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Abstract— For an interference network where Receiver k

receives the sum of the signal transmitted by Transmitterk and
a scaled version of the signal transmitted by Transmitterk − 1

corrupted by Gaussian noise we compute the pre-log of the
sum-rate capacity for the case where each transmitter has side-
information consisting of the messages to be sent by itsJ
predecessors.

I. I NTRODUCTION AND MAIN RESULT

We envision a wireless communication scenario where mul-
tiple transmitters wish to communicate with multiple receivers.
We assume a point-to-point setting, that is, each transmitter
sends a message to only one particular receiver. However, due
to the wireless communication channel each receiver observes
a noisy version of the sum of the signal transmitted by the cor-
responding transmitter and the attenuated signals transmitted
by closely located transmitters. The communication network
should thus be modeled as an interference network.

Also, we envision that transmitters can be located close to
each other and thus transmitters might be cognizant of the
messages of nearby located transmitters. Such a scenario for
a example arises in cognitive radio networks [1].

In this work specifically we consider an interference net-
work with K transmitters andK receivers and envision that
the transmitters and receivers are located on a grid, which we
model as the setK = {1, . . . , K}. Based on its observation
Yk = (Yk,1, . . . , Yk,n) at times1 throughn, Receiverk wishes
to decode Messagek, which we denote byMk. We assume
thatM1, . . . , MK are independent and that for eachk ∈ K the
random variableMk is uniformly distributed over the set

Mk =
{

1, . . . ,
⌊

enRk

⌋}

, (1)

whereRk denotes the rate of transmission from Transmitterk.
The time-t signalYk,t received by Receiverk is given by

Yk,t = xk,t + αxk−1,t + Zk,t, k ∈ K, 1 ≤ t ≤ n, (2)

wherexk,t denotes the time-t symbol produced by Transmit-
ter k, α is some non-zero deterministic constant, and{Zk,t}
areK · t IID mean-zero variance-N random variables:

{Zk,t} k∈K
1≤t≤n

∼ IID N (0, N) . (3)
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We assume that in addition to its own messageMk,
Transmitter k is also cognizant of theJ messages
Mk−1, . . . , Mk−J , where, to simplify notation, we define
M0, . . . , M−(J−1) to be some deterministic variables. HereJ
is some non-negative integer that models the amount of local
side-information. The problem becomes interesting forJ ≥ 1.
The time-t symbolXk,t produced by Transmitterk can thus
depend on the messagesMk, Mk−1, . . . , Mk−J :

Xk,t = Xk,t

(

Mk, Mk−1, . . . , Mk−J

)

. (4)

We impose a symmetric average power constraint

1

n

n
∑

t=1

X2
k,t (Mk, . . . , Mk−J ) ≤ P, k ∈ K, (5)

where P is some positive constant modeling the available
average power at each transmitting node.

We denote byRΣ the sum of the rates

RΣ =
∑

k∈K
Rk (6)

and by CJ,K
Σ (P, N) the supremum of all achievable sum-

rates, where(R1, . . . , RK) is achievable if, as the block-length
n tends to infinity, each decoder can decode the message
intended for it with an average probability of error that decays
to zero.

The expression

η(K, J) , lim
P→∞

CJ,K
Σ (P, N)

K

2 log
(

1 + P
N

) (7)

is called the sum-rate pre-log per user and yields a comparison
in the limit whenP → ∞ of the sum-rate capacity per user
in our setting to the sum-rate capacity per user that would be
achievable in the absence of any interference.

Note that the described setting is a asymmetric version of
Wyner’s linear cellular network model [2]. It should also be
emphasized that in our set-up Transmitterk knows themes-
sages Mk, Mk−1, . . . , Mk−J but not necessarily thesignals
Xk−1,t, . . . , Xk−J,t. Otherwise the interference at all receivers
could be canceled entirely using dirty-paper coding [3].

Our Main result is that for this set-up,

η(K, J) = 1 −

⌊

K

J+2

⌋

K
. (8)



This result illustrates that forK ≥ 4 and when every
transmitter in addition to its own message is also cognizantof
the precedingJ ≥ 1 messages, the pre-log per userη(K, J) is
strictly larger than when every transmitter knows only its own
message (i.e., whenJ = 0). It also shows that forK ≥ 2 and
when every transmitter in addition to its own message is also
cognizant of all preceding messages (i.e., whenJ = K − 1),
then η(K, J) = 1, so that in the limitP → ∞ the sum-rate
capacity per user approaches the sum-rate capacity per userof
a channel without interference.

It is interesting to compare these results with the results for
the 2-transmitters/2-receivers interference channel [4]. In the
latter each transmitter needs to be cognizant of all messages
for the sum-rate pre-log per user to equal 1.

In the next section we sketch an achievability proof and in
the section following that a converse.

II. A CHIEVABILITY

The achievability of (8) is based on a coding scheme that
uses Costa’s “writing on dirty paper” [3] and silences some
of the transmitters1. We sketch the proposed scheme below.

Receiver1 suffers only from noise when decodingM1, so in
our proposed scheme Transmitter1 uses a Gaussian codebook
that achieves the capacity of the single-user Gaussian channel
and Receiver1 uses a standard (e.g., weak typicality or
maximum-likelihood) decoder for the Gaussian channel. This
yields the achievability ofR1 = 1/2 · log (1 + P/N).

Receiver2 experiences an interference from Transmitter1
but, provided thatJ ≥ 1, this interference is known to
Transmitter2 (who, if J ≥ 1, knows M1 and hence the
codeword and the signal{X1,t} generated by Transmitter1).
Consequently, ifJ ≥ 1, Transmitter2 can use dirty-paper
coding to allow Receiver2 to decodeM2 as if there were
no interference from Transmitter1. This allows Transmitter2
also to achieve1/2 · log (1 + P/N).

If J ≥ 2, then Transmitter3 knows M1 and hence the
signal that was sent by Transmitter1. Consequently, since it
also knowsM2, it also knows the signal that was produced
by Transmitter2 in its dirty-paper coding scheme. Knowing
the signal transmitted by Transmitter2 allows it to use dirty-
paper coding to allow Receiver3 to decode MessageM3 as
though there were no interference from Transmitter2, thus
also achieving1/2 · log (1 + P/N). If J is not greater than2,
we silence Transmitter3.

In general using dirty-paper coding the transmitters
1, . . . , J + 1 can all communicate at the rate1/2 ·
log (1 + P/N)

R1 = R2 = · · · = RJ+1 = 1/2 · log (1 + P/N) . (9)

Our coding scheme then silences TransmitterJ + 2 so that

RJ+2 = 0. (10)

The pattern now repeats because ReceiverJ + 3 now suffers
no interference (because TransmitterJ + 2 is silent), so

1But see [5] for a simpler scheme. This paper also addresses more general
networks.

TransmitterJ +3 can use a simple Gaussian codebook. Trans-
mitters(J+4) through2J+3 can now communicate at full rate
using dirty-paper coding, and we silence Transmitter2(J +2).

The last transmitter we silence is Transmitterγ(J + 2),
where

γ =

⌊

K

J + 2

⌋

. (11)

The remaining transmittersγ(J + 2) + 1 through K can
now transmit at full rate1/2 · log (1 + P/N) because Re-
ceiverγ(J + 2) + 1 suffers no interference, and hence Trans-
mitter γ(J + 2) + 1 can use a simple Gaussian codebook,
and because transmittersγ(J + 2) + 2 throughK can employ
dirty-paper coding.

Analyzing the sum rate we note that, sinceγ transmitters
are silenced and the rest communicate at full rate,

RΣ = (K − γ)1/2 · log (1 + P/N) , (12)

which yields the lower bound needed to establish (8).

III. C ONVERSE

The proof of the converse in the case whereK ≤ J + 1 is
very simple. Indeed,

CJ,K
Σ (P, N) =

K

2
log (1 + P/N) , K ≤ J + 1 (13)

where the achievability follows from our proposed coding
scheme of the previous section and where the converse follows
by revealing to each receiverν the signals transmitted by
transmitters1, . . . , ν−1. We shall therefore focus on the more
interesting case of

K ≥ J + 2. (14)

The first step in proving the converse for this case is to
establish that the sum-rate capacity of our network is upper
bounded by the sum-rate capacitỹCJ,K

Σ (P, N) of a modified
network where receivers1(J +2)+1, 2(J +2)+1, . . . , γ(J +
2) + 1 do not suffer from any interference:

CJ,K
Σ (P, N) ≤ C̃J,K

Σ (P, N). (15)

This is done by showing that the sum-rate capacity
C̃J,K

Σ (P, N) of the latter modified network would be identical
to the sum-rate capacity of our network had these receivers
been given, as side information, all preceding messages, i.e.,
if, for all 1 ≤ ν ≤ γ, Receiverν(J + 2) + 1 had been made
cognizant of messagesM1, . . . , Mν(J+2).

The next step is to show that the elimination of the inter-
ference suffered by the receivers1(J + 2) + 1, 2(J + 2) +
1, . . . , γ(J + 2) + 1 results in the modified network having a
sum-rate capacity which is equal to the sum of the sum-rate ca-
pacities ofγ+1 networks of the original kind whereγ of these
sub-networks haveJ +2 transmitters/receivers and where one
of the sub-networks hasK − γ(J + 2) transmitters/receivers:

C̃J,K
Σ (P, N) = γCJ,J+2

Σ (P, N) + C
J,K−γ(J+2)
Σ (P, N). (16)

The first sub-network consists of transmitters1 throughJ +2,
the second of transmittersJ +3 through2(J +2), theγ-th of



transmitters(γ−1)(J +2)+1 throughγ(J +2), and the final
sub-network consists of the transmittersγ(J +2)+ 1 through
K.

The number of transmitters in this last sub-network is
smaller thanJ + 2, so its sum-rate capacity is given, using
(13), by

C
J,K−γ(J+2)
Σ (P, N) =

(

K−γ(J+2)
)1

2
log (1 + P/N) , (17)

so that by (15), (16), and (17)

CJ,K
Σ (P, N) ≤ γCJ,J+2

Σ (P, N)

+
(

K − γ(J + 2)
)1

2
log(1 + P/N). (18)

In the third step we prove that

lim
P→∞

CJ,J+2
Σ (P, N)

1
2 log

(

1 + P
N

) ≤ J + 1, (19)

which combined with (18) establishes

lim
P→∞

CJ,K
Σ (P, N)

K

2 log
(

1 + P
N

) ≤ γ(J + 1)

K
+

K − γ(J + 2)

K

= 1 − γ

K
(20)

and thus completes the proof of the converse. The proof of
(19) is based on the inequality

CJ,J+2
Σ (P, N)

≤ (J + 1)
1

2
log

(

1 +
P

N

)

+ (J + 1) log

(

1 + |α|
|α|

)

+J log
(√

2
)

+ (J − 1)max{0, log(|α|)}

+ max
{

0, log
(√

2|α|
)}

+ max

{

0, log

( |α|√
2

)}

(21)

which we next derive.
By Fano’s inequality we have that if(R1, . . . , RJ+2) are

achievable for each1 ≤ k ≤ J + 2

Rk ≤ 1

n
I(Mk;Yk) +

ε(n)

n

=
1

n
[h(Yk) − h(Yk|Mk)] +

ε(n)

n
(22)

where

lim
n→∞

ε(n)

n
= 0. (23)

Consequently,
J+2
∑

k=1

Rk ≤ 1

n

J+2
∑

k=1

[h(Yk) − h(Yk|Mk)] + (J + 2)
ε(n)

n
. (24)

We next upper bound the terms in (24). Denoting byXk

the vector(Xk,1, . . . , Xk,n) and similarly forZk we have
J+2
∑

k=2

h(Yk) =

J+2
∑

k=2

h (Xk + αXk−1 + Zk)

≤ (J + 1)
n

2
log
(

2πe
(

P (1 + |α|)2 + N
))

≤ (J + 1)
n

2
log
(

2πe (P + N)
)

+(J + 1)n log (1 + |α|) , (25)

because the Gaussian distribution maximizes differentialen-
tropy subject to a second-moment constraint. Note that while
a similar bound would hold also forh(Y1), we prefer not to
include it in the sum.

We next turn to the conditional differential entropies. The
first one can be computed directly because the first receiver
experiences no interference :

h(Y1|M1) = h(X1 + Z1|M1) = h(Z1) =
n

2
log(2πeN). (26)

The rest of the conditional differential entropies are bounded
by

h(YJ+2|MJ+2)

≥ h(YJ+2|MJ+2, . . . , M2)

= h (XJ+2 + αXJ+1 + ZJ+2|MJ+2, . . . , M2)

= h (αXJ+1 + ZJ+2|MJ+2, . . . , M2)

= h

(

XJ+1 +
1

α
ZJ+2

∣

∣

∣
MJ+2, . . . , M2

)

+ n log (|α|) (27)

and fork = 2, . . . , J + 1 by

h(Yk|Mk)

≥ h
(

Xk + αXk−1 + Zk

∣

∣

∣
Mk, . . . , M2

)

= h

(

Xk +
1√
2
Uk + αXk−1 +

1√
2
Vk

∣

∣

∣
Mk, . . . , M2

)

≥ h

(

αXk−1 +
1√
2
Vk

∣

∣

∣
Xk +

1√
2
Uk, Mk, . . . , M2

)

= h

(

αXk−1 +
1√
2
Vk

∣

∣

∣
Mk, . . . , M2

)

−I

(

αXk−1 +
1√
2
Vk;Xk +

1√
2
Uk

∣

∣

∣
Mk, . . . , M2

)

= h

(

αXk−1 +
1√
2
Vk

∣

∣

∣
Mk, . . . , M2

)

−h

(

Xk +
1√
2
Uk

∣

∣

∣
Mk, . . . , M2

)

+h

(

Xk +
1√
2
Uk

∣

∣

∣
αXk−1 +

1√
2
Vk, Mk, . . . , M2

)

≥ h

(

αXk−1 +
1√
2
Vk

∣

∣

∣
Mk, . . . , M2

)

−h

(

Xk +
1√
2
Uk

∣

∣

∣
Mk, . . . , M2

)

+
n

2
log (2πeN) − n log

(√
2
)

= h

(

Xk−1 +
1√
2α

Vk

∣

∣

∣
Mk, . . . , M2

)

−h

(

Xk +
1√
2
Uk

∣

∣

∣
Mk, . . . , M2

)

+
n

2
log(2πeN) + n log

( |α|√
2

)

(28)

where U2, . . . ,UJ+1,V2, . . . ,VJ+1 are IID zero-mean
Gaussian vectors of a covariance matrix which is then ×
n identity matrix scaled byN . The first inequality holds



because conditioning reduces entropy; the first equality fol-
lows by expressing the Gaussian noise-vectorZk as the sum
1√
2
Uk + 1√

2
Vk; the second inequality by conditioning the

differential entropy on the termXk + 1√
2
Uk; the second

equality by adding and subtracting the differential entropy
h
(

αXk−1 + 1√
2
Vk|Mk, . . . , M2

)

; and the third inequality
by conditioning the last summand on the left hand side of
the inequality onXk.

Inequalities (27) and (28) imply

h(X1 + Z1) −
J+2
∑

k=2

h(Yk|Mk)

≤ h(X1 + Z1)

−
J+1
∑

k=2

[

h

(

Xk−1 +
1√
2α

Vk

∣

∣

∣
Mk, . . . , M2

)

−h

(

Xk +
1√
2
Uk

∣

∣

∣
Mk, . . . , M2

)

+
n

2
log(2πeN) + n log

( |α|√
2

)]

−h

(

XJ+1 +
1

α
ZJ+2

∣

∣

∣
MJ+2, . . . , M2

)

− n log(|α|)

= h(X1 + Z1) − h

(

X1 +
1√
2α

V2

∣

∣

∣
M2

)

+

J
∑

`=2

[

h

(

X` +
1√
2
U`

∣

∣

∣
M`, . . . , M2

)

−h

(

X` +
1√
2α

V`+1

∣

∣

∣
M`+1, . . . , M2

)]

+h

(

XJ+1 +
1√
2
UJ+1

∣

∣

∣
MJ+1, . . . , M2

)

−h

(

XJ+1 +
1

α
ZJ+2

∣

∣

∣
MJ+2, . . . , M2

)

−J
n

2
log(2πeN) − Jn log

( |α|√
2

)

− n log (|α|) . (29)

We continue now to separately bound the difference in the
first line, the summands, and the difference between the forth
and the fifth line of the right hand side of (29). We start by
establishing the following upper bound on the first difference

h (X1 + Z1) − h

(

X1 +
1√
2α

V2

∣

∣

∣
M2

)

≤ max
{

0, n log
(√

2|α|
)}

. (30)

To prove this upper bound we first note that we can drop the
conditioning on the messageM2 because it is independent of
X1 andV2. For the rest of the proof we distinguish between
the case whenα ≤ 1√

2
and the case whenα > 1√

2
. We

start with the proof for the case whenα ≤ 1√
2

and introduce

the independent Gaussian random vectorZ̃1 which is of zero-
mean and covariance matrixN · In, where In denotes the
n-dimensional identity matrix. Since bothV2 and the pair
(Z1, Z̃1) are independent Gaussians and also independent of

X1 we have the following identity

h

(

X1 +
1√
2α

V2

)

= h

(

X1 + Z1 +

√

(

1

2α2
− 1

)

Z̃1

)

.

(31)
Then, with (31) and the non-negativity of mutual information
we obtain that

h (X1 + Z1) − h

(

X1 +
1√
2α

V2

)

= h (X1 + Z1) − h

(

X1 + Z1 +

√

(

1

2α2
− 1

)

Z̃1

)

= −I

(

X1 + Z1 +

√

(

1

2α2
− 1

)

Z̃1; Z̃1

)

≤ 0.

To treat the second case, i.e., whenα > 1√
2
, we use that

h(X1 + Z1) = h

(

X1 +

√

(

1 − 1

2α2

)

U2 +
1√
2α

V2

)

and then obtain the following upper bound

h (X1 + Z1) − h

(

X1 +
1√
2α

V2

)

= I

(

X1 +

√

(

1 − 1

2α2

)

U2 +
1√
2α

V2;U2

)

≤ I

(

X1 +

√

(

1 − 1

2α2

)

U2 +
1√
2α

V2;U2

∣

∣

∣
X1

)

= n log
(√

2|α|
)

where in the inequality we used thatX1 is independent of
U2 and conditioning reduces differential entropy. The upper
bound (30) then follows by combining the results of the two
cases.

Next we upper bound the summands and the difference
between the forth and fifth line of the right hand side of (29).
Similarly to (30) we find that for2 ≤ ` ≤ J

h

(

X` +
1√
2
U`

∣

∣

∣
M`, . . . , M2

)

−h

(

X` +
1√
2α

V`+1

∣

∣

∣
M`+1, . . . , M2

)

≤ max{0, n log(|α|)} (32)

and

h

(

XJ+1 +
1√
2
UJ+1

∣

∣

∣
MJ+1, . . . , M2

)

−h

(

XJ+1 +
1

α
ZJ+2

∣

∣

∣
MJ+2, . . . , M2

)

≤ max

{

0, n log

( |α|√
2

)}

. (33)



Then, from (24) using (25), (26), (29), (30), (32), and (33)

J+2
∑

k=1

Rk ≤ (J + 1)
1

2
log

(

1 +
P

N

)

+ (J + 1) log

(

1 + |α|
|α|

)

+J log
(√

2
)

+ (J − 1)max {0, log (|α|)}

+ max
{

0, log
(√

2|α|
)}

+ max

{

0, log

( |α|√
2

)}

+(J + 2)
ε(n)

n
, (34)

from which (21) follows by (23) by lettingn tend to infinity.
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