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On the Capacity of Free-Space Optical
Intensity Channels
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Abstract—Upper and lower bounds are derived on the capacity
of the free-space optical intensity channel. This channel has a
nonnegative input (representing the transmitted optical intensity),
which is corrupted by additive white Gaussian noise. To preserve
the battery and for safety reasons, the input is constrained in both
its average and its peak power. For a fixed ratio of the allowed
average power to the allowed peak power, the difference between
the upper and the lower bound tends to zero as the average power
tends to infinity and their ratio tends to one as the average power
tends to zero.

When only an average power constraint is imposed on the input,
the difference between the bounds tends to zero as the allowed av-
erage power tends to infinity, and their ratio tends to a constant as
the allowed average power tends to zero.

Index Terms—Channel capacity, direct detection, Gaussian
noise, infrared communication, optical communication, pulse
amplitude modulation (PAM).

I. INTRODUCTION

W E consider a channel model for short-range optical
communication in free space such as the infrared com-

munication between electronic handheld devices. We assume a
channel model based on intensity modulation, where the input
signal modulates the optical intensity of the emitted light. Thus,
the input signal is proportional to the light intensity and is
therefore nonnegative. We further assume that at the receiver a
front-end photodetector measures the incident optical intensity
of the incoming light and produces an output signal which
is proportional to the detected intensity, corrupted by white
Gaussian noise. To preserve the battery and for safety reasons,
we restrict both the average and the peak intensity of the input
signal.1

This channel model, also known as the free-space optical
intensity channel or optical direct-detection channel with
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1For more details on the channel model see Section II.

Gaussian post-detection noise, was previously studied in
[1]–[5]. In [4] and [5] upper and lower bounds on this channel’s
capacity were derived. A related channel model for optical
communication is the Poisson channel: see [2], [6]–[8] for the
discrete-time channel and [9]–[15] for the continuous-time
channel. A variation of the free-space optical intensity channel,
where the noise depends on the input, is investigated in [2,
Ch. 4], [16].

In this paper, we present new upper and lower bounds on the
capacity of the free-space optical intensity channel and study
the capacity’s asymptotic behavior at high and low powers. The
maximum gap between the upper and lower bounds never ex-
ceeds 1 nat when the ratio of the allowed average power to the
allowed peak power is larger than or when only an av-
erage-power constraint is imposed. If both average- and peak-
power constraints are imposed, then the bounds are asymptoti-
cally tight both at high- and low-input powers in the following
sense: if the ratio of the allowed average power to the allowed
peak power is held fixed, then the difference between the bounds
tends to zero as the allowed average power tends to infinity, and
the ratio of the bounds tends to one as the allowed average power
tends to zero. If only an average-power constraint is imposed,
then the difference between the bounds tends to zero as the al-
lowed average power tends to infinity and the ratio tends to
as the allowed average power tends to zero.

The derivation of the upper bounds is based on a general tech-
nique introduced in [2], [17], [18] using a dual expression for
channel capacity. We will not state it in its full generality but
only in the form needed in this paper. For more details and for
a proof see [2, Ch. 2], [17, Sec. V].

Proposition 1: Consider a memoryless channel with input al-
phabet and output alphabet , where, conditional
on the input , the distribution on the output is denoted
by the probability measure .2 Then, for any distribution

on , the channel capacity under a peak-power constraint
and an average-power constraint is upper-bounded by

(1)

where the supremum is over all probability laws on the input
satisfying and . Here,

denotes relative entropy [19, Ch. 2].

There are two challenges in using (1). The first is in finding a
clever choice of the law that will lead to a good upper bound.
The second is in upper-bounding the supremum on the right-

2The proposition requires certain measurability assumptions on the law
� ����� which we omit for simplicity. However, the channel law under consid-
eration satisfies these assumptions.
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hand side of (1). To handle this second challenge we shall resort
to some further bounding, e.g., Jensen’s inequality.

To derive the lower bounds we apply two different tech-
niques: in the high-power regime we use the Entropy Power
Inequality (EPI) [19, Theorem 17.7.3] and the theory of entropy
maximizing distributions [19, Ch. 12]. The so-derived bounds
are asymptotically tight. At low powers, we lower-bound
capacity by the mutual information corresponding to binary
signaling (a choice which was inspired by [3] and [20]). When
a peak-power constraint is present, the analysis of the mutual
information is based on techniques from [21] and the resulting
bounds are tight. When only an average-power constraint is
imposed, we further lower-bound the asymptotic expression
for the mutual information. In this regime our analysis does not
yield the asymptotic capacity expansion, because the ratio of
our upper bound to our lower bound does not tend to one as the
allowed average power tends to zero; it tends to .

The results of this paper are partially based on the results in
[2, Ch. 3] and [22].

The rest of the paper is structured as follows. After some re-
marks about notation at the end of this section, we describe the
channel model in detail in Section II. In Section III we state our
main results, i.e., the upper and lower bounds on channel ca-
pacity and the asymptotic results. The detailed derivations can
be found in the Appendix.

For random quantities we use uppercase letters and for their
realizations lowercase letters. Scalars are typically denoted
using Greek letters or lowercase Roman letters. A few excep-
tions are the following symbols: stands for capacity,
denotes the relative entropy between two probability measures,
and stands for the mutual information. Moreover, the
capitals , , and denote probability measures:

• denotes a generic probability measure on the channel
input;

• for any input , represents a probability mea-
sure on the channel output when the channel input is ;

• denotes a generic probability measure on the channel
output.

The expression stands for the mutual information
between input and output of a channel with transition
probability measure when the input has distribution , i.e.,

. The symbol denotes average power and
stands for peak power. All rates specified in this paper are in

nats per channel use, and all logarithms are natural logarithms.

II. CHANNEL MODEL

In free-space optical communication the input signal is usu-
ally transmitted by means of light-emitting diodes (LED) or
laser diodes (LD). Conventional and most inexpensive diodes
emit infrared light of wavelength between 850 and 950 nm. For
such high frequencies, practical systems often apply intensity
modulation where the transmitter modulates the optical inten-
sity of the emitted light, and hence the input signal is propor-
tional to the optical intensity. The receiver first measures the
incident optical intensity of the incoming light by means of a
front-end photodetector and produces an output signal which
is proportional to the detected intensity. Based on this output
signal the receiver decodes the transmitted data.

For our model we assume three main sources of noise:
thermal noise in the receiver which is well-modeled by a
Gaussian distribution; relative-intensity noise (RIN) that
models random intensity fluctuations inherent to low-cost laser
sources and that also can be assumed to be Gaussian; and shot
noise caused by the ambient light. Note that the shot noise only
has an impact at large intensities where its distribution will tend
to be Gaussian and in a first approximation can be assumed to
be independent of the signal itself. At low intensity the thermal
noise is the limiting factor. The sum of these three noise sources
can be well-modeled by independent and memoryless additive
Gaussian noise, i.e., the channel output is given by

(2)

where denotes the channel input that is proportional to the
optical intensity and therefore cannot be negative

(3)

and where the additive noise is zero-mean Gaussian with vari-
ance . It is important to note that, unlike the input, the output

may be negative since the noise introduced at the receiver can
be negative. See [23], [24] for more on this model.

Note that we neglect random components of the ambient
light. Such random components also could be modeled as
Gaussian, however, as they are added to the signal before the
detection, their resulting distribution is non-Gaussian. This
model—sometimes called optical direct-detection channel
with Gaussian pre-detection noise [23] and described by

—is not part of this investigation. But see
[25] and [26]. Similarly, we assume that there is no optical
preamplifier at the receiver which would have a similar effect.
However note that at high power the pre-detection noise model
will tend to our post-detection noise model (2).

For safety reasons and practical implementation considera-
tions, the optical average power and maximum power must be
constrained

(4)

(5)

for some fixed parameters , . We refer to as the al-
lowed average power and to as the allowed peak power. Note
that the average-power constraint is on the expectation of the
channel input and not on its square.

We denote the ratio between the allowed average power and
the allowed peak power by

(6)

where . Note that for the average-power
constraint is inactive in the sense that it has no influence on the
capacity and is automatically satisfied whenever the peak power
constraint is satisfied. Thus, corresponds to the case with
only a peak-power constraint. Similarly, corresponds
to a dominant average-power constraint and only a very weak
peak-power constraint.

Authorized licensed use limited to: Telecom ParisTech. Downloaded on February 17,2010 at 08:19:11 EST from IEEE Xplore.  Restrictions apply. 



LAPIDOTH et al.: ON THE CAPACITY OF FREE-SPACE OPTICAL INTENSITY CHANNELS 4451

We denote the capacity of the described channel with allowed
peak power and allowed average power by . The
capacity is given by [27]

(7)

where the supremum is over all laws on satisfying
and .

When only an average-power constraint is imposed, capacity
is denoted by . It is given as in (7) except that the supremum
is taken over all laws on satisfying .

Note that, as shown in [3] using the techniques of [20], the
capacity-achieving input distribution to our channel (2) is dis-
crete. But this is not critical to our analysis.

III. RESULTS

Subject to (4) and (5), our channel (2) has a unique capacity-
achieving input distribution, which we denote by [3]. Using
this observation, the symmetry of the channel law, and the con-
cavity of mutual information in the input distribution, we have
the following.

Lemma 2: If the allowed average power is larger than half
the allowed peak power , then the optimal input distribution

in (7) satisfies

(8)

Thus

(9)

Proof: See Appendix D.

To state our results we distinguish between three cases.
• Case I: both an average- and a peak-power constraint are

imposed, with .
• Case II: both an average- and a peak-power constraint are

imposed, with .
• Case III: only an average-power constraint is imposed.
We present firm upper and lower bounds on the channel ca-

pacity in all three cases. In all three cases, their difference tends
to zero as the allowed average power tends to infinity, thus re-
vealing the asymptotic capacity at high power. We also present
results on the asymptotic capacity at low power. In cases I and II,
our results are precise: we present asymptotic upper and lower
bounds whose ratio tends to as the power tends to . For case
III, we present asymptotic upper and lower bounds whose ratio
tends to as the power tends to 0.

A. Bounds on Channel Capacity for Case I

Theorem 3 (Bounds): If , then is lower-
bounded by

(10)

and upper-bounded by each of the two bounds

(11)

(12)

Here, and are free parameters, and is the unique
solution to

(13)

It is straightforward to show that the solution to (13) always
exists and is unique.

A suboptimal but useful choice of the free parameters in
(12) is

(14)

(15)

where is the solution to (13).
Figs. 1 and 2 depict the bounds of Theorem 3 for

and , where (12) is numerically minimized over .

Corollary 4 (Asymptotics): If , then

(16)

and

(17)

B. Bounds on Channel Capacity for Case II

Theorem 5 (Bounds): If , then is lower-
bounded by

(18)

and is upper-bounded by each of the two bounds

(19)

(20)

where is a free parameter.
A useful but suboptimal choice for is

(21)
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Fig. 1. Bounds of Theorem 3 for � � ��� when upper bound (12) is numer-
ically minimized over �� � � �. The maximum gap between upper and lower
bound is 0.68 nats (for � 10.5 dB).

Fig. 3 depicts the bounds of Theorem 5, where upper bound (20)
is numerically minimized over .

Corollary 6 (Asymptotics): If , then

(22)

and

(23)

Note that (22) and (23) exhibit the well-known asymptotic
behavior of the capacity of a Gaussian channel under a peak-
power constraint only [27].

Based on the right-hand sides of (16) and (22) we define

(24)

Thus, for , represents the second term in the
high-signal-to-noise ratio (SNR) asymptotic expansion of the

Fig. 2. Bounds of Theorem 3 for � � ��� with numerically optimized upper
bound (12). The maximum gap between upper and lower bound is 0.52 nats (for
� 6.4 dB).

channel capacity . It is depicted in Fig. 4. Note that
when tends to , then tends to . This can be seen by
rewriting for using (13) as

(25)

and then noting that and when .

C. Bounds on Channel Capacity for Case III

Theorem 7 (Bounds): In the absence of a peak-power con-
straint, the channel capacity is lower-bounded by

(26)

and is upper-bounded by each of the bounds

(27)
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Fig. 3. Bounds on capacity for � � � � according to Theorem 5, where
upper bound (20) is numerically minimized over � � �. The maximum gap
between upper and lower bound is 0.50 nats (for � 6.4 dB).

(28)

where and are free parameters. Bound (27) only holds
for , while bound (28) only holds for .

Fig. 4. The second term ���� of the high-SNR expansion of capacity for � �
��� ��.

A suboptimal but useful choice for the free parameters in
bound (27) is

for 0.4 dB (29)

and given in (30) at the bottom of the page, and for the free
parameters in bound (28) is

(31)

and given in (32), also given at the bottom of the page.
Fig. 5 depicts the bounds of Theorem 7 when the upper

bounds (27) and (28) are numerically minimized over the
allowed values of and .

Proposition 8 (Asymptotics): In the absence of a peak-power
constraint

(33)

and

(34)

(35)

Note that the asymptotic upper and lower bound at low SNR
do not coincide in the sense that their ratio equals instead
of .

(30)

(32)
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Fig. 5. Bounds on capacity according to Theorem 7 when upper bounds (27)
and (28) are numerically minimized over allowed values of �� �. The maximum
gap between upper and lower bound is 0.57 nats (for � 2.8 dB).

D. Basic Ideas of the Derivations

One can always find a lower bound on capacity by dropping
the maximization and choosing an arbitrary input distribution

in (7). To get a tight bound, this choice of should yield a
mutual information that is reasonably close to capacity. Such
a choice is difficult to find and might make the evaluation of

intractable. We circumvent these problems by using
the EPI. For any probability distribution with a probability
density function (pdf) we have

(36)

(37)

(38)

(39)

(40)

where (39) follows from the EPI. To make this lower bound as
tight as possible we will choose a distribution that maximizes
differential entropy under the given constraints [19, Ch. 12]. The
details can be found in Appendix A.3

3Of course, if under the law � one can compute the differential entropy of
� � � precisely, then one need not employ the EPI. But then the choice of �
might not be so clear.

The derivation of the upper bounds is based on Proposition 1.
Choosing a pdf on the output alphabet we get

(41)
The details can be found in Appendix B.

The derivations of the asymptotic results are shown in Ap-
pendix C.

APPENDIX A
DERIVATION OF THE FIRM LOWER BOUNDS

The input distribution that maximizes differential entropy
under a nonnegativity constraint, a peak constraint, and an av-
erage constraint has pdf [19, Ch. 12]

(42)

where has to be chosen such that the average-power con-
straint is satisfied, i.e., is given as the solution to (13). The
bound (10) now follows from (40) by computing under
the probability law .

Similarly, the lower bound (18) follows from (40) under the
uniform distribution over , and (26) follows from (40)
under the exponential distribution . Note that represents
the pointwise limit of when and that represents
the pointwise limit of when .

APPENDIX B
DERIVATION OF THE FIRM UPPER BOUNDS

A. Upper Bound (11) of Theorem 3

To derive the first upper bound (11) we choose a pdf corre-
sponding to a Gaussian random variable of mean and of vari-
ance . For arbitrary law satisfying
and this yields

(43)

(44)

(45)

(46)

where the first inequality follows from due to the
peak-power constraint, and where the second inequality follows
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from the average-power constraint using that , i.e.,
.

B. Upper Bound (12) of Theorem 3

To derive (12), we choose the pdf

(47)
where and are free parameters. This leads to the
expression given in (48) shown at the bottom of the page. We
investigate each term individually. We start with

(49)

(50)

(51)

where the inequality follows from the assumption that
ensures that for all and . Similarly,
we get for

(52)

(53)

Here, the inequality follows because for
all and . Finally, for , we have

(54)

Plugging , , and into (48) and combining this with (41)
we get the following bound:

(55)

It can be shown that

(56)

for any values of , , , . Moreover,
is monotonically increasing and concave for all

. Therefore, using Jensen’s inequality, we conclude
that

(48)
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(57)

Next, we upper-bound by its
maximum value that is taken on for

(58)

(59)

And finally we use the monotonicity of the exponential function
and the fact that to show the following:

(60)

Combining (55) with (57), (59), and (60) yields the bound on
channel capacity given in (12).

C. Upper Bound (19) of Theorem 5

To derive bound (19), we choose a Gaussian pdf with mean
and variance . This yields

(61)

(62)

(63)

where the inequality follows because due to the
peak-power constraint. Combined with (41) this yields the
claimed result. Note that the relation has not
been used. Therefore, this bound is valid for all and
in particular for all .

D. Upper Bound (20) of Theorem 5

The derivation of this bound is similar to the derivation of
(12). We choose

(64)

where is a free parameter. This leads to the following
expression:

(65)

where and are defined in (48) and are upper-bounded in
(51) and (53) (assuming that ), respectively. Similarly to

, we compute as follows:

(66)

Plugging , , and into (65) and combining this with (41)
we get

(67)

It can be shown that for any and

(68)

and hence analogously to (58)–(59) we get

(69)

Again we have not used the relation , and hence
the bound is valid for any .
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E. Upper Bound (27) of Theorem 7

One of the main challenges of deriving the upper bounds of
Theorem 7 using duality is that without a peak-power constraint
the input can be arbitrarily large (albeit with small probability).
This makes it much harder to find bounds on expressions like

. We choose

(70)

where and are free parameters. This leads to the
following expression:

(71)

We now restrict the free parameter to satisfy

(72)

and note that for arbitrary input law such that

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

Here (75) follows because for and
and because of the assumption (72); and in (77) we use

for . Com-
bining (73)–(81) with (71) and (41) yields the claimed result.

F. Upper Bound (28) of Theorem 7

The bound (28) follows from the same choice (70) as we have
used for the bound (27). However, here we will restrict the free
parameter to be nonnegative

(82)

We can then bound as

(83)

(84)

where the inequality follows from the assumption and the
nonnegativity of that ensure that .

Moreover, using the concavity and monotonicity of
for we bound

(85)

and, using the nonnegativity of and of

(86)

(87)

Combining (71), (84), (85), and (87) with (41) yields the
claimed result.

APPENDIX C
DERIVATION OF ASYMPTOTIC RESULTS

A. High-SNR Asymptotic Expressions

The analysis of the asymptotic behavior (16) is based on the
lower bound (10) and on the upper bound (12) with as in (14)
and equal to , the solution to (13).

To derive the asymptotic behavior (22) we compare the lower
bound (18) with the upper bound (20) using as in (21).

To derive (33), we compare the lower bound (26) with the
upper bound (28) using the following choice of the free param-
eters and :

(88)

(89)

for .
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B. Low-SNR Asymptotic Expressions

In order to prove the low-SNR asymptotic expression (17)
in Corollary 4, we derive an asymptotic lower bound that com-
bined with upper bound (11) yields the desired result. The lower
bound we propose is based on Theorem 2 in [21]. Note that
for the channel (2) under consideration, the technical condi-
tions A-F in [21] are satisfied. Theorem 2 in [21] states that for
peak-constrained inputs the mutual information satis-
fies

(90)

where decreases faster to than , i.e.,

(91)

We restrict attention to settings where and choose
a binary input

with probability
with probability

(92)

This yields the correct asymptotics.
The low-SNR asymptotic expression (23) is derived analo-

gously by choosing to equiprobably take on the values and
, for and comparing the corresponding

lower bound (90) with the upper bound (19).
The asymptotic upper bound (34) follows from the upper

bound (27) with a choice of as in (29) and with

(93)

which leads to the claimed asymptotic behavior.
The derivation of (35) is more involved and requires a new

lower bound on capacity. The lower bound is obtained by lower-
bounding the mutual information for a binary input

if

if
(94)

where for sufficiently small we choose

(95)

for some constant . Note that as . In the
remainder, we assume so that (94) is well defined. The
pdf of the channel output corresponding to the input (94) is
given by

(96)

In order to evaluate the mutual information for the
chosen binary input distribution we write it as (see [28])

(97)

and evaluate the first term on the right-hand side as

(98)

Evaluating the second term is more difficult, and in fact we only
derive an upper bound on it which exhibits the desired asymp-
totic behavior at low SNR. We shall show that

(99)

from which follows by (97) and (98)

(100)

The desired asymptotic lower bound in (35) then follows be-
cause (100) holds for any .

Thus, in order to prove (99), we write

(101)

and upper-bound , , and . For

(102)

(103)

Next we examine . Using and for
all we get

(104)

and hence

(105)

Authorized licensed use limited to: Telecom ParisTech. Downloaded on February 17,2010 at 08:19:11 EST from IEEE Xplore.  Restrictions apply. 



LAPIDOTH et al.: ON THE CAPACITY OF FREE-SPACE OPTICAL INTENSITY CHANNELS 4459

(106)

Note that

(107)

To deal with the second summand in (106) we note that

(108)

and get

(109)

(110)

Note that whenever then

(111)

and

(112)

and therefore

(113)

Finally, we examine the limiting behavior of . To this end
we rewrite as

(114)

and note that

(115)

(116)

Again, since we have , and therefore

(117)

Moreover

(118)

and hence

(119)
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Next we analyze . Note that , for , and
hence . Therefore

(120)

(121)

(122)

Since , the term tends to when
tends to , and therefore

(123)

Finally, we analyze . Using that if we
lower-bound to get

(124)

(125)

(126)

(127)

(128)

Here, (127) follows from for nonnegative and
from

Since for we have and ,
we obtain the following limiting behavior:

(129)

By (119), (123), and (129) we conclude that

(130)

which combined with (103) and (113) yields the claimed be-
havior.

APPENDIX D
PROOF OF LEMMA 2

Lemma 2 is a direct consequence of the following proposi-
tion.

Proposition 9: Let the random variable take value in the
interval , and let be independent of .
Then, there exists a random variable taking value in
and independent of that satisfies

(131)

and

(132)

Proof: Define and note that

(133)

(134)

(135)

(136)

where (133) and (135) follow because
whenever is one-to-one; where (134) follows from the sym-
metry of the centered Gaussian; and where (136) follows from
the definition of .

Let be a binary random variable that takes on the values
and equiprobably and independently of the pair .

Define the random variable equal to when and
equal to when . We show that (which takes value
in ) satisfies both (131) and (132). Condition (131) fol-
lows by the total law of expectation, by the definition of ,
by the independence of and , and because

:

(137)
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Condition (132) follows because conditioning reduces differ-
ential entropy, because is independent of , and by
(136)

(138)

(139)

(140)

(141)

(142)

(143)
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