1 + ﬁ) , (127)
CARLEIAL’S REGION 2 N
Carleial proved the achievability result for the AWGNA by (126D) and (126d) the raf@ satisfies
i i i 1 P
MAC with noisy feedback in Theorem A.2 ahead [2]. Ry < 5 log <1 " gzﬂzj\? 2)
Definiton ~ A.l. Define the rate  region 2B P + N + o7
Reca(P1, P2, N,0%?,03) as the set of all rate pairs —|—llog (1+ OQB?P?)
(Ri,Ry) which for some nonnegative numbers 2 N
Ri0,R11 summing to R;, for some nonnegative < 11 1 Py 128
numbers R o, R2 2 summing to R, and for some -2 og\ 1t N/’ (128)

choice of parametersy;, as, 51, 82,v € [0,1] satisfy

Furthermore, by (126a), (126b), and (126h) the sum

the 13 conditiong126) shown on top of the next pagef the ratesk, + R. satisfies Inequality (129) on the

where forz € [0, 1] we definer £ (1 — z).

Theorem A.2 (Carleial [2]). Consider an AWGN
MAC with noisy feedback of transmit powers, P,

next page. Notice that for? o3 larger than some

threshold depending oR;, P>, N—and in particular for
o> P (3 + £2) ando? > P, (3 + Lt)—irrespective

N

noise variance N, and feedback-noise covariancef the chosen parametess, a2, 41, 2, v:

ot
) 00102
of the noise correlationp €
RACh(P11P27 N7 O'%a O-%
ie.,

00102
o3
[-1,1], the region

) is achievable for this channel,

Irrespective

matrix Kw,w,

Rach(P1, Po, N,03,03) C Choisyra(P1, P2, N, Ky w, ).

Proposition A.3. The rate
RCar(Pl,PQ,N,O'%,O'g
capacity regionCnors(P1, P2, N) when the feedback-
noise variancesc?,o3 exceed a certain threshold
depending on the parameter®;, P,, and N. In

particular,

region

Real P, P2, N,07,03) = Cnors(P1, Po, N),

).

Proof: For all values of 0? 03 the region
RecaPi, P2, N,0%,02) trivially contains the no-
feedback capacity regio@nors(P1, P2, N) because the
region obtained by substitutingy = a; =5, =f: =1
into (126) coincides with Cnors(P1, P2, N). Thus,
it remains to prove thatRcalPi, P2, N,0%,03) is
included in Cnors( P, P2, N) for all 07,03 exceeding
some threshold depending d@n, P, and N.

To this end, we choose?, o3 > 0 and we fix a rate
pair (R1, R2) in RealP1, P2, N,0%,03). We then fix
parameterswy, ao, 1, B2, v € [0,1], two nonnegative
numbersR; o and Ry ; summing toR;, and two non-
negative number®; o and Rz o summing toR: so that

P

foro? > P (34 22)ando > P (3 + 4

) collapses to the no-feedback

N+ o181Py + aofo Py
Oélﬂlpl =+ N + 0'%
(181 P14+ $N)(azB2P2)

n <1 (130
(@ + N+ oD@+ Nrap) 0
and
N + a161P1 + a2 P
a2B2P, + N + 02
P 1N 3, P
(a2fB2Py + 3N) (a1 pr1 1) < 1.(131)

(Oélﬂlpl —|— N + U%)(OLQBQPQ —|— N + 0'%)

Thus, wherv?, 02 exceed a certain threshold depending
on Py, P, and N, the RHS of (129) is upper bounded
by 1log (1+ £422). We conclude that when?, o3

are sufficiently large, then by (127)—(131) the rate pair
(R1, R2) satisfies (5) and hence lies in the no-feedback
capacity regionCnors(P1, P2, N). This concludes the
proof. [ ]

APPENDIXB
WILLEMS ET AL.”S REGION

Willems et al. proved an achievability result for the
discrete memoryless MAC with imperfect feedback [23].
The result can easily be extended to the two-user AWGN
MAC with noisy feedback (Theorem B.2 ahead).

Definition B.1. Define the rate region
Rwi(P1, Py, N,0%2,03) as the set of all rate pairs
(R1, R2) which for some nonnegative numbeR ;

and R;2 summing to R;, for some nonnegative
numbersR; ; and Rz 2 summing toR2, and for some

Constraints (126) are satisfied. We show in the followingarametersdy, d=, p1,p2 € [0,1] satisfy the following

that if 02,035 > 0 are sufficiently large, thefiR;, R>)
lies in CNOFB(P17 P, N)
By (126a) and (126c¢) the ratR; satisfies

a1 B Py >
04151P1 + N + U%
a1 P

)

1
R1§§10g<1+

1
+§10g <1 +

five constraints:

1 51P1
< —log (1
Rl.’l o 2 Og< + N >
1 d1Pi(1—pP)
Rio<=log(1+ 21— AU
1’0_20g< +51P1+N+0'%
1 52 Po(1 = p3)
Roo < =log 1+ —22 - _F)
”—2%<+@&+N+ﬁ
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1 a151P
R < —log |1+ 126a
1,0 =3 g( a1ﬁ1P1+N+02> (1262)
1 a2 Ps
R < =1 1+ 126b
=g a252P2+N+al> (126b)
1 P
Ria < ;log (1 4 b 1) , (126c¢)
1 P.
R < ;log (1 + aﬁ 2 2) (126d)
1 04151Pl + 22 Py 1 061P1 + oo P + 2V a1 P P
R Rog < =1 1 — 126e
Lo+ 20_20g< + >+2 < N+ a1 P+ as Py ( )
1 a1/ Py + 2B Ps 1 v (@1 P+ Gz Py + 2y/@ 62 P P,)
R Roo < =1 1 - 126
vt 2’2—2°g( - Tplos N+ P +ashP, (1260
1 o1 B Py + oo Ps 1 v (@1 P+ Gz Py + 2y/@162 P Py)
R Ri1 <=1 1 - 126
2,0 + 1,1_20g( + +5log Nt aP T oabs (1269)
1 P P
Riy+ Ry < 7 log (1 + uhih + a2 2> (126h)
1 a1 Py + CYQBQPQ 1 a1 Py + as Py 4+ 2v/ a1 P P .
< = -
Ri+ Ry < 5 log (1 + ]+ 5 log | 1+ Nt Pt oaab (126i)
1 a1ﬁ1P1 + as Py 1 a1 Py + aoPo 4+ 2v/a1aa P P .
< =1 1 + =1 1 126
Rio+ Ry _2og< + > 2og< + Nt oDt oubs (126j)
1 ar Py + CYQBQPQ 1 041P1 + o Py + 24/ alagPng)
R R < =1 1 + =1 1 126k
1+ B2 —2°g( TN )Tas +- N+ 1P, + asPs (126k)
1 04151P1 + a2P2 0 (@1 P+ G Py + 2162 P P,)
R Ry, < =1 1 -1 1 126l
1,1 + fi2 _20g< + og< + N+ oiPL + aab ( )
1 P P 2/ PP
Ry + Ry §§1og<1+ s 2+N0‘10‘2 L 2) (126m)
1 a1 B Py 1 a2 2Py >
Ri+Ry<=log|1+ + =log |1+
L=y g( a1ﬁ1P1+N+a§) 2 g( 02BaPy + N + 02

1 o181 P + axB2 P
-1 1
—|—2 0g< + N

P P
log <1+ a151 P + aofo P

1
< =
-2 N

_ 1 azBs P
a1BiPy [ N+ 1P+ asBoPy  (1f1Pr+ 5 N) 042521232-2;-]\?4-0%
N O[lﬂlpl—i-N—FO'% 041['31P1+N+0'§

_ 1 1B P
n a2BoPy [ N+ 11 Py + anBoPy | (02B2P2 4 3 N) alﬁllli‘ljrl\ha% (129)
N QQBQP2+N+U% OLQﬂQPQ—i-N—FO'%



02 P>
N

R 2 10g <1 =+
R+ R2,2

1
§§10g<1+

)

01P1 + 02P
N

)

6102 Py Pap1p
N

P+ P+2
1og<1+ 1 )

Theorem B.2 (Willems et al. [23]) Consider an AWGN
MAC with noisy feedback of transmit powels, P»,

noise varianceN, and feedback-noise covariance ma-

2

71 09192) rrespective of the
00102 [op}

feedback-noise correlatiory € [—1,1], the region

Rwi (P1, P2, N,0%,02) is achievable for this channel,

i.e.,

trix KW1W2 =

Rwi (P1, P2, N,0%,03) C Cnoisyra(Pr, Poy N, Ky, )-

Proposition B.3. The rate region

RW“(Pl,PQ,N,U%,U%
capacity regionCnors(P1, P2, N) when the feedback-
noise variancesc?,o3 exceed a certain threshold
depending on the parameter®;, P,, and N. In
particular,

Rwi (P1, P2, N, 07,03) = Cnors(P1, P2, N),

).

Py

foro? > P (2 4+ 22) ando3 > P (2 + &

Proof: Follows along similar lines as the proof ofihe
Proposition A.3 in the previous appendix, and is omitted, (7 (. 0

APPENDIXC
OPTIMALITY OF LMMSE-ESTIMATION ERROR
PARAMETERS FORPERFECTFEEDBACK

) collapses to the no-feedback
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Lemma C.2. Assume thaKy,w, = 0, i.e, assume
perfect feedback. If the parameteysal, a}, B, B,, C’
satisfy (19) but violate (45) then there exist parameters
1,41, 49, By, By, C satisfying the following three condi-
tions:

1) the parameters), a, a,, B1, B, C satisfy(45),

2) R(N,0;n,a},a3,B1,B5,C')

=R (N,O;’I],él,é% él, BQ, C),

the parametersy, a;, as, B1, Bo, C satisfy (19a)
and (19b) and at least one of them with strict
inequality.

3)

Proof: Fix parameters), aj, a5, B}, B,, C' satisfy-
ing (19) but violating (45). Define the following new
parameters.

o Leta; =aj anda, = a).

. Let B; and B, be so thata,,a,, By, B, satisfy
(45). (Notice that given the parameteis and a,
there exists exactly one choice of the paramegrs
and B, satisfying (45). I.e., the scaling coefficients
{m,e}]_; and{m2}/_, in (45) are determined by

a andag)

e LetC=C.
By construction, our choice él,éz,él,éQ,C
trivially —satisfies Conditon 1 in the lemma.
Moreover, since for Ky,w, = 0 the region

R (N,0;7n,a1,a2,B1,B2,C) depends only onay, as,
and C but not on B; and B,, see Definition V.1,
regions R (N,0;n,a},al, B}, B, C) and
a1,42,B1,B5,C) coincide. Thus also
Condition 2 is satisfied.

We are left with proving that the parameters
ap, as, Bl, BQ, C satisfy also Condition 3. Before doing
so, we introduce some helpful assumptions and notation.
Assume in the following that Inner Encoder 1 and Inner

We show that in our concatenated scheme for pdencoder 2 are fed the independent standard Gaussians
fect feedback it is optimal to choose the parameteg$id=», respectively. Let7,...,Y, denote the; chan-
n,a1,as, B1, By so that the two inner encoders prohnel outputs of the original MAC:, 22 — Y when the
duce as their/-th channel inputs scaled versions ofnner encoders use the parametgray, a5, B}, B,, C',
the LMMSE-estimation errors when estimating the fednd similarly, letyy, . . Y denote the) channel outputs
symbols Z; and =, based on the previous outputof the original MAC r1,72 + Y when the inner
Yy,..., Y1, see (45). encoders use the parameters;, a., By, B, C. Also,
let alg,a2 010, and as ¢ denote the/-th entry of
the vectorsal,az,al, and a,, respectively, and let

b} “,b”wbl 0, andby gj denote the row-column
entry of the matrice8/, Bl, and B,, respectively,
for j,£ € {1,...,n} andu e {1,2}.

Fix an? € {1,...,n}. By the definition of LMMSE-
estimation errors, for alv € {1,2} and all real numbers

/—
{bu&j}j:%

Proposition C.1. Assume thaKy,w, = 0, i.e., perfect
feedback. If the parameteng, a;,as, By, Bo, C satisfy
the power constraint§l9) but not Conditiong45), then
there exist parameters), aj,a’, Bi, B3, C* satisfying
both (19) and (45), and

R (N7 07 1n,a1,asz, 817 827 C)
CR (Na 0; 7, a’{,as, BT? Bzv C*)
with the inclusion being strict.

The proof is given after the following lemma.

£—1
dV,ZEV_ § bu,f,jY]
Jj=1
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-1 L 5B F
> Var dyygEV B Z l;y_]l_’jf/j 7 (132) CR (N, KW1W2,77, aj,as, B, Bo, C) (136)
= with the inclusion being strict.
A Applying Lemma C.2 again, this time to parame-
with equality if, and only if,b,¢; = b,,; for all tersy,a,a,, B, By, C, we conclude that there exists a
Jj €{1,...,£—1}. We would like to prove a similar choice of parameterng a}, a5, B%, B3, C* satisfying both
inequality to (132) but where in the RHS of (132)19) and (45) and
the outputs{Ys,...,Y,_1} are replaced by the outputs

{Y{,...,Y/_,}. To this end, we notice that sinég = R (N, Kwiwyin, a1, d2,B1, Ba, C)

a} anda, = aj, there exist real numbeis, , ;}:~} and =R (N,Kw,w,;n,a7,a3,B1,B5,C").
-1 S
{b2,0,5};=1 such that By (136) this implies
. -1 N P -1 , , R(Na KWlwz;naalaa%BlaBQaC)
Qe — Z;bu,e,ij = | = - Z}by,e,jyj C R (N, Kw,w,i 7,25, a3, B}, B, C*)
J= J=
_ . . ) _ - with the inclusion being strict, which concludes the
with probability 1. Combining this observation Wlthproof -
Inequality (132) the desired inequality follows: '
-1 APPENDIXD
var| a), ,Z, — Zb;j“yj' ALTERNATIVE FORMULATION OF ACHIEVABLE
' = REGIONS
-1 We derive an alternative formulation of the
> Var | a,.=, — Z(}MMYJ_ ,  (133) region achieved by our concatenated scheme
J=1 R (N, Kw,w,;n, a1, az,B1,B2,C) when C is chosen

as the LMMSE-estimation matri uuse (as defined
in (43)) andn, a;, as, By, By are arbitrary. Recall that
-1 there is no loss in optimality in restricting attention
QLZEV_Zb;Myj/ - @Vyggl_zgy_l_’j}?j to the choiceC = C_uuse, see Section IV-C2.
' =1 Similarly, we derive an alternative formulation for
(134) the achievable regionRp (N,o03;7,a1,az, B, Cp)
with probability 1. By (133) and since the parameterwhen Cp = Cpiuvwse (as defined in (103)),
n,a}, ah, B}, B} satisfy the power constraints (19), it fur-and an alternative formulation for the achievable
ther follows that also the parametersi;, 42, By, B, sat-  region R (N, Ky, w,;7, a1, a2, B, B2, Cs))  when
isfy Constraints (19). Moreover, since the paiBj, B;) Csi = Csiummse (as defined in (124)). These alternative
and (If%l, ég) differ, not for all ¢ € {1,...,n} and formulations simplify the description of the achievable
all v € {1,2} equality (134) can hold and thus theregions corresponding to our specific choices of
parameters), a1, a», By, B, satisfy either (19a) or (19b) parameters suggested in Appendices E, F, and G.
with strict inequality. This concludes the proof of thdn particular, for perfect feedback the alternative
lemma. m formulation is useful to describe the achievable
Proof of Proposition C.1: The proof uses region corresponding to the choice of parameters in
Lemma C.2 twice. Fix parametens a;,as, B;,Bs,C  Appendix F, see Remark F.3. The region in Remark F.3
satisfying (19) but violating (45). By Lemma C.2 therds used in Section IV-E2 to prove that our concatenated
exist parameters, a;, a», B1, Bo, C that satisfy (45) and scheme for perfect feedback achieves all points
in the interior of Ozarow’s regionRgz(Pl,PQ,N)
R (N, Kwyws:n,a1,22,B1, B2, €) (Proposition 1V.9).

=R (Na KW]Wg;naélaéQaélaé27C) ) (135)

with equality if, and only if,

and that satisfy (19a) and (19b), whereby one c')of' h_lmsy Feedback

them with strict inequality. Further, since the pa- CIVen parameters,ai,as, By, Bz andC = Ciwmse,
rameters 77751,512,31,@2,@ satisfy either (19a) or we derive ~an alternative formulation for the
(19b) with strict inequality, there exist parameterkdion —achieved by —our concatenated scheme
1,41, 89, B1, Bs, C that satisfy both (19a) and (19b) with® (Vs Kwiw 37, a1, a2, B1, B2, C).

equality (but not necessarily (45)) and that correspondTO simplify notation, in this section we assume that

to a strictly larger region (see Section IV-C2). Thus, b{in€r Encoder 1 and Inner Encoder 2 are fed independent
(135) zero-mean unit-variance Gaussian random variables and

therefore we denote them Hy; and =, instead of¢;
R (N, Kw,w,;n,a1,as,B1,Bs, C) andé&s. The region achieved by our concatenated scheme
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can then be expressed as the set of all nonnegative réite parametera;, a;, B;, By, For each? € {1,...,n},

pairs (R1, R2) satisfying let a,, denote thel-th entry of the vectora, and
1 o b, ; denote the row- column4 entry of the matrix
Ry < —I(Z1; 21, 22|52), (137a) B,, for g0 € {1,....n} and v € {1,2}. Also, let
717 a1 = Var(E1 ¢) and ag, = £ Var(E,,) denote the
Ry < =I(82;Z1,52|%1), (137b) variances off; , and E ¢, andp, £ CME1e.Bar] iy
n V1,020
1 o correlation coefficient. We can then write the innovations
Ri+ Ry < —I(El,EQ;El,Eg), (1370) as
K I =Y =a11E; +ag,152 + Z1; (142a)

where the conditional law of(ul,ug) given =; =
¢ and =, = & is determined by the channel law@nd forf e {2,....n} as
£1,8 — (;1,4) in Equation (37) (Section IV-C1).
Notice that sinceC is the LMMSE-estimation matrix
Cimmse in (43) (Section 1V-C2), by the Gaussianity of

Ip=a1 0B 0-1+ a2 B
+(Weer —E[Wet [Y)) + Zo,

the involved random variables the rate constraints in = K111 -1+ K2 p—1F2 01
(137) are equivalent to: +Wi 1+ Zy, (142b)
1
Ry < —I(E1;Y1,...,Y,|E2), (138a) Where
717 -1 -1
Ry < 51(52;1/1, . YylEr),  (138D) Wer 2 bie Wi+ Y bae;Wa, (143)
T — —
Ry + Ry < 51(51@2;3/17 L Yy), (138C) W q 2 Wiy — E[Wiei|Er1, Eapq, Y
144
where Y, ..., Y, are then channel outputs produced Z_E )
by the original channek;,z, — Y when the inner =We1 - E[W4*1|E175717E27f7171 ],
encoders are fed the independent standard GausSians (145)
and =,. q
Denote for each channel use € {1,...,n} the an
receiver’s innovation by, i.e., N az¢—1CoV[E g1, Wy_1]
M1 = anet (1—p2_)aq 10001
L2Y,—E[vY“'], 139 1
e [¥el ] (139) —1,/01,i—102,1—1COV[E3 o1, Wiy_ 1]
and the receiver’s LMMSE-estimati(_)n errors about the (1—p2 ar—1a2,0-1
symbols=; and=; by E; , and Ey 4, i.e., (146)
= = v _1CoV[Es 1, W,_
Eip 22 —E[E1]Y], (1408) o, Ly, i+ a(ll,f_l - Vg 2,0-1, We—1]
By 25 — E[S]Y1]. (140b) Pe-—1)M, 102,61

—1/A1,¢—102,—1COV[E} o1, W;_ 1]

(1—p?_)are—1020-1

Then, notice that there exists a bijective mapping be-

tween the innovations,, . . ., I;, and the channel outputs (147)
Yi,...,Y,, and by the Gaussianity of the involved
random variables, for each € {1,...,7}, the tuple Evaluating the mutual information expressions in (141)
(Eve, B2, 1¢) is independent of the previous output§or the innovations in (142), we conclude that our
and innovations(Y1,...,Y,—1,11,...,li—1). By the concatenated scheme for noisy feedback with parameters
chain rule of mutual information we can therefore rewritg a, a,, B;, B, andC = C_yuse achieves all rate pairs
Constraints (138) as (R1, Ry) satisfying Constraints (148) on the top of next
n page, where we defined; o £ 1, azg = 1, pg = 0,
1 A A A
R < - Z E1; 1|=2), (141a) k1,0 = a1, k2,0 = az,1, Wi =0.
= We conclude this section with a recursive characteriza-
1 tion of the variance§ o ¢}/, and{as},_,, and the
Ry < —Z (Ea; Ie|=h), (141b) correlation coefficientsp¢}/_,. Defining E1o £ =y,
j Es £ =5, we find fort € {1,...,n}:
1
Ri+ Ry < — Z E1, Eo; Iy). (141c) Cov[E1 1,1
EBiy=F 41— ———22] 149a
ni= 1,0 1,4—1 Var(I,) 0, ( )

In the following we give a more explicit description

COV[Engfl,Ig]
of the innovations{I,}/_, in terms of the entries of

Eyp=FEsp 1 — Var(ly)

I,,  (149Db)
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11 Y1 (1= p7,)
R < = =1 1 : : 148a
=9 ; 2 8 ( TV (W )1 N (1482)
11 K3 10,01 (1= p7_y)
Ry < — =1 1 : . 148b
2= ; 2 8 ( V(W )1 N (148b)
1.1 fi% r—101,0—1 + H% 1100201+ 2K1 p—1K2,0—1,/01 ¢— 102 1—1P0—1
Ri+ Ry <~ =1 1 : . : . ' . . ' 148c
1+ iz = n;2 Og( + Var(WL,¢,1)+N ( )

KT o 101 0—1+ K3 g 10201 + 261 —1K2,0—1/01 i—1020—1pe—1 + Var(W, o_1) + N
Qe = 01 : — 5 (150)
Ii27é_1()z275,1(1 — pf—l) + Var(leg,l) + N
K2, Q101+ K3, 102.0—1 + 2K1 p—1K20—1\/OT0—102.0—1pe—1 + Var(W i ;1) + N
Qa0 = Q201 : — 5 (151)
K1 q0ne—1(L—pfq) +Var(Wi ;1) + N

) —K1,0-1K2,0-1/01 —102,0-1(1 — p7_1) + pe—1(Var(W o 4—1) + N)
E pu—
\/K%,é—lalaf—l(l —pi_y) +Var(Wi ,—1) + N\/ﬁg,g_loéz,e—l(l —p2 )+Var(Wio 1)+ N

(152)

and consequently, by (142) the recursive expressio@s Noisy Feedback with Receiver Side-Information
(150)-(152) on top of the next page.

This alternative formulation is used in Corollaries E.3 We derive an alternative formulation of the
and F.2 in Appendices E and F ahead to describg (egion achieved by our concatenated scheme
the regions achieved by our concatenated scheme gggl (N, Ky, w,: 7, a1, a9, B1, Bo, Cs) for a fixed choice
noisy feedback with the specific choices of parametegs parémetlergy 2’11 (,;2 |’31 |’32 and Co = CalLrMsE.

described in Sections E-A (Appendix E) and F-A (A_pDenote the/-th entry of the vectoa,, by a, , and denote

pendix F). In particular, it is used to describe the regiof,o g+ column+ entry of the matrix8, by b, ;, for
1% v, £,71

achieved in the special case of perfect feedback when t e {1,...,n} andv € {1,2}. The desired alternative
parameters are chosen as in Section F-A (Appendix oo o Rei (N, KV’V] waim, a1, a9, By, Ba, Ce)

see Remark F.3. can be derived along the lines described in the previous
section D-A but with the following two modifications.

B. Noisy Partial Feedback Instead of being defined as in (140), the LMMSE-
The desired alternative formulation oféStimation errorss, , and By, for £ € {1,..., 7}, are

Rp (N,03;m,a1,a2,B1,B2,Cp) can be derived defined as

along the lines shown in the previous subsection D-A. By 23 —E[E v, Wi Wi, (154a)

We omit the details and only present the result.
Fix a choice of parameterg a;, as, B;, By, andCp =

Cemmse: Denote thel-th entry of the vectora, DY 4 jnstead of being defined as in (139), the innovation

a,¢ and denote the row-column+ entry of the matrix I, for £ € {1,...,n}, is defined as

By by bayy, for 5,0 € {1,...,n} andv € {1,2}. o

Our concatenated scheme for noisy partial feedback and I, £ Y, — E[Y, |y, Wi~ !, Wy ']. (155)

parametersg, a;, as, Ba, Cp = Cp mmse achieves all rate )

pairs (Ry, Ry) satisfying Constraints (153) on top ofNotice that by (154) and (155):

the next page, where recall that o = 1, ago = 1, _

po =0, F1o = 11, Kzo — as1, Wi = 0, and where Ip=a1 0B -1+ a2 E2 01+ Zy, te{l,...,n}.

{on o }7=1, oo} =L, {pe} 7=t {1 eYiZ)s {kae}i—L, We omit the details of the derivation and only

and {W ,}/_| are defined by o = E1, E20 = Z», state the resulting alternative formulation of the re-

and Equations (142)—(152) (Subsection D-A) except thgion Rs (IV, Kw,w,; 7, a1, az, B1, B2, Cs). Our con-

EQ,E é EQ —-E [EQ|YZ7 Wlé_la WQZ_l] ) (154b)

(143) should be replaced by catenated scheme for noisy feedback with receiver
-1 side-information and parametens a;, as, B, Bs, Cg)
Wy, = Zb”jwlj. achieves all rate pairéR;, R2) satisfying Constraints

(156) on top of the next page, where recall thap = 1,

j=1
aszo =1, po = 0, and where{a; ¢}]_;, {az,}]_; and
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1 K3 qone1 (1—p7_q)
L1 L (o 153a
1_77;2 g< Var(W, 1)+ N ( )
1 K3 10201 (1—p_,)
L1 1 ) 153b
2_7722 g<+ Var(W, 1)+ N | !
11 me 10,0 1+ffze 102,01 + 2K1,0-1K2,0-1,/01,0-102,0-1pe-1
pap ] L (o 153c
1 25 ;:: 5 108 < Var(Wio 1)+ N ( !
n a? ,a 1—p}
Ry< 230 Liog (14100 1( pii) (1562)
Ui
141 a3 o201 (1 —pi1)
e lys g (14 X (156b)
=
11 af yo1,e—1 + a5 o201 + 2a1,0a2,0p0—1\/C1,1—102,0—1
1 1 1 Lo, Q2 002, i ' 156¢
1+ Ry < 7 éz:; 5 108 ( + N ( )
ai 01 + a3 o2 01+ 2a1,002,00/01 i—10 i—1pe—1 + N\ 7! (157)
e = —
1,0 = Q101 a3 pa2,0-1(1—pj ) + N
(a%,gal,e—l + a%,eaz,é—l + 2a1,002,0/01 1~ 102 1—1pe-1 + N> B (158)
le% = —
2,0 = Q2,01 ai jone—1(1 = pf ) + N
—a1,eaz,e\/m(1 — Pi_1) +peaN (159)

pPe =
Vi earea (= g2 ) + N[0 janea (1= g3 ) + N

{pe}]_, are defined through Recursions (157)-(159). Description of Parameters

also on top of the next page. Let a positive integen € N be given. We first consider
the noisy-feedback setting; the partial-feedback setting
is treated only shortly in Remark E.1 at the end of this
APPENDIXE section.
CHOICE OF PARAMETERS | Instead of describing our choice ,ay, By, B,, and
C directly, we will describe how Inner Encoder 1 and
In Section E-A, we present a specific choice of thEiner Encoder 2 map the fed symbols to the sequences of
parameters, ay, By, By, C for givenn € N. We treat channelinputsX, ..., X1, and Xy, ..., Xs,. This
the noisy-feedback setting and the noisy or perfetfen determmeal,aQ,Bl,Bg The matrixC is chosen
partial-feedback setting. We denote our choice for noigyp the LMMSE-estimation matrix. For the purpose of de-

feedback bya,, a,, By, Bz, C and our choice for partial scribing our choice we replace the pair of input symbols
feedback bya; p, as p, B2 p, Cp. & andé&s by the independent standard Gaussi@nsnd

As we shall see, our choices are such thaand =2
Cp are LMMSE-estimation matrices. Thus, the region The inner encoders are chosen so as to produce
achieved by our concatenated scheme for noisy feed- X141 = /P&, (160)
back with parameters, a;, as, By, Bs, C is obtained by ' _
substituting the parameters into the RHSs of (148) in X21 =V PEs, (161)
Section D-A in Appendix D. The resulting achievableynd forv e {2, ..., 7}
region is presented in Corollary E.3 ahead. Similarly,
the region achieved by our concatenated scheme fo P . -1
partial feedback with parametersa; p, as p, Ba p, Cp is LA Bros (Er =L ) (162)
obtained by substituting the parameters into the RHSs
of (153a)—(153c) in Section D-B in Appendix D. For x = _ (—1)1 P (52 AL, 1l\/|g_1V’“"1)
brevity we do not present this latter achievable region. B2,6-1 ' 2 ’
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(163) Remark E.1. A similar choice of the parameters can
also be made in the case of partial feedback. In this
case, we choose the parameters corresponding to the

M, 2 diag (1, -1,1,..., (_1)571) ’ (164) inner encoders and the inner decoder ag160)(170)

_ except for replacind162) b
Bre = Var(E —~f V), P placind162) by

where for¢ € {1,...,n—1}

(165) Xl,l - PlEla le {27"'777}7
Iy = £ .
fBa,0 = Var(Z — 45 M V) and replacing(168) by
(166) 1
p -1 2 (22, Ky =
Yie £ ((0‘% +03 — 2Q0102)ﬁ1|€ + KV{Z) Kye s o= |2 vy VLB,

(167) We denote the parameters of the concatenated scheme
R ) ) P, -1 corresponding to this choice b p, as p, Ba p, and Cp.
Yo = (07 +03 = 200102)Fle + Kyp | Ky s,

(168) B. Achievable Region

Notice that Inner Encoder 2 modulates its inputs with Ve present the achievable region corresponding to our
an alternating sequence eflL or —1 (which is inspired concatenated scheme for noisy feedback with parameters

by the Fourier-MEC scheme in [11]), and it multiplies?S Presented in the previous section.
the noisy feedt_)ack vectors by the mati;_, before. Definition E.2. For a positive integern, define
further processing it (which accounts for the modulatiofp (P, Po,N,Ky,w,) as the set of all rate-pairs

. . . i
of past inputs). The presented choice of the inner e0R,, R,) satisfying the three rate constrain(71) on
coders ensures that the input sequences to the origi of the next page, where recall that , = 1

MAC =z1,22 — Y satisfy the average block-poweraz0 =1, 810=1 Boo=1po=0 Wig =0,

constraints (4). In particular, with the presented choiGghere {1 K}Z—_f {as K}Z—_f {Pf}z:ll are defined by

allinput symbolsX, y, ..., X1, have the same expectedRecyrsiong172)(174)also on top of the next page, and
power Py, and all input symbols(s 1, ..., X2, have the wheres; o 2 1, fno 2 1, and {7, z}Z’—’f and {7» Z}g:ll
same expected powet,. are defined bi ' T e
This encoding scheme corresponds to the following
parameters of the concatenated scheme: B A1 [ B1,e (ag,gCov[El,g, W]
K10 = -
T ’ P 1 — p?ag e
s (VA JE ) PA e
’P " T Pey/@1 02 (COV[Ep ¢, W]
= o ( & -1 - ,
az = ( P Y Box (=1)7 62,7,271) ) (1= p2on ey
and (175)
5 A P, _(0) P (0) T _ A @ a1,0COV[Es3 ¢, W]
B1 = (0 - 51_,11’)’1.,1 SRR, 51,7;1—171”7*1) ’ Rae =1t Py ( (1= pp)an ez,
_ 0 o :
Bo = (0 %75,% (_1)77\/ ,3;327175,1)7—1) ) _pgﬂ/aljgagngOV[ELg, Wg]
" """ (1= pp)arcaze ’
where the vectors{vu and {7, are de- (176)

fined as thm—dimensionaﬁectors obtainj“}e:d1 by stacking

the ¢-dimensional column-vectory,, on top of an and (Bredi=l, {Bee}i=t, {Ev}7=), {E2}i—),
(n — £)-dimensional column-vector with all zero entries{We}/—;, and {W, ,}7_, are defined by Equations
ie., (160)+(168) and by Equationg140) (143) and (144)

71(2 = <7674> . (169) Corollary E.3 (Noisy Feedback)The capacity region of
the two-user AWGN MAC with noisy feedback contains

The paramete€ is chosen as the LMMSE-estimationall rate Fi_%gionSﬁn(Pl, Py, N, Kw,w,) for positive in-
matrix C_mmse, Where recall tegersn, i.e.,

Cimmse = A7 (AAA] + N1y + Bi(Kw,w, ® |n)|§1)71 , Choisyre(P1, P2, N, Ky, w,)

(170) :
L3Notice that for eachy € {1,2} and eacl? € {1,...,n— 1} we

whereA, £ (51 52) andB, £ (Bl Bg). haves, = T(BPL;ZKU,Z’ whenx,  is defined as in (146) or (147)
in Section D-A (Appendix D).
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1 n Pll_i2 B Q1,e—1 1—/)2,
Ry < =3 log <1+ beimo (1 0) (171a)

2n o Var(WL,g_l) + N
1 < PoR3 o gt (1= p7_y)
Ry < — log | 1+ : 201 171b
2= ; & ( Var(W., 1)+ N (171b)
Rt Re < kS tog (14 D By P B VAP RL 1R B P
+ — o} =+ ’ — +
PRS2 Var(Wo. 1) + N Var(Wo 1) + N
(171c)
Q1 =1y Pll_iié_l Zlﬂj + P2E§74—1 gzj:
1,6 = 01,¢-1 = T
PoR3 gy (U= pi ) +Var(We ) + N
2V P PoR g—1Rae—1 ) G g2t (= 1) ey +Var(Wi 1) + N\ 71
+ i 172
Py, (1= ) + Var(Wo, 1) + N (172)
s — ta s Pl’_fieflgif: + PQR;EA-O‘;?:
20 = Q201 = T
PiRY ,Bij,i (1—pj_y) +Var(Wi 1)+ N
2V/P1PyR1 g—1R2,0-1 %(—1)%571 +Var(Wy ,—1)+ N\ *
n T (173)
Pl'%il—l Bi:ii (1- pffl) + Var(WL,g_l) + N

—VP Pk e1Rae1y ) 5o moy (U= p_y) + pe—a(Var(Wy p—1) + N)
Pe = Pe—1 — =
\/Pl’%%,f—l ,Bij:i (1—pj_y) +Var(Wy, 1)+ N\/P2R%,e—1 Bjjii (1—p;_y) +Var(Wy 1)+ N
(174)

We first describe how Inner Encoder 1 and Inner

2cl U R (Pr, Py, N, Kwyws) | - Encoder 2 map the fed symbols to the sequences of
neN channel inputsX, 1, ..., X1, and Xy 1,..., Xo,. This,
APPENDIX E then determine&d, as, By, Bo. The matrixC is chosen
CHOICE OF PARAMETERS I as the LMMSE-estimation matrix.

The inner encoders use the same linear strategies as in
ection E-A, with the only difference that here for every

only treat the noisy-feedback setting. The choice ngd .;yrlnk?ol, Inner; Encode;l_sqlalﬁs Ithe f|rEst prgdu;:ed
propose is based on extending the choice of parametg}lgrl ol by a cons any/r, and similarly Inner Encoder
in Section E-A in the previous appendix with a form OPcaIes the first pr0(_1uced_ symbol by the same constant
power allocation as suggested in [11]. We denote thréF’ wherer € [0, 1] is defined as the solution to
choice byaj, as, By, Bs, C. ~ 2p p

As we shall see, for our choiceC is the \/ 5 TN ! ; ¥
LMMSE-estimation matrix. Thus, the achievable re- (rPL+N)(rPy + N)

gion of our concatenated scheme with parametetguation (177) has a unique solution [y 1] because
1,a1,8z,B1,By, C is obtained by substituting the pa-(177) is strictly increasing i € [0, 1] and by
rametersa;, as, By, Bs into the RHSs of (148) in Sec-

In Section F-A we present a second choice of th§
parametersa;, as, By, B2, and C given n € N. We

=p" (P, P, N).  (177)

tion D-A. The resulting achievable region is presented . PPy
in Corollary F.2 ahead. 0 < p*(P1, P2, N) < (P, + N)(P, + N)’ (178)
A. Description of Parameters Here, Equation (178) holds by the continuity of the

We only consider the noisy feedback setting. ARXPressions in (8), and because for= 0 the RHS
analogous choice of the parameters for the partial feef. (8) iS strictly larger than its LHS, whereas fpr=
back setting is obtained by similar modifications as i /% the LHS of (8) is strictly larger than
Remark E.1 in the previous appendix. its RHS.
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The reason for scaling the first produced symbols . Achievable Region
/r < 1 is to ensure that the correlation coefficignt Definition F.1. For eachn € N define the rate re-
satisfiespy = —p"(P, I, N). This property is used gion R, (P1, Pa, N, Ky, w,) as the set of all rate-pairs
in the proof of Remark IV.8 in Section IV-E2, Where(leRz) satisfying Constraint§181) on top of the next

we show that for perfect _feedpack gnd with the choicFage’ where now (unlike in the previous appendix)
of parameters presented in this section our concatenate

scheme achieves the sum-rate capacity. a1 =P rP+ N ’ (182)
The trick of reducing the powers of certain channel ’ rPr+1rPy + N

inputs X, ; and X, ; in order to control the next corre- g1 = 1Py rb + N (183)

lation coefficientp, was introduced in Kramer'’s perfect- ’ rPy 4+ 1P, + N’

feedback scheme [11]. Ozarow uses a different trick in p1=—p (P, Py, N), (184)

his scheme [13]. He assumes that the two transmitter% : . o

share a common randomness, which allows them to vaVPS/ erer is the unique solution i, 1] to

a specific correlation coefficient; by adding a scaled \/ 2P, P,

version of the common randomness to their channel

inputs X; ; and X5 ;. (rPL+ N)(rPy + N)
For the detailed description of the inner encoders WEd where the parameters{a, Z}Zle’ {as 3}2771’

again replace the fed symbdjs, & by the independent {pg}"* I E}g:%' (B E}g:%' (71 E}g:%' {/_@21}2:?1

=p*(P1, P, N), (189)

. - =27
star(ljdard Gaussiarts; and =,. Then, Inner Encoder 1 {WL,fz}Z:_ll are defined as in the previous appendix,
produces if the input symbolsX; ; and X5 rather than being
X111 =+rPiE, (179) defined by(160) and (161) are now defined by179)
P and (180)
_ 1 = _ AT —1
Hue = Bre—1 Er =), Ce {2l Corollary F.2. For the two-user ANGN MAC with noisy

feedback our concatenated scheme with the parameters

and Inner Encoder 2 produces described in Section F-A achieves all rate pairs in the

X2 = \/TPyEa, (180) regions R, (P1, P», N, Kw,w,) for positive integers,
) P - ie.
Xop= (1)1 B2 — 75 1M1 Vi ,
[32#1( 2t 21) Choisyra(P1, P2, N, Kw,w, )
Le{2,...,n}, 3
_ _ _ _ Dcl R, (P, Py, N,K
where (M7 (Buelisl, {Baddish mdich, 2ol | U Ra(Pr, P, N Kivaw)

{721}2;11 are defined as in the previous appendix when e

the channel inputsX; ; and X»; rather than being Remark F.3. Specializing the region in Definition F.1

defined by (160) and (161) are now defined by (1799 perfect feedback, i.e., tdw,w, = 0, results in the

and (180), and where is defined by (177). region R, (Pi, P», N,0), which is defined as the set of
The described encodings correspond to the followirgl rate pairs (R;, R2) satisfying

parameters in the concatenated scheme:

: Ry < 110g<1+TP1)
~ 1> 5 T
a2 (\/rPl JE 4/531) , m N

N, L Py -1 Py T E 1 Pl(l - pgfl)
A e o #3 o (1 L) aose)
and 1 N rPy
5 0 0\ R2§—10g<1+—)
B, £ (0 - 6113_,1178 —,/—55171'757,)7_1) , 21777 N
5 0 0\’ 1 Po(1—pf_y)
Ba2 (0 /Bl o (U EE) +D 5 los <1 + ) (186b)
where 0 qenotes the all-zero column-vector and where =2
o\ "™ . . . 1 rP +rP;
{71 z} and{«/2 Z}E are defined as in the previous 121 + Rz < o log | 1+ ——
’ =1 ’ =1
appenae. T 1 P+ P, +2
The matrix C is chosen as the LMMSE-estimation +Z — log <1 grro2zre
matrix C_umse, Where recall that =2 2n N
e _ _\—1 1\e—1
Cummise = A7 (AAT + N, + B (Kivyw, © 1)8]) L VD ;) P“)

whereA, £ (a; &) andB; 2 (B, B»). (186¢)
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1 rP; 1 & Pl””u 1/3M 1(1—p§71)
Ri<—log(1+2)+=Ylog|1+ 181a
L= g< N> 277; g( Var(W, 1) + N (1812)

1 rPy 1 & P2“2e 15” 1(1_P§—1)

Ro< —log (142 )+ =Y log |1+ 181b
2= Og( N) 277;;%( Var(W, ;1) + N (181D)

1 rPy 4+ 1Py

Ri+Ry<—log (1
1+ 2_277 og( + N )

g 1y P P B4 0T ot [
— O,
& Var(WL,g_l) ¥ N
(181c¢)

where the sequencépg}g;ll is recursively defined by fed symbols to the channel inputs. This then determines

p1=—p*(P1,P,,N)andforf e {2,...,n} by a1, 49, By, By, C. To simplify the description we replace
-1 9 the symbolst; and &, fed to the inner encoders by the
) = peaN — (1) VARA ) : independent standard Gaussiahsand =,. We choose
\/Pl(l —pi)+ N\/Pg(l —pi_)+N the inner encoders to produce
187 .
(187) X1,1 =V Pi=, (191)

and wherer is the unique solution if0, 1] to (185)

Xo1 =V PE 192
Proof: Notice that if Ky, w, = 0, then trivially 21 = (192)
Wi ,=0,forte{l,...,n—1}, and Definitions (165)- and for¢ € {2,...,n}:
(168), (175), and (176) result in

Yoo = KylKyr =, , (188) X1/ = (B =41V, (193)
' ’“ 1,6-1
Bue = Var(2, — Ky 2 KylY") = av,e, (189)
_ B X = (=1 -1 P2 = X7 M Vf—l
Ry = 1. (190) 2,0 = (1) s (uz Y2,6-1Me-1Vs ),
2,0—1
Thus, for perfect feedback the parameters suggested in (194)
Section F-A are LMMSE-estimation error parameters, ] ] ]
which are optimal for perfect feedback in the sens‘(ﬁ,‘here fort € {1,...,n — 1} the matrixM, is defined
discussed in Section IV-C2. The rate expressions in (173§ in (164) and
then result in Expressions (186), and Recursion (174) B2 Var(fl _ 5 Vé) (195)
results in (187). This concludes the proof of the remark. S, _ vy ! ’E
m Pa,e & Var(Za — 45 (MVy ) (196)
Y16 = szz KV’Z E1 (197)
APPENDIXG
CHOICE OF PARAMETERS I V2e = KV’ZKV[ (198)

In this section we consider the noisy-feedback setdyotice that this choice implies that tidieth channel input
with receiver side-information, and we present foproduced by Inner Encoder 1 is a scaled version of
eachn € N a specific choice of the parametershe LMMSE-estimation error oE; based on the past
ai,ag, By, By, Cg, which we call &;,4;,B;,B,,Cg. feedback outputd/ 1,..., Vi, ;. Similarly, for Inner
As we shall see, the matris is chosen as the Encoder 2.

LMMSE-estimation matrix. Thus, the achievable re- The described encodings correspond to the following
gion of our concatenated scheme with parameteparameters of the concatenated scheme:

7,41, as, Bl, BQ, C3| is obtained by substituting the pa- T
rametersiy, a2, By, By into (156). The resulting achiev- a1 = (\/?1 f:]] B]i]) :

able region is presented in Corollary G.2 ahead. : ’

égé(\/_PQ —JE L)

2,1 B2,m—1

A. Description of Parameters and

Let a positive integen € N be given. We first describe N P (0) o0 \
how Inner Encoder 1 and Inner Encoder 2 map thB1 = (O BRVE7es B SRR —[;11%171,77_1) ,
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o T
5, 2 (0 I 30 (= ngzfleé?%fl) : APPENDIX H
’ " RATE-SPLITTING WITH CARLEIAL’'S COVER-LEUNG
" ! n—1 SCHEME

(0

vyhere the VeCFor{PYV} — and Wég }zzl are def In this section we describe the rate-splitting scheme in
fined as they-dimensional vector obtained by StaCkIngSection IV-D2 in more detail. We consider the version
the (-dimensional column-vectofy,, on top of an ¢ o <-heme where after each Blokke ,...,B)
(n—ﬁ)-dimensional column-vector with all zero entriesTransmitter 1 first decodes Messagdg,cs;, béfore
€., decodingMa ¢ ». Similarly, for Transmitter 2.
0 a (s We _first _describe the e_ncodings. We start with the
Yoo = ( 6 ) , te{l,...,n—1}, ve{l,2}. encodings in Block, for a fixedb € {1,..., B}, where

we assume that from decoding steps in the previous
block (b — 1) both transmitters are cognizant of the
pair (M cLp—1, MacLp—1). Given M, cLp = mucL b,
MicLpy—1 = micLpe—1, and MacrLp—1 = macLp—1,
Transmitter v, for v €  {1,2}, picks the

A

The matrisz| is chosen as the LMMSE-estimation
matrix with side-information, i.e.,

Csi = AI(AAT + N1,) 7,

codewords u,,,(Mmy,cLb) (Unb,15 -+ s Unbygn ),y
whereA, 2 (a; &) wip(micLb-1) 2 (Wi,b,15- - W1 mn),  and
re e 92 wap(macLp—1) =  (Wop1s---w2pyn) from the

corresponding codebooks, which have independently

) ) been generated by randomly drawing each entry

B. Achievable Region according to an IID zero-mean unit-variance
Definiton G.1. For eachn € N define the region Gaussian distributidd. Fix correlation coefficients

9]

Ry(Pr, Py, N, Kww,) as the set of all rate pairs P1: P2 € [0,1], which are constant over all blocks
b

(R1, Ry) satisfying ) € {1,. B} Transmitterv computes the following
linear combinations fok € {1,...,n} andv € {1, 2}:
d1,0—1 2
1 < P (1—p7_1) 1
Ri< ol > log | 14— I : VA=) P+ 5o F) (Wipk + w2pk) , (202)
=1
where
1< 2o (L= 7 1)
Ry < o= log [ 14+ 222 2 i
255, g N ) Uy bk = (Upb,(k—1)n+1> - Unbkn) s
= A T
Wybk = (Wb, (k=1)nt1s - s Wub k) -
Ry + Ro . (k—1)n n
12 P oLe-t | p o2e-t Moreover, Transmitter uses our concatenated code to
< = Zbg 14 —Pue P encode Message/, cs,. Specifically, givenM,, csp =
2n =1 N my csp. Transmitter v feeds m, csp to Outer En-
2P, Py, Stz (1+(_1)z—1p€_1) coder v, which picks the codeword,(m, csp) £
n Bie—1B2,e-1 (&up1y---,&bn)" corresponding ton, cs, and feeds
N " it to Inner Encodew. Denoting the parameters of Inner

Encoderv by a, andB,,, Inner Encoder produces the
wherea; o = 1, ago = 1, po = 0, and {a1.¢}7_,, n-dimensional vectors
{-04273}2721, and {pg}gzl are recursively given by Recur- Ao+ Bu Voo, ke k... n} (203)
sions(199)-201)displayed on top of the next page. and ’ ’
wheref; o =1, B0 = 1, and {$1,}}—; and {Ba,}}—; Where
are described by191)(198
: )( )_( ) Vl/,b,k £ (Vu,(b—l)nn-i—(k—l)n-i—lv SERE) Vu,(b—l)nn-i—kn)T'
Corollary G.2. ~ The capacity région  The signal transmitted by Transmitteris then de-

Cnoisyresi(P1, 2, N, Ky, ) of the two-user Gaussian gqijneq by the sum of the vectors in (202) and (203) as
MAC with noisy feedback and receiver S|de—|nformanolq)uowS Fork e {1,...,n} andv € {1,2}

contains the rate region§én(P1,P2,N, Kw,w,) for

positive integers,, i.e., Xobk =V (1 —=p2)Pu, i
1202 ( + )
Chnoisyresi(P1, P, N, Ky ws, ) 5Pty (@bl + Wbk
Dl U 'fgn(ph Py, N,Kw,w,) | - 14To satisfy the power constraints the Gaussian distribusioould

be of variance slightly less than 1. However, this is a tegddity which

neN we ignore.
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-1

a1 -1 /. D _1\¢—1 Q1,0-1Q2,0-1
P Bi,e—1 t2vhp, (1 +( 1) Pl—l) V Bie—1B2,0-1

Q1= Q101 1+ T (199)
ao P (l=pfy) + N
—1
B P 2VAR (L () o) | [Gem5
agp=oag0-1 |1+ : : ’ (200)

P (L=pf )+ N

VPTGt =) 4o
L (201)

pe = x1,6—1 2 Q2,01 2
\/le(1 ~ Pi-1) +N\/P2m(1 —pi-)+N

v&u B.Vubk, 204 1 1
Fabubk t bk (204) - (\/?’%P{ + \/§P%P2/> (11 + Q2p.1)
where
. . —ax=o p i
Xu,b,k = (Xl/,(bfl)nnJr(kfl)nJrla RS Xl/,(bfl)nn+kn) :

=ay - Zipkr+ /(L= )P/ Ui+ Zpi

Notice that ifa;, a5, B1, andB, satisfy the power con-
12 2l 2 y P +Wop i +Bi (Wipr — Wapk),

straints (19) for poweréP; — P;) and (P, — PJ), noise
variance(N + P| + Pj + 2./ P{Pip1p2), and feedback- where
noise covariance matriKyy, 1, and if the outer code’s

A
codewords{Z; (M1 csp)} and{E2(Macsp)} are zero- Zk = (Zo—1)gnt(k—1)n+15 - - Z(b—1)nn+kn)
mean and average block-power constrained to 1, th&W,, ; = (W, (b=1)mnt-(k=1)n+15 - - > W (b= 1)mm+kn) -
the channel input sequences satisfy the power constraints - - o
with arbitrary high probability. Since the Sequent%vz,b,h Yy Vz,b,n} is independent
In Block (B + 1) the two transmitters only sendof the additional information{Us;1,...,Uz24.,},
information about the pai(M; cL 5, MacL ). Given {Qip1,..., Q1 .0}, {Q2p1,--, Q20 and
MicLp = micLp and MacL.p = macLp, both {Esp1,...,Z2.,}, Transmitter 2 can optimally decode
transmitters pick the c?dewordsl_,BH(mLCL,B) % MessageM; cs; based on{Va,1,..., Vay, b only.
(W1,B4+1,15- - - ,w1,B+1-,nn)T and wsz, p11(m2,cLB) = Tothis end, it does not apply the inner and outer decoder
(W2,B41,1,- -, w2, B419n)" from the corresponding of the concatenated scheme, but directly applies an
codebooks and form a linear combination of poWRlr  ontimal decoder for a Gaussian single-input antepna/
Thus, defining output antenna channel with temporally-white noise
X, 511 2 (XoBynitse s Xoatym) ?\gt(qu)JQe)nges which are corre,zlated across antennas. Let
a T 1 cs denote Transmitter 2's guess of Messdde cs
Wy B4+1 = (WV,B-ﬁ-l,la cee 1WV,B+1,7]77,) ) ’ £ (Tx2) ~ (Tx2) T .
_ _ , . and let (Elbl,...,Elbn) be the corresponding
the signal transmitted by Transmittercan be described 2 "’

codeword of the outer code.
Transmitter 2 then decodes Messalg ¢, as fol-

1 lows. It first attempts to subtract the influence of the
X, =/ =p2P! . 205 . :
BT\ gty (@41t w2,541) (205) sequence produced by encodihg cs; and to this end

Next, we describe the decodings. We start with the0mputes

_decodmg at Transmitter 2; the decoding at Trgnsmﬂter 1 {,ézg LA Vo — alégﬁ), ke{l,...,n),

is performed similarly and therefore omitted; and the " "

decodings at the receiver are described later on. which, if Transmitter 2 successfully decodéd; csp.
Recall that after a fixed block, for b € {1,..., B}, equals

Transmitter 2 first decodes Messaf# cs;, followed -
by MessageM,; c. . After Block b, Transmitter 2 1/ (1 =p)P{Urp i+ Zp i + Wap i

as

observed {Va41,...,Vau,}, and additionally is +B1 (Wipr — Wapk), ke{l,...,n}.
cognizant of the realizations ofUsz41,...,Usypn}, )

(141 Qipn) (Qa41 Qopn) and Transmitter 2 then decodes Messalyg ¢, based on
;0,19 00 ey ,0,m Sy ;0,15 000y ,0,m S ~ (2 ~ (2 . )
{Z241,...,Z24n}. It can thus compute for the sequence{Vé,Z,l,.-.,Vé,Z,n} using an optimal
ke{l,...,n}: decoder for a Gaussiapinput antennaj-output antenna

_ R channel with temporally-white noise sequences corre-
Vouk 2 (1= (B1+B2))Vayr — /(1 —p3)P3Usp1  lated across antennas.
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receiver. After each block € {1,..., B} the receiver 2

As a last element, we describe the decodings at the 1 1 - ~
g - (\/ piP] + \/§p§P2'> (Ql,b—l,k + Qz,b—l,k)
performs two decoding steps. In the first step it de-

codes MessagesM; csy, Macsy) While treating the ME1p-1k = A2Z2p-1k = B1 ¥k = Ba Yok,
sequences produced to encodlf ¢, 1, MocLy2, =\ (1—=p3)P[Urp1x+/(1—p3)PsUsp 1k
MLS;LJ,, and MZCL,b.as additipnal noise. For this de-  1B,W,;, 1 +BoWay 15+ Zp 1.
coding step the receiver uses inner and outer decoders of o n
the concatenated scheme. (éﬂl,CSb,MQ,CSb) denote Equipped with the Sequenceﬁ(Yb,i,Yl()Q_)l,i)}i1
the receiver’s guess of the pdit; csy, Mo css) pro- the receiver finally ecode_s Messages
duced in this first step, and |{é§R;>1...,é§R;_;)T and ]EMLCLVZ’*.’MZCL-'I’”) using an optimal  decoder
” s s or a 2n-input antenn@h-output antenna Gaussian

EéRbX)l,,EéRg‘L) be the corresponding codewords oMAC with temporally-white noise that is correlated
the outer code. across antennas.

In the second decoding step, the receiver decodegifter Block (B + 1) the receiver decodes Mes-
MessagesM; cLp—1 and My ci 1. To this end, it sages(MicL s, MacL p) based Oan)p---ng_,)n
first pre-processes the outputs observed in blogksand based on the sequen@8s,.+1,- - -, Y(B4+1yyn)- 10
and b — 1 to mitigate the influence of the sequenceBis end, it again uses an optimal decoder foR:a
produced to encode Message¥/; csy, M2 csp). The input antennah-output antenna Gaussian MAC with
outputs in blockb are processed as follows: For eactemporally-white noise that is correlated across antennas
k € {1,...,n} the receiver computes

S A 2 (Rx) 2 (Rx) A. Noisy and Perfect Partial Feedback
Yor=Yor—a1Z) ) —a25; % . : . .
The proposed extension applies also to settings with

“BiYon = BaYou, (206) noisy or perfect partial feedback to Transmitter 2Bif
where is set to the all-zero matrix and if Carleial’s scheme for
N ; partial feedback is applied. Thus, our scheme should be
Yo = (Yo—tmnt (=115 -5 Yo-1yantin)' modified so that there are no decodings taking place at

Notice that in case the first decoding step was successfliiansmitter 1 and so that in (204) and (205) the term
i.e, in case thaE (", = =1, and=yy, = Zopk holds /o2 P, (w1 + ways) is replaced by/p2 Pjw1 ;.

forall k € {1,..., h}, (206) corresponds to Notice that in a setting with perfect partial feedback
to Transmitter 2 the components of the noise vec-
\/ (1= pD)P{Ur i +1/(1 = p3)P3Us 1 tors corrupting{V.;;} are uncorrelated, similarly for

. \/1 2P’+\/1 1) (s 4 o) {(Vggz— \/(1—p%P{)u17b_17i)} and for Y,,; and
9P g2t | B0k T RRb R Y!?). Thus, optimal decoders for Gaussian multi-input
+BIW 1k + BoWa i + Zi s antenna/multi-output antenna channels with uncorrelated

o _ white noise sequences can be used to decdde,

Before describing how the receiver processes the oy Transmitter 2 and to decod@/; cip, MacLp) at
puts in blockb—1, we notice that the receiver already dethe receiver. Moreover, the observatigiy,,;} at the
coded Messages/i cib—2, MacL b2, M1,c§b(§)1()a and receiver is a degraded version of the observaivn ;, ; }

M>csp—1 in previous decoding steps. Lét/; o/, ,, at Transmitter 2. Thus, since the receiver decodes

MSRY g MR and M, . denote the re- (Micss, Macsy) based on{Yy;}, in settings with

1,C8b—1° 2,CSb—1 : . ; s
ceiver's guess osf these messaaes. Also, for dach perfect partial feedback there is no loss in optimality in
(1,...,n} let Qgbezl . and Q;Rzﬁl . denote the code- the presented rate-splitting scheme if based i ;,; }

words that in the codebooks used in tieth sub- Iransmitter 2 first decodes messabg cs, before de-
block of block b — 1 correspond to the guesseé:OdlngMLCL,b' In particular, the set of achievable rates

2R R0 d let(2R9 2(RX) 7 of the concatenated scheme is solely constrained by the
LeLb—2 M2cLp—2r ANATE (“Lb*lvl o ’“Lb*l-,n) decoding at the receiver.

and (E;’?;ZIJ,...,E;'T;ZIW " denote the codewords

that in the outer code uséd in blodk— 1 correspond APPENDIXI

to the guesseﬂ;fl(%%b_l, and M(Fg) ,_1- The receiver INTERLEAVING AND RATE-SPLITTING WITH

processes the outputs observed in the bleick 1) by CARLEIAL’S COVER-LEUNG SCHEME

computing fork € {1,...,n}: We describe the scheme in Section IV-D3 in more

<@ detail. We start with the encodings and first consider the
b—1k encodings in thé-th subblock of Bloclk, for a fixedb €

2Y, 14 {1,...,BYandl e {1,...,n}. Defineb = (b—1)n+~.



45

We assume that from decoding steps after previoldessagel/; cs,; to its outer encoder and that the outer
subblockg (b—2)n+1), ..., (b—1), both transmitters are encoder produced the codewddd,. Let
cognizant Of{(M17|C|_,(b_2)77+1, M2,ICL,(b—2)7]+1)! ey A T
(M e 1 Ma o 5-1) 1} a = (ann, - a1)
o o B : b b

The encodings in Subblodkconsist of four steps. In L1 L
the first step Transmitter 1 producesratength vector to
encode messagel; \c j My cp 5 @AM, o 5
as follows. G|venM1,,C,_75 = My L i Ml,ICL,E—n = b b
My el oy @AMy o 5 = My ey 5, Transmitterl Ln,1 e Ln.m
first picks codewordsy, ;(M, ¢ 5), w, 5(M, c 5_,,), denote the parameters of Transmitter 1's modified inner
and w, 5 (M, ;_,) from the corresponding code-encoder. The modified inner encoder then produces the
books, which have independently been generated by rarlength vector
domly drawing each entry according to an 11D zero-mean -1
unit-variance Gagssian distributijc?nTrgnsmitterl then_ a1,e€y + Z bl,e,j\_ﬁ,(bq)nﬂ, (209)
completes the first step by computing the following
linear combination

(1>

B: .

j=1
which is also then-length vector that Transmitter 1

1 produces in this third step. Similarly, for Transmitter 2.
V(@ =) Pluy g+ 5p1P (‘*’1,5 + ‘-"2,5) » (207) " |n the forth and last step, Transmitter 1 sums the
. ] length vectors in (207) and (209), and sends the resulting
where p; € [0,1] is a fixed chosen parameter of thesympols over the channel. Similarly, for Transmitter 2.
scheme, which does not depend onSimilarly, for " Thys, the signal transmitted by Transmittein Sub-

Transmitter 2. _ block b can be described as follows:
In the second step, Transmitter 1

« n 1
computes  the  “cleaned feedback vectorsX ;= /(1 — p2)Phu, ; + 1/ 502P, (w5 +w,;
Vo o-1y+1s- s Vo, o-1ypre—1,  Where 'V g for

77 _ _ _ ; ; . _
Ve{lb-1)n+1,...,(b—1)n+¢—1} is defined as: fak,, + Zbu,é,jvu,(bfl)nJrja (210)

j=1
WhereXU.B £ (XV,(Bfl)nJrl’ tot ’XV,En)T'
—\/(1 = p3)PJU, Notice that if the parameter@;,a, B;,B,) satisfy
1 : 7 the power constraints (19) for transmit powérs — P;)
_ <\/_p%p1/ + \/_p§p2/> (Ql o+ Q 5/) , and (P, — Py), noise varianceV, and feedback-noise
2 2 ' ’ covariance matrixKy,w,, then the input sequences
(208) satisfy the power constraints (4) with arbitrary high

VI,B/ = Vl,E/ /(1= p%)PllUl,l;/

. e probability.
WhereV_u,E/ = (VV,(-B’—I)n-Q—l’;' - Vi)' Similarly, for -~ \we next consider the encodings in the last BloSkt-
Transmitter 2. Notice that far' € {(b—1)n+1,...,(b— 1), where the two transmitters send information about the

1)n + ¢ — 1} the “cleaned” feedback vectors satisfy  pairs of message$(M; ci(5-1)y+1: Mo,cL(B—1)n+1)
ooy (MycL By, MacL,Bn)}. We consider a fixed sub-
block b € {By + 1,...,(B + 1)p}. The transmit-
ters send their channel inputs in this last bladdg +

Vl,E' - Wl,B’ = VQ,E' - W2,B’v

where fort € {(b—1)n,...,(b— 1)n+ ¢ — 1} and

ve{1,2}: 1) as follows. GivenM, ¢ 5, = my¢ 3, and
e My ey = My p, DOth transmitters choose the
Wop = W@ W)™ codewordsw, 5(M, ¢ ;_,). andw, ;(My ¢ 5_,) from

the corresponding codebooks and send a linear combi-
Thus, they correspond to the feedback vectors of ration of the chosen codewords over the channel. Thus,
“cleaned” channel where the channel outputs are dée signal transmitted by Transmitterin Subblockb

scribed by the vectors (V, ;, — W, ;) ¢. can be described as
In the third step, Transmitter 1 produces =aength 1,
vector to encode Messagé cs;, using the “cleaned” Xop =\ 3P (wl,g + wzj) ; (211)

feedback vectors in (208) as explained shortly. ASSU%ere
that at the beginning of Block Transmitter 1 fed

X,; £(Xx X )

v,(b—1)n+1> "
15To satisfy the power constraints the Gaussian distribusicould . . . .
be of variance slightly less than 1. However, this is a tegdity which We next describe the deCOd'ng at Transmitter 2; the

we ignore. decoding at Transmitter 1 is performed similarly and
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therefore omitted; and the decoding at the receiver will el

be described later on._ + Z b1e5 (Wi o-1)pti — Wa,0-1)5+5)
After each subblock € {1,..., Bn} Transmitter 2 =t

decodes Message!, o, ;- We consider a fixed Sub- 2y + Wap

block b € {1,...,Bn} and defineb € {1,...,B} wherez; 2 (Z(y—1ynsrs-- -+ Ziyy)'- Transmitter 2

and £ € {l,....n} so thatb = (b — 1)n + L fipay decodes Messag¥/, , ; based orlN (, 1,11,

Befor:e desdcrlb]!ngh_the decodlnﬁ of Messm,lﬁhéf |""N2 - 1yie_1, and ‘727(1;;1)7;% using an optimal

Iagwitn © irllter0St}bltjogl?%ag[I'arzn'sm\,\iltet}ernoztlcgb;e?vegaeCOder for a single-input antenna/multi-output antenna
g ' Gaussian channel with correlated but temporally-white

the _feedba_c_k vectorsV_Qy(b,l),,H,...,sz(b,l)nﬂ noise sequences

?R/([j 's additionally X;gnlzant of }Mesasﬁgdﬁfélscssubr}]_ We next describe the decoding at the receiver. We first

LH2ICL, (b= 1)t 1s - - o5 772,ICL, (b—1)n+¢J consider the decoding of the pait\/, ¢ 5, M, ¢, 3)

ing its previous decoding steps were successfuj;)t fed subblock ) 1,CL,lb? 2,10_,1)

after a fixed subblockh € b .
of Messages Myci -1y -+ MieL o-iynie-1}: pefineb € {2 B+ 1} an%néz {1 (77}+so)tnh}at

It can therefore reconstruct the sequences pr = ;
duced to encode these messages. Moreover, Transfi= (0 — 1)n + £. Before describing the decoding of

ter 2 can estimate Transmitter 1's feedback outpule® PaIr(M, ¢ 5, M, ¢ ;) at the end of this paragraph,
(even though it cannot W€ notice the following. In decoding steps after

Vi ooy Vi (b , _ .
LG+l L (Lt e grevious subblocks the receiver has already decoded

reconstruct them because it is incognizant of the fee ,
back noises). By subtracting the reconstructed sequenbi&ssages {(Mi icL,i-s)p+es MacL. (b-3m+0) Yorm1
and the estimated sequence from its feedback outpdf€Z1.icL,-2yn+e> MaicL,(b—2yn+e) Yor=1s and

. . . -1
Transmitter 2 can thus compute thedimensional vec- {(MuicLo—1yn+e/, MajcL (b-1yn+e)} ;- Therefore,
tors N, 1)y 415+ No o iypre—1 and Vo p-1ypes, (assuming that these decodings were successful) the

which are defined as: receiver can reconstruct the sequences produced to
~ encode these messages and subtract them from the
Vo, (o-1)n+¢ output signal. Thus, the receiver can compute for

b e{b—-1,b} and? € {1,...,/ — 1} the “cleaned”
£ Vo, -1yt — \/ (1 = p3) P3Us (- 1)+ outpu{t vector} { }

1 1 =
— <\/§p?1’1’ + \/5/)%135) Yo —1yn+e
a 2
(1 (b 1ymse + Do (1)) =Yw -1yt — /(1= p)PIUL (y—1ynter

-1
_ I —
—az,Bap — Y (breg +b2.05) Vo o1yt

j=1 1 1
’ - W L 5@135)
=1/ (1= pD)P{Uy (p—1ypps + 01,61

(1= p3)PyUs (i —1yyter

-1 (@1, =1yt + Qo —1ynter) 5
+ Z bie; (Wi om1yn+j — W (b—1)n+5) =a1E1p +az By
Jj=1 -1
+Z(b71)n+f + W2,(b71)n+la + Z (b17g,7j\_717(b/,1)n+j + b2,€/,jv27(b/71)n+‘j)
where where we define the vectdf, i),/ =t
T % +Zy 1y,
(Z(-1ynte-1)n+1s -+ Z((b—1)y+0n)"s and for b
(b—1)+ ¢ and/? € {1,...,0—1}: where
Nyp 2V, — /(1= p)PU Y w—1ymre = Y —npre—1ynt1s - Yo -n+emm)s

and it can compute
/(1 - ) PU, 5, P

1 2 1 5 g *) )n+e
b—2)n+

2 Y (520

£ _ _ \/l QP/—I—\/E 2 p!
= v+ b2 ) Vo -tyns P11 922

J=1

- (1, (p—2)me + Qo (o
a3 0 (1, ¢-2)+¢ + D2, 6-2)9+0)

=a1,081p = /(1 = pD)P{Uy 2yt



+1/ (1 = p3) PyUs (p—2ynte + a1 eE1p + a2 eBap

{—1
+ 3 (10 V-2t + 02,05V (0-2)15)
i=1

+Z 2yt

where Y (p—2)n+¢
(Yio—2ymte—1)nt1s- -5 Y((o—2)nt0)n) "

Notice that
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and fort € {b—1,b}, ¢/ € {1,...,0—1}:

(3)
Y1yt

R
=Y -nge
V-1

— Z bl g/ —|— b2 Z/ )Y(b,—l)ﬁ-’-]

= al,f/-—'l,b/ + a9 0 Ea py

the “cleaned” output  vectorY 1), equals -1

the d|ﬁerence (Vl.,(b’fl)’lri»f’ - Wl,(b’*l)’l%i»f’)' + Z (bll/,jwl,(blfl)ﬁ‘i’j + b2,f',jW2,(b’71)’I7+j)

Notice further, that even though the “cleaned” j=1

qutputs Y;(b_2)77+1’ c. ,Y(b-2)n+€—l and +Z(b'—1)77+é/'

Y o—1)p+15-+» Yo—1)y+¢—1 do not depend i )

the pair (Ml i My cr ;), they are correlated The receiver then decodes the pair of
messages (M, e 7> Mo 1oL i) based on

with the noise sequences corruptnﬁb e aNd o -3 "2

Y (,—1)5+¢ and should be taken into account by th Eb 2)n+17~-~7Y§b—2)n+e—1aY(b—2)n+e and

receiver when decodingM, oL Mo, CLb) Thus, the Y( D1+ Y(b nre— 1 Y(@p—1)p4¢ USINg an

receiver should decode the paiM, oL Macip

based on the vectorsY(b 241 - - - Y(b 2)ml—1s
2

Y(b Dntts o Y (b—1)gto—1s Y(b 240

Y(b Unte- TO this end,

“decorrelates” the vectors by computing

Yo—1)nte
-1

2 Y (o 1yne — Z(lh 05 Fb2,05)Y o—1)n+s>

=/ (1- p%)Pl/Ul,(b—l)n-l—Z

\/ (1- p%)PQ/UZ(b—l)n-f-é
1 1

+ ( Larey/ 5%)

(Q1,00-1ynre + D2, (b-1)n+0)
+a1,081p + a2,0Z2

+

£—1
+ Z (blvaﬂ'wlv(b—l)wrj + b2757jw2,(b—1)n+]‘)
Jj=1
+Zp—1)n+e
(2)
Y oy 0
—1
(2
= YEb)—2)n+€ = (b1 +b2.0) Y b2yt
j=1

= /(1= p})P{U; (4-2)54¢

+1/ (1 = p3) P3Us (h—2)p 44
+a1,051p + a2 Zop
-1

+ Z (bl,é,jv_vl,(b72)n+j + b2,é,jw2,(b72)n+j)
j=1
+Zp—2ynte

the receiver first partlyh
e

optimal decoder for a 2-inputR{-output antenna
Gaussian MAC with temporally-white noise sequences

and correlated across antennas.

After decoding Message$(M17|CL75,M27|CL75)}BB:’71
receiver decodes Messages
{(Mi,1csps Ma,csp) }E .. To this end, it first reverses
the interleaving introduced by the modified inner
encoders on the “cleaned” output vectdfs, ..., Y ;.
That is, forb € {1,...,B}, it constructs thenn-
dimensional vector

A o _
Yoents = (Yo—1)n+1,15 -+ Yon,1,
Yv(bfl)n+1,21 s a%n,?a
. Y, T
}/(b—l)n-i—l [ a}/b,nn) ;

whereY denotes the-th entry of vectorY It then
decodes Message@’\/[l icsb, Ma,ics.p) applymg inner
and outer decoder of the concatenated scheme to the
vector Ypeintp.

A. Noisy and Perfect Partial Feedback

The proposed extension can also be applied in settings
with noisy or perfect partial feedback, B, is set to
the all-zero matrix and if Carleial's scheme for noisy
or perfect partial feedback is applied. Accordingly, our
scheme should be modified so that there is no decoding
taking place at Transmitter 1. Therefore, in (210) and

(211) the term\ / 5 p2 P, (w, ;+w, ;) should be replaced
by \/pZ Plw, 3, for v € {1,2}.

Notice that—as in the second extension—for perfect
partial feedback the various vectors computed for the
decodings at Transmitter 2 and for the decodings at the
receiver have uncorrelated noise components. Therefore,
without loss in optimality, Transmitter 2 and the re-
ceiver can use optimal decoders for Gaussian multi-input
antenna/multi-output antenna channels with independent
white noise sequences.
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