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Abstract—A necessary condition is established for the lossy
transmission of correlated sources over a memoryless multiple-
access channel (MAC). It is used to derive lower bounds on
the symmetric distortions that are achievable over Gaussian and
binary adder MACs.

When specialized to symmetric Gaussian MACs and Gaussian
sources, the new lower bound recovers Lapidoth and Tinguely’s
max-correlation lower bound (2010) when the channel bandwidth
is equal to the source bandwidth, and it improves on it when the
channel bandwidth is higher.

An analogous condition is also derived for the MAC with
correlated sources and feedback.

I. INTRODUCTION

We present new necessary conditions for lossy transmission
of correlated sources over a multiple-access channel (MAC)
without and with feedback. The main challenge is to bound the
dependence that can be established between the MAC’s inputs
in terms of the dependence between the sources. Necessary
conditions as well as sufficient conditions for this problem
have appeared before [1]–[8]. Cover, El Gamal, and Salehi
[1] presented conditions that are both necessary and sufficient,
but those have a multi-letter form that is incomputable. For
the symmetric Gaussian MAC, Lapidoth and Tinguely [2]
provided a necessary condition using the Hirschfeld-Gebelein-
Rényi (HGR) maximal correlation. A similar necessary con-
dition for lossless transmission over the discrete memoryless
MAC was proved by Kang and Ulukus [3]. More recently,
Lapidoth and Wigger [4] derived a set of necessary conditions
for lossy reconstructions by introducing an auxiliary random
sequence that is generated from the sources and that renders
the sources conditionally independent. A related necessary
condition by Güler, Gündüz, and Yener [5] improves on the
previous conditions for asymmetric distortions.

Here we derive a necessary condition that implicitly relates
the mutual information between the two sources to the input
distribution of the MAC. The condition is reminiscent of the
Dependence-Balance (DB) bound of Hekstra and Willems [9]
for the MAC with feedback. For the symmetric Gaussian MAC
and the binary adder MAC, we use it to lower bound the
symmetric achievable distortion. When the source and channel
bandwidths are equal, we recover the necessary condition of
Lapidoth and Tinguely [2] for the Gaussian MAC with jointly
Gaussian sources. Also, for binary adder channels and doubly
symmetric binary sources, numerical simulations suggest that
we recover Kang and Ulukus’s necessary condition [3]. The
bound is tighter than [2] and [3] when there is more than one
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channel use for each source-pair generated by the source. We
finally also derive a DB condition for the transmissibility of
correlated sources over a MAC with feedback.

II. PROBLEM SETUP

A source generates sequences Sk1 := (S1,1, . . . , S1,k) and
Sk2 := (S2,1, . . . , S2,k) by drawing the pairs {(S1,t, S2,t)}
independently and identically distributed (i.i.d.) according to
some joint probability mass function (pmf) pS1S2 over the
source alphabets S1×S2. The source sequence Sk1 is observed
by Transmitter 1 and the source sequence Sk2 by Transmit-
ter 2. The two transmitters communicate with a common
receiver over a discrete-time memoryless MAC characterized
by input alphabets X1 and X2, an output alphabet Y , and
a conditional pmf pY |X1X2

. (For brevity we will sometimes
write p(s1, s2) and p(y|x1, x2) instead of pS1S2

(s1, s2) and
pY |X1X2

(y|x1, x2).)
Each transmitter j ∈ {1, 2} produces its channel input

Xn
j := (Xj,1, . . . , Xj,n) based on the sequence Skj it observes

using some encoding function f (n)j : Skj → Xnj :

Xn
j = f

(n)
j (Skj ).

The receiver observes the channel output sequence Y n :=
(Y1, . . . , Yn) and reconstructs both source sequences

Ŝkj = h
(n)
j (Y n), j ∈ {1, 2}

by means of decoding functions h(n)j : Yn → Ŝkj , where Ŝj is
the reconstruction alphabet of the source symbol Sj .

The distortions between the sources and the reconstructions
are measured by

d
(k)
j (Skj , Ŝ

k
j ) :=

1

k

k∑
i=1

δj(Sji, Ŝji),

where δ1 : S1 × Ŝ1 → R+ and δ2 : S2 × Ŝ2 → R+ are given
per-letter distortion functions.

The triple (κ,D1, D2) is achievable for the source-channel
pair (pS1S2

, pY |X1X2
) if, for every ε > 0, there exist encoding
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and decoding functions satisfying the following conditions
whenever k and n are sufficiently large:

k

n
= κ (1a)

E
[
d
(k)
j (Skj , Ŝ

k
j )
]
≤ Dj + ε, j ∈ {1, 2}. (1b)

III. RESULTS FOR MACS WITHOUT FEEDBACK

Our main result is a necessary condition for achievability.1

Theorem 1. The triple (κ,D1, D2) is achievable only if
there exist p(ŝ1, ŝ2|s1, s2) and p(x1, x2|q) such that for all
p(u|x1, x2, y, q) and all p(w|s1, s2) satisfying the factorization

p(w|s1, s2)p(s1, s2)=p(w)(s1|w)p(s2|w) (2)

the following inequalities hold:

κI(S1;S2) ≥ I(X1;X2|Q)− I(X1;X2|UQ) (3a)

κI
(
S1, S2; Ŝ1, Ŝ2

)
≤ I(X1X2;Y ) (3b)

κI(S1S2; Ŝ1Ŝ2) ≤ I(X1X2;Y U |Q) (3c)

κI(S1; Ŝ1|S2) ≤ I(X1;Y U |X2Q) (3d)

κI(S2; Ŝ2|S1) ≤ I(X2;Y U |X1Q) (3e)

κI
(
S1S2; Ŝ1Ŝ2

∣∣W ) ≤ I(X1X2;Y |V ) (3f)

κI
(
S1; Ŝ1

∣∣S2W
)
≤ I(X1;Y |X2V ) (3g)

κI
(
S2; Ŝ2

∣∣S1W
)
≤ I(X2;Y |X1V ) (3h)

E
[
d(S1, Ŝ1)

]
≤ D1 (3i)

E
[
d(S2, Ŝ2)

]
≤ D2 (3j)

for some p(q) and p(v|x1, x2) satisfying the factorization∑
q

p(q)p(x1, x2|q)p(v|x1, x2) = p(v)p(x1|v)p(x2|v). (4)

The mutual informations and expectations are calculated with
respect to the pmfs:

p(w, s1, s2, ŝ1, ŝ2)=p(s1, s2)p(w|s1, s2)p(ŝ1, ŝ2|s1, s2) (5a)
p(q, u, v, x1, x2, y)=p(q)p(x1, x2|q)p(y|x1, x2)

· p(u|x1, x2, y, q)p(v|x1, x2). (5b)

Moreover, the cardinality |Q| of the alphabet of Q may be
restricted to |Q|≤|X1| · |X2|+ 3.

Proof: The proof is sketched in Appendix A.
The random variables W and U are formed by augment-

ing the system with the auxiliary channels p(w|s1, s2) and
p(u|x1, x2, y, q). This technique was introduced in [10] for the
Gaussian multiple description problem and in [9] for interac-
tive communications. It has since been used in source-coding
setups [11]–[14] as well as in channel-coding setups [15], [16].

Constraints (3b), (3f), (3g), and (3h) are related to the
necessary conditions of [4, Theorem 1] and [5, Theorem
5]. New are Constraints (3a) and (3c)–(3e) that resemble
the Dependence-Balance bound of Hekstra and Willems [9]

1Alternatively, Theorem 1 can be stated as a max-min-max optimization
problem with an objective function that is 1 if the constraints are satisfied
and 0 otherwise. Here the left-most max is on the pairs p(ŝ1, ŝ2|s1, s2) and
p(x1, x2|q), the min is on the pairs p(u|x1, x2, y, q) and p(w|s1, s2), and
the right-most max is on the pairs p(q) and p(v|x1, x2).

for channels with user interaction (e.g. feedback or two-way
communication). But in (3a), the channel output Y does not
show up. This is because in our setting there is no feedback
so communication is only one-way. The DB constraint (6a)
limits the correlation between the inputs X1 and X2 that is
not built on the time-sharing random variable Q, as a function
of the source pmf PS1S2

. The constraint becomes stronger as
the bandwidth mismatch factor κ increases.

To highlight the role of these new constraints, the rest of
the paper focuses on the following corollary.

Corollary 2. The triple (κ,D1, D2) is achievable only if there
exist pmfs p(ŝ1, ŝ2|s1, s2) and p(x1, x2|q) such that for every
auxiliary channel p(u|x1, x2, y, q) the following inequalities
hold for some p(q):

κI(S1;S2) ≥ I(X1;X2|Q)− I(X1;X2|UQ) (6a)

κI(S1S2; Ŝ1Ŝ2) ≤ I(X1X2;Y U |Q) (6b)

κI(S1; Ŝ1|S2) ≤ I(X1;Y U |X2Q) (6c)

κI(S2; Ŝ2|S1) ≤ I(X2;Y U |X1Q) (6d)

E
[
d(S1, Ŝ1)

]
≤ D1 (6e)

E
[
d(S2, Ŝ2)

]
≤ D2 (6f)

If (6a) is relaxed, then Corollary 2 results in the standard
cut-set necessary condition.

Next, we apply Corollary 2 to several symmetric examples,
where we find lower bounds on the symmetric achievable
distortion D.

A. The Gaussian MAC

We begin with the equal-power Gaussian MAC under the
symmetric distortion constraint D1 = D2 = D. The input
and output alphabets of the MAC are the reals, and the time-t
channel output is

Yt = X1t +X2t + Zt

where {Zt} is an i.i.d. Gaussian noise sequence with zero
mean and unit variance. We impose an average block power
constraint P on both transmitters

1

n

n∑
t=1

E[X2
jt] ≤ P, j ∈ {1, 2}.

Define

µ :=
√

1− 2−2κI(S1;S2). (7)

Let

RS1S2
(D,D) := min

pŜ1Ŝ2|S1S2
Eδ(Sj ;Ŝj)≤D, j=1,2

I(S1S2; Ŝ1Ŝ2) (8)

be the symmetric joint rate-distortion function under individual
distortion constraints and

Rsym
S1|S2

(D)= min
pŜ1Ŝ2|S1S2

Eδ(Sj ;Ŝj)≤D, j=1,2

max{I(S1; Ŝ1|S2), I(S2; Ŝ2|S1)} (9)

be the symmetric worst-case conditional rate-distortion func-
tion. We remark that Rsym

S1|S2
(D) is in general larger than the

standard conditional rate distortion functions RS1|S2
(D) and
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RS2|S1
(D) (i.e., the rate distortion function for S1 when S2

is available at both the encoder and decoder and vice versa).

Theorem 3. For any source pS1S2
, the tuple (κ,D,D)

is achievable for the symmetric Gaussian MAC with input
power P only if the following two conditions hold:

κRS1S2(D,D) ≤1

2
log (1 + 2P (1 + ρ̂)) (10)

κRsym
S1|S2

(D) ≤1

2
log
(
1 + P (1− ρ̂2)

)
(11)

for some ρ̂ ≤ ρ̄ where

ρ̄ =

{
µ if P ≥ µ

1−µ2

1 otherwise.
(12)

Proof: The proof is sketched in Appendix B.

Remark 1. From (7) and (12) we conclude that as I(S1;S2)
tends to zero, µ approaches zero, and hence so does ρ̄.
Consequently, when the sources are “almost-independent”,
the MAC inputs must be “almost-independent” in the sense
that the RHS of (10) is “almost” upper bounded by the
mutual information corresponding to independent Gaussians.
Similarly, µ and hence also ρ̄ approach zero as κ tends to zero.

We now compare Theorem 3 with [2, Remark IV.1] where
ρ̂ in (10)–(11) is shown to be restricted to

ρ̂ ≤ ρmax (13)

where ρmax is the Hirschfeld-Gebelein-Rényi (HGR) maximal
correlation of the source. We refer to this set of necessary
conditions as the max-correlation condition. The quantities ρ̄
and ρmax are not comparable in general. For example, for small
κ, ρ̄ is often smaller than ρmax and for large κ, it is often
larger. An improved necessary condition can thus be obtained
by combining the two conditions.

Remark 2. Theorem 3 can be strengthened by replacing (12)
with

ρ̄ =

{
min{µ, ρmax} if P ≥ µ

1−µ2

ρmax otherwise.
(14)

We now specialize Theorem 3 to jointly Gaussian sources.

Example 1 (Jointly Gaussian Sources). Consider a jointly
Gaussian source with zero mean and covariance matrix

KS1S2 =

[
σ2 σ2ρ
σ2ρ σ2

]
,

and suppose that distortion is measured by the squared-error
distortion functions δj(ŝ, s) = (s − ŝ)2 for j = 1, 2. For this
Gaussian source, µ is given by

µ =
√

1− (1− ρ2)κ, (15)

and we have (see [17]):

R(D)=
1

2
log

(
σ2

D

)
RS1|S2

(D)=RS2|S1
(D) =

1

2
log

(
σ2(1− ρ2)

D

)

RS1S2
(D,D)=


1
2 log

(
σ4(1−ρ2)

D2

)
D ≤ σ2(1−ρ)

1
2 log

(
σ4(1−ρ2)

D2−(D−σ2(1−ρ))2

)
D ≥ σ2(1−ρ).
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Fig. 2: Bounds on the minimum achievable distortion D as a
function of P for σ2 = 1, ρ = 0.4, and κ = 0.5.

Moreover, we find the following closed-form expression for
Rsym
S1|S2

(D):

Rsym
S1|S2

(D)=


1
2 log

(
σ2(1−ρ2)

D

)
D ≤ σ2(1−ρ)

1
2 log

(
σ2(1−ρ2)

2σ2(1−ρ)−σ
4(1−ρ)2
D

)
D ≥ σ2(1−ρ).

Notice that for symmetric jointly Gaussian sources, Rsym
S1|S2

(D)

is larger than RS1|S2
(D) when D > σ2(1− ρ). Interestingly,

for all σ2, D, ρ we have

RS1S2
(D,D) = Rsym

S1|S2
(D) +R(D). (16)

Fig. 2 depicts lower and upper bounds on the smallest
distortion D ≥ 0 as a function of the transmit power P so
that (κ = 0.5, D,D) is achievable for a source with variance
σ2 = 1 and correlation factor ρ = 0.4. For P > µ

1−µ2 on the
plot, the lower bound implied by Theorem 3 is strictly tighter
than the max-correlation lower bound.

More generally, the following can be proved:
• For κ ≤ 1 and small powers P ≤ µ

1−µ2 , the lower bound
implied by Theorem 3 coincides with the cut-set lower
bound and the max-correlation lower bound. As shown
in [2], for κ = 1 they further coincide with the upper
bound achieved by uncoded transmission.

• For large powers P > µ
1−µ2 , the lower bound from

Theorem 3 coincides with the max-correlation lower
bound when κ=1, is tighter for κ<1 and looser for κ>1.

B. The binary adder MAC
Suppose that the MAC is a binary adder channel defined by

X1 = {0, 1}, X2 = {0, 1}, Y = {0, 1, 2}, and

Y = X1 +X2.

Using Corollary 2 (and disregarding (11)), we have the
following result for any source and any κ > 0.

Theorem 4. Given a binary adder MAC and a source pS1,S2
,

the triple (κ,D,D) is acheivable only if

κRS1S2(D,D) ≤ 1 + h2(q?)− q?, (17)
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where

q? := max
{1

3
, h−12

(
max{0, 1− κI(S1;S2)}

)}
(18)

and h2(·) is the binary entropy function with the inverse h−12 (·)
on [0, 1/2].

Proof: Omitted.
Notice that when I(S1;S2) tends to 0 then the right-hand

side of (18) approaches 1.5 which is the sum-capacity of the
binary adder MAC with independent inputs.

Example 2 (DSBS Source). Consider a DSBS (S1, S2) of
parameter p and Hamming distortion functions dj(ŝ, s) =
1(ŝ 6= s) for j = 1, 2. The symmetric joint rate-distortion
function for this source is (see [18, Example 2.7.2])

RS1S2(D,D) =

{
1 + h2(p)− 2h2(D) D ≤ D?

1− p− (1− p)h2
(

2D−p
2(1−p)

)
D ≥ D?

where D? = 1−
√
1−2p
2 . By Corollary 4, the triple (κ =

1, D,D) is achievable only if

D ≥

 h−12

(
p
2

)
p ≥ 1

3

h−12

(
max

{
0,

h2(p)−h2(
1
3 )+

1
3

2

})
p ≤ 1

3 .
(19)

Fig 3 plots this lower bound and compares it with the upper
bound of [19, Theorem 2] evaluated for the choice Q = ∅,
Xi = Ui = Ŝi, i = 1, 2, and Ui = Si ⊕ Zi where for i =
1, 2 the random variable Zi is Bernoulli with parameter D.
The lower bound shown by the dashed curve uses the data
processing inequality of Kang and Ulukus (see [3, Equation
(69)]). Numerical simulations suggest that the lower bound in
(19) is similar to Kang-Ulukus’ lower bound for κ = 1, and
that it is tighter for κ < 1 and looser for κ > 1.

IV. MAC WITH FEEDBACK

Consider now the MAC with feedback in Fig. 4. Here, each
Encoder j ∈ {1, 2} can produce its channel inputs also in
function of the past outputs:

Xjt = f
(n)
jt (Skj , Y

t−1), t ∈ {1, . . . , n},

Source
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Trans. 2
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pY |X1X2
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k
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Sk
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Fig. 4: MAC with feedback

for some feedback encoding function f (n)jt : Skj ×Yt−1 → Xj .

Theorem 5. The tuple (κ,D1, D2) is achievable only if there
exists a channel p(ŝ1, ŝ2|s1, s2) and a pmf p(x1, x2|q) so
that for every auxiliary channel p(u|x1, x2, y, q) the following
inequalities hold for some p(q):

κI(S1;S2) ≥ I(X1;X2|Q)− I(X1;X2|UY Q) (20a)

κI(S1S2; Ŝ1Ŝ2) ≤ I(X1X2;Y U |Q) (20b)

κI(S1; Ŝ1|S2) ≤ I(X1;Y U |X2Q) (20c)

κI(S2; Ŝ2|S1) ≤ I(X2;Y U |X1Q) (20d)

E
[
d(S1, Ŝ1)

]
≤ D1 (20e)

E
[
d(S2, Ŝ2)

]
≤ D2. (20f)

The alphabet setQ may be chosen to satisfy |Q|≤|X1|·|X2|+3.

Proof: The proof is similar to the proof in Appendix A
for MACs without feedback, but U is replaced by (U, Y ) in
(6a). This makes the set of admissible (κ,D1, D2) larger.

Remark 3. If I(S1;S2) = 0 and D1 = D2 = 0, then we
recover the DB bound of Hekstra and Willems for MACs with
independent messages [9, Theorem 3] (adapted for the MAC
with feedback). As shown in [20], the DB bound can be strictly
tighter than the cut-set bound for the MAC with feedback.
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APPENDIX A
OUTLINE OF PROOF OF THEOREM 1

Fix k, n and encoding and reconstruction functions so
that the conditions in (1) hold. Constraints (5a), (5b), (3b),
(3f), (3g), and (3h) can be proved following the steps in [4]
and by noting the Markov chain W − (S1, S2) − (Ŝ1, Ŝ2).
Constraints (6e) and (6f) can be proved using standard steps.

We now prove the DB constraint (6a). Assume that for each
time t, the MAC produces an additional virtual output Ut by
passing the time-t inputs and output, and the past sequence
U t−1 through an auxiliary channel

p(ut|x1t, x2t, yt, ut−1). (21)

Let Un := (U1, . . . , Un). We have

kI(S1;S2) = I(Sk1 ;Sk2 )

(a)
= I(Sk1U

n;Sk2 )− I(Un;Sk2 |Sk1 )

(a)
= I(Un;Sk2 )− I(Un;Sk2 |Sk1 ) + I(Sk1 ;Sk2 |Un)

(a)
= I(Un;Sk1S

k
2 )− I(Un;Sk1 |Sk2 )− I(Un;Sk2 |Sk1 )

+ I(Sk1 ;Sk2 |Un)

(b)

≥ I(Un;Sk1S
k
2 )− I(Un;Sk1 |Sk2 )− I(Un;Sk2 |Sk1 )

(a)
=

n∑
t=1

I(Sk1S
k
2 ;Ut|U t−1)−

n∑
t=1

I(Sk1 ;Ut|Sk2U t−1)

−
n∑
t=1

I(Sk2 ;Ut|Sk1U t−1)

(c)

≥
n∑
t=1

I(X1tX2t;Ut|U t−1)−
n∑
t=1

I(X1t;Ut|X2tU
t−1)

−
n∑
t=1

I(X2t;Ut|X1tU
t−1)

(d)
= nI(X1TX2T ;UT |UT−1T )− nI(X1T ;UT |X2TU

T−1T )

− nI(X2T ;UT |X1TU
T−1T )

(e)
= nI(X1X2;U |Q)− nI(X1;U |X2Q)− nI(X2;U |X1Q)

= nI(X1;X2|Q)− nI(X1;X2|UQ) (22)

where T is a uniform random variable over {1, . . . , n} in-
dependent of all previously defined random variables. In the
above chain of inequalities, (a) holds by the chain rule of
mutual information; (b) holds because mutual information is
nonnegative; (c) holds because Sk1S

k
2 − X1tX2tU

t−1 − Ut
forms a Markov chain; (d) holds by the definition of T , and
(e) holds by defining X1 := X1T , X2 := X2T , Y := YT ,
U := UT , and Q := (UT−1T ).

Note that since a different auxiliary channel (21) can be
chosen for each time t, and thus for each realization q of Q,
the choice of p(u|x1, x2, y, q) can depend on p(x1, x2|q).

Finally, constraints (6b)–(6d) can be proved using standard
steps but considering the augmented output (Ut, Yt).

APPENDIX B
PROOF SKETCH OF THEOREM 3

Consider Corollary 2 and choose U = Y + N where N
is an independent zero-mean Gaussian of variance σ2

N =

max{0, P 1−µ2

µ − 1}.
Fix the correlation coefficient of X1 and X2 to ρ̂ ∈ [0, 1].

We will weaken the constraints in (3) to obtain a necessary
condition in terms of ρ̂:

κRS1S2
(D,D) ≤I(U ;Y |Q) ≤ 1

2
log (1 + 2P (1 + ρ̂)) (23)

κRsym
S1|S2

(D,D) ≤1

2
log
(
1 + P (1− ρ̂2)

)
. (24)

The DB constraint (6a) can be relaxed as follows:

κI(S1;S2)

≥I(X1;X2|Q)− I(X1;X2|UQ)

≥h(U |Q)−h(U |X1)−h(U |X2)+h(U |X1X2)

(a)

≥h(U |Q) +
1

2
log

(
(1 + σ2

N )

2πe(1 + σ2
N + P (1− ρ̂2))2

)
(b)

≥ 1

2
log

(
(1 + σ2

N )(σ2
N + 22h(Y |Q) · (2πe)−1)

(1 + σ2
N + P (1− ρ̂2))2

)
(c)

≥ 1

2
log

(
(1 + σ2

N )(σ2
N + 22κRS1S2 (D,D))

(1 + σ2
N + P (1− ρ̂2))2

)
(25)

where (a) holds by the (conditional) maximum entropy lemma
[21]; (b) by the entropy-power inequality [22]; and (c) by (23),
because log is a monotonically increasing function, and by
h(Y |X1X2Q) = 1

2 log(2πe).
Thus, the triple (κ,D,D) is achievable, only if (23)–(25)

hold for some ρ̂ ∈ [0, 1]. For P < µ
1−µ2 , the desired result

is obtained simply by disregarding (25). For P ≥ µ
1−µ2 , the

constraints in (23) and (25) can be used to show that it suffices
to consider ρ̂ ∈ [0, µ]. (Details omitted.)


