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Abstract— We study the high-power asymptotic behavior of
the sum-rate capacity of multi-user interference networkswith
an equal number of transmitters and receivers. We assume that
each transmitter is cognizant of the message it wishes to convey
to its corresponding receiver and also of the messages that a
subset of the other transmitters wish to send. The receiversare
assumed not to be able to cooperate in any way so that they must
base their decision on the signal they receive only. We focuson
the network’s pre-log, which is defined as the limiting ratio of
the sum-rate capacity to half the logarithm of the transmitted
power.

We present both upper and lower bounds on the network’s pre-
log. The lower bounds are based on a linear partial-cancellation
scheme which entails linearly transforming Gaussian codebooks
so as to eliminate the interference in a subset of the receivers.

Inter alias, the bounds give a complete characterization of the
networks and side-information settings that result in a full pre-
log, i.e., in a pre-log that is equal to the number of transmitters
(and receivers) as well as a complete characterization of networks
whose pre-log is equal to the full pre-log minus one. They also
fully characterize networks where the full pre-log can only be
achieved if each transmitter knows the messages of all users, i.e.,
when the side-information is “full”.

I. I NTRODUCTION

In this paper we study communication scenarios that arise
in wireless networks when multiple spatially-separated trans-
mitters communicate to multiple spatially-separated receivers.

Consider a situation whereK non-cooperating transmit-
ters, labeled{1, . . . , K}, wish to communicate withK non-
cooperating receivers, labeled{1, . . . , K}, where Receiverj
wants to learn MessageMj for each 1 ≤ j ≤ K. Here
{Mj}

K
j=1 are independent withMj being uniformly distributed

over the set{1, . . . , benRjc}, where n denotes the block-
length of transmission andRj is the rate of transmission to
Receiverj.

We assume that each transmitter is cognizant of a subset
of the messages{M1, . . . , MK} and denote the set of indices
of the messages known to Transmitterk by Sk, k ∈ K =
{1, . . . , K}. Also, we assume that the labeling of the trans-
mitters is such that Transmitterk knows MessageMk and
hence{k} ⊆ Sk ⊆ K. Transmitterk computes its sequence
of inputs at times1 to n, X

n
k , (Xk(1), . . . , Xk(n))T as a

function of the set of Messages{Mj}j∈Sk
.

A setting where every transmitter knows all the involved
messages—i.e., whereSk = K for all k ∈ K—will be
called thefull side-informationsetting, and a setting where
every Transmitterk is cognizant only of the MessageMk—
i.e., whereSk = {k} for all k ∈ K—will be called the

no side-informationsetting. Thefull side-informationsetting
is also called “fully cognitive network”, and it corresponds
to a broadcast channel with multiple receivers. Theno side-
informationsetting is also called “non-cognitive network” and
is a generalization of the two-user interference channel tomore
than two transmitters and more than two receivers. A network
with neither full side-informationnor no side-informationis
called a partial side-informationnetwork. We will refer to
any of the above settings as interference networks.

The interference networks are described by a fixed channel
matrix H ∈ R

K×K , whereR denotes the set of real numbers,
as follows. Denote the output signals observed at Receivers1
throughK at the discrete time-t by Y1(t) throughYK(t). The
output vector at time-t Y(t) , (Y1(t), . . . , YK(t))T is given
by

Y(t) = Hx(t) + Z(t), 1 ≤ t ≤ n, (1)

wherex(t) , (x1(t), . . . , xK(t))T is the time-t input vector
consisting of the inputs at Transmitters 1 throughK, and
where {Z(t)} is a sequence of independent and identically
distributed (IID) Gaussian random vectors of zero-mean and
covariance matrixIK . (HereIK denotes the identity matrix of
dimensionK.) Throughout the paper the channel matrixH is
assumed to be of full rank.

For each transmitter we impose the same average block
power constraint on the sequence of channel inputs, i.e.,

1

n
E

[

n
∑

t=1

X2
k(t)

]

≤ P, k ∈ K. (2)

We say that a rate-tuple(R1, . . . , RK) is achievable if there
exists a sequence of pairs of encoding schemes satisfying (2)
and decoding schemes such that in the limit asn tends to
infinity the probability of a decoding error at each receiver
tends to 0. Note that each receiver bases its decision on the
signal it receives only. Denoting byRΣ the sum of the rates
R1, . . . , RK , i.e.,

RΣ =
K
∑

j=1

Rj

we can define the sum-rate capacityCΣ(P, H, {Sk}) as the
supremum of the sum-rates over all achievable rate tuples.

In this work we focus on the behavior of the sum-rate
capacityCΣ(P, H, {Sk}) in the high SNR regime, i.e., in the
limit when P → ∞. In particular, the quantity of interest in
this regime is the limit of the ratio of the sum-rate capacityto



the Gaussian single-user channel capacity when the available
power tends to infinity:

η (H, {Sk}) , lim
P→∞

CΣ(P, H, {Sk})
1
2 log (1 + P )

. (3)

The limiting ratio η (H, {Sk}) determines the logarithmic
growth of the sum-rate capacity at high power, and we will
refer to it as the pre-log of the network. Note that the pre-
log depends both on the message sets{Sk}k∈K and on the
channel matrixH. The main goal of this work is to examine the
influence of the sets{Sk}k∈K on the pre-log of an interference
network with given channel matrixH.

For full side-information settings the pre-log is already
known to be equalK [1]. However, for partial side-
information settings and forno side-informationsettings the
pre-log is not yet known for general interference networks.
But see [2], [3], [5], and [6] for some special networks.

In [2] the two-transmitters/two-receivers interference net-
work with no side-informationis investigated. The results
therein include the result that the pre-log of the setting equals
1 and furthermore even characterize the capacity region of the
network to within 1 bit.

The pre-log of the two-transmitters/two-receivers network
with partial side-informationwas studied in [5]. There it was
shown that for nopartial side-informationsetting the pre-log
is larger than 1; onlyfull side-informationyields the “full”
pre-log 2.

The more general scenario where both transmitters and both
receivers can communicate with multiple antennas is treated
in [3].

It should be emphasized that our setting does not include
as a special case the X-channel where each transmitter sends
independent messages to thetwo receivers [4], [5].

In contrast to the described works in this submission we
consider networks with generally more than two transmitters
and receivers.

Recently, the authors [6] considered a particular example of
an interference network with more than two transmitters and
more than two receivers. They showed that in interference
networks partial side-informationsettings can exist with a
larger pre-log than in theno side-informationsetting. In
particular, the authors considered an interference network
where the channel matrix is given by the matrix with ones
on the diagonal, some constantα on the first lower secondary
diagonal, and 0 everywhere else. Thus, in the considered
network, Receiverj observes the sum of Transmitterj’s input
signal, Transmitter(j − 1)’s input signal scaled by the factor
α, and additive white Gaussian noise. For this network it was
shown that partial side-information can increase the pre-log
significantly and even lead to the “full” pre-logK, the same
pre-log as in thefull side-informationsetting.

Thus, we see that for the two-transmitters/two-receivers
interference network described in [5] and for the interference
network described in [6] the impact ofpartial side-information
on the pre-log is drastically different. This fact might notseem
so surprising to the reader since the two networks have a very

different structure. However, it is not clear which properties of
a network determine howpartial side-informationinfluences
the pre-log. In fact we will show later in this paper that for
the two similar networks with channel matrices

H1 =





1 1/2 1/4
1/2 1 1/2
0 1/2 1



 (4)

and

H2 =





1 1/2 0
1/2 1 1/2
0 1/2 1



 (5)

the dependence of the pre-log on the message sets{Sk} is
completely different. For networks with channel matrixH1 in
theno side-informationsetting the pre-log equals 1, and there
arepartial side-informationsettings with pre-log equal 2 and
partial side-informationsettings with pre-log 3. In contrast,
for networks with channel matrixH2, in any partial side-
informationsetting and in theno side-informationsetting the
pre-log equals 2 and only in thefull side-informationsetting
the pre-log equals 3.

In the next section we will identify which properties of a
network determine howpartial side-informationinfluences the
pre-log of a setting.

II. M AIN CONTRIBUTIONS

In this section we state the main results of our work. For
proofs we refer to a forthcoming longer version of this paper.

We begin by stating for which interference network set-
tings we can determine the pre-log exactly based on the
lower bound and the upper bound derived in the last two
subsections. In the second subsection we characterize when
partial side-informationcan increase the pre-log, and in the
third subsection we give some examples of specific networks
to illustrate the results in the previous two subsections. In
the subsection before last we describe an encoding scheme—
the linear partial-cancelationscheme— leading to the lower
bound on the pre-log. Finally, in the last subsection we
describe how to derive the upper bound on the pre-log.

A. Exact Results

For general interference settings there is a gap between
the upper bound and the lower bound obtained with a linear
partial-cancelation scheme. Nevertheless, for certain networks
the two bounds meet, thus demonstrating the asymptotic
optimality of the linear partial-cancelation scheme. Examples
of such settings include the setting described in [6] and also—
for any given message sets{Sk}—the fully connected 2-by-2
interference networks and the networks with channel matrix
H2 given in (5). For no side-informationsettings and for
certainpartial side-informationsettings the bounds also meet
for networks with channel matrixH1 given in (4). Also, the
lower bound and the upper bound also meet for all settings
wherep∗ = K − 1 and (trivially) wherep∗ = K. Here p∗,
which is given ahead in (14), is the best pre-log achieved with
a linear partial-cancelation scheme.



From the lower bound and the upper bound we obtain the
following results on the pre-logη(H,Sk) depending onp∗.

Theorem 1:Consider an interference network with channel
matrix H and message sets{Sk}. Let p∗ be defined as in (14).
Then:

p∗ = K =⇒ η(H, {Sk}) = K, (6)

p∗ = K − 1 =⇒ η(H, {Sk}) = K − 1, (7)

p∗ ≤ K − 2 =⇒ η(H, {Sk}) < K − 1. (8)
Sincep∗ takes on only positive integer values smaller or equal
to K, the following corollary can be obtained from Theorem 1.

Corollary 1: For an interference network with channel ma-
trix H and message sets{Sk}:

η(H, {Sk}) = K ⇐⇒ p∗ = K, (9)

and

η(H, {Sk}) = K − 1 ⇐⇒ p∗ = K − 1. (10)

Furthermore, the pre-logη(H,Sk) can never take value in the
open interval(K − 1, K).
This result is somewhat surprising since for certain interfer-
ence networks the pre-log can indeed be a non-integer value.
An example of an interference network with non-integer pre-
log is given in Section II-D.

B. When Partial Side-Information increases the Pre-log

With the results of Theorem 1 in mind we address the fol-
lowing two problems: the problem of identifying the channel
matricesH for which full side-information is necessary in
order to have “full” pre-logK; and the problem of identifying
the channel matricesH for which partial side-informationis
beneficial, in the sense that there is apartial side-information
setting with a pre-log which is larger than the pre-log of the
no side-informationsetting. The following theorem answers
these questions.

Theorem 2:Consider an interference network with channel
matrix H and let H(k)

(j) ∈ R
(K−1)×(K−1) denote the matrix

obtained when deleting thej-th row and thek-th column from
the channel matrixH, and lethj,k denote the element ofH in
row j and columnk. Then

1) The message sets{S}k∈K have to fulfill the following
sufficient and necessary conditions for the pre-log to
equalK:

(η(H, {Sk}) = K)

⇐⇒
(

∀j, k ∈ K :
(

rank
(

H
(k)
(j)

)

= K − 1 =⇒ j ∈ Sk

))

.

Thus, in particular,full side-informationis necessary for
that the pre-log of a networkH is equalK, if and only
if, rank

(

H
(k)
(j)

)

= K − 1 for all j 6= k, andj, k ∈ K.
2) Let H be the union of the set of all diagonalK by K

matrices and of the set of allK by K matrices for which

there is an indexk∗ ∈ K such that

hj,k =











0, if j 6= k, j 6= k∗, k 6= k∗

arbitrary, j = k = k∗

6= 0, else

.

(11)
Then, for all channel matricesH in H the pre-log of any
partial side-informationsetting equals the pre-log of the
no side-informationsetting.
For all channel matrices which are not contained in the
setH there existpartial side-informationsettings with
a pre-log which is strictly larger than the pre-log of the
no side-informationsetting.

In the remaining of this section we want to have a closer look
at Conditions (11). The matrices satisfying these conditions
can be illustrated as follows:

H =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

× 0 0 . . . 0 × 0 . . . 0 0

0 × 0 . . . 0 × 0 . . . 0 0

. . . . . .

0 0 0 . . . × × 0 . . . 0 0

× × × . . . × ? × . . . × ×

0 0 0 . . . 0 × × . . . 0 0

. . . . . .

0 0 0 . . . 0 × 0 . . . × 0

0 0 0 . . . 0 × 0 . . . 0 ×

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(12)

where the index of the row withK−1 occurrences of “×” is
the same as the index of the column withK−1 occurrences of
“×”. At all positions which are marked by an “×” the matrix
H must contain a non-zero element, but these elements do not
have to be identical. At the position which is marked by “?”
the matrixH can be arbitrary, possibly also 0.

Remark 1:The pre-log of interference networks with chan-
nel matrices of the form given in (12) equalsK − 1 in the no
side-informationsetting and in anypartial side-information
setting, and the pre-log equalsK only in the full side-
informationsetting.

C. Examples

1) The fully connected 2-by-2 interference network:
The two-transmitters/two-receivers interference network with
channel matrix with only non-zero components is of the
structure illustrated in (12). Thus with Remark 1 it is possible
to reconstruct the results about the interference network in
[5], that is, that the pre-log equals 2 only in thefull side-
information setting whereas in thepartial side-information
setting the pre-log equals 1, the same as in theno side-
informationsetting.

Remark 2:The fully connected 2-by-2 interference network
and trivially the single-user channel are the only fully con-
nected interference networks—i.e., networks with a channel
matrix with only non-zero components—for which there is no
partial side-informationsetting with pre-log larger than the
pre-log of theno side-informationsetting.



2) NetworksH1 and H2: Next, let us consider again the
channel matricesH1 andH2. We see that the channel matrix
H2 is of the form displayed in (12) and therefore, by Remark 1
we can conclude—as announced in Section I—that in any
partial side-informationsetting and in theno side-information
setting the pre-log equals 2 and in thefull side-information
setting the pre-log equals 3.

For the channel matrixH1 we see that the sub-matrix

H
(1)
1,(3) =

(

1/2 1/4
1 1/2

)

is of rank1. Therefore, we can conclude that the interference
network with channel matrixH1 and message setsS1 = {1, 2}
and S2 = S3 = K has pre-log 3. Since all other sub-
matrices of the formH

(k)
1,(j) for j 6= k and (j, k) 6= (3, 1)

have rankK − 1, we can also conclude that in any other
partial side-information setting the pre-log is at most 2.
Furthermore, computing the rates achievable with the linear
partial-cancelation scheme one easily finds the message sets
{Sk} such thatp∗ = 2 and henceη(H1, {Sk}) = 2. In theno
side-informationsetting with channel matrixH1 the pre-log
is given byη (H1, {Sk = {k}}) = 1. This follows from the
upper bound in Lemma 3.

3) Wyner’s Linear Cellular Interference Model:In [8]
Wyner introduced a linear model for cellular wireless commu-
nication systems. The network model is a symmetric version of
the network considered in [6], this is, aK-by-K interference
network where Receiverj observes the sum of Transmitterj’s
input signal, Transmitter(j + 1)’s input signal scaled by a
factor α 6= 0, Transmitter(j − 1)’s input signal scaled by
the same factorα, and additive white Gaussian noise. Thus
the channel matrix is given by 1’s on the main diagonal,α’s
on the first upper and lower secondary diagonals and 0 every
where else.

In his work Wyner considered the case when all receivers
are allowed to cooperate, and hence the setting becomes a
multi-access setting. Here, we consider the case where the
receivers are not allowed to cooperate, and we also assume
that the transmitters have some kind of side-information about
the other transmitter’s messages. More precisely, let each
transmitter beside its own message know the messages of
the J previous transmitters and the messages of theJ next
transmitters for some integerJ ≥ 0.

The pre-log of this setting for given parametersα, J , and
K can be shown to be

ηWyner(α, J, K) = K −

⌊

K

J + 2

⌋

.

Note that the functional dependence of the pre-log for this
setting on the parametersα, J , and K is the same as the
functional dependence of the pre-log for the asymmetric
setting in [6] on these parameters.

D. A Lower Bound

We propose an encoding scheme—the linear partial-
cancelation scheme—for an arbitrary interference network

with channel matrixH and message sets{Sk} as described
in Section I. The encoding scheme is based on random coding
arguments.

Prior to transmission,K independent random codebooks
C1, . . . , CK are generated according to a zero-mean Gaussian
distribution of varianceP . Here, the codebookCj is the set of
n-length codewords

{

u
n
j (1), . . . ,un

j

(

benRjc
)}

, and it is used
to encode the MessageMj , j ∈ K. Then, the codebooks are
revealed to all transmitters and to all receivers.

For the encoding each transmitter forms a linear combina-
tion of the codewordsun

j (Mj) where it knows MessageMj

and such that the input power constraint (2) is satisfied. Thus,
Transmitterk’s input sequence is given by

X
n
k =

∑

j∈Sk

dj,ku
n
j (Mj), k ∈ K,

for some real coefficientsdj,k satisfying
∑

j∈Sk

d2
j,k ≤ 1, k ∈ K.

For every choice of coefficients{dj,k}k∈K,j∈Sk
we can define

the set R({dj,k}) ⊆ K of all indices j such that the
interference for Receiverj is canceled. More precisely, the
setR({dj,k}) is the set of allj ∈ K such that the received
sequenceYn

j = (Yj(1), . . . , Yj(n))T at Receiverj can be
expressed as

Y
n
j = ξju

n
j (Mj) + Z

n
j , j ∈ R({dj,k}) (13)

for ξj 6= 0. Note that the setR({dj,k}) depends on the channel
matrix H, on the message sets{Sk}k∈K, and of course also
on the chosen coefficients{dj,k}.

Let
p∗(H, {Sk}) = max

{dj,k}
|R({dj,k})|, (14)

where |A| denotes the cardinality of the setA. If {d∗j,k}
achievesp∗(H, {Sk}), then by using{d∗j,k} the original in-
terference network is transformed intop∗(H, {Sk}) parallel
Gaussian single-user channels and a network withK trans-
mitters andK − p∗(H, {Sk}) receivers. Since on the parallel
Gaussian single-user channels the rates1

2 log
(

1 + ξ2
j P
)

are
achievable,j ∈ R({d∗j,k}), the following lower bound on the
sum-rate capacity is obtained

CΣ(P, H, {Sk}) ≥
p∗(H, {Sk})

2
log

(

1 + min
j∈R({d∗

j,k
})

ξ2
j P

)

,

(15)
and hence

η(H, {Sk}) ≥ p∗(H, {Sk}). (16)

Inspired by [7], we can improve the linear partial-
cancelation scheme by extending it overµ > 1 consecutive
channel uses. To this end, let the encoder and the decoder
group µ consecutive channel uses into a single channel use
of a newK-by-K multi-antenna interference network where
each transmitter and each receiver consists ofµ antennas. Note
that any achievable rate tuple for the new network is also



achievable, when divided byµ, on the original network. As
we next show, we can derive an achievable tuple for the new
network by introducing linear processing at the receivers;by
converting it to a newµK-by-µK single-antenna interference
network; and by then applying the linear partial-cancelation
scheme to the resulting network.

We split MessageMj , j ∈ {1, . . . , K}, into µ independent
Sub-MessagesM(j,1) . . . , M(j,µ) such that there is a one-to-
one mapping betweenMj and the tuple(M(j,1), . . . , M(j,µ)).1

As in [7] we let Receiverj of the multi-antennaK-by-K
interference network linearly process the observedµ antenna
outputs by multiplying them with an arbitrarily chosenµ-
by-µ matrix Aj . The network is now converted to a single-
antennaµK-by-µK network treating theµK receive antennas
as separate receivers and by treating eachµ-tuple of transmit
antennas as corresponding toµ single users that are cognizant
of each others messages.

Indexing the transmitters and receivers of theµK-by-µK
network by(k, i) and (j, i) respectively where1 ≤ k, j ≤ K
and1 ≤ j ≤ µ we can describe the network as follows: The
message sets are

S(k,i) = {(k′, i′) : k′ ∈ Sk, 1 ≤ i′ ≤ µ}

and the channel matrix

Hµ(H, {Aj}) = (H ⊗ Iν) diag(A1, . . . , AK)

where ⊗ denotes the Kronecker product and where
diag(A1, . . . , AK) denotes the block-diagonal matrix with the
blocks A1, . . . , AK . If the rate-tuple(R(j,1), . . . , R(j,µ)) is
achievable in theµK-by-µK interference network then the
rate

Rj =
1

µ

(

R(j,1) + . . . + R(j,µ)

)

(17)

is achievable in the original interference network.
For the described µK-by-µK interference network

we can apply the linear partial-cancelation scheme
and hence we obtain the achievability of the pre-log:
p∗(Hµ (H, {Aj}) , {S(k,i)}). Combined with (17) this yields a
bound on the pre-log of the original network:

η(H, {Sk}) ≥
p∗(Hµ (H, {Aj}) , {S(k,i)})

µ

for any set of processing matrices{Aj}. Hence the best lower
bound on the pre-log one can obtain by extending the linear
partial-cancelation over several channel uses is given by

η(H, {Sk}) ≥ sup
µ∈Z+

max
{Aj}j∈K

p∗(Hµ (H, {Aj}) , {S(k,i)})

µ
.

(18)
That this modification of the linear-partial cancelation

scheme indeed leads to an improvement in the achievable rates
(and in the lower bound on the pre-log) over the rates (and

1For example one can think of this splitting as describing theoriginal
messageMj by a sequence of bits and then splitting up this sequence into
disjoint (not necessarily equally long) bit-sequences andlet every sub-message
be described by a different sub-sequence.

over the lower bound on the pre-log) achieved in the original
linear partial-cancelation scheme can be seen in the following
example.

1) Extending the Linear Partial-Cancelation Scheme over
several Channel Uses helps:In this section we want to give
an example of a network where by extending the linear partial-
cancelation scheme over several channel uses leads to a pre-
log which is strictly larger than the pre-log achieved with the
simple linear partial-cancelation scheme.

Consider the family of channel matrices{HK} indexed by
the number of transmitters and receiversK. For a givenK > 1
we consider aK-by-K interference network where Receiverj,
j ∈ {1, . . . , K} receives a noisy version of the sum of all input
signals except for that of Transmitter(j−1) wherej−1 should
be interpreted asK whenj = 1.

With the result presented in Section II we obtain that the
pre-log of the described settings is given by

η(HK , {Sk = {Mk}}) =
K

K − 1
, K > 1.

To show that this pre-log is indeed achievable the linear partial-
cancelation scheme needs to be extended overK − 1 channel
uses. Extending the scheme to less thanK − 1 channel uses
achieves only a pre-log of 1.

E. An Upper Bound

In this section we provide an upper bound on the sum of
the rates (Theorem 3). We do not give a detailed proof of
this upper bound but state an auxiliary lemma (Lemma 1) and
sketch how this leads to the theorem.

We start by introducing the concept of degradedness for
interference networks withKT transmitters andKR receivers.
Here, we allow the number of transmitters to differ from
the number of receivers. Also, in this section we use the
concept of multi-antenna interference networks, that is, we
assume that Transmitterk consists oftk transmit antennas
and Receiverj consists ofrj receive antennas. We denote
Transmitterk’s time-t channel input by the vectorXk(t) ∈
R

tk and Receiverj’s time-t channel output by the vector
Yj(t) ∈ R

rj . The message sets{Sk} are defined as for
the K-by-K single-antenna networks. We say that an input
distribution is allowed if for any timet the vectorXk(t),
k ∈ K, depends only on MessagesMj for which j ∈ Sk.

Definition 1: A KT -transmitters/KR-receivers multi-
antenna interference network is calleddegraded with
respect to the permutationπ on the set of receivers,
π : {1, . . . , KR} → {1, . . . , KR}, if any time t

Y
π(1)(t) ⊆ Y

π(2)(t) ⊆ . . . ⊆ Y
π(KR−1)(t) ⊆ Y

π(KR)(t).
(19)

Note that the definition does not depend on the side-
information available at the encoders. It is only a property
of the channel.

Lemma 1:Consider aKT -transmitters/KR-receivers multi-
antenna interference network which is degraded with respect
to some permutationπ : {1, . . . , KR} → {1, . . . , KR}. If for



all time instantst and for any allowed input distribution the
channel outputs forj ∈ {2, . . . , KR} fulfill

Y
π(j)(t) = fj

(

Y
π(1)(t), . . . ,Yπ(j−1)(t), M1, . . . , Mj−1

)

(20)
for some set of deterministic functions{fj(·)}, then the
capacity region of the interference network equals the capacity
region of a multi-antennaKT -transmitters/KR-receivers inter-
ference network where at timet all receivers observe only the
outputY

π(1)(t).
The proof of the lemma is omitted. It relies on
the fact that from the channel output sequence
Y

π(1)(1), . . . ,Y
π(1)(n) it is possible to reconstruct the

sequences (Y
π(2)(1), . . . ,Y

π(2)(n)), . . . , (Y
π(KR)(1) ,

. . . ,Y
π(KR)(n)) with probability of error tending to 0

for increasing block-lengthsn whenever the rate tuple
(R1, . . . , RKR

) is achievable in the original network.
Lemma 1 is a main tool in the proof of the upper bound in

Theorem 3 below. Before stating the theorem we want to give
a brief outline of how Lemma 1 is used in the proof.

In a first step we sketch a method on how to obtain
an upper bound on the capacity region using Lemma 1 for
K-transmitters/K-receivers interference networks fulfilling a
certain technical condition, a special case of Condition (21).
Then, we outline how this method can be adapted to prove the
upper bound in (22) for networks fulfilling Condition (21).

A general interference network can easily be converted
into a degraded network by choosing an arbitrary permutation
π on the set of receiversK and by letting a genie reveal
channel outputsYn

π(1) through Y
n
π(j−1) to Receiverπ(j),

j ∈ K. Additionally, let a genie reveal linear combinations
Z̃

n
1 , . . . , Z̃n

K of the Gaussian noise sequencesZ
n
1 , . . . ,Zn

K to
all receivers.

Note that these two steps can only increase the sum-rate
capacity. Therefore, any upper bound on the sum-rate capacity
of the “genie-aided” network is also an upper bound on the
sum-rate capacity of the original network.

Next, we restrict attention to interference networks for
which one can choose a permutationπ and linear combi-
nations Z̃1, . . . , Z̃K such that for some coefficients{αj,`}

the differencesYn
π(j) −

∑j−1
`=1 αj,`Y

n
π(`), j = 2, . . . , K,

are functions of the MessagesM
π(1), . . . , Mπ(j−1) and the

Gaussian sequences̃Zn
1 , . . . , Z̃n

K only. One can directly verify
that the “genie-aided” networks corresponding to the networks
under consideration fulfill Condition (20) and thus Lemma 1
can be applied. We conclude that for these networks any upper
bound on the resulting network—where all receivers observe
Y

π(1) and Z̃
n
1 , . . . , Z̃n

K—is also an upper bound on the sum-
rate capacity of the original network. Note that we simplified
the problem, since the remaining task of finding the sum-rate
capacity (or an upper bound on it) for a network where all
receivers observe the same output, is better understood. (In
fact it corresponds to a multi-access scenario with partially
informed transmitters.)

One can extend this method to a larger class of net-
works, namely those fulfilling Condition (21). The fol-

lowing modifications are needed: Join Receiversv1, . . . , vν

into a big common ReceivervV , thus transforming theK-
transmitters/K-receivers network into aK-transmitters/(K −
ν + 1)-receivers network; Let the genie reveal also Mes-
sagesMj , for j /∈ ({v1, . . . , vν} ∪ {j1, . . . , jq}) to Receivers
vV , j1, . . . , jq; Adapt Definition 1 of degradedness to apply
for this new setting with informed receivers and also to
settings where for a given permutationπ only a subset
of receivers fulfills (19); Choose as the degraded subset
ReceiversvV , j1, . . . , jq with respect to the permutationπ:
π(1) = vV , π(2) = j1, . . . , π(q+1) = jq, and apply Lemma 1
—or actually a slightly modified version of it— to this subset
of receivers only.

In the following lethT
j denote thej-th row, j ∈ K, of the

channel matrixH. Also, let ⊥⊥ denote independence.
Theorem 3:Consider aK-transmitters/K-receivers inter-

ference network with channel matrixH and message sets
{Sk} where q + ν distinct rows of the channel matrix
h

T
j1

, . . . ,hT
jq

,hT
v1

, . . . ,hT
vν

for any timet fulfill


h
T
ji
−

|V|
∑

`=1

αi,`h
T
v`



X(t) ⊥⊥ (Mji
, . . . , Mjq

), j = 1, . . . , q

(21)
for some coefficients{αi,`}i=1,...,q

`=1,...,ν

and any allowed input

distribution. Then, any rate tuple(R1, . . . , RK) can only be
achievable if

q
∑

i=1

Rji
+

|V|
∑

`=1

Rv`
≤

|V|

2
log
(

1 + ‖H‖2P
)

+ c({αi,`}) (22)

where ‖H‖ denotes the operator norm of the matrixH and
c({αi,`}) is a constant depending on the coefficients{αi,`}.

1) An Improved Upper Bound:For an improved upper
bound that applies our techniquessimultaneouslyto subsets
of the rate, please see a forthcoming longer version of this
paper. Some of the results in this paper rely on this improved
upper bound.
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