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On the AWGN MAC with Imperfect Feedback
Amos Lapidoth and Michèle Wigger

Abstract—New achievable rate regions are derived for
the two-user additive white Gaussian multiple-access chan-
nel with noisy feedback. The regions exhibit the follow-
ing two properties. Irrespective of the (finite) Gaussian
feedback-noise variances, the regions include rate points
that lie outside the no-feedback capacity region, and when
the feedback-noise variances tend to 0 the regions converge
to the perfect-feedback capacity region.

The new achievable regions also apply to the partial-
feedback setting where one of the transmitters has a noisy
feedback link and the other transmitter has no feedback
at all. Again, irrespective of the (finite) noise variance
on the feedback link, the regions include rate points that
lie outside the no-feedback capacity region. Moreover, in
the case of perfect partial feedback, i.e., where the only
feedback link is noise-free, for certain channel parameters
the new regions include rate points that lie outside the
Cover-Leung region. This answers in the negative the
question posed by van der Meulen as to whether the Cover-
Leung region equals the capacity region of the Gaussian
multiple-access channel with perfect partial feedback.

Finally, we propose new achievable regions also for a
setting where the receiver is cognizant of the realizations
of the noise sequences on the feedback links.

Index Terms—Capacity, concatenated codes, Gaussian
noise, linear feedback schemes, multiple-access channel,
noisy feedback, partial feedback.

I. I NTRODUCTION

In [5] Gaarder and Wolf showed that perfect feed-
back from the receiver to the transmitters increases the
capacity of some memoryless multiple-access channels
(MACs). That this also holds for the two-user additive
white Gaussian noise (AWGN) MAC was shown by
Ozarow in [13], where he also determined the capacity
region of this channel with perfect feedback. Here,
we study the capacity region of the two-user AWGN
MAC when the feedback is imperfect. We consider the
following settings:

• noisy feedbackwhere the feedback links are cor-
rupted by AWGN;
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• noisy partial feedbackwhere one of the two trans-
mitters has a noisy feedback link whereas the other
transmitter has no feedback at all;

• perfect partial feedbackwhere one of the two
transmitters has a perfect (noise-free) feedback link
whereas the other transmitter has no feedback at all;
and

• noisy feedback with receiver side-information
where both transmitters have noisy feedback links
and the receiver (but not the transmitters) is cog-
nizant of the feedback-noise sequences.

The last setting arises, for example, when the receiver
actively feeds back a quantized version of the channel
output over perfect feedback links, and the feedback
noises model the quantization noises, which are known
to the receiver. (The MAC with quantized feedback has
also been considered in [16] but under the assumption
of a rate limitation on the feedback links and for the
discrete memoryless case.) We show that in all these
settings the capacity region is strictly larger than the no-
feedback capacity region. Moreover, we show that for
noisy feedback the capacity region tends to Ozarow’s
perfect-feedback capacity region [13] as the feedback-
noise variances tend to zero. Finally, in the case of per-
fect partial feedback we show that for certain channel pa-
rameters the capacity region strictly contains the Cover-
Leung region [4], a region that was originally derived for
the perfect-feedback setting and that was later shown by
Carleial [2] and (for the discrete memoryless case) by
Willems and van der Meulen [21] to be achievable also
in the perfect partial-feedback setting. This answers in
the negative the question posed by van der Meulen in
[18] as to whether the Cover-Leung region equals the
capacity region of the AWGN MAC with perfect partial
feedback.

To derive these results we propose coding schemes
for the described settings and analyze the rates that they
achieve. The idea behind our schemes is to generalize
Ozarow’s capacity-achieving perfect-feedback scheme
to imperfect feedback. Ozarow’s scheme is based on
the following strategy. The transmitters first map their
messages onto message points in the interval[− 1

2 ,
1
2 ].

They then successively refine the receiver’s estimates
of these message points by sending scaled versions
of the receiver’s linear minimum mean-squared errors
(LMMSE) of the message points. Besides achieving ca-
pacity, Ozarow’s scheme has the advantage of a double-
exponential decay of the probability of error. However, a
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drawback of the scheme is that it is extremely sensitive
to noise on the feedback links: it does not achieve any
positive rate if the feedback links are not noise-free [9].
To overcome this weakness, we propose to apply an outer
code around a modified version of Ozarow’s scheme
where the transmitters—rather than refining the message
points—successively refine the input symbols from the
outer code. We further modify Ozarow’s scheme by
allowing the transmitters to refine the input symbols
by sending arbitrary linear updates (i.e., not necessarily
LMMSE-updates) and by allowing the number of re-
finements of each input symbol to be a constant, which
can be optimized and which does not grow with the
blocklength. These modifications yield a scheme which
achieves high rates also for channels with imperfect
feedback. In particular, for noisy feedback and for noisy
partial feedback our scheme exhibits the following key
properties:

• for all finite feedback-noise variances, our scheme
achieves rate points that lie outside the capacity
region without feedback, and

for noisy feedback

• the scheme achieves rate regions that converge to
Ozarow’s perfect-feedback capacity region when
the feedback-noise variances tend to zero.

Previous achievable regions for the AWGN MAC
with imperfect feedback were given by Carleial [2], by
Willems et al. [23]1, and by Gastpar [6]. Carleial [2]
and Willems et al. [23] generalized the Cover-Leung
coding scheme [4]. Gastpar’s result is also based on
Ozarow’s scheme and on the idea of modifying it to
use only a finite number of refinements which does not
grow with the blocklength.2 All these regions collapse
to the no-feedback capacity region when the feedback-
noise variances exceed a certain threshold. Moreover, as
the feedback-noise variances tend to zero the regions in
[2] and [23] converge to the Cover-Leung region, which
is a strict subset of Ozarow’s region [1].3

Kramer studied the discrete memoryless MAC with
imperfect feedback, and presented a coding scheme for
this setup that is based on code trees [12], [10].

Outer bounds on the capacity region of the AWGN
MAC with noisy feedback were derived by Gastpar
and Kramer [7] and Tandon and Ulukus [17] based on
the idea of dependence-balance [8]. These outer bounds
do not in general coincide with any known achievable
regions.

The rest of the paper is outlined as follows. This
section is concluded with remarks on notation; Section II

1The result in [23] is for the discrete memoryless case, but iteasily
extends to the Gaussian case.

2The idea of using a finite number of refinements was already
mentioned in [15]. However, only in combination with zero rate or
nonvanishing probability of error.

3It can be shown that the achievable rate region in [6] converges to
Ozarow’s region when the feedback-noise variances tend to 0.
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Fig. 1. AWGN MAC with noisy feedback.

describes the channel models in more detail; Section III
discusses some previous achievability results; Section IV
describes our results and the new coding schemes for the
setting with noisy feedback; Section V for the setting
with noisy or perfect partial feedback; and Section VI
for the setting with noisy feedback where the receiver
has side-information; Section VII finally summarizes the
paper.

In the following Aℓ denotes the column vector
(A1, A2, . . . , Aℓ)

T; diag (a1, . . . , aℓ) denotes the diago-
nal matrix with diagonal entriesa1, . . . , aℓ; Iℓ denotes
the ℓ × ℓ identity matrix;AT denotes the transpose of a
matrix A, |A| its determinant, and tr(A) its trace. Also,
for zero-mean random vectorsS and T we define the
covariance matricesKS,T , E[STT] andKS , E[SST].
For a two-dimensional rate regionR we denote by cl(R)
its closure and bẙR its interior.

II. CHANNEL MODEL

This paper focuses on the AWGN MAC with two
transmitters that wish to transmit messagesM1 andM2

to a single receiver. The two messages are assumed to be
independent and uniformly distributed over the discrete
finite setsM1 andM2.

To describe the channel model (see Figure 1), we
introduce the sequence{Zt} of independent and identi-
cally distributed (IID) zero-mean variance-N Gaussian
random variables that will be used to model the addi-
tive noise at the receiver. Using this sequence we can
describe the time-t channel outputYt corresponding to
the time-t channel inputsx1,t andx2,t by

Yt = x1,t + x2,t + Zt.

The sequence{Zt} is assumed to be indepen-
dent of the messages(M1,M2). Also, we introduce
the IID sequence of bivariate zero-mean Gaussians
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{(

W1,t,W2,t

)}

of covariance matrix

KW1W2
,

(

E
[

W 2
1,t

]

E[W1,tW2,t]
E[W1,tW2,t] E

[

W 2
2,t

]

)

=

(

σ2
1 σ1σ2̺

σ1σ2̺ σ2
2 ,

)

(1)

where σ1, σ2 ≥ 0 and ̺ ∈ [−1, 1]. The sequence
{(

W1,t,W2,t

)}

is used to model the additive noise cor-
rupting the feedback links. The time-t feedback output
Vν,t at Transmitterν can then be modeled as

Vν,t = Yt +Wν,t, ν ∈ {1, 2}.
The sequence{(W1,t,W2,t)} is assumed to be indepen-
dent of(M1,M2, {Zt}).

The transmitters observe the feedback outputs in a
causal fashion, i.e., they compute their time-t channel
inputsX1,t andX2,t after observing all prior feedback
outputsV1,1, . . . , V1,t−1 andV2,1, . . . , V2,t−1. Thus, for
ν ∈ {1, 2}, Transmitterν computes its channel inputs
by mapping the MessageMν and the previous feedback
outputsVν,1, . . . , Vν,t−1 into the time-t channel input
Xν,t,

Xν,t = ϕ
(n)
ν,t (Mν , Vν,1, . . . , Vν,t−1) , t ∈ {1, . . . , n},

(2)
for some sequences of encoding functions

ϕ
(n)
ν,t : Mν × R

t−1 → R, t ∈ {1, . . . , n}, (3)

where n denotes the blocklength of the scheme. We
only allow encoding functions that satisfy the power
constraints

1

n

n
∑

t=1

E
[

(

ϕ
(n)
ν,t (Mν , Vν,1, . . . , Vν,t−1)

)2
]

≤ Pν , (4)

where the expectation is over the messages and the
realizations of the channel, i.e., the noise sequences
{Zt}, {W1,t}, and{W2,t}.4

A blocklength-n powers-(P1, P2) feedback-codeof
rate pair

(

1
n
log(|M1|), 1

n
log(|M2|)

)

is a triple
({

ϕ
(n)
1,t

}n

t=1
,
{

ϕ
(n)
2,t

}n

t=1
, φ(n)

)

where
φ(n) : R

n → M1 ×M2

and where
{

ϕ
(n)
1,t

}

and
{

ϕ
(n)
2,t

}

are of the form (3) and
satisfy (4). In the following we say that a rate pair
(R1, R2) is achievable if for everyδ > 0 and every
sufficiently largen there exists a blocklength-n powers-
(P1, P2) feedback code of rates exceedingR1 − δ and
R2 − δ such that the average probability of a decoding
error,

Pr
[

φ(n) (Y1, . . . , Yn) 6= (M1,M2)
]

4The achievability results in this paper remain valid also when the
expected average block-power constraints (4) are replacedby average
block-power constraints that hold with probability 1.
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Fig. 2. AWGN MAC with noisy partial feedback.

tends to 0 as the blocklengthn → ∞. The set of all
achievable rate pairs for this setting is called the capacity
region and is denotedCNoisyFB(P1, P2, N,KW1W2

).
The caseσ2

1 = σ2
2 = 0 corresponds to the special case

when the feedback links are noise-free. We refer to this
setting as the “perfect-feedback” setting and denote the
capacity region byCPerfectFB(P1, P2, N), i.e.,

CPerfectFB(P1, P2, N) , CNoisyFB(P1, P2, N, 0)

where0 is the2× 2 all-zero matrix.
In addition to the noisy-feedback setting we also con-

sider the “partial-feedback” setting (see Figure 2) where
only one of the two transmitters has feedback. We as-
sume that the transmitter with feedback is Transmitter 2.
For the partial-feedback setting (2) and (3) are modified
by requiring that the sequence{X1,1, . . . , X1,n} be a
function of MessageM1 only. Since the sole feedback
link can be noisy we shall refer to this setting also as
“noisy partial feedback” and denote its capacity region
by CNoisyPartialFB(P1, P2, N, σ2

2), whereσ2
2 ≥ 0 denotes

the noise variance on the feedback link to Transmitter 2.
In the special case ofσ2

2 = 0, i.e., when the sole
feedback link is noise-free, we refer to the setting as
“perfect partial feedback” (see Figure 3) and denote the
capacity region byCPerfectPartialFB(P1, P2, N).

By the “no-feedback” setting we refer to the classical
MAC where neither transmitter has a feedback link.
In this case (2) and (3) have to be modified so both
sequences{X1,1, . . . , X1,n} and {X2,1, . . . , X2,n} are
functions of the respective messages only. We denote
the capacity region of this MAC byCNoFB(P1, P2, N).

Finally, we also consider a noisy-feedback setting
where the receiver perfectly knows the realizations of the
Gaussian noise sequences{W1,t} and{W2,t} corrupting
the feedback signals (see also Figure 4).5 We refer

5Since we do not consider any delay constraints and the receiver
cannot actively feed back a signal, it does not matter whether the
receiver learns the feedback-noise sequences{W1,t} and {W2,t}
causally or acausally.
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Fig. 3. AWGN MAC with perfect partial feedback.
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Fig. 4. AWGN MAC with noisy feedback and receiver side-
information.

to this setting as the “noisy feedback with receiver
side-information” setting. For this setting the formal
description of the communication scenario is the same
as in the noisy-feedback setting, except for the decoder
φ
(n)
SI which is of the form

φ
(n)
SI : R

n × R
n × R

n −→ M1 ×M2,

(Y n
1 ,Wn

1 ,W
n
2 ) 7−→ (M̂1, M̂2).

We denote the capacity region of the MAC with
noisy feedback and perfect receiver side-information by
CNoisyFBSI(P1, P2, N,KW1W2

).

III. PREVIOUS RESULTS

We survey some previous results that are needed in
the sequel.

The capacity region of the classical AWGN MAC
without feedbackCNoFB(P1, P2, N) was independently
determined by Cover [3] and Wyner [25] and is given
by the set of all rate pairs(R1, R2) satisfying

R1 ≤ 1

2
log

(

1 +
P1

N

)

, (5a)

R2 ≤ 1

2
log

(

1 +
P2

N

)

, (5b)

R1 +R2 ≤ 1

2
log

(

1 +
P1 + P2

N

)

. (5c)

The capacity region of the AWGN MAC with per-
fect feedbackCPerfectFB(P1, P2, N) was determined by
Ozarow [13]:

CPerfectFB(P1, P2, N) =
⋃

ρ∈[0,1]

Rρ
Oz(P1, P2, N), (6)

where Rρ
Oz(P1, P2, N) is the set of all rate pairs

(R1, R2) satisfying

R1 ≤ 1

2
log

(

1 +
P1

(

1− ρ2
)

N

)

, (7a)

R2 ≤ 1

2
log

(

1 +
P2

(

1− ρ2
)

N

)

, (7b)

R1 +R2 ≤ 1

2
log

(

1 +
P1 + P2 + 2

√
P1P2ρ

N

)

. (7c)

We next describe some properties of the regions
Rρ

Oz(P1, P2, N) and CPerfectFB(P1, P2, N) that will be
needed in subsequent sections. Some of the properties,
Remarks III.2–III.4 and Remark III.8, were reported in
[13].

Definition III.1. The parameterρ∗(P1, P2, N) (for
shortρ∗) is defined as the unique solution in the interval
[0, 1] of the following quartic equation inρ

N(N + P1 + P2 + 2
√

P1P2ρ)

= (N + P1(1− ρ2))(N + P2(1− ρ2)). (8)

Remark III.2. Equation(8) is equivalent to the right-
hand side (RHS) of(7c) being equal to the sum of the
RHSs of(7a) and (7b).

That (8) has a unique solution in the interval[0, 1] can
be seen as follows. Atρ = 0 the left-hand side (LHS)
of (8) is smaller than its RHS, whereas forρ = 1 the
LHS is larger. Since the expressions on both sides of
(8) are continuous, by the Intermediate Value Theorem
there must exist at least one solution to (8) in[0, 1]. The
uniqueness of the solution follows by noting that the
LHS of (8) is strictly increasing inρ whereas the RHS
is strictly decreasing inρ ∈ [0, 1].

Next, we discuss the regionRρ
Oz(P1, P2, N) and ex-

amine the rate constraints (7) defining the region. The
RHS of single-rate constraint (7a) and the RHS of (7b)
are both strictly decreasing inρ ∈ [0, 1], whereas the
RHS of the sum-rate constraint (7c) is strictly increasing
in ρ. By these properties, by Definition III.1, and by
Remark III.2 we have:

Remark III.3. For ρ = ρ∗ the sum of the RHSs of the
single-rate constraints(7a) and (7b) equals the RHS of
the sum-rate constraint(7c); for ρ ∈ [0, ρ∗) the sum of
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the RHSs of(7a)and (7b) is strictly larger than the RHS
of (7c); and for ρ ∈ (ρ∗, 1] the sum of the RHSs of(7a)
and (7b) is strictly smaller than the RHS of(7c).

Remark III.4. For every ρ ∈ [0, ρ∗) the rate region
Rρ

Oz(P1, P2, N) has the shape of a pentagon and for
every ρ ∈ [ρ∗, 1] the rate regionRρ

Oz(P1, P2, N) has
the shape of a rectangle. Furthermore, all rectangles
Rρ

Oz(P1, P2, N) for ρ ∈ (ρ∗, 1] are strictly contained
in the rectangleRρ∗

Oz(P1, P2, N), and thus in(6) it is
enough to take the union over allρ ∈ [0, ρ∗].

For the next two observations we introduce the no-
tation of a dominant corner point as in [14]. A corner
point of a given rate region is calleddominantif it is of
maximum sum-rate in the considered region.

Remark III.5. To every boundary point of
CPerfectFB(P1, P2, N) that has sum-rate larger or
equal to 1

2 log
(

1 + P1+P2

N

)

there exists aρ ∈ [0, ρ∗]
such that this point is a dominant corner point of the
regionRρ

Oz(P1, P2, N) (see Fig.5).

Remark III.5 follows by Remark III.4, by continuity
considerations, and by the monotonicities of the con-
straints (7a)–(7c), see Remark III.3. To state the next
observation we define:

Definition III.6. For each ρ ∈ [0, ρ∗], we define
Rρ

1,Oz(P1, P2, N) as the set of all rate pairs(R1, R2)
satisfying

R1 ≤ 1

2
log

(

1 +
P1(1− ρ2)

N

)

,

R2 ≤ 1

2
log

(

P1 + P2 + 2
√
P1P2ρ+N

P1(1 − ρ2) +N

)

.

Similarly, Rρ
2,Oz(P1, P2, N) as the set of all rate pairs

(R1, R2) satisfying

R1 ≤ 1

2
log

(

P1 + P2 + 2
√
P1P2ρ+N

P2(1 − ρ2) +N

)

,

R2 ≤ 1

2
log

(

1 +
P2(1− ρ2)

N

)

.

Notice that by Remark III.4,Rρ∗

1,Oz(P1, P2, N) =

Rρ∗

2,Oz(P1, P2, N) = Rρ∗

Oz(P1, P2, N). Also, for ev-
ery ρ ∈ [0, ρ∗] the regionsRρ

1,Oz(P1, P2, N) and
Rρ

2,Oz(P1, P2, N) are rectangles with dominant corner
point equal to one of the dominant corner points of
Rρ

Oz(P1, P2, N), see Figure 5. By these observations and
by Remark III.5 we obtain:

Remark III.7. The perfect-feedback capacity region can
be expressed as

CPerfectFB(P1, P2, N)

=
⋃

ρ∈[0,ρ∗]

(

Rρ
1,Oz(P1, P2, N) ∪Rρ

2,Oz(P1, P2, N)
)

. (9)

The final remark follows from Remark III.5 and from
the strict monotonicity inρ of the RHS of the sum-rate
constraint (7c).

Remark III.8. The dominant corner point of the rect-
angleRρ∗

Oz(P1, P2, N) is the only rate point of maximum
sum-rate inCPerfectFB(P1, P2, N).

We next first present an achievability result for general
discrete memoryless MACs and AWGN MACs with
perfect feedback due to Cover and Leung [4]. The
scheme is known to achieve capacity for a specific class
of discrete memoryless MACs with perfect feedback
[20]. However, for general channels it can be suboptimal,
e.g., for Gaussian channels. For Gaussian channels the
optimization problem defining the Cover-Leung region
is solved by jointly Gaussian inputs, see [19], [1], and
therefore the Cover-Leung region is given by

RCL(P1, P2, N) =
⋃

ρ1,ρ2∈[0,1]

R(ρ1,ρ2)
CL (P1, P2, N),

where R(ρ1,ρ2)
CL (P1, P2, N) comprises all rate pairs

(R1, R2) satisfying

R1 ≤ 1

2
log

(

1 +
P1

(

1− ρ21
)

N

)

, (10a)

R2 ≤ 1

2
log

(

1 +
P2

(

1− ρ22
)

N

)

, (10b)

R1 +R2 ≤ 1

2
log

(

1 +
P1 + P2 + 2

√
P1P2ρ1ρ2

N

)

.

(10c)

Carleial [2] and Willems [21] independently proved that
to achieve the Cover-Leung regionRCL(P1, P2, N) it
suffices that only one of the two transmitters have a per-
fect feedback link, i.e., they proved that the Cover-Leung
region is achievable also in a perfect partial-feedback
setting. Thereupon, van der Meulen in a survey paper on
multiple-access channels with feedback [18] posed the
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question whether the Cover-Leung region equals the ca-
pacity region for discrete memoryless MACs or AWGN
MACs with perfect partial feedback. We will answer
this question in the negative for Gaussian channels by
proving that for certain channel parameters(P1, P2, N)
there exist rate pairs that lie outside the Cover-Leung
region RCL(P1, P2, N) but that are achievable in the
perfect partial-feedback setting.

For the AWGN MAC with perfect partial feedback
Willems, van der Meulen, and Schalkwijk proposed a
coding scheme [22] which is based on the scheme by
Schalkwijk and Kailath [15]. Unfortunately, the achiev-
able rate region can only be stated in an implicit form
and is difficult to evaluate analytically and to compare
to the Cover-Leung region.

In [2] Carleial proposed a coding scheme for the
discrete memoryless MAC and the AWGN MAC with
“generalized” feedback. In the Gaussian case, “general-
ized” feedback includes as special cases noisy feedback,
noisy partial feedback, and perfect partial feedback. We
present Carleial’s region for the AWGN MAC with noisy
feedback in Appendix A, where we also prove that
if the feedback noise variancesσ2

1 and σ2
2 exceed a

certain threshold depending on the channel parameters
P1, P2, and N , then Carleial’s region collapses to the
no-feedback capacity region in (5) (Proposition A.3
in Appendix A). For perfect partial feedback and for
perfect feedback Carleial’s scheme equals the Cover-
Leung regionRCL(P1, P2, N). Hence, in the case of per-
fect feedback Carleial’s scheme is known to be strictly
suboptimal for the two-user AWGN MAC.

Another coding scheme for the MAC with imperfect
feedback was proposed by Willems et al. in [23]. Al-
though proposed for discrete memoryless channels, the
modifications to treat the Gaussian case are straight-
forward, and we state their achievable rate region for
the AWGN MAC with noisy feedback in Appendix B.
Like Carleial’s scheme, Willems et al.’s scheme collapses
to the no-feedback capacity region when the feedback-
noise variancesσ2

1 and σ2
2 exceed a certain threshold

(Proposition B.3 in Appendix B), and for perfect feed-
back or perfect partial feedback the region equals the
Cover-Leung region. Thus, for very noisy feedback,
for perfect feedback, and for perfect partial feedback
Carleial’s region and Willems et al.’s region coincide.

IV. N OISY FEEDBACK

In this section we focus on the setup with noisy feed-
back. For this setup we present new achievable regions,
and based on these new regions we derive new qualitative
properties of the capacity region (Section IV-A). We also
present the coding schemes corresponding to our new
achievable regions (Sections IV-B–IV-D).

A. Results

In this section we present our results for noisy feed-
back. We begin with some definitions. For given positive
integer η; η-dimensional column-vectorsa1, a2; and
η × η-matricesB1,B2, we define theη × 2 matrix

Ar ,
(

a1 a2

)

, (11)

the 2η × 2 matrix

Ad ,

(

a1 0

0 a2

)

, (12)

the η × 2η matrix

Br ,
(

B1 B2

)

, (13)

the 2η × η matrix

Bc ,

(

B1

B2

)

, (14)

the 2η × 2η block-diagonal matrix

Bd ,

(

B1 0

0 B2

)

, (15)

and the2η × 2η matrix

Bb ,

(

B1 B1

B2 B2

)

. (16)

Our first achievable region for noisy feedback is
obtained by evaluating the rates that are achieved by the
concatenated scheme in Section IV-C1 ahead. (An alter-
native formulation of this achievable region is presented
in Section D-A, Appendix D.)

Definition IV.1. Let η be a positive integer, leta1, a2
be η-dimensional vectors, letB1,B2 be η × η strictly
lower-triangular matrices, and letC be a 2 × η
matrix. Depending on the matrixC the rate region
R (N,KW1W2

; η, a1, a2,B1,B2,C) is defined as follows.

• If the product CC
T is nonsingular,6 then

R (N,KW1W2
; η, a1, a2,B1,B2,C) is defined

as the set of all rate-pairs(R1, R2) satisfying the
three rate constraints(18) on top of the next page,
whereAr and Br are defined in(11) and (13) and
where⊗ denotes the Kronecker product.

• If the productCCT is singular butC 6= 0, then
R (N,KW1W2

; η, a1, a2,B1,B2,C) is defined as the
set of all rate pairs(R1, R2) satisfying(18) when
the2×η matrixC is replaced by theη-dimensional
row-vector obtained by choosing one of the non-
zero rows ofC.7

• If C = 0, thenR (N,KW1W2
; η, a1, a2,B1,B2,C)

is defined as the set containing only the origin.

6Wheneverη ∈ N is larger than 1, there is no loss in optimality in
restricting attention to matricesC so thatCCT is nonsingular. However,
for completeness, we consider all possible choices of the matrix C.

7WhenCCT is singular then the two rows ofC are linearly dependent
and it does not matter which non-zero row is chosen.
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Definition IV.2. Define the rate region
R (P1, P2, N,KW1W2

) (or for shortR) as

R (P1, P2, N,KW1W2
)

, cl





⋃

η,a1,a2,B1,B2,C

R (N,KW1W2
; η, a1, a2,B1,B2,C)





(17)

where the union is over all tuples(η, a1, a2,B1,B2,C)
satisfying the trace constraints(19) on top of the next
page, and where the matricesAd,Bc,Bd, and Bb are
defined in(12), (14), (15), and (16).8

Theorem IV.3 (Noisy Feedback). The capacity re-
gionCNoisyFB(P1, P2, N,KW1W2

) of the two-user AWGN
MAC with noisy feedback contains the rate region
R (P1, P2, N,KW1W2

), i.e.,

CNoisyFB(P1, P2, N,KW1W2
) ⊇ R (P1, P2, N,KW1W2

) .

Proof: The proof is based on the concatenated
scheme in Section IV-C1. As will be described ahead,
for each choice of parametersη, a1, a2,B1,B2,C our
concatenated scheme achieves the capacity region
of the AWGN MAC ξ1, ξ2 7→

(

Ξ̂1, Ξ̂2

)

in (37)

scaled by a factorη−1, i.e., it achieves the region
R (N,KW1W2

; η, a1, a2,B1,B2,C). The details of the
proof are omitted.

Remark IV.4. Evaluating the achievable region
R (P1, P2, N,KW1W2

) seems to be difficult even numer-
ically. More easily computable (but possibly smaller)
achievable regions are obtained by taking the union on
the RHS of(17) only over a subset of the parameters
η, a1, a2,B1,B2,C satisfying(19). In Appendices E and
F we present two such subsets and their corresponding
achievable regions (Corollaries E.3 and F.2). In Sec-
tion IV-C2, we present more general guidelines on how
to choose the parametersη, a1, a2,B1,B2,C.

Proposition IV.5 (Monotonicity and Convergence of the
regionR). The achievable regionR (P1, P2, N,KW1W2

)
satisfies the following three properties:

1) GivenP1, P2, N > 0, it is monotonically decreas-
ing in KW1W2

with respect to the Loewner order,
i.e., for positive semidefinite matricesKW1W2

and
K′
W1W2

:
(

KW1W2
� K

′
W1W2

)

=⇒
(

R(P1, P2, N,KW1W2
)

⊆ R
(

P1, P2, N,K′
W1W2

)

)

.

8Since B1 and B2 are strictly lower-triangular, the matrix
(I2η − Bb) is nonsingular and its inverse exists.

2) GivenKW1W2
� 0 andN > 0, it is continuous in

P1 andP2, i.e., for all P1, P2 > 0:

cl

(

⋃

δ>0

R (P1 − δ, P2 − δ,N,KW1W2
)

)

= R (P1, P2, N,KW1W2
) .

3) GivenP1, P2, N > 0, it converges to the perfect-
feedback achievable regionR (P1, P2, N, 0) as the
feedback-noise variances tend to 0 irrespective of
the feedback-noise correlations, i.e.,

cl





⋃

σ2>0

⋂

K�0: tr(K)≤σ2

R (P1, P2, N,K)





= R (P1, P2, N, 0) . (20)

Proof: See Section IV-E1.
Specializing Theorem IV.3 to symmetric channels, i.e.,

to P1 = P2 = P andσ2
1 = σ2

2 = σ2, and toη = 2 and
the choice of parametersa1, a2, B1,B2, andC presented
in Section E-A in Appendix E yields the following
Corollary IV.6.

Corollary IV.6 (Symmetric Noisy Feedback Channel-
s—Sub-Optimal Choice of Parameters). The capacity
regionCNoisyFB(P, P,N,KW1W2

) of thesymmetrictwo-
user AWGN MAC with noisy feedback, i.e., where

KW1W2
=

(

σ2 σ2̺
σ2̺ σ2

)

,

contains all rate pairs (R1, R2) satisfying the rate
constraints 21 on top of the next page. In particular, it
contains the equal-rate point(R,R) whenever it satisfies
(22) on top of the next page.

From Corollary IV.6 it is easily seen that the capacity
of the symmetric noisy-feedback setup is larger than the
no-feedback capacity, no matter how large (but finite) the
feedback-noise varianceσ2 is. The following stronger
result holds:

Theorem IV.7 (Noisy Feedback is Always Beneficial).
For every feedback-noise covariance matrixKW1W2

CNoFB(P1, P2, N) ⊂ CNoisyFB(P1, P2, N,KW1W2
),

where the inclusion is strict.

Proof: Follows by Theorem V.6 ahead, which es-
tablishes that noisy partial feedback always increases
capacity, and by observing that—since Transmitter 1 can
always ignore its feedback—noisy feedback cannot be
worse than noisy partial feedback, i.e., for all covariance

matricesKW1W2
=

(

σ2
1 σ1σ2̺

σ1σ2̺ σ2
2

)

:

CNoisyFB(P1, P2, N,KW1W2
)

⊇ CNoisyPartialFB(P1, P2, N, σ2
2).
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R1 ≤ 1

2η
log

|C (a1a
T
1 +N Iη + Br(KW1W2

⊗ Iη)B
T
r )C

T|
|C (N Iη + Br(KW1W2

⊗ Iη)BT
r )C

T| (18a)

R2 ≤ 1

2η
log

|C (a2a
T
2 +N Iη + Br(KW1W2

⊗ Iη)B
T
r )C

T|
|C (N Iη + Br(KW1W2

⊗ Iη)BT
r )C

T| (18b)

R1 +R2 ≤ 1

2η
log

|C (ArA
T
r +N Iη + Br(KW1W2

⊗ Iη)B
T
r )C

T|
|C (N Iη + Br(KW1W2

⊗ Iη)BT
r )C

T| (18c)

tr

(

(

Iη 0
)

(I2η − Bb)
−1

(AdA
T
d +NBcB

T
c + Bd(KW1W2

⊗ Iη)B
T
d) (I2η − Bb)

−T

(

Iη

0

))

≤ ηP1 (19a)

tr

(

(

0 Iη

)

(I2η − Bb)
−1

(AdA
T
d +NBcB

T
c + Bd(KW1W2

⊗ Iη)B
T
d) (I2η − Bb)

−T

(

0

Iη

))

≤ ηP2 (19b)

R1, R2 ≤ 1

4
log

(

1 +
2P

N

)

+
1

4
log

(

1 +
P 2

(2P +N)
(

P +N + σ2 + 2P
N
(σ2 − ̺σ2)

)

)

(21a)

R1 +R2 ≤ 1

2
log

(

1 +
2P

N

)

+
1

4
log

(

1 +
2P 2

(2P +N)
(

P +N + σ2 + 2P
N
(σ2 − ̺σ2)

)

)

(21b)

R ≤ 1

4
log

(

1 +
2P

N

)

+
1

8
log

(

1 +
2P 2

(2P +N)
(

P +N + σ2 + 2P
N
σ2(1− ̺)

)

)

(22)

Specializing Theorem IV.3 to perfect feedback, i.e.,
KW1W2

= 0, and to the choice of parameters presented in
Section F-A in Appendix F yields the following remark.

Remark IV.8 (Perfect Feedback). For the two-user
AWGN MAC with perfect feedback our concatenated
scheme achieves all rate pairs inside the region
Rρ∗

Oz(P1, P2, N), i.e.,

R (P1, P2, N, 0) ⊇ Rρ∗

Oz(P1, P2, N).

Proof: Is based on the specific choice of parameters
in Section F-A, i.e., on the regions̃Rη(P1, P2, N, 0)
in Remark F.3 in Appendix F. For details, see Sec-
tion IV-E2.

We next consider the noisy-feedback setting in the
asymptotic regime where the noise variances on both
feedback links vanish. Proposition IV.9 ahead shows
that our achievable regions in Theorem IV.3 converge
to the point of maximum sum-rate inCPerfectFBwhen the
feedback-noise variances tend to 0, irrespective of the
feedback-noise correlation.

Proposition IV.9 (Convergence to Maximum Sum-Rate
of CPerfectFB). Our achievable region satisfies

cl





⋃

σ2>0

⋂

K�0: tr(K)≤σ2

R (P1, P2, N,K)





⊇ Rρ∗

Oz(P1, P2, N). (23)

Thus, by Remark III.8 our achievable regions in Theo-
rem IV.3 asymptotically approach the point of maximum

sum-rate in the perfect-feedback capacity region.

Proof: Follows directly by Proposition IV.5, Part 3),
and by Remark IV.8.

Remark IV.10. We can strengthen Proposition IV.9
as follows: Inclusion (23) remains valid if the
region R (P1, P2, N,K) is replaced by the union
(

⋃

η∈N
R̃η(P1, P2, N,K)

)

, where the regions

R̃η(P1, P2, N,K) are defined in Definition F.1 in
Appendix F, and represent the regions achieved by
our concatenated scheme for the specific choice of
parameters presented in Section F-A (Appendix F).

Our last achievability result for noisy feedback is
based on the rate-splitting scheme in Section IV-D1.
Before stating the result in Proposition IV.13, we define:

Definition IV.11. For fixedη ∈ N; fixed η-dimensional
vectors a1, a2; η × η strictly lower-triangular matri-
ces B1,B2; and 2 × η matrix C define the region
RRS,1 (P

′
1, N,KW1W2

; η, a1, a2,B1,B2,C) as the set of
all rate pairs (R1, R2) that for some nonnegative
R1,CS, R1,NF summing toR1 satisfy the following two
conditions:

(R1,CS, R2) ∈ R (N + P ′
1,KW1W2

; η, a1, a2,B1,B2,C)

and

R1,NF ≤ 1

2η
log

( |P ′
1Iη +N Iη + Br(KW1W2

⊗ Iη)B
T
r |

|N Iη + Br(KW1W2
⊗ Iη)BT

r |

)

(24)
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whereBr is defined in(13).
Similarly, define the region

RRS,2 (P
′
2, N,KW1W2

; η, a1, a2,B1,B2,C) analogously
to the regionRRS,1 (P

′
1, N,KW1W2

; η, a1, a2,B1,B2,C),
but with exchanged indices 1 and 2.

Definition IV.12. Define the rate region
RRS,1 (P

′
1, P

′′
1 , P2, N,KW1W2

) (or for short RRS,1)
as

RRS,1 (P
′
1, P

′′
1 , P2, N,KW1W2

)

, cl
(

⋃

RRS,1 (P
′
1, N,KW1W2

; η, a1, a2,B1,B2,C)
)

where the union is over all tuples(η, a1, a2,B1,B2,C)
satisfying the trace constraints(19) for powers P ′′

1

and P2, noise variance(N + P ′
1), and feedback-noise

covariance matrixKW1W2
. Similarly, define the region

RRS,2 (P1, P
′
2, P

′′
2 , N,KW1W2

) (or for shortRRS,2) as

RRS,2 (P1, P
′
2, P

′′
2 , N,KW1W2

)

, cl
(

⋃

RRS,2 (P
′
2, N,KW1W2

; η, a1, a2,B1,B2,C)
)

where the union is over all tuples(η, a1, a2,B1,B2,C)
satisfying the trace constraints(19) for powersP1 and
P ′′
2 , noise variance(N + P ′

2), and feedback-noise co-
variance matrixKW1W2

.

Proposition IV.13 (Rate-Splitting for Noisy Feedback).
The capacity regionCNoisyFB(P1, P2, N,KW1W2

) con-
tains the regionRRS,1 (P

′
1, (P1 − P ′

1), P2, N,KW1W2
)

for any P ′
1 ∈ [0, P1], and it contains the region

RRS,2 (P1, P
′
2, (P2 − P ′

2), N,KW1W2
) for any P ′

2 ∈
[0, P2]:

CNoisyFB(P1, P2, N,KW1W2
)

⊇
⋃

P ′

1
∈[0,P1]

RRS,1 (P
′
1, (P1 − P ′

1), P2, N,KW1W2
)

and

CNoisyFB(P1, P2, N,KW1W2
)

⊇
⋃

P ′

2
∈[0,P2]

RRS,2 (P1, P
′
2, (P2 − P ′

2), N,KW1W2
) .

Proof: The rate region is achieved by the rate-
splitting scheme in Section IV-D1. The analysis is based
on Theorem IV.3, on the capacity of a Gaussian multi-
input antenna/multi-output antenna channel with noise
sequences that are temporally-white but correlated across
the antennas, and on a genie-aided argument as in [14]
and [24, p. 419]. The details are omitted.

Proposition IV.14 (Monotonicity and Convergence of
Regions RRS,1 and RRS,2). The achievable region
RRS,1 (P

′
1, P

′′
1 , N,KW1W2

) satisfies the following three
properties:

1) GivenP ′
1, P

′′
1 , P2, N > 0, it is monotonically de-

creasing inKW1W2
with respect to the Loewner or-

der, i.e., for positive semidefinite matricesKW1W2

andK′
W1W2

:
(

KW1W2
� K

′
W1W2

)

=⇒
(

RRS,1 (P
′
1, P

′′
1 , P2, N,KW1W2

)

⊆ RRS,1
(

P ′
1, P

′′
1 , P2, N,K′

W1W2

)

)

.

2) GivenKW1W2
� 0 andN > 0, it is continuous in

P ′
1, P

′′
1 , andP2, i.e., for all P ′

1, P
′′
1 , P2 > 0:

cl

(

⋃

δ>0

RRS,1 (P
′
1−δ, P ′′

1 −δ, P2−δ,N,KW1W2
)

)

= RRS,1 (P
′
1, P

′′
1 , P2, N,KW1W2

) .

3) Given P ′
1, P

′′
1 , P2, N > 0, it converges

to the perfect-feedback achievable region
RRS,1 (P

′
1, P

′′
1 , P2, N, 0) as the feedback-noise

variances tend to 0 irrespective of the feedback-
noise correlations, i.e.,

cl





⋃

σ2>0

⋂

K�0: tr(K)≤σ2

RRS,1 (P
′
1, P

′′
1 , P2, N,K)





= RRS,1 (P
′
1, P

′′
1 , P2, N, 0) .

Similarly, for RRS,2 (P1, P
′
2, P

′′
2 , N,KW1W2

).

Proof: Follows from Proposition IV.5 and because
for fixed a1, a2,B1,B2, andC the RHS of (24) satisfies
the following three properties. It is monotonically de-
creasing inKW1W2

with respect to the Loewner order, it

is continuous inP ′
1, and it converges to12 log

(

1 +
P ′

1

N

)

as the feedback-noise variances tend to 0 irrespective of
the feedback-noise correlations. The details are omitted.

With the rate-splitting extension in Section IV-D1
and Propositions IV.13 and IV.14, Remark IV.8 and
Proposition IV.9 can be generalized to all the boundary
points of the capacity regionCPerfectFB.

Remark IV.15 (Perfect Feedback). For the two-
user AWGN MAC with perfect feedback our rate-
splitting scheme in Section IV-D1 achieves all rate
pairs in Ozarow’s perfect-feedback capacity region
CPerfectFB(P1, P2, N):

CPerfectFB(P1, P2, N)

=





⋃

P ′

1
∈[0,P1]

RRS,1 (P
′
1, (P1 − P ′

1), P2, N, 0)





∪





⋃

P ′

2
∈[0,P2]

RRS,2 (P1, P
′
2, (P2 − P ′

2), N, 0)



 .

(25)

In fact, for eachρ ∈ [0, ρ∗] there exists aP ′
1(ρ) ∈ [0, P1]

so that

RRS,1 (P
′
1(ρ), (P1 − P ′

1(ρ)), P2, N, 0)
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⊇ Rρ
1,Oz(P1, P2, N), (26a)

and aP ′
2(ρ) ∈ [0, P2] so that

RRS,2 (P1, P
′
2(ρ), (P2 − P ′

2(ρ)), N, 0)

⊇ Rρ
2,Oz(P1, P2, N). (26b)

Proof: By Remark III.7, Equality (25) follows di-
rectly from (26). For a proof of (26), see Section IV-E3.

Proposition IV.16 (Convergence to Boundary of
CPerfectFB). For everyρ ∈ [0, ρ∗(P1, P2, N)] we can find
someP ′

1(ρ) ∈ [0, P1] so that

cl









⋃

σ2>0

⋂

K�0:
tr(K)≤σ2

RRS,1 (P
′
1(ρ), (P1 − P ′

1(ρ)), P2, N,K)









⊇ Rρ
1,Oz(P1, P2, N). (27a)

Similarly, for everyρ ∈ [0, ρ∗(P1, P2, N)] we can find
someP ′

2(ρ) ∈ [0, P2] so that

cl









⋃

σ2>0

⋂

K�0:
tr(K)≤σ2

RRS,2 (P1, P
′
2(ρ), (P2 − P ′

2(ρ)), N,K)









⊇ Rρ
2,Oz(P1, P2, N). (27b)

Thus, by Remark III.5 and Definition III.6 our achievable
regions in Proposition IV.13 asymptotically approach all
boundary points of the perfect-feedback capacity region.

Proof: See Section IV-E4.
Propositions IV.13 and IV.16 combined with Re-

mark III.7 yield the following continuity result.

Theorem IV.17 (Continuity of Noisy-Feedback Capacity
Region). For all P1, P2, N > 0:

cl





⋃

σ2>0

⋂

K�0: tr(K)≤σ2

CNoisyFB(P1, P2, N,K)





= CPerfectFB(P1, P2, N).

Proof: See Section IV-E5 for details.

B. Simple Scheme

We present a simple coding scheme for the noisy-
feedback setting. It is a special case of theconcatenated
schemein Section IV-C1 ahead: the simple scheme with
parametersa1,1, a1,2, a2,1, a2,2, b1, b2 coincides with the
concatenated scheme for noisy feedback with parame-
ters η = 2, a1 =

(

a1,1 a2,1
)T
, a2 =

(

a2,1 a2,2
)T

,

B1 =

(

0 0
b1 0

)

, B2 =

(

0 0
b2 0

)

, C = I2. We present

the simple scheme here separately, because it is easier
and yet powerful enough to establish Corollary IV.6 and
Theorem IV.7.

Prior to communication a blocklength-n, rate-R1

codebookC1 and a blocklength-n, rate-R2 codebook
C2 are generated and revealed to both transmitters
and to the receiver. The codewords of codebook
C1 are chosen independently with then components
Ξ1,1(m1), . . . ,Ξ1,n(m1) of them1-th codeword chosen
IID zero-mean unit-variance Gaussian. The codebookC2
is drawn similarly. MessagesM1 andM2 are then trans-
mitted over2n channel uses by sending each symbol of
then-length codewordsΞn

1 (M1) andΞn
2 (M2) over two

consecutive channel uses. More precisely, at odd time
stepst = 2(k−1)+1, for k ∈ {1, . . . , n}, Transmitter 1
sends

X1,2(k−1)+1 = a1,1Ξ1,k, (28)

and Transmitter 2 sends

X2,2(k−1)+1 = a2,1Ξ2,k. (29)

At even time stepst = 2k, for k ∈ {1, . . . , n},
Transmitter 1 sends

X1,2k = a1,2Ξ1,k − b1V1,2(k−1)+1, (30)

and Transmitter 2 sends

X2,2k = a2,2Ξ2,k − b2V2,2(k−1)+1. (31)

To ensure that the two input sequences{X1,t}2nt=1 and
{X2,t}2nt=1 satisfy the power constraints (4), the param-
eters a1,1, a1,2, a2,1, a2,2, b1, and b2 are chosen as to
simultaneously satisfy

a21,1+(a1,2−b1a1,1)
2+b21(a

2
2,1+N+σ2

1) ≤ 2P1 (32a)

and

a22,1+(a2,2−b2a2,1)
2+b22(a

2
1,1+N+σ2

2) ≤ 2P2. (32b)

The receiver uses an optimal decoding rule to decode
MessagesM1 andM2 based on the observed sequence
of channel outputsY1, . . . , Y2n.

To describe the performance of the scheme, let
Ξ1,Ξ2, Zodd, andZeven be independent zero-mean Gaus-
sian random variables, whereΞ1 andΞ2 are of variance1
andZodd andZeven of varianceN . Independent thereof,
let the pair(W1,W2) be a zero-mean bivariate Gaussian
of covariance matrixKW1W2

as defined in (1). Also, let
Yodd andYeven be defined as

Yodd , a1,1Ξ1 + a2,1Ξ2 + Zodd,

Yeven, a1,2Ξ1 + a2,2Ξ2 − b1V1,odd− b2V2,odd+ Zeven;

andV1,odd andV2,odd be defined as

Vν,odd , Yodd+Wν , ν ∈ {1, 2}.
The performance of the simple scheme is then described
as follows. The scheme achieves all nonnegative rate
pairs(R1, R2) that simultaneously satisfy

R1 ≤ 1

2
I(Ξ1;Yodd, Yeven|Ξ2), (33a)
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R2 ≤ 1

2
I(Ξ2;Yodd, Yeven|Ξ1), (33b)

R1 +R2 ≤ 1

2
I(Ξ1,Ξ2;Yodd, Yeven), (33c)

or equivalently—as obtained by evaluating the mutual in-
formation expressions on the RHSs of (33)—it achieves
all nonnegative rate pairs(R1, R2) that simultaneously
satisfy

R1 ≤ 1

4
log

(

1 +
a21,1
N

+
a21,2

b21σ
2
1 + b22σ

2
2 + 2b1b2̺σ1σ2 +N

)

R2 ≤ 1

4
log

(

1 +
a22,1
N

+
a22,2

b21σ
2
1 + b22σ

2
2 + 2b1b2̺σ1σ2 +N

)

and

R1 +R2

≤ 1

4
log

(

1 +
a21,1 + a22,1

N

+
a21,2 + a22,2

b21σ
2
1 + b22σ

2
2 + 2b1b2̺σ1σ2 +N

+
(a1,1a2,2 − a2,1a1,2)

2

N(b21σ
2
1 + b22σ

2
2 + 2b1b2̺σ1σ2 +N)

)

for some choice of the parameters
a1,1, a1,2, a2,1, a2,2, b1, b2 satisfying (32).

C. Concatenated Scheme

We first present our concatenated coding scheme with
general parameters in Section IV-C1; in Section IV-C2
we then give guidelines on how to choose the parameters
of this concatenated scheme.

1) Scheme:We propose an encoding scheme with
a concatenated structure where each of the encoders
and the decoder consists of an outer part and an inner
part. (Here the inner parts are the parts that are closer
to the physical channel, see Figure 6.) In our scheme
the various parts fulfill the following tasks. The outer
encoders map the messages into codewords (without
using the feedback) and feed these codewords to their
corresponding inner encoders. The inner encoders pro-
duce for every fed symbol a sequence ofη channel inputs
to the MAC with feedback, for some positive integer
η. In particular, when fed the symbolξ1 ∈ R, Inner
Encoder 1 producesη inputs which depend onξ1 and
on the observed feedback outputs; all symbols fed to
the inner encoder are treated in the same way. Inner
Encoder 2 is analogously defined. Theη symbols which
the MAC outputs for every pair of input symbols(ξ1, ξ2)

are then linearly mapped by the inner decoder to a pair of
estimates(Ξ̂1, Ξ̂2), and the estimates are fed to the outer
decoder. Thus, the outer decoder is fed with a vector
in R

2 every η channel uses. Based on the sequence of
vectors produced by the inner decoder, the outer decoder
then decodes the transmitted messages.

Consequently, the inner encoders and the inner de-
coder transform each subblock ofη channel uses of
the original MAC into a single channel use of a “new”
time-invariant and memoryless MAC which for given
inputs ξ1 ∈ R and ξ2 ∈ R produces the channel
output (Ξ̂1, Ξ̂2)

T ∈ R
2. We denote the new MAC by

ξ1, ξ2 7→ (Ξ̂1, Ξ̂2). We can then think of the overall
scheme as ano-feedback schemeover the new MAC
ξ1, ξ2 7→ (Ξ̂1, Ξ̂2). As a consequence, the capacity of
the original MAC with feedback, which we denote by
x1, x2 7→ Y , is inner bounded by the capacity of the new
MAC ξ1, ξ2 7→ (Ξ̂1, Ξ̂2) without feedback but scaled by
η−1 to account for the fact that to send the symbols
ξ1, ξ2 over the new MAC the original channel is usedη
times.

We first sketch some of the properties of the inner
encoders and the inner decoder and postpone their de-
tailed description to after the description of the outer
encoders and decoder. We choose the inner encoders and
the inner decoder so that the MACξ1, ξ2 7→ (Ξ̂1, Ξ̂2) can
be described by

(

Ξ̂1

Ξ̂2

)

= A

(

ξ1
ξ2

)

+T, (34)

whereA is a deterministic2 × 2 matrix and whereT
is a bivariate Gaussian whose law does not depend on
the pair of inputs(ξ1, ξ2). Also, the inner encoders are
designed so that if both outer encoders satisfy a unit
average block-power constraint (over time and messages)
and if at every epoch the symbols produced by the
outer encoders are zero-mean (when averaged over the
messages), then the channel inputs to the original MAC
x1, x2 7→ Y satisfy the average power constraints (4).

For the outer code (encoders and decoder) we choose
a capacity achieving zero-mean code for the MAC
ξ1, ξ2 7→ (Ξ̂1, Ξ̂2) under an average block-power con-
straint of 1. Note that there is no loss in optimality
in restricting ourselves to zero-mean codes because
subtracting the mean of the code can only reduce its
average power (averaged over time and messages) and
does not change the performance on an additive noise
MAC such as (34). We shall need the property that the
outer encoders produce zero-mean symbols in the power-
analysis of the input sequences to the original channel
x1, x2 7→ Y .

For the inner encoders and the inner decoder we
choose linear mappings. To obtain a compact description
of the linear mappings we stack theη channel inputs,
Xν,1, . . . , Xν,η, produced by Inner Encoderν in an η-
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Inner Enc.1

Inner Enc.2

Outer Enc.1

Outer Enc.2

Inner Dec. Outer Dec.

“new” MAC

X1,t

X2,t

Yt

Zt

+

+

+

W1,t

W2,t

V1,t

V2,t

M1

M2

(

M̂1

M̂2

)

Fig. 6. Structure of concatenated scheme.

dimensional column vector

Xν , (Xν,1, . . . , Xν,η)
T, ν ∈ {1, 2},

and similarly we stack theη feedback outputs,
Vν,1, . . . , Vν,η , observed by Inner Encoderν in the η-
dimensional vector

Vν = (Vν,1, . . . , Vν,η)
T, ν ∈ {1, 2}.

We can then describe our choice of the inner encoders
as follows. When fed the input symbolξν ∈ R, Inner
Encoderν produces

Xν = aνξν + BνVν , ν ∈ {1, 2}, (35)

where aν are η-dimensional column vectors andBν

are η × η matrices which are strictly lower-triangular
(because the feedback is causal). Also, as previously
mentioned, we restrict the inner encoders to produce
sequences of inputs to the original MACx1, x2 7→ Y
that satisfy the average block-power constraints (4) when
the outer encoders feed them with zero-mean sequences
of unit average block-power. By (35) this is the case
whenever the trace constraints (19) are satisfied. Thus, in
the following we only allow for vectorsa1 anda2 and for
strictly lower-triangular matricesB1 and B2 satisfying
(19).

To describe our linear choice of the inner de-
coder, we stack theη outputs Y1, . . . , Yη, which
the original MAC produces for the pairs of inputs
(X1,1, X2,1), . . . , (X1,η, X2,η), into the η-dimensional
column vector

Y , (Y1, . . . , Yη)
T.

We can then express the estimates produced by the outer
decoder by

(

Ξ̂1

Ξ̂2

)

= DY, (36)

for some matrix of our choiceD ∈ R
2×η.

In the following we describe the MACξ1, ξ2 7→
(Ξ̂1, Ξ̂2) as induced byη, a1, a2, B1,B2, andD. Given
inputsξ1, ξ2 ∈ R, it produces the vector of estimates

(

Ξ̂1

Ξ̂2

)

= A

(

ξ1
ξ2

)

+T, (37)

where the2× 2-matrix A is given by

A = D (Iη − (B1 + B2))
−1

Ar, (38)

whereAr is defined in (11), and where the noise vector
T is a zero-mean bivariate Gaussian

T = D(Iη − (B1 + B2))
−1(B1W1 + B2W2 + Z), (39)

for W1 , (W1,1, . . . ,W1,η)
T, W2 ,

(W2,1, . . . ,W2,η)
T, and Z , (Z1, . . . , Zη)

T. (Notice,
that since B1 and B2 are strictly lower-triangular
matrices, the matrix(Iη − (B1 + B2)) is nonsingular
and the inverse exists.) Defining the2× η matrix

C , D(Iη − (B1 + B2))
−1, (40)

we can express the matrixA in (38) as

A = CAr, (41)

and the noise vector in (39) as

T = C (B1W1 + B2W2 + Z) . (42)

For fixed η,B1,B2, the mapping (40) fromD to C

is one-to-one, and thus we can parameterize our con-
catenated scheme for noisy feedback by the parameters
η, a1, a2,B1,B2,C.

Note that by choosingη = 1, a1 =
√
P1, a2 =

√
P2,

andC as the2× 1 matrix with unit entries, our scheme
reduces to the capacity-achieving scheme for the original
MAC x1, x2 7→ Y without feedback subject to the power
constraints (4).
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2) Choice of Parameters:Given channel param-
eters P1, P2, N,KW1W2

, determining for each rate
pair in R (P1, P2, N,KW1W2

) a set of parameters
η, a1, a2,B1,B2,C that achieves this rate pair seems to
be analytically intractable. Instead, we present guidelines
on how to choose parameters and discuss the two choices
of parameters in Section E-A (Appendix E) and in
Section F-A (Appendix F) that lead to Corollary IV.6
and Proposition IV.8.

For the purpose of describing our guidelines, through-
out this section, we replace the symbolsξ1 and ξ2
fed to the inner encoders by the independent standard
GaussiansΞ1 andΞ2.

We start with the matrixC. Given parameters
η, a1, a2,B1, and B2, the matrixC should be chosen
asC = CLMMSE, where

CLMMSE , A
T
r (ArA

T
r +N Iη + Br(KW1W2

⊗ Iη)B
T
r )

−1
.

(43)

By (36), (41), and (42) this choice implies that
(

Ξ̂1

Ξ̂2

)

= E

[

(

Ξ1

Ξ2

)

∣

∣

∣

∣

∣

Y1, . . . , Yη

]

, (44)

and hence we call the matrixCLMMSE the LMMSE-
estimation matrix. The choice C = CLMMSE is
optimal in the sense that the corresponding re-
gion R (N,KW1W2

; η, a1, a2,B1,B2,CLMMSE) contains
all regionsR (N,KW1W2

; η, a1, a2,B1,B2,C) that cor-
respond to other choices ofC. The optimality of the
LMMSE-estimation matrix can be argued as follows.
When (44) holds, then even additionally revealingY (or
any linear combinations thereof) to the outer decoder
does not increase the set of achievable rates in our
scheme. Obviously, choosingC = UCLMMSE for any non-
singular 2-by-2 matrixU is also optimal. In particular,
when η = 2 every non-singular matrix is an optimal
choice forC.

We next consider the choice of parameters
a1, a2,B1,B2 and first focus on the special case
of perfect feedback. This special case is in view of
Ozarow’s capacity result [13] only of limited interest, but
it provides insight on how to choose the parameters for
other settings, e.g., the perfect partial-feedback setting
(see Section V-C2) and the noisy feedback-setting with
receiver side-information (Section VI-B2).

For perfect feedback and a fixedη, the parameters
a1, a2,B1,B2 should be chosen such that Inner En-
coder ν, for ν ∈ {1, 2}, produces as itsℓ-th channel
input a scaled version of the LMMSE-estimation error
of Ξν when observing(Y1, . . . , Yℓ−1), i.e.,

X1,ℓ = π1,ℓ

(

Ξ1 − E
[

Ξ1|Y ℓ−1
])

, ℓ ∈ {1, . . . , η},
(45a)

and

X2,ℓ = π2,ℓ

(

Ξ2 − E
[

Ξ2|Y ℓ−1
])

, ℓ ∈ {1, . . . , η},
(45b)

for some real numbersπ1,1, . . . , π1,η andπ2,1, . . . , π2,η.
In fact, every choice of parameters not satisfying (45)
can be strictly improved (with an appropriate choice of
C) so as to achieve a larger region, see Appendix C.

For general noisy feedback, it is not optimal to
choosea1, a2,B1,B2 as in (45) when the channel out-
putsY1, . . . , Yℓ−1 are replaced by the feedback outputs
V1,1, . . . , V1,ℓ−1 and V2,1, . . . , V2,ℓ−1. Intuitively, the
reason is that with such a choice the inner encoders
introduce too much feedback noise into the forward
communication.

For the general setup it seems infeasible to de-
rive the set of optimal parametersa1, a2,B1,B2.
However, it is easily proved that the parameters
a1, a2,B1,B2 have to be chosen so that they satisfy
both power constraints (19a) and (19b) with equal-
ity, since otherwise there exists a choice of parame-
ters which corresponds to a larger achievable region.
This readily follows from the alternative formulation
of R (N,KW1W2

; η, a1, a2,B1,B2,C) in Section D-A
(Appendix D), because the RHSs of (148) (which de-
termineR (N,KW1W2

; η, a1, a2,B1,B2,C)) can always
be increased by changing the last entry ofa1, i.e., a1,η,
or the last entry ofa2, i.e., a2,η.

We finally consider the choice ofη. If the goal is
to maximize the single rates, it is trivially optimal to
chooseη = 1 irrespective of the channel parameters
P1, P2, N,KW1W2

. If in contrast the goal is to maximize
the sum-rate it seems infeasible to derive the optimalη.
However, numerical results indicate that the larger the
feedback-noise variances are, the smaller the parameter
η should be chosen. It is easily proved that in the extreme
case of no feedback the sum-rate is maximized by choos-
ing η = 1. In contrast, in the extreme case of perfect
feedback we prove in Section IV-E2 that with the choice
of parameters suggested in Section F-A the maximum
sum-rate of our concatenated scheme converges to the
perfect-feedback sum-rate capacity as the parameterη
tends to infinity.

In the remaining, we discuss the two specific choices
of the parametersa1, a2,B1,B2,C given η ∈ N pre-
sented in Section E-A (Appendix E) and in Sec-
tion F-A (Appendix F). For both choices, the parameter
C is the LMMSE-estimation matrix and the parameters
a1, a2,B1,B2 are such that when specialized to perfect
feedback they satisfy (45). In the choice in Section E-A,
each inner encoder allocates the same power for all
channel inputs. The achievable region corresponding to
this choice is presented in Corollary E.3, and includes
as special case the result on the symmetric setup in
Corollary IV.6. In the choice in Section F-A, the inner
encoders use the power-allocation strategy suggested by
[11] for perfect feedback. The corresponding achievable
region is presented in Corollary F.2, and includes as
special case the achievable region for perfect feedback
in Remark F.3 used in the proof of Propositions IV.9 and
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IV.16 and Theorem IV.17.

D. Extensions of the Concatenated Scheme

In the following three subsections we present three
extensions of our concatenated scheme by rate-splitting
it with other schemes. The idea of rate-splitting was
introduced in [2] and [13].

1) Rate-Splitting with No-Feedback Scheme:In this
first extension we combine our scheme with a no-
feedback scheme employing IID Gaussian codewords.
This extension was inspired by the rate-splitting scheme
proposed by Ozarow for perfect feedback [13]. Only one
transmitter applies the rate-splitting. For the description
we assume it is Transmitter 1. Thus, Transmitter 1 splits
MessageM1 of rate R1 into two independent parts:
MessageM1,NF of rate R1,NF and MessageM1,CS of
rate R1,CS, where R1,NF and R1,CS sum up to R1.
Here, NF stands for “no-feedback” and CS stands for
“concatenated scheme”.

We first present a rough overview of the scheme. We
start with the encodings. Transmitter 1 uses a fraction
of its available powerP ′

1, for some0 ≤ P ′
1 ≤ P1, to

produce a sequence by encoding MessageM1,NF using
Gaussian codewords9 (without using the feedback). With
the rest of the power(P1−P ′

1) it produces a sequence of
the same length by encoding MessageM1,CS using our
concatenated scheme and the outputs of the feedback
link. It sends the sum of the two produced sequences
over the channel. If the concatenated scheme is of
parameterη and its outer code is of blocklengthn, then
both sequences are of lengthηn. Transmitter 2 produces
a sequence of equal length by encoding MessageM2

with powerP2 using the concatenated scheme and sends
this sequence.

We next present a rough overview of the decod-
ing at the receiver. The receiver first decodes the pair
(M1,CS,M2) by using the inner and the outer decoder
of our concatenated scheme and treating the transmission
of MessageM1,NF as additional noise. From its guess of
(M1,NF,M2) the receiver cannot recover the sequences
produced by our concatenated scheme because it is
incognizant of the feedback noise. Nevertheless, it can
form an estimate of both produced sequences (pretending
that its guess of(M1,CS,M2) is correct) and subtract the
sum of the estimates from the received signal. Based
on the resulting difference the receiver finally decodes
messageM1,NF, which concludes the decoding.

In the following we describe the scheme in more
detail. GivenM1,NF = m1,NF, Transmitter 1 picks the
codewordu(m1,NF) , (u1, . . . , uηn)

T corresponding to
m1,NF from its Gaussian codebook. GivenM1,CS =
m1,CS, Transmitter 1 feedsm1,CS to Outer Encoder 1,

9To satisfy the powers constraints the Gaussian codewords should
be of variance slightly less thanP ′

1
. However, this is a technicality

which we ignore.

which picks the codewordξ1(m1,CS) , (ξ1,1, . . . , ξ1,n)
T

corresponding tom1,CS from its codebook and feeds
it to Inner Encoder 1. Similarly, givenM2 = m2,
Transmitter 2 feedsm2 to Outer Encoder 2, which picks
the codewordξ2(m2) , (ξ2,1, . . . , ξ2,n)

T corresponding
to m2 and feeds it to Inner Encoder 2. Denoting the
parameters of the inner encoders bya1, a2,B1, andB2,
respectively, Inner Encoder 1 forms theη-dimensional
vectors

a1ξ1,k + B1V1,k, k ∈ {1, . . . , n}, (46)

and Inner Encoder 2 forms theη-dimensional vectors

a2ξ2,k + B2V2,k, k ∈ {1, . . . , n}, (47)

where forν ∈ {1, 2}:

Vν,k , (Vν,(k−1)η+1, . . . , Vν,kη)
T.

The signal transmitted by Transmitter 1 is the sum of
the vectors in (46) and the vectors

uk , (u(k−1)η+1, . . . , ukη)
T, k ∈ {1, . . . , n},

i.e.,

X1,k = uk + a1ξ1,k + B1V1,k, k ∈ {1, . . . , n},
(48)

where

X1,k , (X1,(k−1)η+1, . . . , X1,kη)
T, k ∈ {1, . . . , n}.

The signal transmitted by Transmitter 2 is described by
the vectors in (47) as follows:

X2,k = a2ξ2,k + B2V2,k, k ∈ {1, . . . , n}, (49)

where

X2,k , (X2,(k−1)η+1, . . . , X2,kη)
T.

Notice that if a1, a2,B1,B2 satisfy (19) for powers
(P1−P ′

1) andP2, noise variance(N+P ′
1) and feedback-

noise covariance matrixKW1W2
and if the outer code’s

codewords are zero-mean and average block-power con-
strained to 1, then for sufficiently large blocklengthn
the input sequences (48) and (49) satisfy the power
constraint (4) with arbitrary high probability.

We next describe the decoding. The receiver first
decodes the pair(M1,CS,M2) based on the tuple
(Y1, . . . Yηn) by treating the codewordU(M1,NF) as
additional noise and by applying the inner and outer
decoders of the concatenated scheme. LetM̂ICS andM̂2

denote the receiver’s guesses of the messagesMICS and
M2, and let

(

Ξ̂
(Rx)
1,1 , . . . , Ξ̂

(Rx)
1,n

)

and
(

Ξ̂
(Rx)
2,1 , . . . , Ξ̂

(Rx)
2,n

)

denote the corresponding codewords in the outer codes.
The receiver then attempts to estimate and subtract the
influence of the concatenated scheme (see (46) and (47))
by computing for eachk ∈ {1, . . . , n} the difference

Ỹk , (Iη − B1 − B2)Yk − a1Ξ̂
(Rx)
1,k − a2Ξ̂

(Rx)
2,k , (50)
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where theη-dimensional vectorYk is defined as

Yk , (Y(k−1)η+1, . . . , Ykη)
T.

If the receiver decodedM1,CS andM2 correctly, i.e., if
M̂1,CS = M1,CS and M̂2 = M2, then (50) corresponds
to

Uk + B1W1,k + B2W2,k + Zk, k ∈ {1, . . . , n}.

Finally, the receiver decodes MessageM1,NF based on
the differences{Ỹi}ni=1 using an optimal decoder for
a Gaussianη-input antenna/η-output antenna channel
where the noise sequences are white but correlated across
antennas. Notice that because of the correlation of the
noise sequences across antennas, the scheme might be
improved if correlated Gaussian codewords are used to
transmit MessageM1,NF.

2) Rate-Splitting with Carleial’s Scheme:Our second
extension is based on modifying Carleial’s rate-splitting
scheme [2]. Carleial’s scheme combines a variation of
the Cover-Leung scheme [4] with a no-feedback scheme
by means of rate-splitting. Here, we propose to modify
his scheme by replacing the no-feedback scheme with
our concatenated scheme. Since forη = 1, a1 =

√
P1,

and a2 =
√
P2 our concatenated scheme results in an

optimal no-feedback scheme, our proposed extension
includes Carleial’s scheme as a special case. In the fol-
lowing we roughly sketch the idea behind our extended
scheme. For more details see Appendix H.

Our scheme is a Block-Markov scheme of block-
length n′. Each block ofn′ channel uses is divided
into (B + 1) blocks, each of lengthηn for positive
integersη andn, i.e., we assume thatn′ = (B + 1)ηn.
Each transmitter splits its message into two sequences
of independent submessages: Transmitterν, for ν ∈
{1, 2}, splits its messageMν into a sequence of inde-
pendent submessages{Mν,CL,1, . . . ,Mν,CL,B} of rates
Rν,CL and into a sequence of independent submessages
{Mν,CS,1, . . . ,Mν,CS,B} of ratesRν,CS. The ratesRν,CL

andRν,CS should be nonnegative and sum toRν
B+1
B

,
but otherwise can be chosen arbitrary depending on the
parameters of the setting. Similarly, for Transmitter 2.
(Here, the subscript CL stands for “Cover-Leung” and
the subscript CS stands for “concatenated scheme”.)

As in Carleial’s scheme, after each blockb ∈
{1, . . . , B} Transmitter 1 and Transmitter 2 decode
the other transmitter’s submessageM2,CL,b andM1,CL,b

based on their feedback outputs. The two transmitters
can accomplish the decodings in two different ways.
Transmitter 1 either directly decodes MessageM2,CL,b,
or it first decodesM2,CS,b before decoding the desired
messageM2,CL,b. Which alternative is better depends on
the specific parameters of the setting.

The encoding is performed as follows. To encode
messages{Mν,CL,b}Bb=1 Transmitterν, for ν ∈ {1, 2},
uses Carleial’s variation of the Cover-Leung scheme and

to encode messages{Mν,CS,b}Bb=1 it uses our concate-
nated scheme. More specifically, before the transmission
in Block b ∈ {1, . . . , B} starts, Transmitterν chooses
the codewords for messagesMν,CL,b, M1,CL,b−1, and
M2,CL,b−1 from the corresponding Gaussian codebooks
and produces anηn-length sequence of powerP ′

ν , for
some0 ≤ P ′

ν ≤ Pν , by taking a linear combination
of the chosen codewords. It also produces anηn-length
sequence of power(Pν − P ′

ν) by encoding message
Mν,CS,b using the outer and inner encoders of our
concatenated scheme whereη is the parameter of the
inner code andn is the blocklength of the outer code. It
sends the sum of the two produced sequences in Blockb.
In Block (B+1) Transmitterν picks the codewords for
messagesM1,CL,B andM2,CL,B from the corresponding
Gaussian codebooks and sends a linear combination of
powerP ′

ν of these codewords.
After each Blockb ∈ {1, . . . , B} the receiver decodes

messagesM1,CS,b, M2,CS,bM1,CL,b−1, and M2,CL,b−1.
It first decodes messagesM1,CS,b and M2,CS,b using
inner and outer decoder of our concatenated scheme and
treating the sequences produced by encoding messages
M1,CL,b−1, M2,CL,b−1, M1,CL,b andM2,CL,b as additional
noise. From its guess of(M1,CS,b,M2,CS,b) the receiver
cannot recover the sequences produced by our concate-
nated scheme because it is incognizant of the feedback
noise. Nevertheless, it can form an estimate of both
produced sequences (pretending that its guess is correct)
and subtract the sum of the estimates from the received
signal. Based on the resulting difference and based on
similar differences which resulted in the previous block,
it then decodes messages(M1,CL,b−1,M2,CL,b−1). After
the last block(B + 1) the receiver decodes the pair
(M1,CL,B,M2,CL,B). More general decoding orders at
the receiver could be considered, but for simplicity, we
restrict attention to this order.

3) Interleaving & Rate-Splitting with Carleial’s
Cover-Leung Scheme:Our third extension is based on
rate-splitting an interleaved version of Carleial’s Cover-
Leung scheme with an interleaved version of our con-
catenated scheme. We only describe here the general
structure of the scheme. For more details see Appendix I.

Our scheme is a Block-Markov scheme of block-
lenght n′. Each block ofn′ channel uses is divided
into (B + 1) blocks, each of lengthηn and each
such block is further divided intoη subblocks of
length n. Thus, it is assumed thatB, η, and n are
positive integers such thatn′ = (B + 1)ηn. Simi-
larly, each transmitter splits its message into two se-
quences of independent submessages: Transmitterν, for
ν ∈ {1, 2}, splits its messageMν into a sequence
of independent submessages{Mν,ICL,1, . . . ,Mν,ICL,ηB}
and into a sequence of independent submessages
{Mν,ICS,1, . . . ,Mν,ICS,B}. Notice that the first sequence
of submessages is of lengthηB, and the second of length
B. Messages{Mν,ICL,(b−1)η+ℓ}Bb=1 are of rateRν,ICL,ℓ,
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and Messages{Mν,ICS,b}Bb=1 of rate R1,ICS. The rates
Rν,ICL,1, . . . , Rν,ICL,η, andRν,ICS should be nonnegative
and sum toRν

B+1
B

, but otherwise can be chosen arbi-
trary depending on the parameters of the setting. (The
subscript ICL stands for “interleaved Cover-Leung” and
the subscript ICS stands for “interleaved concatenated
scheme”.)

Similar to the previous extension and similar to
Carleial’s scheme, the transmitters decode part of the
other transmitter’s messages based on their feedback
outputs. Specifically in this scheme, after each subblock
b̃ ∈ {1, . . . , Bη}, Trasmitter 1 and Transmitter 2 de-
code the other transmitter’s submessageM2,ICL,b̃ and
M1,ICL,b̃. Following this decoding step, the transmitters
compute “cleaned” feedback outputs, i.e., they mitigate
the influence of the Cover-Leung messagesM1,ICL,b̃,
M2,ICL,b̃, M1,ICL,b̃−η, andM2,ICL,b̃−η transmitted in this
block on the observed feedback outputs. Transmitter 1
computes its “cleaned” feedback output more specifi-
cally as follows. It first reconstructs the sequence that
was produced by Transmitter 2 in this subblockb̃ to
encode messagesM2,ICL,b̃, M1,ICL,b̃−η, andM2,ICL,b̃−η

(pretending that its guesses ofM2,ICL,b̃ andM2,ICL,b̃−η

are correct). It then subtracts this reconstructed sequence
and the sequence it produced itself in this subblock to
encodeM1,ICL,b̃, M1,ICL,b̃−η, and M2,ICL,b̃−η from its
observed feedback outputs. Similarly for Transmitter 2.

The encoding is performed as follows. To encode
Messages{Mν,ICL,k}ηBk=1, Transmitterν, for ν ∈ {1, 2},
uses an interleaved version of Carleial’s Cover-Leung
scheme, and to encode Messages{Mν,ICS,b}Bb=1 it uses
an interleaved version of our concatenated scheme. We
describe these encodings in more detail. In a fixed
block b ∈ {1, . . . , B}, Transmitterν sends the sum
of two ηn-length sequences. The first sequence is of
power P ′

ν , for some0 ≤ P ′
ν ≤ Pν , and consists of

η subblocks. Theℓ-th subblock of the sequence, for
ℓ ∈ {1, . . . , η}, Transmitterν chooses then-length code-
words for MessagesMν,ICL,(b−1)η+ℓ,M1,ICL,(b−2)η+ℓ,
and M2,ICL,(b−2)η+ℓ from the corresponding Gaussian
codebooks and takes a linear combination of these
chosen codewords. We notice that here each pair of
messages(M1,ICL,b̃,M2,ICL,b̃), for b̃ ∈ {1, . . . , Bη},
is encoded into Subblocks̃b and b̃ + η, and not—as
in Carleial’s original scheme—into Subblocks̃b and
b̃ + 1. The second sequence is of power(P1 − P ′

1)
and produced as follows: Transmitterν first applies its
outer encoder to encode MessageMν,ICS,b, and then
feeds the outcome to a modified version of its inner
encoder. The inner encoder is modified as described
by the following two items. 1.) Instead of the original
feedback the modified inner encoder uses the “cleaned”
feedback mentioned above, where the influence of the
interleaved Cover-Leung type scheme is mitigated. 2.)
Unlike the original inner encoder where theℓ-th fed

codeword symbol is encoded intoη subsequent symbols
at positions(ℓ−1)η+1 to ℓη, the modified inner encoder
encodes theℓ-th fed codeword symbol into theη symbols
at positionsℓ, n+ℓ, . . . , (η−1)n+ℓ, for ℓ ∈ {1, . . . , η}.

Notice that the chosen interleaving of the modified
inner encoders preserves the causality of the feedback.
Moreover, it implies that in the interleaved sequence the
symbols in Subblock̃b, for b̃ ∈ {(b− 1)η + 1, . . . , bη},
only depend on feedback outputs of previous subblocks
1, . . . , b̃− 1 and not on feedback outputs of the current
Subblockb̃. This is the reason why the modified inner
encoder can use the “cleaned” feedback instead of the
original feedback.

The receiver first decodes Messages{M1,ICL,b̃}
ηB

b̃=1

and {M2,ICL,b̃}
ηB

b̃=1
and only thereafter decodes

Messages {M1,ICS,b}Bb=1 and {M2,ICS,b}Bb=1. More
specifically, the receiver first decodes Messages
{(M1,ICL,(b−1)η+1,M2,ICL,(b−1)η+1)}Bb=1, followed by
Messages{(M1,ICL,(b−1)η+2,M2,ICL,(b−1)η+2)}Bb=1, etc.
The receiver then reconstructs the sequences produced
to encode these messages (pretending its guesses are
correct) and subtracts them from the received signal.
Based on the resulting difference, which we call the
“cleaned” output signal, the receiver decodes Messages
{M1,ICS,b}Bb=1 and {M2,ICS,b}Bb=1. To this end, it first
reverses the interleaving and then applies the inner and
outer decoders of our concatenated scheme.

Notice that in the presented scheme, Messages
{M1,ICS,b}Bb=1 and{M2,ICS,b}Bb=1 are decoded based on
the “cleaned” output signal and they are encoded using
the “cleaned” feedbacks. The “cleaned” output signal
and the “cleaned” feedbacks correspond to the output
signals and the feedbacks in a situation where only the
interleaved concatenated scheme is employed but not the
interleaved version of Carleial’s Cover-Leung scheme.
Therefore, in the presented rate-splitting scheme there
is no degradation in performance of the interleaved con-
catenated scheme due to the rate-splitting with Carleial’s
Cover-Leung scheme.

Further, notice that in a given Blockb ∈ {1, . . . , B}
the sum of the two sequences produced to encode
MessagesM1,ICS,b andM2,ICS,b is of different power in
each of theη subblocks. Thus, these sequences introduce
different noise levels on the receiver’s decoding of
Messages{(M1,ICL,(b−1)η+ℓ,M2,ICL,(b−1)η+ℓ)}ηℓ=1, and
consequently the rates{R1,ICL,ℓ}ηℓ=1 and {R2,ICL,ℓ}ηℓ=1

should be chosen depending onℓ.

E. Proofs

1) Proof of Proposition IV.5:We first prove Part 1).
To this end, we show that for every fixedη ∈ N and
fixed η-dimensional vectorsa1, a2, η × η-dimensional
matricesB1,B2, and 2 × η-dimensional matrixC, the
following two statements hold:
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i) For all positive semidefinite matricesKW1W2
and

K′
W1W2

:
(

KW1W2
� K

′
W1W2

)

=⇒
(

R (N,KW1W2
; η, a1, a2,B1,B2,C)

⊆ R
(

N,K′
W1W2

; η, a1, a2,B1,B2,C
)

)

.

ii) If the choice of parametersη, a1, a2,B1,B2,C
satisfies the power constraints (19) for a covariance
matrix KW1W2

, then it also satisfies these power
constraints for all covariance matricesK′

W1W2
for

which KW1W2
� K′

W1W2
.

By Definition IV.2, Statements i) and ii) imply that
(

KW1W2
� K

′
W1W2

)

=⇒
(

R (P1, P2, N,KW1W2
) ⊆ R

(

P1, P2, N,K′
W1W2

)

)

,

and thus conclude the proof of Part 1).
We start by proving Statement i). Fix a tuple

(η, a1, a2,B1,B2,C). We only prove Statement i) for the
case whereCCT is nonsingular. For the case whereCCT is
singular butC 6= 0 the proof is analogous and therefore
omitted; for C = 0 the proof is trivial. To establish
Statement i) whenCCT is nonsingular, it suffices to
show that all three RHSs of (18) are monotonically
decreasing inKW1W2

with respect to the Loewner order.
We only prove the monotonicity of the RHS of (18a);
the monotonicities of the RHSs of (18b) and (18c) can
be shown analogously. Thus, in the following we fix two
positive semidefinite2× 2 matricesKW1W2

andK′
W1W2

satisfyingKW1W2
� K′

W1W2
and we show that:

1

2η
log

( |C(a1aT
1 +N Iη + Br(KW1W2

⊗ Iη)B
T
r )C

T|
|C(N Iη + Br(KW1W2

⊗ Iη)BT
r )C

T|

)

≥ 1

2η
log

(
∣

∣C(a1a
T
1 +N Iη + Br(K

′
W1W2

⊗ Iη)B
T
r )C

T
∣

∣

∣

∣C(N Iη + Br(K′
W1W2

⊗ Iη)BT
r )C

T
∣

∣

)

.

(51)

Before proving (51) we recall the following well-
known properties of positive semidefinite matrices. For
all positive semidefiniten×n matricesK,K1,K2 satisfy-
ing K1 � K2 and for allm×n matricesM the following
properties hold:

MK1M
T � MK2M

T, (52)

K + K1 � K+ K2, (53)

KK1 � KK2, (54)

K
−1
1 � K

−1
2 , (55)

and

|K1| ≥ |K2|, (56)

tr (K1) ≥ tr (K2) . (57)

Based on these properties and the definitionA1 , a1a
T
1

the following sequence of implications can be proved:
(

KW1W2
� K

′
W1W2

)

=⇒
(

(KW1W2
⊗ Iη) �

(

K
′
W1W2

⊗ Iη

)

)

(58)

=⇒
(

(Br (KW1W2
⊗ Iη)B

T
r ) �

(

Br
(

K
′
W1W2

⊗ Iη

)

B
T
r

)

)

(59)

=⇒
(

(N Iη + Br(KW1W2
⊗ Iη)B

T
r )

�
(

N Iη + Br(K
′
W1W2

⊗ Iη)B
T
r

)

)

(60)

=⇒
(

(C(N Iη + Br(KW1W2
⊗ Iη)B

T
r )C

T)

�
(

C(N Iη + Br(K
′
W1W2

⊗ Iη)B
T
r )C

T
)

)

(61)

=⇒
(

(C(N Iη + Br(KW1W2
⊗ Iη)B

T
r )C

T)
−1

�
(

C(N Iη + Br(K
′
W1W2

⊗ Iη)B
T
r )C

T
)−1

)

(62)

=⇒
((

I2 + CA1C
T (C(N Iη + Br(KW1W2

⊗ Iη)B
T
r )C

T)
−1
)

�
(

I2 + CA1C
T
(

C(N Iη + Br(K
′
W1W2

⊗ Iη)B
T
r )C

T
)−1
))

(63)

where (58) follows by the linearity of the Kronecker
product⊗ and because for every positive semidefinite
matrix K also the Kronecker productK ⊗ Iη is positive
semidefinite10; where (58) follows by (52); where (60)
follows by (53) and becauseN Iη � 0; where (61)
follows by (52); where (62) follows by (55); where (63)
follows by (54) and (55) and becauseA1 � 0, and thus,
by (52), alsoCA1C

T � 0.
Inequality (51) follows then from (63), from (56),

from the monotonicity of thelog-function, and from the
fact that for every2× 2 positive semidefinite matrixK,
for A1 as defined above, and whenCCT is nonsingular:

1

2η
log

( |C(a1aT
1 +N Iη + Br(K ⊗ Iη)B

T
r )C

T|
|C(N Iη + Br(K⊗ Iη)BT

r )C
T|

)

=
1

2η
log
(∣

∣

∣I2 + CA1C
T

·
(

C(N Iη + Br(K
′
W1W2

⊗ Iη)B
T
r )C

T
)−1

∣

∣

∣

)

which holds because for all nonsingular square matrices
M1 andM2 of the same dimension|M1|

|M2| =
∣

∣M1M
−1
2

∣

∣.
This concludes the proof of Statement i).

We next prove Statement ii). It suffices to show that
for fixed parametersη, a1, a2,B1,B2,C, the left-hand
sides of the power constraints (19) are monotonically
increasing inKW1W2

with respect to the Loewner order.

10ThatK � 0 implies (K⊗ I) � 0 can be seen as follows. For every
2η-dimensional vectorx , (x1, . . . , x2η)T, where we definexi ,

(x2i−1, x2i)
T for i ∈ {1, . . . , η}, and every2×2 positive semidefinite

matrix K the termx
T (K⊗ Iη)x can be written as

∑η
i=1

x
T
iKxi,

which is nonnegative sinceK is positive semidefinite.
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Similarly to the proof of Statement i), this can be shown
by a sequence of implications based on (52), on (53),
on (57), on the fact thatKW1W2

� K′
W1W2

implies
(KW1W2

⊗ Iη) �
(

K′
W1W2

⊗ Iη

)

, and on the fact that
the trace of a sum equals the sum of the traces. The
details are omitted.

We prove Part 2). The inclusion of the LHS in the
RHS is trivial, because for every positiveδ all choices
of parametersη, a1, a2,B1,B2,C satisfying the power
constraints (19) for powers(P1−δ) and(P2−δ) satisfy
the power constraints also for powersP1 andP2.

The inclusion of the RHS in the LHS is proved as
follows. We fix a rate pair(R◦

1, R
◦
2) in the interior of

R (P1, P2, N,KW1W2
), i.e.,

(R◦
1, R

◦
2) ∈ R̊ (P1, P2, N,KW1W2

) , (64)

and show that for all sufficiently smallδ > 0 the rate
pair can also be achieved with powersP1−δ andP2−δ,
i.e.,

(R◦
1, R

◦
2) ∈ R (P1 − δ, P2 − δ,N,KW1W2

) . (65)

We first choose parametersη′, a′1, a
′
2,B

′
1,B

′
2,C

′ so
that the power constraints (19) are satisfied for powers
P1 andP2 and so that

(R◦
1 , R

◦
2) ∈ R̊ (N,KW1W2

; η′, a′1, a
′
2,B

′
1,B

′
2,C

′) . (66)

By (64), such a choice always exists. Moreover, for
such a choice the matrixC′ differs from the all-zero
matrix and both vectorsa′1 and a

′
2 differ from the

all-zero vector. This can be argued as follows. It is
easily shown that ifC′ = 0, a

′
1 = 0, or a

′
2 = 0

then the regionR (N,KW1W2
; η′, a′1, a

′
2,B

′
1,B

′
2,C

′) is
degenerate, i.e., eitherR1 = 0 for all points in the region
or R2 = 0 for all points in the region. Consequently,
the regionR (N,KW1W2

; η′, a′1, a
′
2,B

′
1,B

′
2,C

′) cannot
contain any interior points ofR (P1, P2, N,KW1W2

),
thus contradicting (66).

We next define for eachδ > 0 the quantitiesκ1(δ)
and κ2(δ) as in (67) on top of the next page, and we
define

κ(δ) = min{κ1(δ), κ2(δ)}.
Sincea′1 anda′2 both differ from0, the denominators in
(67a) and (67b) are non-zero and the quantitiesκ1(δ),
κ2(δ), andκ(δ) are well defined. Moreover,κ(δ) tends
to 1 asδ ↓ 0.

The desired inclusion (65) is then established by show-
ing that for all sufficiently smallδ > 0 the following two
statements hold.

i) The parametersη′, κ(δ)a′1, κ(δ)a
′
2,B

′
1,B

′
2,C

′ sat-
isfy the power constraints (19) for powers(P1−δ)
and (P2 − δ).

ii) The rate pair (R◦
1, R

◦
2) lies in the region

R (N,KW1W2
; η′, κ(δ)a′1, κ(δ)a

′
2,B

′
1,B

′
2,C

′) .

Statement i) is easily verified by substituting the pa-
rametersη′, κ(δ)a′1, κ(δ)a

′
2,B

′
1,B

′
2,C

′ into the LHSs

of the power constraints (19) and using the fact that
the parametersη′, a′1, a

′
2,B

′
1,B

′
2,C

′ satisfy these power
constraints for powersP1 and P2. Statement ii) fol-
lows because for given parametersη,B1,B2, and C

the RHSs of Constraints (18)—which define the region
R (P1, P2, N,KW1W2

; ) whenC 6= 0—are continuous in
the entries ofa1 anda2, and becauseκ(δ) tends to 1 as
δ ↓ 0.

We finally prove Part 3), i.e., Equality (20). The
inclusion of the LHS in the RHS is trivial, because
replacing the intersection on the LHS by the specific
choiceK = 0 can only increase the region, and because
the regionR (P1, P2, N, 0) is closed. The interesting
inclusion is that the LHS contains the RHS. To prove
this inclusion, we first notice that

cl





⋃

σ2>0

⋂

K�0: tr(K)≤σ2

R (P1, P2, N,K)





⊇ cl





⋃

σ2>0

⋂

K�0: tr(K)≤σ2

R (P1, P2, N, tr (K) I2)





= cl

(

⋃

σ2>0

R
(

P1, P2, N, σ2
I2

)

)

,

where the inclusion and the equality both follow by the
monotonicity proved in Part 1). Thus, it remains to show
that

cl

(

⋃

σ2>0

R
(

P1, P2, N, σ2
I2

)

)

⊇ R (P1, P2, N, 0) . (68)

To prove (68), we fix a rate pair(R◦
1, R

◦
2) in the

interior of R (P1, P2, N, 0), and show that for all suf-
ficiently small σ2 > 0 there exists a set of parameters
η, a1, a2,B1,B2,C satisfying the following two state-
ments.

i) The parametersη, a1, a2,B1,B2,C satisfy the
power constraints (19) for feedback-noise covari-
ance matrixKW1W2

= σ2I2 and powersP1 and
P2.

ii) The rate pair (R◦
1, R

◦
2) lies in the region

R
(

N, σ2I2; η, a1, a2,B1,B2,C
)

.
We first notice that by Part 2), for all sufficiently

small δ > 0 the pair (R◦
1, R

◦
2) lies in the interior of

R (P1 − δ, P2 − δ,N, 0), i.e.,

(R◦
1, R

◦
2) ∈ R̊ (P1 − δ, P2 − δ,N, 0) .

This implies that for all sufficiently small
δ > 0 there exists a set of parameters
(η(δ), a1(δ), a2(δ),B1(δ),B2(δ),C(δ)) so that

• the power constraints (19) are satisfied for
feedback-noise covariance matrixKW1W2

= 0 and
powers(P1 − δ) and (P2 − δ); and

• the rate pair(R◦
1, R

◦
2) satisfies

(R◦
1 , R

◦
2)
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κ1(δ) ,

√

√

√

√

√

1− δη

tr

(

(

Iη 0
)

(I2η − Bb)
−1

AdA
T
d (I2η − Bb)

−T

(

Iη

0

)) (67a)

κ2(δ) ,

√

√

√

√

√

1− δη

tr

(

(

0 Iη

)

(I2η − Bb)
−1

AdA
T
d (I2η − Bb)

−T

(

0

Iη

)) (67b)

∈ R̊ (N, 0; η(δ), a1(δ), a2(δ),B1(δ),B2(δ),C(δ)) .

(69)

The proof is then established by fixing a suffi-
ciently small δ > 0, and showing that for all
sufficiently small σ2 > 0 the choice of parame-
ters (η(δ), a1(δ), a2(δ),B1(δ),B2(δ),C(δ)) satisfies the
above Statements i) and ii).

Statement i) holds because forKW1W2
= σ2

I2

the LHSs of the power constraints (19) are con-
tinuous in σ2 > 0, and because the parame-
ters (η(δ), a1(δ), a2(δ),B1(δ),B2(δ),C(δ)) satisfy the
power constraints for feedback-noise covariance matrix
KW1W2

= 0 and powers(P1 − δ) and (P2 − δ).
Statement ii) holds because forKW1W2

= σ2I2 the RHSs
of Constraints (18)—which define the region region
R (N,KW1W2

; η, a1, a2,B1,B2,C) when C 6= 0—are
continuous inσ2, and because of Inclusion (69).

2) Proof of Remark IV.8:Fix P1, P2, N > 0. Spe-
cializing our concatenated scheme to the specific choice
of parameters in Remark F.3 in Appendix F obviously
cannot outperform our concatenated scheme for general
parameters. Thus,

cl





⋃

η∈N

R̃η (P1, P2, N, 0)



 ⊆ R (P1, P2, N, 0) . (70)

We shall show in the following that

Rρ∗

Oz(P1, P2, N) ⊆ cl





⋃

η∈N

R̃η (P1, P2, N, 0)



 , (71)

which combined with (70) establishes the remark.
Recall that for fixed η ∈ N the region

R̃η(P1, P2, N, 0) is defined as the set of all rate
pairs (R1, R2) satisfying Constraints (72) on top of the
next page where

ρ1 = −ρ∗(P1, P2, N) (73a)

and forℓ ∈ {2, . . . , η − 1}:

ρℓ =
ρℓ−1N − (−1)ℓ−1

√
P1P2(1 − ρ2ℓ−1)

√

P1(1− ρ2ℓ−1) +N
√

P2(1− ρ2ℓ−1) +N
,

(73b)

and wherer is the unique solution in[0, 1] to (185), i.e.,
to

√

r2P1P2

(rP1 +N)(rP2 +N)
= ρ∗(P1, P2, N).

We shall shortly prove that the solution to the recur-
sion (73) is

ρℓ = (−1)ℓρ∗(P1, P2, N), ℓ ∈ N. (74)

This implies that for allℓ ∈ N larger than 1:

ρ2ℓ−1 = ρ∗2,

(−1)ℓ−1ρℓ−1 = ρ∗,

and hence for fixedη ∈ N the regionR̃η(P1, P2, N, 0)
contains all rate pairs(R1, R2) satisfying:

R1 ≤ 1

2η
log

(

1 +
rP1

N

)

+
η − 1

2η
log

(

1 +
P1(1− ρ∗2)

N

)

, (75a)

R2 ≤ 1

2η
log

(

1 +
rP2

N

)

+
η − 1

2η
log

(

1 +
P2(1− ρ∗2)

N

)

, (75b)

R1 +R2 ≤ 1

2η
log

(

1 +
rP1 + rP2

N

)

+
η − 1

2η
log

(

1 +
P1 + P2 + 2

√
P1P2ρ

∗

N

)

.

(75c)

Notice that whenη tends to infinity, the RHSs of (75a)–
(75c) tend to the RHSs of the three Constraints (7a)–(7c)
evaluated forρ = ρ∗. Since Constraints (7a)–(7c) eval-
uated forρ = ρ∗ determine the regionRρ∗

Oz(P1, P2, N),
Inclusion (71) follows immediately by (75) and by letting
η tend to infinity.

In the remaining, we prove (74) in two steps. In the
first step we show thatρ∗(P1, P2, N) is a fix point of
the functionh(·) defined as

h : [0, 1] → R,

h(ρ) =

√
P1P2(1− ρ2)− ρN

√

P1(1− ρ2) +N
√

P2(1− ρ2) +N
.
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R1 ≤ 1

2η
log

(

1 +
rP1

N

)

+

η
∑

ℓ=2

1

2η
log

(

1 +
P1(1 − ρ2ℓ−1)

N

)

(72a)

R2 ≤ 1

2η
log

(

1 +
rP2

N

)

+

η
∑

ℓ=2

1

2η
log

(

1 +
P2(1 − ρ2ℓ−1)

N

)

(72b)

R1 +R2 ≤ 1

2η
log

(

1 +
rP1 + rP2

N

)

+

η
∑

ℓ=2

1

2η
log

(

1 +
P1 + P2 + 2

√
P1P2(−1)ℓ−1ρℓ−1

N

)

(72c)

Notice thath(·) has at least one fix point in[0, 1] because
h(0) > 0 whereash(1) < 0, and becauseh(·) is
continuous. Further notice that every fix point ofh(·)
must also be a solution to

1− h(ρ)2 = 1− ρ2,

i.e., a solution to

N(N + P1 + P2 + 2
√
P1P2ρ)

(N + P1(1− ρ2))(N + P2(1− ρ2))
(1−ρ2) = (1−ρ2).

(76)
The solutions in[0, 1] to (76) are given byρ = 1 and
by the solutions to

N(N + P1 + P2 + 2
√

P1P2ρ)

= (N + P1(1 − ρ2))(N + P2(1− ρ2)). (77)

Since ρ = 1 is not a fix point of h(·) and since
ρ∗(P1, P2, N) is the unique solution in[0, 1] to (77) (see
Definition III.1), ρ∗(P1, P2, N) must be a fix point of
h(·). This concludes the first step.

In the second step we use the derived fix-point prop-
erty ofh(·) to prove (74). The proof is lead by induction.
For ℓ = 1 Condition (74) holds by definition. Assuming
that (74) holds for some fixedℓ ≥ 1, we have

ρℓ+1

=
−(−1)ℓ

√
P1P2(1− |ρℓ|2) + ρℓN

√

P1(1 − |ρℓ|2) +N
√

P2(1− |ρℓ|2) +N
(78)

= (−1)ℓ+1

√
P1P2(1− |ρℓ|2)− |ρℓ|N

√

P1(1− |ρℓ|2) +N
√

P2(1− |ρℓ|2) +N

(79)

= (−1)ℓ+1h(|ρℓ|) (80)

= (−1)ℓ+1ρ∗(P1, P2, N), (81)

where (78) follows by the definition of the sequence
{ρℓ} for ℓ > 1; (79) follows because by the induction
assumption sign(ρℓ) = (−1)ℓ; (80) follows by the
definition of the functionh(·); and finally (81) follows
because by the induction assumption|ρℓ| = ρ∗ and
becauseρ∗, as shown in the first step, is a fix point of
h(·). Thus, (74) holds also for(ℓ+1), which concludes
the induction step and the proof of the remark.

3) Proof of Remark IV.15 :We only prove Inclu-
sion (26a); Inclusion (26b) can be proved analogously.

Fix ρ ∈ [0, ρ∗], and defineα(ρ) as the unique solution
in [0, 1[ to

P1 + P2 + 2
√
P1P2ρ+N

P1(1− ρ2) +N
= 1+

P2

(

1− ρ2

1−α

)

αP1 +N
. (82)

That (82) has exactly one solution in[0, 1) follows
by the Intermediate Value Theorem and the following
observations: The RHS of (82) is continuous and strictly
decreasing inα; for α = 0 the RHS of (82) is larger
or equal to the LHS because0 ≤ ρ ≤ ρ∗ and by
Remark III.3; and forα tending to 1 the RHS tends
to −∞ and thus is smaller than the LHS.

Further, define

P ′
1 , α(ρ)P1,

P ′′
1 , (1− α(ρ))P1,

N ′ , P ′
1 +N,

ρ′ ,
ρ

√

1− α(ρ)

and notice that by these definitions:

N ′(N ′ + P ′′
1 + P2 + 2

√

P ′′
1 P2ρ

′)

= (N ′ + P ′′
1 (1 − ρ′2))(N ′ + P2(1− ρ′2)), (83)

and hence
ρ′ = ρ∗(P ′′

1 , P2, N
′).

Also, define (Rρ
1,Oz, R

ρ
2,Oz) as the dominant corner

point of the rectangleRρ
1,Oz(P1, P2, N). The following

two remarks on(Rρ
1,Oz, R

ρ
2,Oz) are from [13], and based

on (83).

Remark IV.18. The rate point(Rρ
1,Oz, R

ρ
2,Oz) can be

expressed as

Rρ
1,Oz = Rρ

1,1,Oz +Rρ
1,2,Oz,

Rρ
2,Oz =

1

2
log

(

1 +
P2(1 − ρ′2)

N ′

)

,

where

Rρ
1,1,Oz ,

1

2
log

(

1 +
P ′
1

N

)

,

Rρ
1,2,Oz ,

1

2
log

(

1 +
P ′′
1 (1− ρ′2)

N ′

)

.
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Remark IV.19. The rate point(Rρ
1,2,Oz, R

ρ
2,Oz) corre-

sponds to the dominant corner point of the rectangle
Rρ′

Oz(P
′′
1 , P2, N

′), whereρ′ = ρ∗(P ′′
1 , P2, N

′).

We are now ready to prove Inclusion (26a). For
KW1W2

= 0 the RHS of (24) equals12 log
(

1 +
P ′

1

N

)

,
irrespective of the parametersa1, a2,B1,B2,C. There-
fore, the regionRRS,1 (P

′
1, P

′′
1 , P2, N, 0) is given by the

set of all rate pairs(R1, R2) which for some nonnegative
R1,CS, R1,NF summing toR1 satisfy

(R1,CS, R2) ∈ R (P ′′
1 , P2, N

′, 0) , (84a)

R1,NF ≤ 1

2
log

(

1 +
P ′
1

N

)

. (84b)

Since by Remark IV.19 and Remark IV.8:
(

Rρ
1,2,Oz, R

ρ
2,Oz

)

∈ R (P ′′
1 , P2, N

′, 0)

and by Remark IV.18:

Rρ
1,1,Oz ≤

1

2
log

(

1 +
P ′
1

N

)

,

the triple
(

Rρ
1,1,Oz, R

ρ
1,2,Oz, R

ρ
2,Oz

)

satisfies (84), and
hence

(

Rρ
1,Oz, R

ρ
2,Oz

)

∈ RRS,1 (P
′
1, P

′′
1 , P2, N, 0) . (85)

Inclusion (26a) finally follows because
(

Rρ
1,Oz, R

ρ
2,Oz

)

is the dominant corner point of the rectangle
Rρ

1,Oz(P1, P2, N), and therefore (85) implies that
the entire regionRρ

1,Oz(P1, P2, N) is contained in
RRS,1 (P

′
1, P

′′
1 , P2, N, 0).

4) Proof of Proposition IV.16 :We only prove Inclu-
sion (27a); Inclusion (27b) can be proved analogously.

To this end, fix aρ ∈ [0, ρ∗(P1, P2, N)] and choose a
powerP ′

1 ∈ [0, P1] such that

RRS,1 (P
′
1, (P1 − P ′

1), P2, N, 0) ⊇ Rρ
1,Oz(P1, P2, N). (86)

Notice that by Remark IV.15 such a powerP ′
1 always

exists. Inclusion (27a) follows then because by Proposi-
tion IV.14, Part 2.:

cl









⋃

σ2>0

⋂

K�0:
tr(K)≤σ2

RRS,1 (P
′
1, (P1 − P ′

1), P2, N,K)









= RRS,1 (P
′
1, (P1 − P ′

1), P2, N, 0) .

5) Proof of Theorem IV.17:Fix P1, P2, N > 0.
The proof of the⊆-direction follows trivially because
replacing the intersection on the LHS by the specific
choice K = 0 can only increase the region, because
CNoisyFB(P1, P2, N, 0) = CPerfectFB(P1, P2, N), and be-
cause by definition the regionCPerfectFB(P1, P2, N) is
closed.

The⊇-direction, i.e.,

cl









⋃

σ2>0

⋂

K�0:
tr(K)≤σ2

CNoisyFB(P1, P2, N,K)









⊇ CPerfectFB(P1, P2, N),

follows from the sequence of inclusions (87)–(90) on
top of the next page. Inclusion (87) follows from Propo-
sition IV.13; (88) follows by basic rules on sets; (89)
follows from Proposition IV.16; and (90) follows by
Remark III.7.

V. PARTIAL FEEDBACK

We now focus on the setup with noisy or perfect
partial feedback. For this setup we again present new
achievable regions, and based on these new regions we
derive new qualitative properties of the capacity region
(Section V-A). We also present the coding schemes
corresponding to these new achievable regions (Sec-
tions V-B–V-D). They are obtained from the noisy-
feedback schemes in Sections IV-B–IV-D by restricting
the set of parameters and in the case of the extended
schemes by additionally specializing Carleial’s scheme
to noisy partial feedback.

A. Results

We first present results for noisy partial feedback
(Section V-A1) and then results that hold only for perfect
partial feedback (Section V-A2).

1) Results for Noisy Partial Feedback:Evaluating
the rates achieved by our concatenated scheme with
general parameters in Section V-C1 ahead leads to the
achievability result in Theorem V.3. Before stating the
result we define:

Definition V.1. Let η be a positive integer, leta1, a2
be η-dimensional vectors, letB2 be a strictly lower-
triangular η × η matrix, and letCP be a 2 × η ma-
trix. Then, depending on the matrixCP the rate region
RP
(

N, σ2
2 ; η, a1, a2,B2,CP

)

is defined as follows:

• If the product CPC
T
P is nonsingular,11 then

RP
(

N, σ2
2 ; η, a1, a2,B2,CP

)

is defined as the set
of all rate pairs (R1, R2) satisfying

R1 ≤ 1

2η
log

∣

∣CP
(

a1a
T
1 +N Iη + σ2

2B2B
T
2

)

CT
P

∣

∣

|CP (N Iη + σ2
2B2B

T
2)C

T
P|

,

(91a)

R2 ≤ 1

2η
log

∣

∣CP
(

a2a
T
2 +N Iη + σ2

2B2B
T
2

)

C
T
P

∣

∣

|CP (N Iη + σ2
2B2B

T
2)C

T
P|

,

(91b)

R1 +R2

11Wheneverη ∈ N is larger than 1, there is no loss in optimality in
restricting attention to matricesCP so thatCPC

T
P is nonsingular.
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cl





⋃

σ2>0

⋂

K�0: tr(K)≤σ2

CNoisyFB(P1, P2, N,K)





⊇ cl





⋃

σ2>0

⋂

K�0: tr(K)≤σ2









⋃

P ′

1
∈[0,P1]

RRS,1 (P
′
1, (P1 − P ′

1), P2, N,K)





∪





⋃

P ′

2
∈[0,P2]

RRS,2 (P1, P
′
2, (P2 − P ′

2), N,K)











 (87)

⊇ cl





⋃

P ′

1
∈[0,P1]

cl





⋃

σ2>0

⋂

K�0: tr(K)≤σ2

RRS,1 (P
′
1, (P1 − P ′

1), P2, N,K)









∪ cl





⋃

P ′

2
∈[0,P2]

cl





⋃

σ2>0

⋂

K�0: tr(K)≤σ2

RRS,2 (P1, P
′
2, (P2 − P ′

2), N,K)







 (88)

⊇ cl





⋃

ρ∈[0,ρ∗(P1,P2,N)]

Rρ
1,Oz(P1, P2, N)



 ∪ cl





⋃

ρ∈[0,ρ∗(P1,P2,N)]

Rρ
2,Oz(P1, P2, N)



 (89)

= CPerfectFB(P1, P2, N), (90)

≤ 1

2η
log

∣

∣CP
(

ArA
T
r +N Iη + σ2

2B2B
T
2

)

CT
P

∣

∣

|CP (N Iη + σ2
2B2B

T
2)C

T
P|

,

(91c)

whereAr is defined in(11).
• If the productCPC

T
P is singular butCP 6= 0, then

RP
(

N, σ2
2 ; η, a1, a2,B2,CP

)

is defined as the set
of all rate pairs (R1, R2) satisfying(91) when the
2 × η matrix CP is replaced by theη-dimensional
row-vector obtained by choosing one of its non-zero
rows.

• If CP = 0, then RP
(

N, σ2
2 ; η, a1, a2,B2,CP

)

is
defined as the set containing only the origin.

An alternative formulation of the region
RP
(

N, σ2
2 ; η, a1, a2,B2,CP

)

is presented in Section D-B
in Appendix D.

Definition V.2. Define

RP
(

P1, P2, N, σ2
2

)

, cl





⋃

η,a1,a2,B2,CP

RP
(

N, σ2
2 ; η, a1, a2,B2,CP

)



 , (92)

where the union is over all tuples(η, a1, a2,B2,CP)
satisfying the trace constraints

a
T
1a1 ≤ ηP1 (93a)

and

tr

(

(Iη − B2)
−1
(

a2a
T
2 + B2a1a

T
1B

T
2

+(N + σ2
2)B2B

T
2

)

(Iη − B2)
−T

)

≤ ηP2. (93b)

Theorem V.3 (Noisy Partial Feedback). The capac-
ity region CNoisyPartialFB(P1, P2, N, σ2

2) of the two-user
AWGN MAC with noisy partial feedback to Transmitter 2
contains the rate regionRP

(

P1, P2, N, σ2
2

)

, i.e.,

CNoisyPartialFB(P1, P2, N, σ2
2) ⊇ RP

(

P1, P2, N, σ2
2

)

.

Proof: Follows from Theorem IV.3 by choosingB1

as the all-zero matrix.

Remark V.4. Evaluating the achievable region
RP
(

P1, P2, N, σ2
2

)

seems to be difficult even
numerically. More easily computable (but possibly
smaller) achievable regions are obtained by taking
the union on the RHS of(92) only over a subset
of the parametersη, a1, a2,B2,CP satisfying (93).
In Remark E.1 in Appendix E we present such a
subset of parameters. In Section V-C2 we present
general guidelines on how to choose the parameters
η, a1, a2,B2,CP.

Specializing Theorem V.3 to equal powers channels,
i.e., P1 = P2 = P , and to η = 2 and the choice of
the parameters presented in Section E-A (Appendix E)
yields the following Corollary V.5.

Corollary V.5 (Equal Powers and Noisy Partial Feed-
back). The capacity regionCNoisyPartialFB(P, P,N, σ2

2) of
the two-user AWGN MAC with noisy partial feedback to
Transmitter 2 and equal powersP1 = P2 = P contains
all rate pairs(R1, R2) satisfying Constraints(94) on top
of the next page.

From Corollary V.5 it follows immediately that for
equal-powers channels noisy partial feedback increases
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R1 ≤ 1

4
log

(

1 +
2P

N

)

+
1

4
log

(

1− P

2P +N

P P
N
σ2
2

(

2P +N + σ2
2 +

P
N
σ2
2

) (

P +N + σ2
2 + P

N
σ2
2

)

)

(94a)

R2 ≤ 1

4
log

(

1 +
2P

N

)

+
1

4
log

(

1 +
P

2P +N
· P

P +N + σ2
2 +

P
N
σ2
2

)

(94b)

R1 +R2 ≤ 1

2
log

(

1 +
2P

N

)

+
1

4
log

(

1 +
2P 2

(2P +N)2

(
√

1 +
P (P +N + σ2

2)
(

P +N + σ2
2 +

P
N
σ2
2

)2 − 1

)

+

(

P

2P +N

)2
(P +N)(2P +N + σ2

2)

(2P +N + σ2
2 +

P
N
σ2
2)(P +N + σ2

2 +
P
N
σ2
2)

)

(94c)

the capacity, no matter how large the noise varianceσ2 ≥
0 is. The following stronger result holds:

Theorem V.6 (Noisy Partial Feedback is Always Bene-
ficial). For all N,P1, P2 > 0 andσ2

2 ≥ 0

CNoFB(P1, P2, N) ⊂ CNoisyPartialFB(P1, P2, N, σ2
2), (95)

where the inclusion is strict.

Proof: See Section V-E1.
2) Results for Perfect Partial Feedback:Specializing

Theorem V.3 to perfect partial feedback, i.e., toσ2
2 = 0

yields:

Corollary V.7 (Perfect Partial Feedback). The capacity
region CPerfectPartialFB(P1, P2, N) of the two-user AWGN
MAC with perfect partial feedback to Transmitter 2
contains the rate regionRP (P1, P2, N, 0), i.e.,

CPerfectPartialFB(P1, P2, N) ⊇ RP (P1, P2, N, 0) .

Specializing Corollary V.7 toη = 2 and the choice of
parameters in Section E-A in Appendix E, yields:

Corollary V.8. The capacity region
CPerfectPartialFB(P1, P2, N) of the two-user AWGN
MAC with perfect partial feedback to Transmitter 2
contains all rate pairs(R1, R2) satisfying

R1 ≤ 1

4
log

(

1 +
2P1

N

)

,

R2 ≤ 1

4
log



1 +
P2

(

2 + P2

P1+N

)

N



 ,

R1 +R2

≤ 1

4
log

(

1 +
P1 + P2

N

)

+
1

4
log

(

1 +
P1

P2+N
P1+P2+N

+ P2

N

+
2
√

P1P2
P1

P1+N
P2

P1+P2+N

N



 .

With this Corollary V.8 at hand we can answer the
question by van der Meulen in [18] whether the Cover-
Leung region equals the capacity region of the MAC
with perfect partial feedback.

Theorem V.9. Consider a two-user AWGN MAC with
perfect partial feedback. For some powersP1, P2 and
noise varianceN the inclusion

RCL(P1, P2, N) ⊂ CPerfectPartialFB(P1, P2, N)

is strict.

Proof: The inclusion is proved in Section V-E2 by
showing that for powersP1 = 1, P2 = 5 and noise
varianceN = 5 the region in Corollary V.8 contains rate
points that lie strictly outside the Cover-Leung region.

The last two results are achieved by modifying
the rate-splitting schemes for noisy feedback in Sec-
tions IV-D2 and IV-D3 so as to apply also for perfect
partial feedback. For details see Section V-D.

Proposition V.10 (Rate-Splitting for Perfect
Partial Feedback I). The capacity region
CPerfectPartialFB(P1, P2, N) of the two-user AWGN
MAC with perfect partial feedback to Transmitter 2
contains all rate pairs (R1, R2) which for some
nonnegativeR1,CL, R1,CS summing toR1, for some
nonnegativeR2,CL, R2,CS summing toR2, and for some
choice ofρ1, ρ2 ∈ [0, 1] and P ′

1 ∈ [0, P1], P
′
2 ∈ [0, P2]

satisfy

(R1,CL, R2,CL) ∈ R(ρ1,ρ2)
CL (P ′

1, P
′
2, N),

(R1,CS, R2,CS) ∈ RP ((P1 − P ′
1), (P2 − P ′

2), NCS) ,

whereNCS , (N + P ′
1 + P ′

2 + 2
√

P ′
1P

′
2ρ1ρ2).

Proof: The rate region is achieved by modifying
the rate-splitting scheme for noisy feedback in Section
IV-D2 as described in Section V-D. Here, the version of
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the scheme in Section IV-D2 is chosen where Transmit-
ter 2 decodes the submessages encoded with the concate-
nated scheme before decoding the submessages encoded
with Carleial’s Cover-Leung scheme. The analysis of the
rate-splitting scheme is based on a genie-aided argument
as in [14] and [24]. The details are omitted.

Proposition V.11 (Rate-Splitting for Perfect
Partial Feedback II). The capacity region
CPerfectPartialFB(P1, P2, N) of the two-user AWGN
MAC with perfect partial feedback to Transmitter 2
contains all rate pairs(R1, R2) which for nonnegative
(R1,ICL,1, R1,ICL,2, R1,ICS) summing toR1; nonnegative
(R2,ICL,1, R2,ICL,2, R2,ICS) summing toR2; and for some
choice ofρ1, ρ2 ∈ [0, 1] and P ′

1 ∈ [0, P1], P
′
2 ∈ [0, P2]

satisfy all the 11 constraints(96) on top of the next
page, where

N1 , P1 − P ′
1 + P2 − P ′

2,

N2 ,
(P1 − P ′

1)(P2 − P ′
2) +N

(P1 − P ′
1 + P2 − P ′

2 +N)
+ (P2 − P ′

2)

+2

√

(P1 − P ′
1)

2

(P1 − P ′
1 +N)

(P2 − P ′
2)

2

(P1 − P ′
1 + P2 − P ′

2 +N)
.

Proof: The rate region is achieved by modifying
the rate-splitting scheme for noisy feedback in Sec-
tion IV-D3 so as to apply also for perfect partial feedback
(see Section V-D), and by choosing the parameters of
the concatenated scheme asη = 2 and as described
in Remark E.1 in Appendix E. The proof follows by
accordingly combining Corollary V.8 and the rate con-
straints which arise from the decodings in Carleial’s
variation of the Cover-Leung scheme. Again, a genie-
aided argument is used in the analysis. The details are
omitted.

Remark V.12. In the case of perfect partial feedback,
for all channel parametersP1, P2, N > 0, the achiev-
able regions by Carleial [2] and Willems et al. [23]
(Appendices A and B) correspond to the Cover-Leung
regionRCL(P1, P2, N) (see, e.g., the explanation in [2,
Section II-C]). Since irrespective ofP1, P2, N > 0, the
Cover-Leung region is contained in the two achievable
regions in Propositions V.10 and V.11, we conclude that
Propositions V.10 and V.11 include also Carleial’s and
Willems et al.’s regions for perfect partial feedback.

B. Simple Scheme

If in the simple scheme for noisy feedback in Sec-
tion IV-B the parameterb1 is restricted to be 0, then
the scheme applies also to noisy partial feedback. In
particular, in this case it achieves all nonnegative rate
pairs(R1, R2) that satisfy

R1 ≤ 1

4
log

(

1 +
a21,1
N

+
a22,2

b22σ
2
2 +N

)

R2 ≤ 1

4
log

(

1 +
a22,1
N

+
a22,2

b22σ
2
2 +N

)

R1 +R2 ≤ 1

4
log

(

1 +
a21,1 + a22,1

N
+

a21,2 + a22,2
b22σ

2
2 +N

+
(a1,1a2,2 − a2,1a1,2)

2

N(b22σ
2
2 +N)

)

,

for some choice of parametersa1,1, a1,2, a2,1, a2,2, b2
satisfying

a21,1 + a21,2 ≤ 2P1,

and

a22,1 + (a2,2 − b2a2,1)
2 + b22(a

2
1,1 +N + σ2

2) ≤ 2P2.

The simple scheme for noisy partial feedback is in-
cluded as a special case in the concatenated scheme for
noisy partial feedback described in the next-following
section. However, the simple scheme suffices to prove
Corollaries V.5 and V.8 and Theorem V.9.

C. Concatenated Scheme

1) Scheme:If in the concatenated scheme for noisy
feedback in Section IV-C1 the parameterB1 is restricted
to be the all-zero matrix, then this scheme applies also
to noisy partial feedback. In this case, applying the inner
encoders with parametersη, a1, a2,B1 = 0,B2, andD

induces a “new” MACξ1, ξ2 7→ (Ξ̂1, Ξ̂2) of channel law
(

Ξ̂1

Ξ̂2

)

= AP

(

ξ1
ξ2

)

+TP, (97)

where the2× 2 matrix AP is given by

AP = D (Iη − B2)
−1

Ar; (98)

whereAr is defined as in (11); and where the noise vector
TP is a zero-mean bivariate Gaussian

TP = D (Iη − B2)
−1

(B2W2 + Z) . (99)

Defining the2× η matrix

CP , D (Iη − B2)
−1

, (100)

the channel matrix in (98) and the noise vector in (99)
can be expressed as

AP = CPAr, (101)

TP = CP (B2W2 + Z) . (102)

For fixed η and B2 the mapping (100) fromD to
CP is one-to-one, and thus we can parameterize our
concatenated scheme for noisy partial feedback by the
parametersη, a1, a2,B2,CP.

Specializing also the power constraints (19) to the
choiceB1 = 0 and to noisy partial feedback we see
that only parametersη, a1, a2, and B2 satisfying (93)
are allowed.
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R1,ICS ≤ 1

4
log

(

1 +
2(P1 − P ′

1)

N

)

(96a)

R2,ICS ≤ 1

4
log



1 +
(P2 − P ′

2)
(

2 +
P2−P ′

2

P1−P ′

1
+N

)

N



 (96b)

R1,ICS +R2,ICS ≤ 1

4
log

(

1 +
P1 − P ′

1 + P2 − P ′
2

N

)

+
1

4
log

(

1 +
N2

N

)

(96c)

R1,ICL,1 ≤ 1

4
log

(

1 +
(1 − ρ21)P

′
1

P ′
1 +N

)

(96d)

R1,ICL,1 ≤ 1

4
log

(

1 +
(1 − ρ21)P

′
1

N1 +N

)

+
1

4
log






1 +

(

√

ρ21P
′
1 +

√

ρ22P
′
2

)2

N1 +N + (1− ρ21)P
′
1 + (1− ρ22)P

′
2






(96e)

R2,ICL,1 ≤ 1

4
log

(

1 +
(1 − ρ22)P

′
2

N1 +N

)

(96f)

R1,ICL,1 +R2,ICL,1 ≤ 1

4
log

(

1 +
P ′
1 + P ′

2 + 2
√

P ′
1P

′
2ρ

2
1ρ

2
2

N1 +N

)

(96g)

R1,ICL,2 ≤ 1

4
log

(

1 +
(1− ρ21)P

′
1

P ′
1

N
P ′

1
+N

+N

)

(96h)

R1,ICL,2 ≤ 1

4
log

(

1 +
(1 − ρ21)P

′
1

N2 +N

)

+
1

4
log






1 +

(

√

ρ21P
′
1 +

√

ρ22P
′
2

)2

N2 +N + (1− ρ21)P
′
1 + (1− ρ22)P

′
2






(96i)

R2,ICL,2 ≤ 1

4
log

(

1 +
(1 − ρ22)P

′
2

N2 +N

)

(96j)

R1,ICL,2 +R2,ICL,2 ≤ 1

4
log

(

1 +
P ′
1 + P ′

2 + 2
√

P ′
1P

′
2ρ

2
1ρ

2
2

N2 +N

)

(96k)

2) Choice of Parameters:In the following we de-
scribe guidelines on how to choose the parameters of
the concatenated scheme for noisy partial feedback.
The guidelines parallel the guidelines presented in Sec-
tion IV-C2 for noisy feedback. Similarly, the proofs why
some of these guidelines are optimal parallel those in
Section IV-C2 and are omitted.

Let P1, P2, N > 0, σ2
2 ≥ 0 be given, and for the

purpose of description replace the symbolsξ1 and ξ2
fed to the inner encoders by the independent standard
GaussiansΞ1 andΞ2.

We start with the matrixCP. Given parameters
η, a1, a2,B2 the matrixCP should be chosen asCP =
CP,LMMSE, where

CP,LMMSE , A
T
r

(

ArA
T
r +N Iη + σ2

2B2B
T
2

)−1
. (103)

The matrix CP,LMMSE in (103) is called the LMMSE-
estimation matrix, since by (97), (101), and (102), choos-
ing CP = CP,LMMSE implies:

(

Ξ̂1

Ξ̂2

)

= E
[(

Ξ1

Ξ2

) ∣

∣

∣

∣

Y1, . . . , Yη

]

.

Choosing CP = CP,LMMSE is optimal in
the sense that the corresponding region
RP
(

σ2
2 , N ; η, a1, a2,B2,CP,LMMSE

)

contains all regions
RP
(

σ2
2 , N ; a1, a2,B2,CP

)

corresponding to other
choices of the parameterCP. ChoosingCP = UCP,LMMSE

for some non-singular 2-by-2 matrixU is also optimal,
and for η = 2 choosingCP as any non-singular matrix
is optimal.

We next consider the choice of the parameters
a1, a2,B2, and first focus on the special case of perfect
partial feedback. For perfect partial feedback the param-
etersa1, a2,B2 should be chosen so that the inputs pro-
duced by Inner Encoder 2 correspond to scaled versions
of the LMMSE-estimation errors ofΞ2 when observing
the past feedback outputs. Thus, forℓ ∈ {1, . . . , n}, they
should satisfy

X2,ℓ = π2,ℓ (Ξ2 − E[Ξ2|Y1, . . . , Yℓ−1]) , (104)

for some real numbersπ2,1, . . . , π2,η. Otherwise there
exists a choice of parameters satisfying (104) that—
with an appropriate choice of the matrixCP—strictly
improves on the original choice, i.e., corresponds to a
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larger region than the original choice.
A similar choice for noisy partial feedback is not

optimal, and it seems analytically infeasible to determine
the optimal choice of the parametersa1, a2,B1,B2.
However, it is easily seen that for noisy partial feedback
the parametersa1, a2,B1,B2 should be chosen so that
both power constraints (93a) and (93b) are satisfied with
equality; otherwise there exists a choice of parameters
satisfying (93a) and (93b) that strictly improves on the
original choice.

In Remark E.1 (Appendix E), we present for every
η ∈ N a specific (suboptimal) choice of the parameters
a1, a2,B2, andCP. For this specific choice, the parameter
CP is the LMMSE-estimation matrix, the parameters
η, a1, a2,B2 satisfy the power constraints (93a) and
(93b) with equality, and when specialized to perfect
partial feedbacka1, a2,B2 satisfy (45b). We present the
corresponding achievable region forη = 2 and equal
powers, i.e.,P1 = P2 = P , in Corollary V.5 and for
η = 2 and perfect partial feedback in Corollary V.8.

D. Extensions of Concatenated Scheme

The schemes in Sections IV-D apply also to noisy par-
tial feedback, if the parameterB1 is restricted to be the
all-zero matrix, and if Carleial’s variation of the Cover-
Leung scheme is specialized to noisy partial feedback.
For more details see Section H-A in Appendix H and
Section I-A in Appendix I.

E. Proofs

1) Proof of Theorem V.6:We distinguish between the
case of equal powers and of unequal powers. In the
case of equal powers,P1 = P2 = P , we consider
the achievable region in Corollary V.5, and notice that,
irrespective ofP,N > 0 and σ2

2 ≥ 0, the RHS of
the sum-rate constraint (94c) is smaller than the sum
of the RHSs of the single-rate constraints (94a) and
(94b). Thus, for equal powers the achievable region in
Corollary V.5 is a pentagon (and not a rectangle) and
there exist achievable pairs(R1, R2) of sum-rate equal
to the RHS of (94c), which is larger than12 log

(

1 + 2P
N

)

.
This concludes the proof in the case of equal powers.

In the case of unequal powers,P1 6= P2, we use the
following rate-splitting/time-sharing strategy. We assume
P1 > P2; the caseP1 < P2 can analogously be
treated. Transmitter 1 splits its messageM1 into two
independent submessages: submessageM1,1 of rateR1,1

and submessageM1,2 of rateR1,2. During a fraction of
time P1−P2

P1+P2

Transmitter 1 sends MessageM1,2 using an
optimal no-feedback scheme of power(P1 + P2) while
Transmitter 2 is quiet. During the remaining fraction
of time 2P2

P1+P2

Transmitters 1 and 2 use equal powers
P1+P2

2 to send messagesM1,1 andM2 with the concate-
nated scheme in Section IV-C1. Choosing the parameters
of the concatenated scheme as proposed in Remark E.1

in Appendix E, by Corollary V.5 (where we replaceP
by P1+P2

2 ) and by the capacity of a AWGN single-user
channel, the described rate-splitting/time-sharing scheme
achieves the rate pair(R1 = R1,1 + R1,2, R2) where
R1,1, R1,2, andR2 are given by Equations (105) on top
of this page. The proof of (95) follows then by noting
that for everyP1, P2, N > 0 and everyσ2

2 ≥ 0 the rate
pair (R1, R2) has a sum-rate which is strictly larger than
1
2 log

(

1 + P1+P2

N

)

, and therefore lies strictly outside the
no-feedback capacity regionCNoFB(P1, P2, N).

2) Proof of Theorem V.9:We consider an AWGN
MAC with powers P1 = 1, P2 = 5, noise variance
N = 5, and with perfect partial feedback. We prove
the theorem by showing that for this channel the rate
point (R̄1, R̄2),

R̄1 =
1

4
log

(

7

5

)

,

R̄2 =
1

4
log

(

3 +
3

7
+

2

7

√

11

6

)

,

—which by Corollary V.8 is achievable—lies outside the
Cover-Leung regionRCL(P1, P2, N). This implies that
the capacity regionCPerfectPartialFB(P1, P2, N) is strictly
larger than the Cover-Leung regionRCL(P1, P2, N) for
P1 = 1 andP2 = N = 5 .

Before starting with the proof, we have a closer look
at the regionRCL(P1, P2, N) and show the following
lemma.

Lemma V.13. For P1, P2, N > 0 and for everyρ1 ∈
[0, 1) which satisfies

P2

N
≥ ρ21

1− ρ21
, (106)

the rate point(R1(ρ1), R2(ρ1)) given by

R1(ρ1) =
1

2
log

(

1 +
P1

(

1− ρ21
)

N

)

, (107)

and by Equation(108) on top of the next page. lies on
the boundary ofRCL(P1, P2, N) in the sense that for
everyǫ > 0

(R1(ρ1), R2(ρ1) + ǫ) /∈ RCL(P1, P2, N).

Proof: As a first step we examine Expression (108)
and characterizeR2(ρ1) more explicitly. To this end, we
consider a fixedρ1 ∈ [0, 1] that satisfies (106). Then, we
notice that in the minimization in (108) the first term
is strictly decreasing inρ2 ∈ [0, 1] whereas the second
term is strictly increasing inρ2. Also, for ρ2 = 1 the
first term in the maximization in (108) is smaller than
the second term, whereas by Condition (106) forρ2 = 0
the second term is smaller. Thus, for fixedρ1 ∈ [0, 1]
satisfying (106) the maximum in (108) is achieved when
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R1,1 =
P1 − P2

2(P1 + P2)
log

(

1 +
P1 + P2

N

)

, (105a)

R2 = R1,2 =
P2

2(P1 + P2)
log

(

1 +
P1 + P2

N

)

+
P2

4(P1 + P2)
log

(

1 +





√

√

√

√1 +
P1+P2

2 (P1+P2

2 +N + σ2
2)

(

P1+P2

2 +N + σ2
2 +

P1+P2

2N σ2
2

)2 − 1





1
2 (P1 + P2)

2

(P1 + P2 +N)

+

(

P1+P2

2

)2 (P1+P2

2 +N
)

(P1 + P2 +N)2
(

P1+P2

2 +N + σ2
2 +

P1+P2

2N σ2
2

)

· (P1 + P2 +N + σ2
2)

(

P1 + P2 +N + σ2
2 +

P1+P2

2N σ2
2

)

)

(105b)

R2(ρ1) = max
ρ2∈[0,1]

{

min

{

1

2
log

(

1 +
P2

(

1− ρ22
)

N

)

,
1

2
log

(

P1 + P2 + 2
√
P1P2ρ1ρ2 +N

P1 (1− ρ21) +N

)}}

, (108)

both terms are equal, i.e., for̄ρ2 given by the unique
solution in [0, 1] to

1

2
log

(

1 +
P2

(

1− ρ22
)

N

)

=
1

2
log

(

P1 + P2 + 2
√
P1P2ρ1ρ2 +N

P1 (1− ρ21) +N

)

.

This implies that the rate pair(R1(ρ1), R2(ρ1)) sat-
isfies all three rate constraints defining the rectangle
R(ρ1,ρ̄2)

CL (P1, P2, N) with equality, i.e.,

R1(ρ1) =
1

2
log

(

1 +
P1

(

1− ρ21
)

N

)

, (109a)

R2(ρ1) =
1

2
log



1 +
P2

(

1− (ρ̄2)
2
)

N



 , (109b)

and

R1(ρ1) +R2(ρ1)

=
1

2
log

(

1 +
P1 + P2 + 2

√
P1P2ρ1ρ̄2

N

)

. (109c)

Hence,(R1(ρ1), R2(ρ1)) is the dominant corner point
of the rectangleR(ρ1,ρ̄2)

CL (P1, P2, N), and for all ǫ > 0
the rate point(R1(ρ1), R2(ρ1) + ǫ) lies outside the
rate regionR(ρ1,ρ̄2)

CL (P1, P2, N). In the remaining we
show that the rate point(R1(ρ1), R2(ρ1)) also lies
outside the regionsR(ρ′

1
,ρ′

2
)

CL (P1, P2, N) for all ρ′1, ρ
′
2 ∈

[0, 1] not equal to the pair(ρ1, ρ̄2), and therefore also
(R1(ρ1), R2(ρ1)+ǫ) lies outside these regions for every
ǫ > 0. This will then conclude the proof of the lemma.
We distinguish the following three cases: 1)ρ′1 > ρ1 and
ρ′2 arbitrary; 2)ρ′1 ≤ ρ1 andρ′2 > ρ̄2; and 3)ρ′1 ≤ ρ1 and

ρ′2 < ρ̄2. In case 1) the rate point(R1(ρ1), R2(ρ1)) lies
outside the regionR(ρ′

1
,ρ′

2
)

CL (P1, P2, N) becauseR1(ρ1)
violates the single-rate constraint, see (10a) and (109a).
Similarly, in case 2) the rate point lies outside the
regionR(ρ′

1
,ρ′

2
)

CL (P1, P2, N) because in this caseR2(ρ1)
violates the single-rate constraint, see (10b) and (109b).
Finally, in case 3) the rate point lies outside the region
R(ρ′

1
,ρ′

2
)

CL (P1, P2, N) because the productρ′1 ·ρ′2 is strictly
smaller than the productρ1 · ρ̄2, and thus the sum
R1(ρ1) + R2(ρ1) violates the sum-rate constraint, see
(10c) and (109c).

We are now ready to prove that the achievable
rate point (R̄1, R̄2) lies outside the Cover-Leung re-
gion RCL(P1, P2, N). To this end, we chooseρ1 =
√

6−
√
35 and notice that it satisfies Condition (106)

for P2 = N = 5. Hence, Lemma V.13 applies and the
rate point(RB

1 , R
B
2 ),

RB
1 ,

1

2
log

(

√

7

5

)

,

RB
2 , max

ρ2∈[0,1]

{

min

{

1

2
log
(

1 +
(

1− ρ22
))

,

1

2
log





11 + 2
√

5(6−
√
35)ρ2√

35





}}

(110)

lies on the boundary of the Cover-Leung region
RCL(P1, P2, N), and in particular for everyǫ > 0 the
rate point(RB

1 , R
B
2 + ǫ) lies strictly outside the Cover-

Leung regionRCL(P1, P2, N). Since

RB
1 = R̄1,
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in order to show that the rate point(R̄1, R̄2) lies strictly
outsideRCL(P1, P2, N) it suffices to show that

RB
2 < R̄2. (111)

To prove (111) we could computēρ2—the value of
ρ2 which maximizes (110)—andRB

2 and then check
Condition (111). However, it is easier—and sufficient—
to show that for allρ2 ∈ [0, 1] either

1

2
log

(

1 +
P2(1 − ρ22)

N

)

=
1

2
log
(

2− ρ22
)

< R̄2 (112)

or

1

2
log

(

P1 + P2 + 2
√
P1P2ρ1ρ2 +N

P1(1− ρ21) +N

)

=
1

2
log





11 + 2
√

5(6−
√
35)ρ2√

35





< R̄2. (113)

To this end, note first that the LHS of (112) is decreasing

in ρ2 ∈ [0, 1], and therefore for all
√

1
7 ≤ ρ2 ≤ 1 it

follows that

1

2
log
(

2− ρ22
)

≤ 1

4
log

(

3 +
3

7
+

1

49

)

< R̄2.

On the other hand, the LHS of (113) is increasing inρ2,

and thus for all0 ≤ ρ2 ≤
√

1
7

1

2
log





11 + 2
√

5(6−
√
35)ρ2√

35





≤ 1

4
log

(

3 +
3

7
+

1

35
+

44
√

5
7

(

6−
√
35
)

35

+
4
7

(

30− 5
√
35
)

35

)

=
1

4
log

(

3 +
3

7
+

2

7

(

1

10
+

22√
35

√

(6 −
√
35)

+
12

7
− 2

√

5

7

))

< R̄2,

where the inequality follows because

1

10
+

22√
35

√

(6−
√
35) +

12

7
− 2

√

5

7
<

√

11

6
.

This concludes the proof of the theorem.

VI. N OISY FEEDBACK WITH RECEIVER

SIDE-INFORMATION

For the setup with receiver side-information we
present a new achievable region (Section VI-A) and a
scheme that achieves this region (Section VI-B). The
proposed scheme is an extension of the concatenated
scheme for noisy feedback in Section IV-C and ex-
ploits the side-information at the receiver. The simple
scheme in Section IV-B and the extended schemes in
Section IV-D can analogously be extended to this setup
with receiver side-information. For brevity, we omit the
description of these latter extensions.

A. Results

Definition VI.1. Let η be a positive integer;a1, a2
be η-dimensional vectors;B1,B2 be strictly lower-
triangular η × η matrices; andCSI be a 2 × η ma-
trix. Depending on the matrixCSI the rate region
RSI (N,KW1W2

; η, a1, a2,B1,B2,CSI) is defined as fol-
lows:

• If the product CSIC
T
SI is nonsingular,12 then

RSI
(

N, σ2
2 ; η, a1, a2,B2,CSI

)

is defined as the set
of all rate pairs (R1, R2) satisfying

R1 ≤ 1

2η
log

|CSI (a1a
T
1 +N Iη)C

T
SI|

N |CSIC
T
SI|

, (114a)

R2 ≤ 1

2η
log

|CSI (a2a
T
2 +N Iη)C

T
SI|

N |CSIC
T
SI|

, (114b)

R1 +R2 ≤ 1

2η
log

|CSI (ArA
T
r +N Iη)C

T
SI|

N |CSIC
T
SI|

, (114c)

whereAr is defined in(11).
• If CSIC

T
SI is singular but CSI 6= 0, then

RSI
(

N, σ2
2 ; η, a1, a2,B2,CSI

)

is defined as the set
of all rate pairs(R1, R2) satisfying(114)when the
2 × η matrix CSI is replaced by theη-dimensional
row-vector obtained by choosing one of the non-
zero rows ofCSI.

• If CSI = 0, then RSI
(

N, σ2
2 ; η, a1, a2,B2,CSI

)

is
defined as the set containing only the origin.

(An alternative formulation of the region
RSI (N,KW1W2

; η, a1, a2,B1,B2,CSI) is presented
in Section D-C in Appendix D.)

Definition VI.2. Define the region

RSI (P1, P2, N,KW1W2
)

, cl
(

⋃

RSI (N,KW1W2
; η, a1, a2,B1,B2,CSI)

)

, (115)

where the union is over all tuples(η, a1, a2,B1,B2,CSI)
satisfying the trace constraints(19).

Theorem VI.3 (Noisy Feedback with Receiver
Side-Information). The capacity region

12Wheneverη ∈ N is larger than 1, there is no loss in optimality in
restricting attention to matricesCSI so thatCSIC

T
SI is nonsingular.
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CNoisyFBSI(P1, P2, N,KW1W2
) of the two-user AWGN

MAC with noisy feedback where the receiver is cognizant
of the realization of the feedback-noise sequences
contains the rate regionRSI (P1, P2, N,KW1W2

), i.e.,

CNoisyFBSI(P1, P2, N,KW1W2
)

⊇ RSI (P1, P2, N,KW1W2
) .

Proof: The achievability result is based on the
concatenated scheme in Section VI-B1. It is obtained
from Theorem IV.3 by settingσ2

1 = σ2
2 = 0 in the

rate expressions in (18) (but not in the power constraints
(19)). The reason why in (18) we may setσ2

1 = σ2
2 = 0

is because in the scheme in Section VI-B1, prior to
the decoding, the receiver subtracts off the influence of
the feedback-noise sequences{W1,t} and {W2,t}. The
details of the proof are omitted.

Remark VI.4. Evaluating the achievable region
RSI (P1, P2, N,KW1W2

) seems to be difficult even nu-
merically. More easily computable (but possibly smaller)
achievable regions are obtained by taking the union on
the RHS of(115) only over a subset of the parameters
η, a1, a2,B1,B2,CSI satisfying(19). In Section G-A we
present such a subset of parameters and its correspond-
ing achievable region (Corollary G.2). In Section VI-B2
ahead we present more general guidelines on how to
choose the parametersη, a1, a2,B1,B2,CSI for noisy
feedback with receiver side-information.

B. Concatenated Scheme

1) Scheme:In this section we extend our concate-
nated scheme to noisy feedback with receiver side-
information. We use the same outer code and the same
inner encoders as in the setting without side-information.
The difference is only in the inner decoder. Thus, when
fed the pair of symbols(ξ1, ξ2), the inner encoders
produce, as before, sequences of channel inputs

Xν = aνξν + BνVν , ν ∈ {1, 2}, (116)

where Xν , (Xν,1, . . . , Xν,η)
T, Vν ,

(Vν,1, . . . , Vν,η−1)
T, and wherea1, a2 areη-dimensional

vectors andB1,B2 are strictly lower-triangularη × η
matrices satisfying the power constraints (19). But, we
modify the structure of the inner decoder so that it
computes the estimates(Ξ̂1, Ξ̂2) not only as a function
of the output sequence but also of the feedback-noise
sequences. Again, we choose a linear mapping, i.e.,
for Y , (Y1, . . . , Yη)

T, W1 , (W1,1, . . . ,W1,η)
T, and

W2 , (W2,1, . . . ,W2,η)
T, the inner decoder computes

(

Ξ̂1

Ξ̂2

)

= D0Y + D1W1 + D2W2,

for 2 × η matricesD0,D1,D2 of our choice. Given
a1, a2,B1,B2, andD0 an optimal choice for the matrices
D1 andD2 subtracts off the contributions toD0Y that

come about from the feedback-noise sequences, i.e., an
optimal choice ofD1 andD2 satisfies

D1 = −D0(Iη − (B1 + B2))
−1

B1, (117a)

D2 = −D0(Iη − (B1 + B2))
−1

B2. (117b)

Such a choice leads to the following description of the
“new” MAC ξ1, ξ2 7→ (Ξ̂1, Ξ̂2):

(

Ξ̂1

Ξ̂2

)

= ASI

(

ξ1
ξ2

)

+TSI, (118)

where the2× 2 matrix A is given by

ASI = D0 (Iη − (B1 + B2))
−1

Ar, (119)

whereAr is defined as in (11), and where the noise vector
T is a zero-mean bivariate Gaussian

TSI = D0 (Iη − (B1 + B2))
−1

Z. (120)

In the following we shall always assume thatD1 andD2

are optimally chosen so that the “new” MAC is given
by (118)–(120). We define the2× η matrix

CSI , D0 (Iη − (B1 + B2))
−1 , (121)

and henceASI in (119) and the noise vectorTSI in (120)
can be expressed as

ASI = CSIAr, (122)

TSI = CSIZ. (123)

For fixed η,B1,B2 the mapping (121) fromD0, to
CSI is one-to-one, and thus we can parameterize our
concatenated scheme for noisy feedback with receiver
side-information byη, a1, a2,B1,B2,CSI.

All parametersη, a1, a2,B1,B2 that satisfy the power
constraints (19) are allowed.

2) Choice of Parameters:As in the previously stud-
ied setups we present guidelines on how to choose
the parametersη, a1, a2,B1,B2,CSI of the concatenated
scheme. The guidelines parallel the guidelines for noisy
feedback and noisy partial feedback in Sections IV-C2
and V-C2; likewise, also the proofs of optimality parallel
the proofs in Section IV-C2 and are omitted.

Let P1, P2, N > 0 and KW1W2
� 0 be given, and

for the purpose of describing our guidelines replace
the symbolsξ1, ξ2 fed to the inner encoders by the
independent standard GaussiansΞ1,Ξ2.

We first present the optimal choice of the parameter
CSI. Givenη, a1, a2,B1,B2 the parameterCSI should be
chosen asCSI = CSI,LMMSE, where

CSI,LMMSE = A
T
r (ArA

T
r +N Iη)

−1
, (124)

since the corresponding achievable region contains all
regions corresponding to other choices of the matrixCSI.
The matrixCSI,LMMSE is called theLMMSE-estimation
matrix with side-information, since by (118), (122), and
(123) the choice in (124)—combined with the optimal
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choices ofD1 and D2 defined by (117) and (121)—
implies that

(

Ξ̂1

Ξ̂2

)

= E
[(

Ξ1

Ξ2

) ∣

∣

∣

∣

Y η
1 ,W

η
1 ,W

η
2

]

.

Obviously, also choosingCSI = UCSI,LMMSE for some
non-singular 2-by-2 matrixU is optimal, and forη = 2
choosingCSI as any non-singular matrix is optimal.

We next consider the choice of parameters
a1, a2,B1,B2 and focus on the following two special
cases:

a) η ∈ N is arbitrary and̺ = 1, i.e., the feedback
noises are perfectly correlated,

b) η = 2 and̺ ∈ [−1, 1) arbitrary.
In these cases, given parameterη ∈ N, the parameters
a1, a2,B1,B2 should be chosen so that the inner en-
coders produce

X1,ℓ = π1,ℓ

(

Ξ1 − E
[

Ξ1|V ℓ−1
1

])

, ℓ ∈ {1, . . . , η},
(125a)

and

X2,ℓ = π2,ℓ

(

Ξ2 − E
[

Ξ2|V ℓ−1
2

])

, ℓ ∈ {1, . . . , η},
(125b)

for some real numbersπ1,1, . . . , π1,η andπ2,1, . . . , π2,η.
Otherwise, there exists a choice of parameters
η, a1, a2,B1,B2,CSI of the form (125) that strictly im-
proves on the original choice.

In general, it seems difficult to determine the optimal
choice of the parametersa1, a2,B1,B2. However, it is
easily proved that the parametersη, a1, a2,B1,B2,CSI

should be chosen so as to satisfy the power constraints
(19a) and (19b) with equality; otherwise there exists a
choice of parameters satisfying (19a) and (19b) with
equality that strictly improves on the original choice.

In Appendix G, we present a specific choice of the
parametersa1, a2,B1,B2,CSI that guarantees thatCSI

is the LMMSE-estimation matrix with side-information,
the power constraints (19) are satisfied with equality,
and η, a1, a2,B1,B2 satisfy (125) for allη ∈ N and
̺ ∈ [−1, 1]. We present the corresponding achievable
region in Corollary G.2 in Appendix G.

VII. SUMMARY

We have studied four different kinds of two-user
AWGN MACs with imperfect feedback:

• noisy feedback, where the feedback links to both
transmitters are corrupted by AWGN;

• noisy partial feedback, where one transmitter has
noisy feedback and the other no feedback;

• perfect partial feedback, where one transmitter has
noise-free feedback and the other no feedback; and

• noisy feedback with receiver side-information,
where both transmitters have noisy feedback and
the feedback-noise sequences are perfectly known
to the receiver.

For each of these settings we have presented a coding
scheme (called concatenated scheme) with general pa-
rameters, and we have stated the corresponding achiev-
able regions (Theorem IV.3, Theorem V.3, Corollary V.7,
and Theorem VI.3). We have improved the concatenated
scheme by rate-splitting it either with a simple no-
feedback scheme or with Carleial’s version of the Cover-
Leung scheme. The achievable regions corresponding
to these improvements are stated in Proposition IV.13
(noisy feedback) and Propositions V.10 and V.11 (perfect
partial feedback).

The two achievable regions for noisy feedback in The-
orem IV.3 and Proposition IV.13 exhibit the following
three properties: 1. They are monotonically decreasing in
the feedback-noise covariance matrix with respect to the
Loewner order (Propositions IV.5 and IV.14). 2. They are
continuous in the transmit-powers (Propositions IV.5 and
IV.14). 3. They converge to Ozarow’s perfect-feedback
regions when the feedback noise-variances tend to 0,
irrespective of the feedback-noise correlations (Propo-
sitions IV.9 and IV.16).

We have further presented guidelines for choos-
ing the parameters of our concatenated schemes (Sec-
tions IV-C2, V-C2, and VI-B2), and have suggested
(suboptimal) specific choices of the parameters (Sections
E-A, F-A, and G-A in Appendices E–G). The achievable
regions corresponding to these specific choices are pre-
sented in Corollary IV.6, Corollary V.5, Corollary V.8,
Corollary E.3, Corollary F.2, Remark F.3, and Corol-
lary G.2.

These achievable regions—combined with the previ-
ously described properties of the achievable regions for
noisy feedback in Theorem IV.3 and Proposition IV.13—
allowed us to infer:

1) Feedback—no matter how noisy—is strictly better
than no feedback. I.e., irrespective of the feedback-
noise variances, the capacity region with one or two
noisy feedback links is strictly larger than the no-
feedback capacity region (Theorems IV.7 and V.6).

2) The noisy-feedback capacity region converges
to the perfect-feedback capacity region as the
feedback-noise variances on both links tend to
0—irrespective of the feedback-noise correlations
(Theorem IV.17).

3) The Cover-Leung region in general does not equal
capacity for perfect partial feedback channels (The-
orem V.9). This answers in the negative a question
posed by van der Meulen in [18].
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APPENDIX A
CARLEIAL ’ S REGION

Carleial proved the achievability result for the AWGN
MAC with noisy feedback in Theorem A.2 ahead [2].

Definition A.1. Define the rate region
RCar(P1, P2, N, σ2

1 , σ
2
2) as the set of all rate pairs

(R1, R2) which for some nonnegative numbers
R1,0, R1,1 summing to R1, for some nonnegative
numbers R2,0, R2,2 summing toR2, and for some
choice of parametersα1, α2, β1, β2, υ ∈ [0, 1] satisfy
the 13 conditions(126) shown on top of the next page.
where forx ∈ [0, 1] we definēx , (1 − x).

Theorem A.2 (Carleial [2]). Consider an AWGN
MAC with noisy feedback of transmit powersP1, P2,
noise variance N , and feedback-noise covariance

matrix KW1W2
=

(

σ2
1 ̺σ1σ2

̺σ1σ2 σ2
2

)

. Irrespective

of the noise correlation̺ ∈ [−1, 1], the region
RAch(P1, P2, N, σ2

1 , σ
2
2) is achievable for this channel,

i.e.,

RAch(P1, P2, N, σ2
1 , σ

2
2) ⊆ CNoisyFB(P1, P2, N,KW1W2

).

Proposition A.3. The rate region
RCar(P1, P2, N, σ2

1 , σ
2
2) collapses to the no-feedback

capacity regionCNoFB(P1, P2, N) when the feedback-
noise variancesσ2

1 , σ
2
2 exceed a certain threshold

depending on the parametersP1, P2, and N . In
particular,

RCar(P1, P2, N, σ2
1 , σ

2
2) = CNoFB(P1, P2, N),

for σ2
1 ≥ P1

(

3
2 + P2

N

)

andσ2
2 ≥ P2

(

3
2 + P1

N

)

.

Proof: For all values of σ2
1 , σ

2
2 the region

RCar(P1, P2, N, σ2
1 , σ

2
2) trivially contains the no-

feedback capacity regionCNoFB(P1, P2, N) because the
region obtained by substitutingα1 = α2 = β1 = β2 = 1
into (126) coincides with CNoFB(P1, P2, N). Thus,
it remains to prove thatRCar(P1, P2, N, σ2

1 , σ
2
2) is

included in CNoFB(P1, P2, N) for all σ2
1 , σ

2
2 exceeding

some threshold depending onP1, P2, andN .
To this end, we chooseσ2

1 , σ
2
2 > 0 and we fix a rate

pair (R1, R2) in RCar(P1, P2, N, σ2
1 , σ

2
2). We then fix

parametersα1, α2, β1, β2, υ ∈ [0, 1], two nonnegative
numbersR1,0 andR1,1 summing toR1, and two non-
negative numbersR2,0 andR2,2 summing toR2 so that
Constraints (126) are satisfied. We show in the following
that if σ2

1 , σ
2
2 > 0 are sufficiently large, then(R1, R2)

lies in CNoFB(P1, P2, N).
By (126a) and (126c) the rateR1 satisfies

R1 ≤ 1

2
log

(

1 +
α1β̄1P1

α1β1P1 +N + σ2
2

)

+
1

2
log

(

1 +
α1β1P1

N

)

≤ 1

2
log

(

1 +
P1

N

)

, (127)

and by (126b) and (126d) the rateR2 satisfies

R2 ≤ 1

2
log

(

1 +
α2β̄2P2

α2β2P2 +N + σ2
1

)

+
1

2
log

(

1 +
α2β2P2

N

)

≤ 1

2
log

(

1 +
P1

N

)

, (128)

Furthermore, by (126a), (126b), and (126h) the sum
of the ratesR1 + R2 satisfies Inequality (129) on the
next page. Notice that forσ2

1 , σ
2
2 larger than some

threshold depending onP1, P2, N—and in particular for
σ2
1 > P1

(

3
2 + P2

N

)

andσ2
2 > P2

(

3
2 + P1

N

)

—irrespective
of the chosen parametersα1, α2, β1, β2, υ:

N + α1β1P1 + α2β2P2

α1β1P1 +N + σ2
2

+
(α1β1P1 +

1
2N)(α2β̄2P2)

(α2β2P2 +N + σ2
1)(α1β1P1 +N + σ2

2)
< 1 (130)

and
N + α1β1P1 + α2β2P2

α2β2P2 +N + σ2
1

+
(α2β2P2 +

1
2N)(α1β̄1P1)

(α1β1P1 +N + σ2
2)(α2β2P2 +N + σ2

1)
< 1. (131)

Thus, whenσ2
1 , σ

2
2 exceed a certain threshold depending

on P1, P2, andN , the RHS of (129) is upper bounded
by 1

2 log
(

1 + P1+P2

N

)

. We conclude that whenσ2
1 , σ

2
2

are sufficiently large, then by (127)–(131) the rate pair
(R1, R2) satisfies (5) and hence lies in the no-feedback
capacity regionCNoFB(P1, P2, N). This concludes the
proof.

APPENDIX B
WILLEMS ET AL .’ S REGION

Willems et al. proved an achievability result for the
discrete memoryless MAC with imperfect feedback [23].
The result can easily be extended to the two-user AWGN
MAC with noisy feedback (Theorem B.2 ahead).

Definition B.1. Define the rate region
RWil (P1, P2, N, σ2

1 , σ
2
2) as the set of all rate pairs

(R1, R2) which for some nonnegative numbersR1,1

and R1,2 summing to R1, for some nonnegative
numbersR2,1 and R2,2 summing toR2, and for some
parametersδ1, δ2, ρ1, ρ2 ∈ [0, 1] satisfy the following
five constraints:

R1,1 ≤ 1

2
log

(

1 +
δ1P1

N

)

R1,0 ≤ 1

2
log

(

1 +
δ̄1P1(1 − ρ21)

δ1P1 +N + σ2
2

)

R2,0 ≤ 1

2
log

(

1 +
δ̄2P2(1 − ρ22)

δ2P2 +N + σ2
1

)
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R1,0 ≤ 1

2
log

(

1 +
α1β̄1P1

α1β1P1 +N + σ2
2

)

(126a)

R2,0 ≤ 1

2
log

(

1 +
α2β̄2P2

α2β2P2 +N + σ2
1

)

(126b)

R1,1 ≤ 1

2
log

(

1 +
α1β1P1

N

)

, (126c)

R2,2 ≤ 1

2
log

(

1 +
α2β2P2

N

)

(126d)

R1,0 +R20 ≤ 1

2
log

(

1 +
α1β̄1P1 + α2β̄2P2

N

)

+
1

2
log

(

1 +
ᾱ1P1 + ᾱ2P2 + 2

√
ᾱ1ᾱ2P1P2

N + α1P1 + α2P2

)

(126e)

R1,0 +R2,2 ≤ 1

2
log

(

1 +
α1β̄1P1 + α2β2P2

N

)

+
1

2
log

(

1 +
υ
(

ᾱ1P1 + ᾱ2P2 + 2
√
ᾱ1ᾱ2P1P2

)

N + α1P1 + α2P2

)

(126f)

R2,0 +R1,1 ≤ 1

2
log

(

1 +
α1β1P1 + α2β̄2P2

N

)

+
1

2
log

(

1 +
ῡ
(

ᾱ1P1 + ᾱ2P2 + 2
√
ᾱ1ᾱ2P1P2

)

N + α1P1 + α2P2

)

(126g)

R1,1 +R2,2 ≤ 1

2
log

(

1 +
α1β1P1 + α2β2P2

N

)

(126h)

R1 +R2,0 ≤ 1

2
log

(

1 +
α1P1 + α2β̄2P2

N

)

+
1

2
log

(

1 +
ᾱ1P1 + ᾱ2P2 + 2

√
ᾱ1ᾱ2P1P2

N + α1P1 + α2P2

)

(126i)

R1,0 +R2 ≤ 1

2
log

(

1 +
α1β̄1P1 + α2P2

N

)

+
1

2
log

(

1 +
ᾱ1P1 + ᾱ2P2 + 2

√
ᾱ1ᾱ2P1P2

N + α1P1 + α2P2

)

(126j)

R1 +R2,2 ≤ 1

2
log

(

1 +
α1P1 + α2β2P2

N

)

+
1

2
log

(

1 +
υ
(

ᾱ1P1 + ᾱ2P2 + 2
√
ᾱ1ᾱ2P1P2

)

N + α1P1 + α2P2

)

(126k)

R1,1 +R2 ≤ 1

2
log

(

1 +
α1β1P1 + α2P2

N

)

+
1

2
log

(

1 +
ῡ
(

ᾱ1P1 + ᾱ2P2 + 2
√
ᾱ1ᾱ2P1P2

)

N + α1P1 + α2P2

)

(126l)

R1 +R2 ≤ 1

2
log

(

1 +
P1 + P2 + 2

√
ᾱ1ᾱ2P1P2

N

)

(126m)

R1 +R2 ≤ 1

2
log

(

1 +
α1β̄1P1

α1β1P1 +N + σ2
2

)

+
1

2
log

(

1 +
α2β̄2P2

α2β2P2 +N + σ2
1

)

+
1

2
log

(

1 +
α1β1P1 + α2β2P2

N

)

≤ 1

2
log

(

1 +
α1β1P1 + α2β2P2

N

+
α1β̄1P1

N

(

N + α1β1P1 + α2β2P2

α1β1P1 +N + σ2
2

+
(α1β1P1 +

1
2N) α2β̄2P2

α2β2P2+N+σ2

1

α1β1P1 +N + σ2
2

)

+
α2β̄2P2

N

(

N + α1β1P1 + α2β2P2

α2β2P2 +N + σ2
1

+
(α2β2P2 +

1
2N) α1β̄1P1

α1β1P1+N+σ2

2

α2β2P2 +N + σ2
1

))

(129)
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R2,2 ≤ 1

2
log

(

1 +
δ2P2

N

)

R1,1 +R2,2

≤ 1

2
log

(

1 +
δ1P1 + δ2P2

N

)

R1 +R2

≤ 1

2
log

(

1 +
P1 + P2 + 2

√

δ̄1δ̄2P1P2ρ1ρ2
N

)

.

Theorem B.2 (Willems et al. [23]). Consider an AWGN
MAC with noisy feedback of transmit powersP1, P2,
noise varianceN , and feedback-noise covariance ma-

trix KW1W2
=

(

σ2
1 ̺σ1σ2

̺σ1σ2 σ2
2

)

. Irrespective of the

feedback-noise correlation̺ ∈ [−1, 1], the region
RWil (P1, P2, N, σ2

1 , σ
2
2) is achievable for this channel,

i.e.,

RWil (P1, P2, N, σ2
1 , σ

2
2) ⊆ CNoisyFB(P1, P2, N,KW1W2

).

Proposition B.3. The rate region
RWil (P1, P2, N, σ2

1 , σ
2
2) collapses to the no-feedback

capacity regionCNoFB(P1, P2, N) when the feedback-
noise variancesσ2

1 , σ
2
2 exceed a certain threshold

depending on the parametersP1, P2, and N . In
particular,

RWil (P1, P2, N, σ2
1 , σ

2
2) = CNoFB(P1, P2, N),

for σ2
1 ≥ P1

(

3
2 + P2

N

)

andσ2
2 ≥ P2

(

3
2 + P1

N

)

.

Proof: Follows along similar lines as the proof of
Proposition A.3 in the previous appendix, and is omitted.

APPENDIX C
OPTIMALITY OF LMMSE-ESTIMATION ERROR

PARAMETERS FORPERFECTFEEDBACK

We show that in our concatenated scheme for per-
fect feedback it is optimal to choose the parameters
η, a1, a2,B1,B2 so that the two inner encoders pro-
duce as theirℓ-th channel inputs scaled versions of
the LMMSE-estimation errors when estimating the fed
symbols Ξ1 and Ξ2 based on the previous outputs
Y1, . . . , Yℓ−1, see (45).

Proposition C.1. Assume thatKW1W2
= 0, i.e., perfect

feedback. If the parametersη, a1, a2,B1,B2,C satisfy
the power constraints(19) but not Conditions(45), then
there exist parametersη, a∗1, a

∗
2,B

∗
1,B

∗
2,C

∗ satisfying
both (19) and (45), and

R (N, 0; η, a1, a2,B1,B2,C)

⊂ R (N, 0; η, a∗1, a
∗
2,B

∗
1,B

∗
2,C

∗)

with the inclusion being strict.

The proof is given after the following lemma.

Lemma C.2. Assume thatKW1W2
= 0, i.e., assume

perfect feedback. If the parametersη, a′1, a
′
2,B

′
1,B

′
2,C

′

satisfy(19) but violate(45) then there exist parameters
η, â1, â2, B̂1, B̂2, Ĉ satisfying the following three condi-
tions:

1) the parametersη, â1, â2, B̂1, B̂2, Ĉ satisfy(45);
2) R (N, 0; η, a′1, a

′
2,B

′
1,B

′
2,C

′)

= R
(

N, 0; η, â1, â2, B̂1, B̂2, Ĉ
)

;

3) the parametersη, â1, â2, B̂1, B̂2, Ĉ satisfy (19a)
and (19b), and at least one of them with strict
inequality.

Proof: Fix parametersη, a′1, a
′
2,B

′
1,B

′
2,C

′ satisfy-
ing (19) but violating (45). Define the following new
parameters.

• Let â1 = a
′
1 and â2 = a

′
2.

• Let B̂1 and B̂2 be so thatâ1, â2, B̂1, B̂2 satisfy
(45). (Notice that given the parametersâ1 and â2

there exists exactly one choice of the parametersB̂1

and B̂2 satisfying (45). I.e., the scaling coefficients
{π1,ℓ}ηℓ=1 and{π2,ℓ}ηℓ=1 in (45) are determined by
â1 and â2.)

• Let Ĉ = C
′.

By construction, our choice â1, â2, B̂1, B̂2, Ĉ
trivially satisfies Condition 1 in the lemma.
Moreover, since for KW1W2

= 0 the region
R (N, 0; η, a1, a2,B1,B2,C) depends only ona1, a2,
and C but not on B1 and B2, see Definition IV.1,
the regions R (N, 0; η, a′1, a

′
2,B

′
1,B

′
2,C

′) and

R
(

N, 0; η, â1, â2, B̂1, B̂2, Ĉ
)

coincide. Thus also
Condition 2 is satisfied.

We are left with proving that the parameters
â1, â2, B̂1, B̂2, Ĉ satisfy also Condition 3. Before doing
so, we introduce some helpful assumptions and notation.
Assume in the following that Inner Encoder 1 and Inner
Encoder 2 are fed the independent standard GaussiansΞ1

andΞ2, respectively. LetY ′
1 , . . . , Y

′
η denote theη chan-

nel outputs of the original MACx1, x2 7→ Y when the
inner encoders use the parametersη, a′1, a

′
2,B

′
1,B

′
2,C

′,
and similarly, letŶ1, . . . , Ŷη denote theη channel outputs
of the original MAC x1, x2 7→ Y when the inner
encoders use the parametersη, â1, â2, B̂1, B̂2, Ĉ. Also,
let a′1,ℓ, a

′
2,ℓ, â1,ℓ, and â2,ℓ denote theℓ-th entry of

the vectorsa′1, a
′
2, â1, and â2, respectively, and let

b′1,ℓ,j, b
′
2,ℓ,j, b̂1,ℓ,j, and b̂2,ℓ,j denote the row-ℓ column-j

entry of the matricesB′
1,B

′
2, B̂1, and B̂2, respectively,

for j, ℓ ∈ {1, . . . , η} andν ∈ {1, 2}.
Fix an ℓ ∈ {1, . . . , η}. By the definition of LMMSE-

estimation errors, for allν ∈ {1, 2} and all real numbers
{bν,ℓ,j}ℓ−1

j=1

Var



âν,ℓΞν −
ℓ−1
∑

j=1

bν,ℓ,j Ŷj
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≥ Var



âν,ℓΞν −
ℓ−1
∑

j=1

b̂ν,ℓ,j Ŷj



 , (132)

with equality if, and only if, bν,ℓ,j = b̂ν,ℓ,j for all
j ∈ {1, . . . , ℓ − 1}. We would like to prove a similar
inequality to (132) but where in the RHS of (132)
the outputs{Ŷ1, . . . , Ŷℓ−1} are replaced by the outputs
{Y ′

1 , . . . , Y
′
ℓ−1}. To this end, we notice that sincêa1 =

a
′
1 andâ2 = a

′
2 there exist real numbers{b1,ℓ,j}ℓ−1

j=1 and
{b2,ℓ,j}ℓ−1

j=1 such that


âν,ℓΞν −
ℓ−1
∑

j=1

bν,ℓ,j Ŷj



 =



a′ν,ℓΞν −
ℓ−1
∑

j=1

b′ν,ℓ,jY
′
j





with probability 1. Combining this observation with
Inequality (132) the desired inequality follows:

Var



a′ν,ℓΞν −
ℓ−1
∑

j=1

b′ν,ℓ,jY
′
j





≥ Var



âν,ℓΞν −
ℓ−1
∑

j=1

b̂ν,ℓ,j Ŷj



 , (133)

with equality if, and only if,


a′ν,ℓΞν −
ℓ−1
∑

j=1

b′ν,ℓ,jY
′
j



 =



âν,ℓΞ1 −
ℓ−1
∑

j=1

b̂ν,ℓ,jŶj





(134)
with probability 1. By (133) and since the parameters
η, a′1, a

′
2,B

′
1,B

′
2 satisfy the power constraints (19), it fur-

ther follows that also the parametersη, â1, â2, B̂1, B̂2 sat-
isfy Constraints (19). Moreover, since the pairs(B′

1,B
′
2)

and (B̂1, B̂2) differ, not for all ℓ ∈ {1, . . . , η} and
all ν ∈ {1, 2} equality (134) can hold and thus the
parametersη, â1, â2, B̂1, B̂2 satisfy either (19a) or (19b)
with strict inequality. This concludes the proof of the
lemma.

Proof of Proposition C.1: The proof uses
Lemma C.2 twice. Fix parametersη, a1, a2,B1,B2,C
satisfying (19) but violating (45). By Lemma C.2 there
exist parametersη, â1, â2, B̂1, B̂2, Ĉ that satisfy (45) and

R (N,KW1W2
; η, a1, a2,B1,B2,C)

= R
(

N,KW1W2
; η, â1, â2, B̂1, B̂2, Ĉ

)

, (135)

and that satisfy (19a) and (19b), whereby one of
them with strict inequality. Further, since the pa-
rameters η, â1, â2, B̂1, B̂2, Ĉ satisfy either (19a) or
(19b) with strict inequality, there exist parameters
η, ǎ1, ǎ2, B̌1, B̌2, Č that satisfy both (19a) and (19b) with
equality (but not necessarily (45)) and that correspond
to a strictly larger region (see Section IV-C2). Thus, by
(135)

R (N,KW1W2
; η, a1, a2,B1,B2,C)

⊂ R
(

N,KW1W2
; η, ǎ1, ǎ2, B̌1, B̌2, Č

)

(136)

with the inclusion being strict.
Applying Lemma C.2 again, this time to parame-

tersη, ǎ1, ǎ2, B̌1, B̌2, Č, we conclude that there exists a
choice of parametersη, a∗1, a

∗
2,B

∗
1,B

∗
2,C

∗ satisfying both
(19) and (45) and

R
(

N,KW1W2
; η, ǎ1, ǎ2, B̌1, B̌2, Č

)

= R (N,KW1W2
; η, a∗1, a

∗
2,B

∗
1,B

∗
2,C

∗) .

By (136) this implies

R (N,KW1W2
; η, a1, a2,B1,B2,C)

⊂ R (N,KW1W2
; η, a∗1, a

∗
2,B

∗
1,B

∗
2,C

∗)

with the inclusion being strict, which concludes the
proof.

APPENDIX D
ALTERNATIVE FORMULATION OF ACHIEVABLE

REGIONS

We derive an alternative formulation of the
region achieved by our concatenated scheme
R (N,KW1W2

; η, a1, a2,B1,B2,C) when C is chosen
as the LMMSE-estimation matrixCLMMSE (as defined
in (43)) andη, a1, a2,B1,B2 are arbitrary. Recall that
there is no loss in optimality in restricting attention
to the choice C = CLMMSE, see Section IV-C2.
Similarly, we derive an alternative formulation for
the achievable regionRP

(

N, σ2
2 ; η, a1, a2,B2,CP

)

when CP = CP,LMMSE (as defined in (103)),
and an alternative formulation for the achievable
region RSI (N,KW1W2

; η, a1, a2,B1,B2,CSI) when
CSI = CSI,LMMSE (as defined in (124)). These alternative
formulations simplify the description of the achievable
regions corresponding to our specific choices of
parameters suggested in Appendices E, F, and G.
In particular, for perfect feedback the alternative
formulation is useful to describe the achievable
region corresponding to the choice of parameters in
Appendix F, see Remark F.3. The region in Remark F.3
is used in Section IV-E2 to prove that our concatenated
scheme for perfect feedback achieves all points
in the interior of Ozarow’s regionRρ∗

Oz(P1, P2, N)
(Proposition IV.9).

A. Noisy Feedback

Given parametersη, a1, a2,B1,B2 andC = CLMMSE,
we derive an alternative formulation for the
region achieved by our concatenated scheme
R (N,KW1W2

; η, a1, a2,B1,B2,C).
To simplify notation, in this section we assume that

Inner Encoder 1 and Inner Encoder 2 are fed independent
zero-mean unit-variance Gaussian random variables and
therefore we denote them byΞ1 andΞ2 instead ofξ1
andξ2. The region achieved by our concatenated scheme
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can then be expressed as the set of all nonnegative rate
pairs(R1, R2) satisfying

R1 ≤ 1

η
I(Ξ1; Ξ̂1, Ξ̂2|Ξ2), (137a)

R2 ≤ 1

η
I(Ξ2; Ξ̂1, Ξ̂2|Ξ1), (137b)

R1 +R2 ≤ 1

η
I(Ξ1,Ξ2; Ξ̂1, Ξ̂2), (137c)

where the conditional law of(Ξ̂1, Ξ̂2) given Ξ1 =
ξ1 and Ξ2 = ξ2 is determined by the channel law
ξ1, ξ2 7→ (Ξ̂1, Ξ̂2) in Equation (37) (Section IV-C1).
Notice that sinceC is the LMMSE-estimation matrix
CLMMSE in (43) (Section IV-C2), by the Gaussianity of
the involved random variables the rate constraints in
(137) are equivalent to:

R1 ≤ 1

η
I(Ξ1;Y1, . . . , Yη|Ξ2), (138a)

R2 ≤ 1

η
I(Ξ2;Y1, . . . , Yη|Ξ1), (138b)

R1 +R2 ≤ 1

η
I(Ξ1,Ξ2;Y1, . . . , Yη), (138c)

where Y1, . . . , Yη are theη channel outputs produced
by the original channelx1, x2 7→ Y when the inner
encoders are fed the independent standard GaussiansΞ1

andΞ2.
Denote for each channel useℓ ∈ {1, . . . , η} the

receiver’s innovation byIℓ, i.e.,

Iℓ , Yℓ − E
[

Yℓ|Y ℓ−1
]

, (139)

and the receiver’s LMMSE-estimation errors about the
symbolsΞ1 andΞ2 by E1,ℓ andE2,ℓ, i.e.,

E1,ℓ , Ξ1 − E
[

Ξ1|Y ℓ
]

, (140a)

E2,ℓ , Ξ2 − E
[

Ξ2|Y ℓ
]

. (140b)

Then, notice that there exists a bijective mapping be-
tween the innovationsI1, . . . , Iη and the channel outputs
Y1, . . . , Yη, and by the Gaussianity of the involved
random variables, for eachℓ ∈ {1, . . . , η}, the tuple
(E1,ℓ, E2,ℓ, Iℓ) is independent of the previous outputs
and innovations(Y1, . . . , Yℓ−1, I1, . . . , Iℓ−1). By the
chain rule of mutual information we can therefore rewrite
Constraints (138) as

R1 ≤ 1

η

η
∑

ℓ=1

I(Ξ1; Iℓ|Ξ2), (141a)

R2 ≤ 1

η

η
∑

ℓ=1

I(Ξ2; Iℓ|Ξ1), (141b)

R1 +R2 ≤ 1

η

η
∑

ℓ=1

I(Ξ1,Ξ2; Iℓ). (141c)

In the following we give a more explicit description
of the innovations{Iℓ}ηℓ=1 in terms of the entries of

the parametersa1, a2,B1,B2. For eachℓ ∈ {1, . . . , η},
let aν,ℓ denote theℓ-th entry of the vectoraν and
bν,ℓ,j denote the row-ℓ column-j entry of the matrix
Bν , for j, ℓ ∈ {1, . . . , η} and ν ∈ {1, 2}. Also, let
α1,ℓ , Var(E1,ℓ) and α2,ℓ , Var(E2,ℓ) denote the
variances ofE1,ℓ andE2,ℓ, andρℓ ,

Cov[E1,ℓ,E2,ℓ]√
α1,ℓα2,ℓ

their
correlation coefficient. We can then write the innovations
as

I1 = Y1 = a1,1Ξ1 + a2,1Ξ2 + Z1; (142a)

and forℓ ∈ {2, . . . , η} as

Iℓ = a1,ℓE1,ℓ−1 + a2,ℓE2,ℓ−1

+(Wℓ−1 − E
[

Wℓ−1|Y ℓ−1
]

) + Zℓ,

= κ1,ℓ−1E1,ℓ−1 + κ2,ℓ−1E2,ℓ−1

+W⊥,ℓ−1 + Zℓ, (142b)

where

Wℓ−1 ,

ℓ−1
∑

j=1

b1,ℓ,jW1,j +

ℓ−1
∑

j=1

b2,ℓ,jW2,j , (143)

W⊥,ℓ−1 , Wℓ−1 − E
[

Wℓ−1|E1,ℓ−1, E2,ℓ−1, Y
ℓ−1
]

(144)

= Wℓ−1 − E
[

Wℓ−1|E1,ℓ−1, E2,ℓ−1, I
ℓ−1
]

,

(145)

and

κ1,ℓ−1 , a1,ℓ +
α2,ℓ−1Cov[E1,ℓ−1,Wℓ−1]

(1− ρ2ℓ−1)α1,ℓ−1α2,ℓ−1

−
ρℓ−1

√
α1,ℓ−1α2,ℓ−1Cov[E2,ℓ−1,Wℓ−1]

(1 − ρ2ℓ−1)α1,ℓ−1α2,ℓ−1
,

(146)

κ2,ℓ−1 , a2,ℓ +
α1,ℓ−1Cov[E2,ℓ−1,Wℓ−1]

(1− ρ2ℓ−1)α1,ℓ−1α2,ℓ−1

−
ρℓ−1

√
α1,ℓ−1α2,ℓ−1Cov[E1,ℓ−1,Wℓ−1]

(1 − ρ2ℓ−1)α1,ℓ−1α2,ℓ−1
.

(147)

Evaluating the mutual information expressions in (141)
for the innovations in (142), we conclude that our
concatenated scheme for noisy feedback with parameters
η, a1, a2,B1,B2 andC = CLMMSE achieves all rate pairs
(R1, R2) satisfying Constraints (148) on the top of next
page, where we definedα1,0 , 1, α2,0 , 1, ρ0 , 0,
κ1,0 , a1,1, κ2,0 , a2,1, W⊥,0 , 0.

We conclude this section with a recursive characteriza-
tion of the variances{α1,ℓ}ηℓ=1 and {α2,ℓ}ηℓ=1, and the
correlation coefficients{ρℓ}ηℓ=1. Defining E1,0 , Ξ1,
E2,0 , Ξ2, we find for ℓ ∈ {1, . . . , η}:

E1,ℓ = E1,ℓ−1 −
Cov[E1,ℓ−1, Iℓ]

Var(Iℓ)
Iℓ, (149a)

E2,ℓ = E2,ℓ−1 −
Cov[E2,ℓ−1, Iℓ]

Var(Iℓ)
Iℓ, (149b)
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R1 ≤ 1

η

η
∑

ℓ=1

1

2
log

(

1+
κ2
1,ℓ−1α1,ℓ−1

(

1− ρ2ℓ−1

)

Var(W⊥,ℓ−1) +N

)

(148a)

R2 ≤ 1

η

η
∑

ℓ=1

1

2
log

(

1+
κ2
2,ℓ−1α2,ℓ−1

(

1− ρ2ℓ−1

)

Var(W⊥,ℓ−1) +N

)

(148b)

R1 +R2 ≤ 1

η

η
∑

ℓ=1

1

2
log

(

1+
κ2
1,ℓ−1α1,ℓ−1 + κ2

2,ℓ−1α2,ℓ−1 + 2κ1,ℓ−1κ2,ℓ−1
√
α1,ℓ−1α2,ℓ−1ρℓ−1

Var(W⊥,ℓ−1) +N

)

(148c)

α1,ℓ = α1,ℓ−1

(

κ2
1,ℓ−1α1,ℓ−1 + κ2

2,ℓ−1α2,ℓ−1 + 2κ1,ℓ−1κ2,ℓ−1
√
α1,ℓ−1α2,ℓ−1ρℓ−1 + Var(W⊥,ℓ−1) +N

κ2
2,ℓ−1α2,ℓ−1(1− ρ2ℓ−1) + Var(W⊥,ℓ−1) +N

(150)

α2,ℓ = α2,ℓ−1

(

κ2
1,ℓ−1α1,ℓ−1 + κ2

2,ℓ−1α2,ℓ−1 + 2κ1,ℓ−1κ2,ℓ−1
√
α1,ℓ−1α2,ℓ−1ρℓ−1 + Var(W⊥,ℓ−1) +N

κ2
1,ℓ−1α1,ℓ−1(1 − ρ2ℓ−1) + Var(W⊥,ℓ−1) +N

(151)

ρℓ =
−κ1,ℓ−1κ2,ℓ−1

√
α1,ℓ−1α2,ℓ−1(1 − ρ2ℓ−1) + ρℓ−1(Var(W⊥,ℓ−1) +N)

√

κ2
1,ℓ−1α1,ℓ−1(1− ρ2ℓ−1) + Var(W⊥,ℓ−1) +N

√

κ2
2,ℓ−1α2,ℓ−1(1− ρ2ℓ−1) + Var(W⊥,ℓ−1) +N

(152)

and consequently, by (142) the recursive expressions
(150)–(152) on top of the next page.

This alternative formulation is used in Corollaries E.3
and F.2 in Appendices E and F ahead to describe
the regions achieved by our concatenated scheme for
noisy feedback with the specific choices of parameters
described in Sections E-A (Appendix E) and F-A (Ap-
pendix F). In particular, it is used to describe the region
achieved in the special case of perfect feedback when the
parameters are chosen as in Section F-A (Appendix F),
see Remark F.3.

B. Noisy Partial Feedback

The desired alternative formulation of
RP
(

N, σ2
2 ; η, a1, a2,B1,B2,CP

)

can be derived
along the lines shown in the previous subsection D-A.
We omit the details and only present the result.

Fix a choice of parametersη, a1, a2,B1,B2 andCP =
CP,LMMSE. Denote theℓ-th entry of the vectoraν by
aν,ℓ and denote the row-ℓ column-j entry of the matrix
B2 by b2,ℓ,j, for j, ℓ ∈ {1, . . . , η} and ν ∈ {1, 2}.
Our concatenated scheme for noisy partial feedback and
parametersη, a1, a2,B2,CP = CP,LMMSE achieves all rate
pairs (R1, R2) satisfying Constraints (153) on top of
the next page, where recall thatα1,0 = 1, α2,0 = 1,
ρ0 = 0, κ1,0 = a1,1, κ2,0 = a2,1, W⊥,0 = 0, and where
{α1,ℓ}η−1

ℓ=1 , {α2,ℓ}η−1
ℓ=1 , {ρℓ}η−1

ℓ=1 , {κ1,ℓ}η−1
ℓ=1 , {κ2,ℓ}η−1

ℓ=1 ,
and{W⊥,ℓ}η−1

ℓ=1 are defined byE1,0 = Ξ1, E2,0 = Ξ2,
and Equations (142)–(152) (Subsection D-A) except that
(143) should be replaced by

Wℓ−1 =

ℓ−1
∑

j=1

b2,ℓ,jW2,j .

C. Noisy Feedback with Receiver Side-Information

We derive an alternative formulation of the
rate region achieved by our concatenated scheme
RSI (N,KW1W2

; η, a1, a2,B1,B2,CSI) for a fixed choice
of parametersη, a1, a2,B1,B2 and CSI = CSI,LMMSE.
Denote theℓ-th entry of the vectoraν by aν,ℓ and denote
the row-ℓ column-j entry of the matrixBν by bν,ℓ,j, for
j, ℓ ∈ {1, . . . , η} andν ∈ {1, 2}. The desired alternative
formulation of RSI (N,KW1W2

; η, a1, a2,B1,B2,CSI)
can be derived along the lines described in the previous
section D-A but with the following two modifications.
Instead of being defined as in (140), the LMMSE-
estimation errorsE1,ℓ andE2,ℓ, for ℓ ∈ {1, . . . , η}, are
defined as

E1,ℓ , Ξ1 − E
[

Ξ1|Y ℓ,W ℓ−1
1 ,W ℓ−1

2

]

, (154a)

E2,ℓ , Ξ2 − E
[

Ξ2|Y ℓ,W ℓ−1
1 ,W ℓ−1

2

]

, (154b)

and instead of being defined as in (139), the innovation
Iℓ, for ℓ ∈ {1, . . . , η}, is defined as

Iℓ , Yℓ − E
[

Yℓ|Y ℓ−1,W ℓ−1
1 ,W ℓ−1

2

]

. (155)

Notice that by (154) and (155):

Iℓ = a1,ℓE1,ℓ−1 + a2,ℓE2,ℓ−1 + Zℓ, ℓ ∈ {1, . . . , η}.

We omit the details of the derivation and only
state the resulting alternative formulation of the re-
gion RSI (N,KW1W2

; η, a1, a2,B1,B2,CSI). Our con-
catenated scheme for noisy feedback with receiver
side-information and parametersη, a1, a2,B1,B2,CSI

achieves all rate pairs(R1, R2) satisfying Constraints
(156) on top of the next page, where recall thatα1,0 = 1,
α2,0 = 1, ρ0 = 0, and where{α1,ℓ}ηℓ=1, {α2,ℓ}ηℓ=1 and
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R1 ≤ 1

η

η
∑

ℓ=1

1

2
log

(

1+
κ2
1,ℓ−1α1,ℓ−1

(

1− ρ2ℓ−1

)

Var(W⊥,ℓ−1) +N

)

(153a)

R2 ≤ 1

η

η
∑

ℓ=1

1

2
log

(

1+
κ2
2,ℓ−1α2,ℓ−1

(

1− ρ2ℓ−1

)

Var(W⊥,ℓ−1) +N

)

(153b)

R1 +R2 ≤ 1

η

η
∑

ℓ=1

1

2
log

(

1+
κ2
1,ℓ−1α1,ℓ−1 + κ2

2,ℓ−1α2,ℓ−1 + 2κ1,ℓ−1κ2,ℓ−1
√
α1,ℓ−1α2,ℓ−1ρℓ−1

Var(W⊥,ℓ−1) +N

)

(153c)

R1 ≤ 1

η

η
∑

ℓ=1

1

2
log

(

1+
a21,ℓα1,ℓ−1

(

1− ρ2ℓ−1

)

N

)

(156a)

R2 ≤ 1

η

η
∑

ℓ=1

1

2
log

(

1+
a22,ℓα2,ℓ−1

(

1− ρ2ℓ−1

)

N

)

(156b)

R1 +R2 ≤ 1

η

η
∑

ℓ=1

1

2
log

(

1+
a21,ℓα1,ℓ−1 + a22,ℓα2,ℓ−1 + 2a1,ℓa2,ℓρℓ−1

√
α1,ℓ−1α2,ℓ−1

N

)

(156c)

α1,ℓ = α1,ℓ−1

(

a21,ℓα1,ℓ−1 + a22,ℓα2,ℓ−1 + 2a1,ℓa2,ℓ
√
α1,ℓ−1α2,ℓ−1ρℓ−1 +N

a22,ℓα2,ℓ−1(1 − ρ2ℓ−1) +N

)−1

(157)

α2,ℓ = α2,ℓ−1

(

a21,ℓα1,ℓ−1 + a22,ℓα2,ℓ−1 + 2a1,ℓa2,ℓ
√
α1,ℓ−1α2,ℓ−1ρℓ−1 +N

a21,ℓα1,ℓ−1(1 − ρ2ℓ−1) +N

)−1

(158)

ρℓ =
−a1,ℓa2,ℓ

√
α1,ℓ−1α2,ℓ−1(1− ρ2ℓ−1) + ρℓ−1N

√

a21,ℓα1,ℓ−1(1− ρ2ℓ−1) +N
√

a22,ℓα2,ℓ−1(1− ρ2ℓ−1) +N
(159)

{ρℓ}ηℓ=1 are defined through Recursions (157)–(159),
also on top of the next page.

APPENDIX E
CHOICE OFPARAMETERS I

In Section E-A, we present a specific choice of the
parametersa1, a2,B1,B2,C for given η ∈ N. We treat
the noisy-feedback setting and the noisy or perfect
partial-feedback setting. We denote our choice for noisy
feedback bȳa1, ā2, B̄1, B̄2, C̄ and our choice for partial
feedback bȳa1,P, ā2,P, B̄2,P, C̄P.

As we shall see, our choices are such thatC̄ and
C̄P are LMMSE-estimation matrices. Thus, the region
achieved by our concatenated scheme for noisy feed-
back with parametersη, ā1, ā2, B̄1, B̄2, C̄ is obtained by
substituting the parameters into the RHSs of (148) in
Section D-A in Appendix D. The resulting achievable
region is presented in Corollary E.3 ahead. Similarly,
the region achieved by our concatenated scheme for
partial feedback with parametersη, ā1,P, ā2,P, B̄2,P, C̄P is
obtained by substituting the parameters into the RHSs
of (153a)–(153c) in Section D-B in Appendix D. For
brevity we do not present this latter achievable region.

A. Description of Parameters

Let a positive integerη ∈ N be given. We first consider
the noisy-feedback setting; the partial-feedback setting
is treated only shortly in Remark E.1 at the end of this
section.

Instead of describing our choicēa1, ā2, B̄1, B̄2, and
C̄ directly, we will describe how Inner Encoder 1 and
Inner Encoder 2 map the fed symbols to the sequences of
channel inputsX1,1, . . . , X1,η andX2,1, . . . , X2,η. This
then determines̄a1, ā2, B̄1, B̄2. The matrixC̄ is chosen
as the LMMSE-estimation matrix. For the purpose of de-
scribing our choice we replace the pair of input symbols
ξ1 andξ2 by the independent standard GaussiansΞ1 and
Ξ2.

The inner encoders are chosen so as to produce

X1,1 =
√

P1Ξ1, (160)

X2,1 =
√

P2Ξ2, (161)

and forℓ ∈ {2, . . . , η}:

X1,ℓ =

√

P1

β1,ℓ−1

(

Ξ1 − γT
1,ℓ−1V

ℓ−1
1

)

, (162)

X2,ℓ = (−1)ℓ−1

√

P2

β2,ℓ−1

(

Ξ2 − γT
2,ℓ−1Mℓ−1V

ℓ−1
2

)

,
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(163)

where forℓ ∈ {1, . . . , η − 1}

Mℓ , diag
(

1,−1, 1, . . . , (−1)ℓ−1
)

, (164)

β1,ℓ , Var
(

Ξ1 − γT
1,ℓV

ℓ
1

)

,

(165)

β2,ℓ , Var
(

Ξ2 − γT
2,ℓMℓV

ℓ
2

)

,

(166)

γ1,ℓ ,

(

(σ2
1 + σ2

2 − 2̺σ1σ2)
P1

N
Iℓ + KV ℓ

1

)−1

KV ℓ
1
,Ξ1

,

(167)

γ2,ℓ ,

(

(σ2
1 + σ2

2 − 2̺σ1σ2)
P2

N
Iℓ + KV ℓ

2

)−1

KV ℓ
2
,Ξ2

.

(168)

Notice that Inner Encoder 2 modulates its inputs with
an alternating sequence of+1 or −1 (which is inspired
by the Fourier-MEC scheme in [11]), and it multiplies
the noisy feedback vectors by the matrixMℓ−1 before
further processing it (which accounts for the modulation
of past inputs). The presented choice of the inner en-
coders ensures that the input sequences to the original
MAC x1, x2 7→ Y satisfy the average block-power
constraints (4). In particular, with the presented choice
all input symbolsX1,1, . . . , X1,η have the same expected
powerP1, and all input symbolsX2,1, . . . , X2,η have the
same expected powerP2.

This encoding scheme corresponds to the following
parameters of the concatenated scheme:

ā1 ,

(√
P1

√

P1

β1,1
. . .

√

P1

β1,η−1

)T

,

ā2 ,

(√
P2 −

√

P2

β2,1
. . . (−1)η−1

√

P2

β2,η−1

)T

,

and

B̄1 ,

(

0 −
√

P1

β1,1
γ
(0)
1,1 . . . −

√

P1

β1,η−1

γ
(0)
1,η−1

)T

,

B̄2 ,

(

0

√

P2

β2,1
γ
(0)
2,1 . . . (−1)η

√

P2

β2,η−1

γ
(0)
2,η−1

)T

,

where the vectors
{

γ
(0)
1,ℓ

}η−1

ℓ=1
and

{

γ
(0)
2,ℓ

}η−1

ℓ=1
are de-

fined as theη-dimensional vectors obtained by stacking
the ℓ-dimensional column-vectorγν,ℓ on top of an
(η− ℓ)-dimensional column-vector with all zero entries,
i.e.,

γ
(0)
ν,ℓ ,

(

γν,ℓ

0

)

. (169)

The parameter̄C is chosen as the LMMSE-estimation
matrix CLMMSE, where recall

CLMMSE = Ā
T
r

(

ĀrĀ
T
r +N Iη + B̄r(KW1W2

⊗ Iη)B̄
T
r

)−1
,

(170)

whereĀr ,
(

ā1 ā2

)

and B̄r ,
(

B̄1 B̄2

)

.

Remark E.1. A similar choice of the parameters can
also be made in the case of partial feedback. In this
case, we choose the parameters corresponding to the
inner encoders and the inner decoder as in(160)–(170)
except for replacing(162) by

X1,ℓ =
√

P1Ξ1, ℓ ∈ {2, . . . , η},

and replacing(168) by

γ2,ℓ ,

(

σ2
2

P2

N
Iℓ + KV ℓ

2

)−1

KV ℓ
2
,Ξ2

.

We denote the parameters of the concatenated scheme
corresponding to this choice bȳa1,P, ā2,P, B̄2,P, and C̄P.

B. Achievable Region

We present the achievable region corresponding to our
concatenated scheme for noisy feedback with parameters
as presented in the previous section.

Definition E.2. For a positive integer η, define
R̄η(P1, P2, N,KW1W2

) as the set of all rate-pairs
(R1, R2) satisfying the three rate constraints(171) on
top of the next page, where recall thatα1,0 = 1,
α2,0 = 1, β1,0 = 1, β2,0 = 1, ρ0 = 0, W⊥,0 = 0,
where {α1,ℓ}η−1

ℓ=1 , {α2,ℓ}η−1
ℓ=1 , {ρℓ}η−1

ℓ=1 are defined by
Recursions(172)–(174)also on top of the next page, and
whereκ̄1,0 , 1, κ̄2,0 , 1, and{κ̄1,ℓ}η−1

ℓ=1 and{κ̄2,ℓ}η−1
ℓ=1

are defined by13

κ̄1,ℓ , 1 +

√

β1,ℓ

P1

(

α2,ℓCov[E1,ℓ,Wℓ]

(1 − ρ2ℓ)α1,ℓα2,ℓ

−
ρℓ
√
α1,ℓα2,ℓCov[E2,ℓ,Wℓ]

(1− ρ2ℓ)α1,ℓα2,ℓ

)

,

(175)

κ̄2,ℓ , 1 +

√

β2,ℓ

P2

(

α1,ℓCov[E2,ℓ,Wℓ]

(1 − ρ2ℓ)α1,ℓα2,ℓ

−
ρℓ
√
α1,ℓα2,ℓCov[E1,ℓ,Wℓ]

(1− ρ2ℓ)α1,ℓα2,ℓ

)

,

(176)

and {β1,ℓ}η−1
ℓ=1 , {β2,ℓ}η−1

ℓ=1 , {E1,ℓ}η−1
ℓ=1 , {E2,ℓ}η−1

ℓ=1 ,
{Wℓ}η−1

ℓ=1 , and {W⊥,ℓ}ηℓ=1 are defined by Equations
(160)–(168) and by Equations(140), (143), and (144).

Corollary E.3 (Noisy Feedback). The capacity region of
the two-user AWGN MAC with noisy feedback contains
all rate regionsR̄η(P1, P2, N,KW1W2

) for positive in-
tegersη, i.e.,

CNoisyFB(P1, P2, N,KW1W2
)

13Notice that for eachν ∈ {1, 2} and eachℓ ∈ {1, . . . , η− 1} we

have κ̄ν,ℓ =
√

βν,ℓ

Pν
κν,ℓ, whenκν,ℓ is defined as in (146) or (147)

in Section D-A (Appendix D).
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R1 ≤ 1

2η

η
∑

ℓ=1

log

(

1 +
P1κ̄

2
1,ℓ−1

α1,ℓ−1

β1,ℓ−1

(

1− ρ2ℓ−1

)

Var(W⊥,ℓ−1) +N

)

(171a)

R2 ≤ 1

2η

η
∑

ℓ=1

log

(

1 +
P2κ̄

2
2,ℓ−1

α2,ℓ−1

β2,ℓ−1

(

1− ρ2ℓ−1

)

Var(W⊥,ℓ−1) +N

)

(171b)

R1 +R2 ≤ 1

2η

η
∑

ℓ=1

log

(

1 +
P1κ̄

2
1,ℓ−1

α1,ℓ−1

β1,ℓ−1

+ P2κ̄
2
2,ℓ−1

α2,ℓ−1

β2,ℓ−1

Var(W⊥,ℓ−1) +N
+

2
√
P1P2κ̄1,ℓ−1κ̄2,ℓ−1

√

α1,ℓ−1

β1,ℓ−1

√

α2,ℓ−1

β2,ℓ−1

ρℓ−1

Var(W⊥,ℓ−1) +N

)

(171c)

α1,ℓ = α1,ℓ−1

(

P1κ̄
2
1,ℓ−1

α1,ℓ−1

β1,ℓ−1

+ P2κ̄
2
2,ℓ−1

α2,ℓ−1

β2,ℓ−1

P2κ̄2
2,ℓ−1

α2,ℓ−1

β2,ℓ−1

(1− ρ2ℓ−1) + Var(W⊥,ℓ−1) +N

+
2
√
P1P2κ̄1,ℓ−1κ̄2,ℓ−1

√

α1,ℓ−1α2,ℓ−1

β1,ℓ−1β2,ℓ−1

(−1)ℓρℓ−1 + Var(W⊥,ℓ−1) +N

P2κ̄2
2,ℓ−1

α2,ℓ−1

β2,ℓ−1

(1− ρ2ℓ−1) + Var(W⊥,ℓ−1) +N

)−1

(172)

α2,ℓ = α2,ℓ−1

(

P1κ̄
2
1,ℓ−1

α1,ℓ−1

β1,ℓ−1

+ P2κ̄
2
2,ℓ−1

α2,ℓ−1

β2,ℓ−1

P1κ̄2
1,ℓ−1

α1,ℓ−1

β1,ℓ−1

(1− ρ2ℓ−1) + Var(W⊥,ℓ−1) +N

+
2
√
P1P2κ̄1,ℓ−1κ̄2,ℓ−1

√

α1,ℓ−1α2,ℓ−1

β1,ℓ−1β2,ℓ−1

(−1)ℓρℓ−1 + Var(W⊥,ℓ−1) +N

P1κ̄2
1,ℓ−1

α1,ℓ−1

β1,ℓ−1

(1− ρ2ℓ−1) + Var(W⊥,ℓ−1) +N

)−1

(173)

ρℓ = ρℓ−1

−
√
P1P2κ̄1,ℓ−1κ̄2,ℓ−1

√

α1,ℓ−1

β1,ℓ−1

√

α2,ℓ−1

β2,ℓ−1

(1− ρ2ℓ−1) + ρℓ−1(Var(W⊥,ℓ−1) +N)
√

P1κ̄2
1,ℓ−1

α1,ℓ−1

β1,ℓ−1

(1− ρ2ℓ−1) + Var(W⊥,ℓ−1) +N
√

P2κ̄2
2,ℓ−1

α2,ℓ−1

β2,ℓ−1

(1− ρ2ℓ−1) + Var(W⊥,ℓ−1) +N

(174)

⊇ cl
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APPENDIX F
CHOICE OFPARAMETERS II

In Section F-A we present a second choice of the
parametersa1, a2,B1,B2, and C given η ∈ N. We
only treat the noisy-feedback setting. The choice we
propose is based on extending the choice of parameters
in Section E-A in the previous appendix with a form of
power allocation as suggested in [11]. We denote this
choice byã1, ã2, B̃1, B̃2, C̃.

As we shall see, for our choicẽC is the
LMMSE-estimation matrix. Thus, the achievable re-
gion of our concatenated scheme with parameters
η, ã1, ã2, B̃1, B̃2, C̃ is obtained by substituting the pa-
rameters̃a1, ã2, B̃1, B̃2 into the RHSs of (148) in Sec-
tion D-A. The resulting achievable region is presented
in Corollary F.2 ahead.

A. Description of Parameters

We only consider the noisy feedback setting. An
analogous choice of the parameters for the partial feed-
back setting is obtained by similar modifications as in
Remark E.1 in the previous appendix.

We first describe how Inner Encoder 1 and Inner
Encoder 2 map the fed symbols to the sequences of
channel inputsX1,1, . . . , X1,η andX2,1, . . . , X2,η. This,
then determines̃a1, ã2, B̃1, B̃2. The matrixC̃ is chosen
as the LMMSE-estimation matrix.

The inner encoders use the same linear strategies as in
Section E-A, with the only difference that here for every
fed symbol, Inner Encoder 1 scales the first produced
symbol by a constant

√
r, and similarly Inner Encoder 2

scales the first produced symbol by the same constant√
r, wherer ∈ [0, 1] is defined as the solution to
√

r2P1P2

(rP1 +N)(rP2 +N)
= ρ∗(P1, P2, N). (177)

Equation (177) has a unique solution in[0, 1] because
(177) is strictly increasing inr ∈ [0, 1] and by

0 < ρ∗(P1, P2, N) <

√

P1P2

(P1 +N)(P2 +N)
. (178)

Here, Equation (178) holds by the continuity of the
expressions in (8), and because forρ = 0 the RHS
of (8) is strictly larger than its LHS, whereas forρ =
√

P1P2

(P1+N)(P2+N) the LHS of (8) is strictly larger than
its RHS.
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The reason for scaling the first produced symbols by√
r < 1 is to ensure that the correlation coefficientρ1

satisfiesρ1 = −ρ∗(P1, P2, N). This property is used
in the proof of Remark IV.8 in Section IV-E2, where
we show that for perfect feedback and with the choice
of parameters presented in this section our concatenated
scheme achieves the sum-rate capacity.

The trick of reducing the powers of certain channel
inputsX1,t andX2,t in order to control the next corre-
lation coefficientρt was introduced in Kramer’s perfect-
feedback scheme [11]. Ozarow uses a different trick in
his scheme [13]. He assumes that the two transmitters
share a common randomness, which allows them to vary
a specific correlation coefficientρt by adding a scaled
version of the common randomness to their channel
inputsX1,t andX2,t.

For the detailed description of the inner encoders we
again replace the fed symbolsξ1, ξ2 by the independent
standard GaussiansΞ1 andΞ2. Then, Inner Encoder 1
produces

X1,1 =
√

rP1Ξ1, (179)

X1,ℓ =

√

P1

β1,ℓ−1

(

Ξ1 − γT
1,ℓ−1V

ℓ−1
1

)

, ℓ ∈ {2, . . . , η},

and Inner Encoder 2 produces

X2,1 =
√

rP2Ξ2, (180)

X2,ℓ = (−1)ℓ−1

√

P2

β2,ℓ−1

(

Ξ2 − γT
2,ℓ−1Mℓ−1V

ℓ−1
2,1

)

,

ℓ ∈ {2, . . . , η},
where {Mℓ}η−1

ℓ=1 , {β1,ℓ}η−1
ℓ=1 , {β2,ℓ}η−1

ℓ=1 , {γ1,ℓ}η−1
ℓ=1 ,

{γ2,ℓ}η−1
ℓ=1 are defined as in the previous appendix when

the channel inputsX1,1 and X2,1 rather than being
defined by (160) and (161) are now defined by (179)
and (180), and wherer is defined by (177).

The described encodings correspond to the following
parameters in the concatenated scheme:

ã1 ,

(√
rP1

√

P1

β1,1
. . .

√

P1

β1,η−1

)T

,

ã2 ,

(√
rP2 −

√

P2

β2,1
. . . (−1)η−1

√

P2

β2,η−1

)T

,

and

B̃1 ,

(

0 −
√

P1

β1,1
γ
(0)
1,1 . . . −

√

P1

β1,η−1

γ
(0)
1,η−1

)T

,

B̃2 ,

(

0

√

P2

β2,1
γ
(0)
2,1 . . . (−1)η

√

P2

β2,η−1

γ
(0)
2,η−1

)T

,

where0 denotes the all-zero column-vector and where
{

γ
(0)
1,ℓ

}η−1

ℓ=1
and

{

γ
(0)
2,ℓ

}η−1

ℓ=1
are defined as in the previous

appendix.
The matrix C̃ is chosen as the LMMSE-estimation

matrix CLMMSE, where recall that

CLMMSE = Ã
T
r

(

ÃrÃ
T
r +N Iη + B̃r(KW1W2

⊗ Iη)B̃
T
r

)−1

,

whereÃr ,
(

ã1 ã2

)

and B̃r ,
(

B̃1 B̃2

)

.

B. Achievable Region

Definition F.1. For each η ∈ N define the rate re-
gion R̃η(P1, P2, N,KW1W2

) as the set of all rate-pairs
(R1, R2) satisfying Constraints(181)on top of the next
page, where now (unlike in the previous appendix)

α1,1 = rP1
rP2 +N

rP1 + rP2 +N
, (182)

α2,1 = rP2
rP1 +N

rP1 + rP2 +N
, (183)

ρ1 = −ρ∗(P1, P2, N), (184)

wherer is the unique solution in[0, 1] to
√

r2P1P2

(rP1 +N)(rP2 +N)
= ρ∗(P1, P2, N), (185)

and where the parameters{α1,ℓ}η−1
ℓ=2 , {α2,ℓ}η−1

ℓ=2 ,
{ρℓ}η−1

ℓ=2 , {β1,ℓ}η−1
ℓ=1 , {β2,ℓ}η−1

ℓ=1 , {κ̄1,ℓ}η−1
ℓ=1 , {κ̄2,ℓ}η−1

ℓ=1 ,
{W⊥,ℓ}η−1

ℓ=1 are defined as in the previous appendix,
if the input symbolsX1,1 and X2,1 rather than being
defined by(160) and (161) are now defined by(179)
and (180).

Corollary F.2. For the two-user AWGN MAC with noisy
feedback our concatenated scheme with the parameters
described in Section F-A achieves all rate pairs in the
regions R̃η(P1, P2, N,KW1W2

) for positive integersη,
i.e.,

CNoisyFB(P1, P2, N,KW1W2
)

⊇ cl
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η∈N

R̃η(P1, P2, N,KW1W2
)



 .

Remark F.3. Specializing the region in Definition F.1
to perfect feedback, i.e., toKW1W2

= 0, results in the
region R̃η (P1, P2, N, 0), which is defined as the set of
all rate pairs (R1, R2) satisfying

R1 ≤ 1

2η
log

(

1 +
rP1

N

)

+

η
∑

ℓ=2

1

2η
log

(

1 +
P1(1− ρ2ℓ−1)

N

)

,(186a)

R2 ≤ 1

2η
log

(

1 +
rP2

N

)

+

η
∑

ℓ=2

1

2η
log

(

1 +
P2(1− ρ2ℓ−1)

N

)

,(186b)

R1 +R2 ≤ 1

2η
log

(

1 +
rP1 + rP2

N

)

+

η
∑

ℓ=2

1

2η
log

(

1 +
P1 + P2 + 2

N

+

√
P1P2(−1)ℓ−1ρℓ−1

N

)

(186c)
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R1 ≤ 1

2η
log

(

1 +
rP1

N

)

+
1

2η

η
∑

ℓ=2

log

(

1 +
P1κ̄

2
1,ℓ−1

α1,ℓ−1

β1,ℓ−1

(

1− ρ2ℓ−1

)

Var(W⊥,ℓ−1) +N

)

(181a)

R2 ≤ 1

2η
log

(

1 +
rP2

N

)

+
1

2η

η
∑

ℓ=2

log

(

1 +
P2κ̄

2
2,ℓ−1

α2,ℓ−1

β2,ℓ−1

(

1− ρ2ℓ−1

)

Var(W⊥,ℓ−1) +N

)

(181b)

R1 +R2 ≤ 1

2η
log

(

1 +
rP1 + rP2

N

)

+
1

2η

η
∑

ℓ=2

log

(

1 +
P1κ̄

2
1,ℓ−1

α1,ℓ−1

β1,ℓ−1

+ P2κ̄
2
2,ℓ−1

α2,ℓ−1

β2,ℓ−1

+ 2
√
P1P2κ̄1,ℓ−1κ̄2,ℓ−1

√

α1,ℓ−1

β1,ℓ−1

α2,ℓ−1

β2,ℓ−1

ρℓ−1

Var(W⊥,ℓ−1) +N

)

(181c)

where the sequence{ρℓ}η−1
ℓ=1 is recursively defined by

ρ1 = −ρ∗(P1, P2, N) and for ℓ ∈ {2, . . . , η} by

ρℓ =
ρℓ−1N − (−1)ℓ−1

√
P1P2(1 − ρ2ℓ−1)

√

P1(1− ρ2ℓ−1) +N
√

P2(1− ρ2ℓ−1) +N
,

(187)
and wherer is the unique solution in[0, 1] to (185).

Proof: Notice that if KW1W2
= 0, then trivially

W⊥,ℓ = 0, for ℓ ∈ {1, . . . , η−1}, and Definitions (165)–
(168), (175), and (176) result in

γν,ℓ = K
−1
Y ℓKY ℓ,Ξν

, (188)

βν,ℓ = Var
(

Ξν − K
T
Y ℓ,Ξν

K
−1
Y ℓY

ℓ
)

= αν,ℓ, (189)

κ̄ν,ℓ = 1. (190)

Thus, for perfect feedback the parameters suggested in
Section F-A are LMMSE-estimation error parameters,
which are optimal for perfect feedback in the sense
discussed in Section IV-C2. The rate expressions in (171)
then result in Expressions (186), and Recursion (174)
results in (187). This concludes the proof of the remark.

APPENDIX G
CHOICE OFPARAMETERS III

In this section we consider the noisy-feedback setup
with receiver side-information, and we present for
each η ∈ N a specific choice of the parameters
a1, a2,B1,B2,CSI, which we call ă1, ă2, B̆1, B̆2, C̆SI.
As we shall see, the matrix̆CSI is chosen as the
LMMSE-estimation matrix. Thus, the achievable re-
gion of our concatenated scheme with parameters
η, ă1, ă2, B̆1, B̆2, C̆SI is obtained by substituting the pa-
rameters̆a1, ă2, B̆1, B̆2 into (156). The resulting achiev-
able region is presented in Corollary G.2 ahead.

A. Description of Parameters

Let a positive integerη ∈ N be given. We first describe
how Inner Encoder 1 and Inner Encoder 2 map the

fed symbols to the channel inputs. This then determines
ă1, ă2, B̆1, B̆2, C̆. To simplify the description we replace
the symbolsξ1 andξ2 fed to the inner encoders by the
independent standard GaussiansΞ1 andΞ2. We choose
the inner encoders to produce

X1,1 =
√

P1Ξ1, (191)

X2,1 =
√

P2Ξ2, (192)

and forℓ ∈ {2, . . . , η}:

X1,ℓ =

√

P1

β̆1,ℓ−1

(

Ξ1 − γ̆
T
1,ℓ−1V

ℓ−1
1

)

, (193)

X2,ℓ = (−1)ℓ−1

√

P2

β̆2,ℓ−1

(

Ξ2 − γ̆
T
2,ℓ−1Mℓ−1V

ℓ−1
2

)

,

(194)

where forℓ ∈ {1, . . . , η − 1} the matrixMℓ is defined
as in (164) and

β̆1,ℓ , Var
(

Ξ1 − γ̆
T
1,ℓV

ℓ
1

)

, (195)

β̆2,ℓ , Var
(

Ξ2 − γ̆
T
2,ℓMℓV

ℓ
2

)

, (196)

γ̆1,ℓ = K
−1
V ℓ
1

KV ℓ
1
,Ξ1

, (197)

γ̆2,ℓ = K
−1
V ℓ
2

KV ℓ
2
,Ξ2

. (198)

Notice that this choice implies that theℓ-th channel input
produced by Inner Encoder 1 is a scaled version of
the LMMSE-estimation error ofΞ1 based on the past
feedback outputsV1,1, . . . , V1,ℓ−1. Similarly, for Inner
Encoder 2.

The described encodings correspond to the following
parameters of the concatenated scheme:

ă1 ,

(√
P1

√

P1

β̆1,1

. . .
√

P1

β̆1,η−1

)T

,

ă2 ,

(√
P2 −

√

P2

β̆2,1

. . . (−1)η−1
√

P2

β̆2,η−1

)T

,

and

B̆1 ,

(

0 −
√

P1

γ̆
1,1

γ̆
(0)
1,1 . . . −

√

P1

β̆1,η−1

γ̆
(0)
1,η−1

)T

,
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B̆2 ,

(

0

√

P2

β̆2,1

γ̆
(0)
2,1 . . . (−1)η

√

P2

β̆2,η−1

γ̆
(0)
2,η−1

)T

,

where the vectors
{

γ̆
(0)
1,ℓ

}η−1

ℓ=1
and

{

γ̆
(0)
2,ℓ

}η−1

ℓ=1
are de-

fined as theη-dimensional vector obtained by stacking
the ℓ-dimensional column-vector̆γν,ℓ on top of an
(η− ℓ)-dimensional column-vector with all zero entries,
i.e.,

γ̆
(0)
ν,ℓ ,

(

γ̆ν,ℓ

0

)

, ℓ ∈ {1, . . . , η − 1}, ν ∈ {1, 2}.

The matrix C̆SI is chosen as the LMMSE-estimation
matrix with side-information, i.e.,

C̆SI = Ă
T
r (ĂrĂ

T
r +N Iη)

−1,

whereĂr ,
(

ă1 ă2

)

.

B. Achievable Region

Definition G.1. For each η ∈ N define the region
R̆η(P1, P2, N,KW1W2

) as the set of all rate pairs
(R1, R2) satisfying

R1 ≤ 1

2η

η
∑

ℓ=1

log



1 +
P1

α1,ℓ−1

β̆1,ℓ−1

(

1− ρ2ℓ−1

)

N



 ,

R2 ≤ 1

2η

η
∑

ℓ=1

log



1 +
P2

α2,ℓ−1

β̆2,ℓ−1

(

1− ρ2ℓ−1

)

N



 ,

R1 +R2

≤ 1

2η

η
∑

ℓ=1

log

(

1 +
P1

α1,ℓ−1

β̆1,ℓ−1

+ P2
α2,ℓ−1

β̆2,ℓ−1

N

+
2
√
P1P2

√

α1,ℓ−1α2,ℓ−1

β̆1,ℓ−1β̆2,ℓ−1

(

1 + (−1)ℓ−1ρℓ−1

)

N



 ,

where α1,0 = 1, α2,0 = 1, ρ0 = 0, and {α1,ℓ}ηℓ=1,
{α2,ℓ}ηℓ=1, and{ρℓ}ηℓ=1 are recursively given by Recur-
sions(199)–(201)displayed on top of the next page. and
whereβ̆1,0 = 1, β̆2,0 = 1, and{β̆1,ℓ}η−1

ℓ=1 and {β̆2,ℓ}η−1
ℓ=1

are described by(191)–(198).

Corollary G.2. The capacity region
CNoisyFBSI(P1, P2, N,KW1W2

) of the two-user Gaussian
MAC with noisy feedback and receiver side-information
contains the rate regionsR̆η(P1, P2, N,KW1W2

) for
positive integersη, i.e.,

CNoisyFBSI(P1, P2, N,KW1W2
)

⊇ cl





⋃

η∈N

R̆η(P1, P2, N,KW1W2
)



 .

APPENDIX H
RATE-SPLITTING WITH CARLEIAL ’ S COVER-LEUNG

SCHEME

In this section we describe the rate-splitting scheme in
Section IV-D2 in more detail. We consider the version
of the scheme where after each Blockb ∈ {1, . . . , B}
Transmitter 1 first decodes MessageM2,CS,b before
decodingM2,CL,b. Similarly, for Transmitter 2.

We first describe the encodings. We start with the
encodings in Blockb, for a fixedb ∈ {1, . . . , B}, where
we assume that from decoding steps in the previous
block (b − 1) both transmitters are cognizant of the
pair (M1,CL,b−1,M2,CL,b−1). GivenMν,CL,b = mν,CL,b,
M1,CL,b−1 = m1,CL,b−1, and M2,CL,b−1 = m2,CL,b−1,
Transmitter ν, for ν ∈ {1, 2}, picks the
codewords uν,b(mν,CL,b) , (uν,b,1, . . . , uν,b,ηn),
ω1,b(m1,CL,b−1) , (ω1,b,1, . . . , ω1,b,ηn), and
ω2,b(m2,CL,b−1) , (ω2,b,1, . . . , ω2,b,ηn) from the
corresponding codebooks, which have independently
been generated by randomly drawing each entry
according to an IID zero-mean unit-variance
Gaussian distribution14. Fix correlation coefficients
ρ1, ρ2 ∈ [0, 1], which are constant over all blocks
b ∈ {1, . . . B}. Transmitterν computes the following
linear combinations fork ∈ {1, . . . , n} andν ∈ {1, 2}:

√

(1− ρ2ν)P
′
νuν,b,k +

√

1

2
ρ2νP

′
ν (ω1,b,k + ω2,b,k) , (202)

where

uν,b,k , (uν,b,(k−1)η+1, . . . , uν,b,kη)
T,

ων,b,k , (ων,b,(k−1)η+1, . . . , ων,b,kη)
T.

Moreover, Transmitterν uses our concatenated code to
encode MessageMν,CS,b. Specifically, givenMν,CS,b =
mν,CS,b, Transmitter ν feeds mν,CS,b to Outer En-
coder ν, which picks the codewordξν(mν,CS,b) ,

(ξν,b,1, . . . , ξν,b,n)
T corresponding tomν,CS,b and feeds

it to Inner Encoderν. Denoting the parameters of Inner
Encoderν by aν andBν , Inner Encoderν produces the
η-dimensional vectors

aνξν,b,k + BνVν,b,k, k ∈ {k, . . . , n}, (203)

where

Vν,b,k , (Vν,(b−1)ηn+(k−1)η+1 , . . . , Vν,(b−1)ηn+kη)
T.

The signal transmitted by Transmitterν is then de-
scribed by the sum of the vectors in (202) and (203) as
follows. Fork ∈ {1, . . . , n} andν ∈ {1, 2}

Xν,b,k =
√

(1− ρ2ν)P
′
νuν,b,k

+

√

1

2
ρ2νP

′
ν (ω1,b,k + ω2,b,k)

14To satisfy the power constraints the Gaussian distributionshould
be of variance slightly less than 1. However, this is a technicality which
we ignore.
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α1,ℓ = α1,ℓ−1



1 +
P1

α1,ℓ−1

β̆1,ℓ−1

+ 2
√
P1P2

(

1 + (−1)ℓ−1ρℓ−1

)

√

α1,ℓ−1α2,ℓ−1

β̆1,ℓ−1β̆2,ℓ−1

α2,ℓ−1

β̆2,ℓ−1

P2

(

1− ρ2ℓ−1

)

+N





−1

(199)

α2,ℓ = α2,ℓ−1



1 +
P2

α1,ℓ−1

β̆2,ℓ−1

+ 2
√
P1P2

(

1 + (−1)ℓ−1ρℓ−1

)

√

α1,ℓ−1α2,ℓ−1

β̆1,ℓ−1β̆2,ℓ−1

α1,ℓ−1

β̆1,ℓ−1

P1

(

1− ρ2ℓ−1

)

+N





−1

(200)

ρℓ =
−
√
P1P2

√

α1,ℓ−1α2,ℓ−1

β̆1,ℓ−1β̆2,ℓ−1

(1− ρ2ℓ−1) + ρℓ−1N
√

P1
α1,ℓ−1

β̆1,ℓ−1

(1− ρ2ℓ−1) +N
√

P2
α2,ℓ−1

β̆2,ℓ−1

(1 − ρ2ℓ−1) +N
(201)

+aνξν,b,k + BνVν,b,k, (204)

where

Xν,b,k , (Xν,(b−1)ηn+(k−1)η+1, . . . , Xν,(b−1)ηn+kη)
T.

Notice that ifa1, a2,B1, andB2 satisfy the power con-
straints (19) for powers(P1 −P ′

1) and(P2 −P ′
2), noise

variance(N +P ′
1 +P ′

2 +2
√

P ′
1P

′
2ρ1ρ2), and feedback-

noise covariance matrixKW1W2
and if the outer code’s

codewords{Ξ1(M1,CS,b)} and{Ξ2(M2,CS,b)} are zero-
mean and average block-power constrained to 1, then
the channel input sequences satisfy the power constraints
with arbitrary high probability.

In Block (B + 1) the two transmitters only send
information about the pair(M1,CL,B,M2,CL,B). Given
M1,CL,B = m1,CL,B and M2,CL,B = m2,CL,B, both
transmitters pick the codewordsω1,B+1(m1,CL,B) ,

(ω1,B+1,1, . . . , ω1,B+1,ηn)
T and ω2,B+1(m2,CL,B) ,

(ω2,B+1,1, . . . , ω2,B+1,ηn)
T from the corresponding

codebooks and form a linear combination of powerP ′
ν .

Thus, defining

Xν,B+1 , (Xν,Bηn+1, . . . , Xν,(B+1)ηn)
T,

ων,B+1 , (ων,B+1,1, . . . , ων,B+1,ηn)
T,

the signal transmitted by Transmitterν can be described
as

Xν,B+1 =

√

1

2
ρ2νP

′
ν (ω1,B+1 + ω2,B+1) . (205)

Next, we describe the decodings. We start with the
decoding at Transmitter 2; the decoding at Transmitter 1
is performed similarly and therefore omitted; and the
decodings at the receiver are described later on.

Recall that after a fixed blockb, for b ∈ {1, . . . , B},
Transmitter 2 first decodes MessageM1,CS,b, followed
by MessageM1,CL,b. After Block b, Transmitter 2
observed {V2,b,1, . . . ,V2,b,n}, and additionally is
cognizant of the realizations of{U2,b,1, . . . ,U2,b,n},
{Ω1,b,1, . . . ,Ω1,b,n}, {Ω2,b,1, . . . ,Ω2,b,n}, and
{Ξ2,b,1, . . . ,Ξ2,b,n}. It can thus compute for
k ∈ {1, . . . , n}:

Ṽ2,b,k , (I− (B1 + B2))V2,b,k −
√

(1 − ρ22)P
′
2U2,b,k

−
(

√

1

2
ρ21P

′
1 +

√

1

2
ρ22P

′
2

)

(Ω1,b,k +Ω2,b,k)

−a2Ξ2,b,k

= a1 · Ξ1,b,k +
√

(1 − ρ21)P
′
1U1,b,k + Zb,k

+W2,b,k + B1 (W1,b,k −W2,b,k) ,

where

Zb,k , (Z(b−1)ηn+(k−1)n+1, . . . , Z(b−1)ηn+kn)
T,

Wν,b,k , (Wν,(b−1)ηn+(k−1)n+1, . . . ,Wν,(b−1)ηn+kn)
T.

Since the sequence
{

Ṽ2,b,1, . . . , Ṽ2,b,n

}

is independent

of the additional information{U2,b,1, . . . ,U2,b,n},
{Ω1,b,1, . . . ,Ω1,b,n}, {Ω2,b,1, . . . ,Ω2,b,n}, and
{Ξ2,b,1, . . . ,Ξ2,b,n}, Transmitter 2 can optimally decode

MessageM1,CS,b based on
{

Ṽ2,b,1, . . . , Ṽ2,b,n

}

only.
To this end, it does not apply the inner and outer decoder
of the concatenated scheme, but directly applies an
optimal decoder for a Gaussian single-input antenna/η-
output antenna channel with temporally-white noise
sequences which are correlated across antennas. Let
M̂

(Tx2)
1,CS denote Transmitter 2’s guess of MessageM1,CS

and let
(

Ξ̂
(Tx2)
1,b,1 , . . . , Ξ̂

(Tx2)
1,b,n

)T

be the corresponding
codeword of the outer code.

Transmitter 2 then decodes MessageM1,CL,b as fol-
lows. It first attempts to subtract the influence of the
sequence produced by encodingM1,CS,b and to this end
computes

Ṽ
(2)
2,b,k , Ṽ2,b,k − a1Ξ̂

(Tx2)
1,b,k , k ∈ {1, . . . , n},

which, if Transmitter 2 successfully decodedM1,CS,b,
equals
√

(1− ρ21)P
′
1U1,b,k + Zb,k +W2,b,k

+B1 (W1,b,k −W2,b,k) , k ∈ {1, . . . , n}.
Transmitter 2 then decodes MessageM1,CL,b based on

the sequences
{

Ṽ
(2)
2,b,1, . . . , Ṽ

(2)
2,b,n

}

using an optimal
decoder for a Gaussianη-input antenna/η-output antenna
channel with temporally-white noise sequences corre-
lated across antennas.
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As a last element, we describe the decodings at the
receiver. After each blockb ∈ {1, . . . , B} the receiver
performs two decoding steps. In the first step it de-
codes Messages(M1,CS,b,M2,CS,b) while treating the
sequences produced to encodeM1,CL,b−1, M2,CL,b−2,
M1,CL,b, and M2,CL,b as additional noise. For this de-
coding step the receiver uses inner and outer decoders of
the concatenated scheme. Let

(

M̂1,CS,b, M̂2,CS,b

)

denote

the receiver’s guess of the pair(M1,CS,b,M2,CS,b) pro-

duced in this first step, and let
(

Ξ̂
(Rx)
1,b,1 . . . , Ξ̂

(Rx)
1,b,n

)T

and
(

Ξ̂
(Rx)
2,b,1, . . . , Ξ̂

(Rx)
2,b,n

)T

be the corresponding codewords of
the outer code.

In the second decoding step, the receiver decodes
MessagesM1,CL,b−1 and M2,CL,b−1. To this end, it
first pre-processes the outputs observed in blocksb
and b − 1 to mitigate the influence of the sequences
produced to encode Messages(M1,CS,b,M2,CS,b). The
outputs in blockb are processed as follows: For each
k ∈ {1, . . . , n} the receiver computes

Ỹb,k , Yb,k − a1Ξ̂
(Rx)
1,b,k − a2Ξ̂

(Rx)
2,b,k

−B1Yb,k − B2Yb,k, (206)

where

Yb,k , (Y(b−1)ηn+(k−1)η+1, . . . , Y(b−1)ηn+kη)
T,

Notice that in case the first decoding step was successful,
i.e, in case that̂Ξ(Rx)

1,b,k = Ξ1,b,k andΞ̂(Rx)
2,b,k = Ξ2,b,k holds

for all k ∈ {1, . . . , n}, (206) corresponds to
√

(1− ρ21)P
′
1U1,b,k +

√

(1 − ρ22)P
′
2U2,b,k

+

(

√

1

2
ρ21P

′
1 +

√

1

2
ρ22P

′
2

)

(Ω1,b,k +Ω2,b,k)

+B1W1,b,k + B2W2,b,k + Zb,k.

Before describing how the receiver processes the out-
puts in blockb−1, we notice that the receiver already de-
coded MessagesM1,CL,b−2, M2,CL,b−2, M1,CS,b−1, and
M2,CS,b−1 in previous decoding steps. Let̂M (Rx)

1,CL,b−2,

M̂
(Rx)
2,CL,b−2, M̂

(Rx)
1,CS,b−1, and M̂

(Rx)
2,CS,b−1 denote the re-

ceiver’s guess of these messages. Also, for eachk ∈
{1, . . . , n} let Ω̂

(Rx)
1,b−1,k and Ω̂

(Rx)
2,b−1,k denote the code-

words that in the codebooks used in thek-th sub-
block of block b − 1 correspond to the guesses

M̂
(Rx)
1,CL,b−2, M̂

(Rx)
2,CL,b−2, and let

(

Ξ̂
(Rx)
1,b−1,1 . . . , Ξ̂

(Rx)
1,b−1,n

)T

and
(

Ξ̂
(Rx)
2,b−1,1, . . . , Ξ̂

(Rx)
2,b−1,n

)T

denote the codewords
that in the outer code used in blockb − 1 correspond
to the guesseŝM (Rx)

1,CS,b−1, and M̂
(Rx)
2,CS,b−1. The receiver

processes the outputs observed in the block(b − 1) by
computing fork ∈ {1, . . . , n}:

Ỹ
(2)
b−1,k

, Yb−1,k

−
(

√

1

2
ρ21P

′
1 +

√

1

2
ρ22P

′
2

)

(

Ω̂1,b−1,k + Ω̂2,b−1,k

)

−a1Ξ1,b−1,k − a2Ξ2,b−1,k − B1Yb,k − B2Yb,k,

=
√

(1− ρ21)P
′
1U1,b−1,k +

√

(1− ρ22)P
′
2U2,b−1,k

+B1W1,b−1,k + B2W2,b−1,k + Zb−1,k.

Equipped with the sequences
{(

Ỹb,i, Ỹ
(2)
b−1,i

)}n

i=1
the receiver finally decodes Messages
(M1,CL,b−1,M2,CL,b−1) using an optimal decoder
for a 2η-input antenna/2η-output antenna Gaussian
MAC with temporally-white noise that is correlated
across antennas.

After Block (B + 1) the receiver decodes Mes-
sages (M1,CL,B,M2,CL,B) based onỸ(2)

B,1, . . . , Ỹ
(2)
B,n

and based on the sequence(YBηn+1, . . . , Y(B+1)ηn). To
this end, it again uses an optimal decoder for a2η-
input antenna/2η-output antenna Gaussian MAC with
temporally-white noise that is correlated across antennas.

A. Noisy and Perfect Partial Feedback

The proposed extension applies also to settings with
noisy or perfect partial feedback to Transmitter 2, ifB1

is set to the all-zero matrix and if Carleial’s scheme for
partial feedback is applied. Thus, our scheme should be
modified so that there are no decodings taking place at
Transmitter 1 and so that in (204) and (205) the term
√

1
2ρ

2
νP

′
ν(ω1,b,i + ω2,b,i) is replaced by

√

ρ2νP
′
νω1,b,i.

Notice that in a setting with perfect partial feedback
to Transmitter 2 the components of the noise vec-
tors corrupting{Ṽ2,b,i} are uncorrelated, similarly for
{(

Ṽ
(2)
2,b,i −

√

(1 − ρ21P
′
1)u1,b−1,i

)}

and for Ỹb,i and

Ỹ
(2)
b,i . Thus, optimal decoders for Gaussian multi-input

antenna/multi-output antenna channels with uncorrelated
white noise sequences can be used to decodeM1,CL,b

at Transmitter 2 and to decode(M1,CL,b,M2,CL,b) at
the receiver. Moreover, the observation{Yb,i} at the
receiver is a degraded version of the observation{Ṽ1,b,i}
at Transmitter 2. Thus, since the receiver decodes
(M1,CS,b,M2,CS,b) based on{Yb,i}, in settings with
perfect partial feedback there is no loss in optimality in
the presented rate-splitting scheme if based on{Ṽ1,b,i}
Transmitter 2 first decodes messageM1,CS,b before de-
codingM1,CL,b. In particular, the set of achievable rates
of the concatenated scheme is solely constrained by the
decoding at the receiver.

APPENDIX I
INTERLEAVING AND RATE-SPLITTING WITH

CARLEIAL ’ S COVER-LEUNG SCHEME

We describe the scheme in Section IV-D3 in more
detail. We start with the encodings and first consider the
encodings in theℓ-th subblock of Blockb, for a fixedb ∈
{1, . . . , B} andℓ ∈ {1, . . . , η}. Defineb̃ = (b− 1)η+ ℓ.
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We assume that from decoding steps after previous
subblocks((b−2)η+1), . . . , (b̃−1), both transmitters are
cognizant of{(M1,ICL,(b−2)η+1,M2,ICL,(b−2)η+1), . . . ,
(M1,ICL,b̃−1,M2,ICL,b̃−1)}.

The encodings in Subblock̃b consist of four steps. In
the first step Transmitter 1 produces ann-length vector to
encode messagesM1,ICL,b̃, M1,ICL,b̃−η, andM2,ICL,b̃−η

as follows. GivenM1,ICL,b̃ = m1,ICL,b̃, M1,ICL,b̃−η =
m1,ICL,b̃−η, andM2,ICL,b̃−η = m2,ICL,b̃−η, Transmitter1
first picks codewordsu1,b̃(M1,ICL,b̃), ω1,b̃(M1,ICL,b̃−η),
and ω2,b̃(M2,ICL,b̃−η) from the corresponding code-
books, which have independently been generated by ran-
domly drawing each entry according to an IID zero-mean
unit-variance Gaussian distribution15. Transmitter1 then
completes the first step by computing the following
linear combination
√

(1− ρ21)P
′
1u1,b̃ +

√

1

2
ρ21P

′
1

(

ω1,b̃ + ω2,b̃

)

, (207)

where ρ1 ∈ [0, 1] is a fixed chosen parameter of the
scheme, which does not depend onb̃. Similarly, for
Transmitter 2.

In the second step, Transmitter 1
computes the “cleaned” feedback vectors
V̄ν,(b−1)η+1, . . . , V̄ν,(b−1)η+ℓ−1, where V̄ν,b̃′ for
b̃′ ∈ {(b− 1)η + 1, . . . , (b− 1)η + ℓ− 1} is defined as:

V̄1,b̃′ , V1,b̃′ −
√

(1 − ρ21)P
′
1U1,b̃′

−
√

(1− ρ22)P
′
2U2,b̃′

−
(

√

1

2
ρ21P

′
1 +

√

1

2
ρ22P

′
2

)

(

Ω1,b̃′ +Ω2,b̃′

)

,

(208)

whereVν,b̃′ , (Vν,(b̃′−1)n+1, . . . , Vν,b̃′n)
T. Similarly, for

Transmitter 2. Notice that for̃b′ ∈ {(b−1)η+1, . . . , (b−
1)η + ℓ− 1} the “cleaned” feedback vectors satisfy

V̄1,b̃′ −W1,b̃′ = V̄2,b̃′ −W2,b̃′ ,

where for b̃′ ∈ {(b − 1)η, . . . , (b − 1)η + ℓ − 1} and
ν ∈ {1, 2}:

Wν,b̃′ , (Wν,(b̃′−1)n+1, . . . ,Wν,b̃′n)
T.

Thus, they correspond to the feedback vectors of a
“cleaned” channel where the channel outputs are de-
scribed by the vectors

{

(V̄1,b̃′ −W1,b̃′)
}

.
In the third step, Transmitter 1 produces ann-length

vector to encode MessageM1,ICS,b using the “cleaned”
feedback vectors in (208) as explained shortly. Assume
that at the beginning of Blockb Transmitter 1 fed

15To satisfy the power constraints the Gaussian distributionshould
be of variance slightly less than 1. However, this is a technicality which
we ignore.

MessageM1,ICS,b to its outer encoder and that the outer
encoder produced the codewordξ1,b. Let

a1 , (a1,1, . . . , a1,η)
T,

B1 ,













b1,1,1 . . . b1,1,η

. . . . . .

b1,η,1 . . . b1,η,η













,

denote the parameters of Transmitter 1’s modified inner
encoder. The modified inner encoder then produces the
n-length vector

a1,ℓξ1,b +

ℓ−1
∑

j=1

b1,ℓ,jV̄1,(b−1)η+j , (209)

which is also then-length vector that Transmitter 1
produces in this third step. Similarly, for Transmitter 2.

In the forth and last step, Transmitter 1 sums then-
length vectors in (207) and (209), and sends the resulting
symbols over the channel. Similarly, for Transmitter 2.

Thus, the signal transmitted by Transmitterν in Sub-
block b̃ can be described as follows:

Xν,b̃ =
√

(1− ρ2ν)P
′
νuν,b̃ +

√

1

2
ρ2νP

′
ν

(

ω1,b̃ + ω2,b̃

)

+aν,ℓξν,b +

ℓ−1
∑

j=1

bν,ℓ,jV̄ν,(b−1)η+j , (210)

whereXν,b̃ , (Xν,(b̃−1)n+1, . . . , Xν,b̃n)
T.

Notice that if the parameters(a1, a2,B1,B2) satisfy
the power constraints (19) for transmit powers(P1−P ′

1)
and (P2 − P ′

2), noise varianceN , and feedback-noise
covariance matrixKW1W2

, then the input sequences
satisfy the power constraints (4) with arbitrary high
probability.

We next consider the encodings in the last Block(B+
1), where the two transmitters send information about the
pairs of messages{(M1,CL,(B−1)η+1,M2,CL,(B−1)η+1),
. . . , (M1,CL,Bη,M2,CL,Bη)}. We consider a fixed sub-
block b̃ ∈ {Bη + 1, . . . , (B + 1)η}. The transmit-
ters send their channel inputs in this last block(B +
1) as follows. GivenM1,CL,b̃−η = m1,CL,b̃−η and
M2,CL,b̃−η = m2,CL,b̃−η, both transmitters choose the
codewordsω1,b̃(M1,CL,b̃−η), andω2,b̃(M2,CL,b̃−η) from
the corresponding codebooks and send a linear combi-
nation of the chosen codewords over the channel. Thus,
the signal transmitted by Transmitterν in Subblock b̃
can be described as

Xν,b̃ =

√

1

2
ρ2νP

′
ν

(

ω1,b̃ + ω2,b̃

)

, (211)

where

Xν,b̃ , (Xν,(b̃−1)n+1, . . . , Xν,b̃n)
T.

We next describe the decoding at Transmitter 2; the
decoding at Transmitter 1 is performed similarly and
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therefore omitted; and the decoding at the receiver will
be described later on.

After each subblock̃b ∈ {1, . . . , Bη} Transmitter 2
decodes MessageM1,ICL,b̃. We consider a fixed Sub-
block b̃ ∈ {1, . . . , Bη} and defineb ∈ {1, . . . , B}
and ℓ ∈ {1, . . . , η} so that b̃ = (b − 1)η + ℓ.
Before describing the decoding of MessageM1,ICL,b̃
at the end of this paragraph, we notice the fol-
lowing. After Subblock b̃, Transmitter 2 observed
the feedback vectorsV2,(b−1)η+1, . . . ,V2,(b−1)η+ℓ

and is additionally cognizant of MessagesM2,ICS,b,
{M2,ICL,(b−1)η+1, . . . ,M2,ICL,(b−1)η+ℓ}, and (assum-
ing its previous decoding steps were successful)
of Messages{M1,ICL,(b−1)η+1, . . . ,M1,ICL,(b−1)η+ℓ−1}.
It can therefore reconstruct the sequences pro-
duced to encode these messages. Moreover, Transmit-
ter 2 can estimate Transmitter 1’s feedback outputs
V1,(b−1)η+1, . . . ,V1,(b−1)η+ℓ, (even though it cannot
reconstruct them because it is incognizant of the feed-
back noises). By subtracting the reconstructed sequences
and the estimated sequence from its feedback outputs
Transmitter 2 can thus compute then-dimensional vec-
tors Ñ2,(b−1)η+1, . . . , Ñ2,(b−1)η+ℓ−1 and Ṽ2,(b−1)η+ℓ,
which are defined as:

Ṽ2,(b−1)η+ℓ

, V2,(b−1)η+ℓ −
√

(1 − ρ22)P
′
2U2,(b−1)η+ℓ

−
(

√

1

2
ρ21P

′
1 +

√

1

2
ρ22P

′
2

)

·(Ω1,(b−1)η+ℓ +Ω2,(b−1)η+ℓ)

−a2,ℓΞ2,b −
ℓ−1
∑

j=1

(b1,ℓ,j + b2,ℓ,j) V̄2,(b−1)η+j

=
√

(1− ρ21)P
′
1U1,(b−1)η+ℓ + a1,ℓΞ1,b

+

ℓ−1
∑

j=1

b1,ℓ,j
(

W1,(b−1)η+j −W2,(b−1)η+j

)

+Z(b−1)η+ℓ +W2,(b−1)η+ℓ,

where where we define the vectorZ(b−1)η+ℓ ,

(Z((b−1)η+ℓ−1)n+1, . . . , Z((b−1)η+ℓ)n)
T; and for b̃′ =

(b− 1) + ℓ′ andℓ′ ∈ {1, . . . , ℓ− 1}:

Ñ2,b̃′ , V2,b̃′ −
√

(1− ρ21)P
′
1U1,b̃′

−
√

(1− ρ22)P
′
2U2,b̃′

−
(

√

1

2
ρ21P

′
1 +

√

1

2
ρ22P

′
2

)

(Ω1,b̃′ +Ω2,b̃′)

−
ℓ′−1
∑

j=1

(b1,ℓ′,j + b2,ℓ′,j) V̄2,(b−1)η+j

−a2,ℓ′Ξ2,b

= a1,ℓ′Ξ1,b

+

ℓ′−1
∑

j=1

b1,ℓ′,j
(

W1,(b−1)η+j −W2,(b−1)η+j

)

+Zb̃′ +W2,b̃′ ,

where Zb̃′ , (Z(b̃′−1)n+1, . . . , Zb̃′n)
T. Transmitter 2

finally decodes MessageM1,CL,b̃ based oñN2,(b−1)η+1,

. . . , Ñ2,(b−1)η+ℓ−1, and Ṽ2,(b−1)η+ℓ using an optimal
decoder for a single-input antenna/multi-output antenna
Gaussian channel with correlated but temporally-white
noise sequences.

We next describe the decoding at the receiver. We first
consider the decoding of the pair(M1,CL,b̃,M2,CL,b̃)

after a fixed subblock̃b ∈ {η + 1, . . . , (B + 1)η}.
Define b ∈ {2, . . . , B + 1} and ℓ ∈ {1, . . . , η} so that
b̃ = (b − 1)η + ℓ. Before describing the decoding of
the pair(M1,CL,b̃,M2,CL,b̃) at the end of this paragraph,
we notice the following. In decoding steps after
previous subblocks the receiver has already decoded
Messages {(M1,ICL,(b−3)η+ℓ′ ,M2,ICL,(b−3)η+ℓ′)}ℓℓ′=1,
{(M1,ICL,(b−2)η+ℓ′ ,M2,ICL,(b−2)η+ℓ′)}ℓℓ′=1, and
{(M1,ICL,(b−1)η+ℓ′ ,M2,ICL,(b−1)η+ℓ′)}ℓ−1

ℓ′=1. Therefore,
(assuming that these decodings were successful) the
receiver can reconstruct the sequences produced to
encode these messages and subtract them from the
output signal. Thus, the receiver can compute for
b′ ∈ {b − 1, b} and ℓ′ ∈ {1, . . . , ℓ − 1} the “cleaned”
output vector

Ȳ(b′−1)η+ℓ′

, Y(b′−1)η+ℓ′ −
√

(1− ρ21)P
′
1U1,(b′−1)η+ℓ′

l −
√

(1− ρ22)P
′
2U2,(b′−1)η+ℓ′

−
(

√

1

2
ρ21P

′
1 +

√

1

2
ρ22P

′
2

)

·
(

Ω1,(b′−1)η+ℓ′ +Ω2,(b′−1)η+ℓ′
)

,

= a1,ℓΞ1,b′ + a2,ℓ′Ξ2,b′

+
ℓ′−1
∑

j=1

(

b1,ℓ′,jV̄1,(b′−1)η+j + b2,ℓ′,jV̄2,(b′−1)η+j

)

+Z(b′−1)η+ℓ′ ,

where

Y(b′−1)η+ℓ′ , (Y((b′−1)η+ℓ′−1)n+1, . . . , Y((b′−1)η+ℓ′)n)
T,

and it can compute

Ȳ
(2)
(b−2)η+ℓ

, Y(b−2)η+ℓ

−
(

√

1

2
ρ21P

′
1 +

√

1

2
ρ22P

′
2

)

·(Ω1,(b−2)η+ℓ +Ω2,(b−2)η+ℓ)

=
√

(1− ρ21)P
′
1U1,(b−2)η+ℓ
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+
√

(1− ρ22)P
′
2U2,(b−2)η+ℓ + a1,ℓΞ1,b + a2,ℓΞ2,b

+

ℓ−1
∑

j=1

(

b1,ℓ,jV̄1,(b−2)η+j + b2,ℓ,jV̄2,(b−2)η+j

)

+Z(b−2)η+ℓ,

where Y(b−2)η+ℓ ,

(Y((b−2)η+ℓ−1)n+1, . . . , Y((b−2)η+ℓ)n)
T. Notice that

the “cleaned” output vector Ȳ(b′−1)η+ℓ′ equals
the difference

(

V̄1,(b′−1)η+ℓ′ −W1,(b′−1)η+ℓ′
)

.
Notice further, that even though the “cleaned”
outputs Ȳ(b−2)η+1, . . . , Ȳ(b−2)η+ℓ−1 and
Ȳ(b−1)η+1, . . . , Ȳ(b−1)η+ℓ−1 do not depend on
the pair (M1,CL,b̃,M2,CL,b̃), they are correlated

with the noise sequences corruptinḡY(2)
(b−2)η+ℓ

and
Y(b−1)η+ℓ and should be taken into account by the
receiver when decoding(M1,CL,b̃,M2,CL,b̃). Thus, the
receiver should decode the pair(M1,CL,b̃,M2,CL,b̃)

based on the vectors̄Y(b−2)η+1, . . . , Ȳ(b−2)η+ℓ−1,

Ȳ(b−1)η+1, . . . , Ȳ(b−1)η+ℓ−1, Ȳ
(2)
(b−2)η+ℓ

, and
Ȳ(b−1)η+ℓ. To this end, the receiver first partly
“decorrelates” the vectors by computing

Ỹ(b−1)η+ℓ

, Y(b−1)η+ℓ −
ℓ−1
∑

j=1

(b1,ℓ,j + b2,ℓ,j)Ȳ(b−1)η+j ,

=
√

(1− ρ21)P
′
1U1,(b−1)η+ℓ

+
√

(1− ρ22)P
′
2U2,(b−1)η+ℓ

+

(

√

1

2
ρ21P

′
1 +

√

1

2
ρ22P

′
2

)

·(Ω1,(b−1)η+ℓ +Ω2,(b−1)η+ℓ)

+a1,ℓΞ1,b + a2,ℓΞ2,b

+

ℓ−1
∑

j=1

(

b1,ℓ,jW1,(b−1)η+j + b2,ℓ,jW2,(b−1)η+j

)

+Z(b−1)η+ℓ,

Ỹ
(2)
(b−2)η+ℓ

, Ȳ
(2)
(b−2)η+ℓ

−
ℓ−1
∑

j=1

(b1,ℓ,j + b2,ℓ,j)Ȳ(b−2)η+j

=
√

(1− ρ21)P
′
1U1,(b−2)η+ℓ

+
√

(1− ρ22)P
′
2U2,(b−2)η+ℓ

+a1,ℓΞ1,b + a2,ℓΞ2,b

+

ℓ−1
∑

j=1

(

b1,ℓ,jW̄1,(b−2)η+j + b2,ℓ,jW̄2,(b−2)η+j

)

+Z(b−2)η+ℓ,

and forb′ ∈ {b− 1, b}, ℓ′ ∈ {1, . . . , ℓ− 1}:

Ỹ
(3)
(b′−1)η+ℓ′

, Ȳ(b′−1)η+ℓ′

−
ℓ′−1
∑

j=1

(b1,ℓ′,j + b2,ℓ′,j)Ȳ(b′−1)η+j

= a1,ℓ′Ξ1,b′ + a2,ℓ′Ξ2,b′

+

ℓ′−1
∑

j=1

(

b1,ℓ′,jW1,(b′−1)η+j + b2,ℓ′,jW2,(b′−1)η+j

)

+Z(b′−1)η+ℓ′ .

The receiver then decodes the pair of
messages (M1,ICL,b̃,M2,ICL,b̃) based on

Ỹ
(3)
(b−2)η+1, . . . , Ỹ

(3)
(b−2)η+ℓ−1, Ỹ

(2)
(b−2)η+ℓ

and

Ỹ
(3)
(b−1)η+1, . . . , Ỹ

(3)
(b−1)η+ℓ−1, Ỹ(b−1)η+ℓ using an

optimal decoder for a 2-input/2ℓ-output antenna
Gaussian MAC with temporally-white noise sequences
correlated across antennas.

After decoding Messages{(M1,ICL,b̃,M2,ICL,b̃)}
Bη

b̃=1
the receiver decodes Messages
{(M1,ICS,b,M2,ICS,b)}Bb=1. To this end, it first reverses
the interleaving introduced by the modified inner
encoders on the “cleaned” output vectorsȲ1, . . . , ȲBη.
That is, for b ∈ {1, . . . , B}, it constructs theηn-
dimensional vector

YDeInt,b , (Ȳ(b−1)η+1,1, . . . , Ȳbη,1,

Ȳ(b−1)η+1,2, . . . , Ȳbη,2,

Ȳ(b−1)η+1,n, . . . , Ȳb,ηn)
T,

where Ȳb̃,i denotes thei-th entry of vectorȲb̃. It then
decodes Messages(M1,ICS,b,M2,ICS,b) applying inner
and outer decoder of the concatenated scheme to the
vectorYDeInt,b.

A. Noisy and Perfect Partial Feedback

The proposed extension can also be applied in settings
with noisy or perfect partial feedback, ifB1 is set to
the all-zero matrix and if Carleial’s scheme for noisy
or perfect partial feedback is applied. Accordingly, our
scheme should be modified so that there is no decoding
taking place at Transmitter 1. Therefore, in (210) and

(211) the term
√

1
2ρ

2
νP

′
ν(ω1,b̃+ω2,b̃) should be replaced

by
√

ρ2νP
′
νω1,b̃, for ν ∈ {1, 2}.

Notice that—as in the second extension—for perfect
partial feedback the various vectors computed for the
decodings at Transmitter 2 and for the decodings at the
receiver have uncorrelated noise components. Therefore,
without loss in optimality, Transmitter 2 and the re-
ceiver can use optimal decoders for Gaussian multi-input
antenna/multi-output antenna channels with independent
white noise sequences.
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