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Abstract—We study the uplink of a linear cellular model
featuring short range inter-cell interference. Specifically, we
consider aK-transmitter/ K-receiver interference network where
the signal transmitted by a given transmitter is interfered by the
signal sent by the transmitter to its left. We assume that each
transmitter has side-information consisting of the messages of
the Jℓ users to its left and the Jr users to its right, and that
each receiver can decode its message using the signals received
at its own antenna, at the iℓ antennas to its left, and at the
ir antennas to its right. For this setting, we characterize the
multiplexing gain, i.e., the asymptotic logarithmic growth of the
sum-rate capacity at high SNR, and point out interesting duality
aspects.

We also present results on the multiplexing gain of a symmetric
version of this network where the signal sent by a given
transmitter is interfered by the signals sent by the transmitter
to its left and the transmitter to its right.

I. I NTRODUCTION AND MAIN RESULT

A. Background

We study a wireless communication scenario where multiple
transmitters wish to communicate with multiple receivers,and
each message has one intended receiver. The transmitters are
assumed to be located on a horizontal line. Opposite each
transmitter, on a parallel line, lies the receiver to which the
transmitter wishes to send its message. We consider an asym-
metric version of Wyner’s model [1], where the signal received
by a given receiver is a linear combination of the signals sent
by its corresponding transmitter and the transmitter to itsleft,
corrupted by Gaussian noise. Moreover, whereas in Wyner’s
work all receivers are allowed to cooperate, here, we envision a
scenario without full cooperation. Hence, our scenario should
be modeled by an interference network as in [2], [3], [4], [5].

We further envision that some of the transmitters are located
close to each other, and likewise also some of the receivers
are located close to each other. To model the vicinity between
transmitters we assumecognition of messages as in [3], i.e.,
that each transmitter is cognizant of the messages of nearby
located transmitters. To model the vicinity between receivers
we allow for clustered local processingas in [5], that is,
every receiver has access not only to its own receiving antenna
but also to nearby located receiving antennas. Clustered local
processing is in a way a compromise between the joint (multi-
cell) decoding of Wyner in [1] and the single (single-cell)
decoding in [2], [3], and it is of practical interest.

We thus study a combination of the models with cognitive
transmitters [3] and with clustered local processing [5].
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Fig. 1. Problem setting

B. Description of the problem

We consider a situation whereK transmitters wish to
communicate withK receivers. The transmitters are la-
beled {1, . . . , K}, and similarly, the receivers are labeled
{1, . . . , K}. Each transmitter and each receiver is equipped
with a single antenna. The signal transmitted by a given trans-
mitter is only interfered by its predecessor’s (the transmitter to
its left) signal; see Figure 1. The time-t symbolYk,t received
by the antenna at Receiverk is given by

Yk,t = Xk,t + αXk−1,t + Nk,t, 1 ≤ k ≤ K, (1)

where Xk,t denotes the symbol sent by Transmitterk at
time t (X0,t = 0), α is some non-zero real number,
and{Nk,t}1≤k≤K

1≤t≤n

are independent and identically distributed

(i.i.d.) standard Gaussians. For simplicity, we assume real
channel inputs and outputs.

The goal of the communication is that, for eachk ∈
{1, . . . , K}, MessageMk is conveyed to Receiverk. The mes-
sages{Mk}

K
j=1 are assumed to be independent withMk being

uniformly distributed over the setMk , {1, . . . , ⌊enRk⌋},
wheren denotes the block-length of transmission andRk the
rate of transmission of MessageMk.

We assume that each receiver observes the signal received
at its own antenna and the signals received at theiℓ ≥ 0
antennas to its left and at their ≥ 0 antennas to its right.



For eachk ∈ {1, . . . , K} we defineY k , (Yk,1, . . . , Yk,n).
Receiverk, for k ∈ {1, . . . , K}, can guess MessageMk based
on the output sequencesY k−iℓ

, . . . , Y k+ir
, where to simplify

notation we defineY −iℓ+1, . . . , Y 0 and Y K+1, . . . , Y K+ir

to be deterministically 0.
We further assume that, in addition to its own message,

each transmitter is also cognizant of theJℓ ≥ 0 previous
messages and theJr ≥ 0 following messages. That means,
for each k ∈ {1, . . . , K}, Transmitterk knows messages
Mk−Jℓ

, . . . , Mk, . . . , Mk+Jr
, where to simplify notation we

defineM−Jℓ+1, . . . , M0 andMK+1, . . . , MK+Jr
to be deter-

ministically zero. Thus, Transmitterk produces its sequence
of channel inputsXk , (Xk,1, . . . , Xk,n) as

Xk = f
(n)
k (Mk−Jℓ

, . . . , Mk, . . . , Mk+Jr
),

for some encoding function

f
(n)
k : Mk−Jℓ

× · · · ×Mk × · · · ×Mk+Jr
→ R

n. (2)

The channel input sequences are subject to symmetric
average block-power constraints, i.e., with probability 1they
have to satisfy

1

n
‖Xk‖

2 ≤ P, k ∈ {1, . . . , K},

whereP > 0 is a constant and‖ · ‖ denotes the Euclidean
norm.

We denote byC(K, Jℓ, Jr, iℓ, ir; P ) the capacity region of
the described network. Thus,C(K, Jℓ, Jr, iℓ, ir; P ) denotes
the closure of the set of all achievable rate-tuples, where
(R1, . . . , RK) is achievable if, as the block-lengthn tends
to infinity, the average probability of error decays to zero.
Similarly, we defineCΣ(K, Jℓ, Jr, iℓ, ir; P ) as the sum-rate
capacity, i.e., the supremum of the sum-rate

∑K

k=1 Rk over all
achievable tuples(R1, . . . , RK). The high-SNR regime of the
sum-rate capacity is characterized by themultiplexing gain:1

S(K, Jℓ, Jr, iℓ, ir) , lim
P→∞

CΣ(K, Jℓ, Jr, iℓ, ir; P )
1
2 log(P )

.

Here and throughoutlog(·) denotes the natural logarithm.

C. Main result

Definition 1. Define the integerγ as

γ ,

⌈

K − Jℓ − iℓ − 1

Jℓ + Jr + iℓ + ir + 2

⌉

. (3)

Theorem 1. The multiplexing gain of the described network
is given by

S(K, Jℓ, Jr, iℓ, ir) = K − γ. (4)

Specializing Theorem 1 to the case whereiℓ = ir = Jr = 0,
so that in particular, each receiver has access only to its own
receiving antenna, recovers the result in [3].

Remark 1. Notice that in Expression(4), Jℓ and iℓ (resp.Jr

andir) play the same role. This shows an equivalence between

1The multiplexing gain is also referred to as the “high-SNR slope”, “pre-
log”, or “degrees of freedom”

cognition of messages at the transmitters and clustered local
decoding at the receivers.

As a corollary to Theorem 1 we can derive theasymptotic
multiplexing gain per-user:

S∞(Jℓ, Jr, iℓ, ir) , lim
K→∞

S(K, Jℓ, Jr, iℓ, ir)

K
.

Corollary 1. The asymptotic multiplexing gain per-user of the
described network is given by

S∞(Jℓ, Jr, iℓ, ir) =
Jℓ + Jr + iℓ + ir + 1

Jℓ + Jr + iℓ + ir + 2
. (5)

Specializing Corollary 1 to the case whereJℓ = Jr = 0,
so each transmitter knows only its own message, recovers the
result in [5].

Remark 2. The asymptotic multiplexing gain per-user in(5)
depends on the parametersJℓ, Jr, iℓ, andir only through their
sum. Thus, in the considered setup the asymptotic multiplexing
gain per-user only depends on the total amount of side-
information at the transmitters and receivers and not on how
the side-information is distributed. In particular, cognition of
messages at the transmitters and clustered local decoding at
the receivers are equally valuable, and—despite the asym-
metry of the interference network—also left and right side-
information are equally valuable.

D. The symmetric interference network

In this subsection, we present results for a different network
with symmetric interference. For proofs, see [6].

We consider a similar communication scenario as presented
in Section I-B but where the channel law (1) is replaced by

Yk,t = αXk−1,t + Xk,t + αXk+1,t + Nk,t, 1 ≤ k ≤ K.

(Here,X0,t = XK+1,t = 0, for all t ∈ {1, . . . , n}.)
For all integersp ≥ 1, we denote byHp(α) thep×p matrix

with value 1 on the diagonal, valueα above and below the
diagonal, and value 0 elsewhere.

Theorem 2. If the parametersiℓ, ir, Jℓ, Jr are such that
iℓ+Jℓ = ir +Jr anddet (Hiℓ+Jℓ+1(α)) 6= 0, then the asymp-
totic multiplexing gain per-user of the symmetric interference
network is given by

Ssym
∞ (Jℓ, Jr, iℓ, ir) =

iℓ + Jℓ + 1

iℓ + Jℓ + 2
.

Remark 3. 1) Like the original asymmetric network, the
symmetric interference network exhibits an equivalence
between cognition of messages at the transmitters and
clustered local decoding at the receivers.

2) The hypothesisdet (Hiℓ+Jℓ+1(α)) 6= 0 in Theorem 2
reflects the fact that, unlike in the original asymmetric
network, the asymptotic multiplexing gain per-user for
the symmetric setup depends on the specific value of
α 6= 0. This issue is further addressed in [6].

3) In the symmetric interference network double the amount
of side-information is required to achieve the same
multiplexing gain as in the original network.



II. PROOF

Before proving Theorem 1, we provide some intuition about
our upper and lower bounds. The idea of the lower bound is
to silenceγ transmitters and thereby split the network into
non-interfering subnets which can be treated separately. In
each subnet, some of the transmitters use simple single-user
encoding schemes and some of the transmitters use dirty-
paper coding (DPC) [7] to mitigate the interference at the
corresponding receiver. Accordingly, some of the receivers
apply successive interference cancellation and some of the
receivers apply dirty-paper decoding.

For our upper bound we extend Sato’s Multi-Access Chan-
nel (MAC) bound [8] to more general interference networks
with cognitive transmitters and multi-antenna receivers having
side-information (see also [3], [4]). More specifically, inour
upper bound, this extended MAC bound is preceded by the
following two steps. We first partition theK receivers into
groups A and B, and within each group we allow the receivers
to cooperate. Then, we let a genie reveal specific linear
combinations of the noise sequences to the receivers in Group
A. These linear combinations are such that whenever the
receivers in Group A have decoded their intended messages
correctly, jointly they can reconstruct the outputs observed
at the receivers in Group B (Remark 6 ahead). Obviously,
these two enhancements can only increase the capacity region,
and thus the multiplexing gain. For the resulting interference
network (with cognitive transmitters and multi-antenna re-
ceivers having side-information) we apply our extended MAC
bound. That means, we show that the capacity region of
the resulting interference network is included in the capacity
region of a MAC (with cognitive transmitters) where the
receiver is formed by the union of Group A receivers (thus
having multiple antennas and side-information) and is required
to decode all messagesM1, . . . , MK , i.e., also the messages
intended to the receivers in Group B. We conclude our upper
bound by proving that the multiplexing gain of this cognitive
multi-antenna MAC is upper bounded byK − γ.

A. Lower bound

We derive a lower bound by giving an appropriate coding
scheme based on silencing certain transmitters, on Costa’s
dirty-paper coding, and on successive interference cancella-
tion. We silenceγ transmitters and let the remaining(K − γ)
transmitters send their messages at rates1

2 log(1 + P ) or
1
2 log(1 + α2P ). Such a scheme achieves the claimed mul-
tiplexing gain.

Before explaining which transmitters are silenced, we define

β , Jℓ + Jr + iℓ + ir + 2, (6)

and q , (K − β ⌊K/β⌋). For eachp ∈ {1, . . . , ⌊K/β⌋}, we
silence Transmitterpβ, and ifq > (iℓ+Jℓ+1) also Transmitter
K.

This splits the network into⌈K/β⌉ non-interfering subnets
(sub-networks). The first⌊K/β⌋ subnets all have the same
topology. They consist of(Jℓ + Jr + iℓ + ir + 1) active
transmitting antennas and(Jℓ + Jr + iℓ + ir + 2) receiving

antennas. We refer to these subnets asgenericsubnets. IfK
is not a multiple ofβ, there is an additional last subnet with
{

q active transmitting antennas, ifq ≤ (Jℓ + iℓ + 1),

(q − 1) active transmitting antennas, ifq > (Jℓ + iℓ + 1),

and withq receiving antennas. We refer to such a subnet as a
reducedsubnet.

As we shall see, in our scheme each transmitter ignores
the part of its side-information pertaining to the messages
transmitted in other subnets. Likewise, each receiver ignores
the outputs of antennas outside its own subnets. Therefore,we
can describe our scheme for each subnet separately.

We first describe our scheme for a generic subnet. For
simplicity, we assume that the parametersK, Jℓ, Jr, iℓ, ir are
such that the first subnet is generic and describe the scheme
for the first subnet. Moreover, we assumeir > 0. Whenir = 0
a similar scheme can be applied, see [6].

In the first subnet, we wish to transmit Messages
M1, . . . , MJℓ+Jr+iℓ+ir+1. Define the sets

G1 = {1, . . . , iℓ + 1},

G2 = {iℓ + 2, . . . , iℓ + Jℓ + 1},

G3 = {iℓ + Jℓ + 2, . . . , iℓ + Jℓ + Jr + 1},

G4 = {iℓ + Jℓ + Jr + 2, . . . , iℓ + Jℓ + Jr + ir + 1}.

Messages1, . . . , (iℓ + 1) are transmitted as follows.

• For eachk ∈ G1, Transmitterk ignores the interference
and encodes its messageMk as for a Gaussian single-user
channel using a Gaussian codebook of powerP .

• Receiver 1 decodes MessageM1 based on the
interference-free outputsY 1.
If iℓ > 0, Receiver2 first decodes MessageM1 also based
on Y 1. Then, it reconstructsX1 (which is a function of
M1 only), and subtractsα times its reconstruction from
the output sequenceY 2. It finally decodes MessageM2

based on this difference. We refer to such a procedure as
successive interference cancellation.
More generally, for eachk ∈ G1, Receiverk uses suc-
cessive interference cancellation to first decode Message
M1, followed by MessageM2, etc. up to MessageMk.

• Notice that, for eachk ∈ G1, if the previous messages
M1, . . . , Mk−1 were decoded correctly, then Message
Mk can be decoded based on the interference-free signal
Xk + Nk, where Nk , (Nk,1, . . . , Nk,n). Thus, in
the proposed scheme, MessagesM1, . . . , Mi1+1 can be
communicated with arbitrary small average probability of
error at ratesR1 = . . . = Riℓ+1 = 1

2 log(1 + P ).

If Jℓ ≥ 1, Messages(iℓ +2), . . . , (iℓ +Jℓ +1) are transmitted
as follows.

• For each k ∈ G2, Transmitter k can use its side-
information to compute the interference termαXk−1.
Indeed, in our scheme the input sequenceXk−1 depends
only on messagesMiℓ+1, . . . , Mk−1, and these messages
are known also to Transmitterk, because(k−(iℓ +1)) ≤
Jℓ, for all k ∈ G2.



• For eachk ∈ G2, Transmitterk uses a dirty-paper code
of power P and rateRk = 1

2 log(1 + P ) to transmit
its messageMk and mitigate the interferenceαXk−1

experienced at the antenna of Receiverk.
• For eachk ∈ G2, Receiverk decodes MessageMk based

on the output sequenceY k using dirty-paper decoding.

If Jr ≥ 1, Messages(iℓ + Jℓ + 2), . . . , (iℓ + Jℓ + Jr + 1)
are transmitted as follows.

• For each k ∈ G3, Transmitter k can use its side-
information to compute the signal sent by its right
neighborXk+1. Indeed, in our scheme the transmitted
sequenceXk+1 depends only on messagesMk+1, . . . ,
Miℓ+Jℓ+Jr+2, and where these messages are known to
Transmitterk, because((iℓ +Jℓ +Jr +2)− k) ≤ Jr, for
all k ∈ G3.

• For eachk ∈ G3, Transmitterk uses a dirty-paper code
of powerα2P and rateRk = 1

2 log(1 + α2P ) to encode
its messageMk and mitigate the “interference”Xk+1

experienced at the antenna of Receiver(k +1). Denoting
the resulting dirty-paper sequence bỹXk, Transmitterk
sends the scaled sequenceXk = 1

α
X̃k over the channel.

Since the sequencẽXk is average block-power con-
strained to(α2P ), the transmitted sequenceXk is av-
erage block-power constrained toP .

• Recall that by our assumptioniℓ ≥ 1, for eachk ∈ G3,
Receiverk has access to the antenna of Receiver(k +
1). Therefore, Receiverk can use dirty-paper decoding
to decode MessageMk based on the output sequence
Y k+1 = Xk+1 + αXk + Nk+1, which in our scheme
is given byXk+1 + X̃k + Nk+1.

Messages(iℓ + Jℓ + Jr + 2), . . . , (iℓ + Jℓ + Jr + ir + 1) are
transmitted as follows.

• For eachk ∈ G4, Transmitterk encodes its message as for
an interference-free Gaussian single-user channel using
Gaussian codebooks of powerP .

• For eachk ∈ G4, Receiverk applies successive in-
terference cancellation, but starting with the last out-
put sequenceY iℓ+Jℓ+Jr+ir+2 and the last Message
Miℓ+Jℓ+Jr+ir+1. More precisely, for eachk ∈ G4,
Receiver k repeatedly applies the successive inter-
ference cancellation procedure and decodes messages
Miℓ+Jℓ+Jr+ir+1, Miℓ+Jℓ+Jr+ir

, etc., up toMk.
• For each k ∈ G4, if the previous messages

Miℓ+Jℓ+Jr+ir+1, . . . , Mk+1 were decoded correctly,
MessageMk can be decoded based on the interference-
free, but attenuated, signalαXk + Nk+1. Therefore,
MessageMk can be transmitted with arbitrary small
average probability of error at a rate12 log(1 + α2P ).

This coding scheme achieves a multiplexing gain(J + iℓ +
ir +1) over a generic subnet. A similar scheme over a reduced
subnet achieves multiplexing gainq, whenq ≤ (Jℓ + iℓ + 1),
and multiplexing gain(q − 1), whenq > (Jℓ + iℓ + 1).Thus,
over the entire network our scheme achieves a multiplexing
gain of K − γ, which concludes the lower bound.

B. Upper Bound

If γ = 0, then the upper bound follows from the Max-
Entropy Theorem [9]. Thus, in the following we assume that
K, Jℓ, Jr, iℓ, ir are such thatγ ≥ 1.

We first briefly sketch the derivation of our upper bound,
followed by a proof in Subsections II-B1—II-B4. To prove our
desired upper bound we introduce aCognitive MAC Network,
whose capacity regionCMAC(K, Jℓ, Jr, iℓ, ir; P ) satisfies

C(K, Jℓ, Jr, iℓ, ir; P ) ⊆ CMAC(K, Jℓ, Jr, iℓ, ir; P ), (7)

and whose multiplexing gainSMAC(K, Jℓ, Jr, iℓ, ir) satisfies

SMAC(K, Jℓ, Jr, iℓ, ir) ≤ K − γ. (8)

We describe the Cognitive MAC Network in Subsec-
tions II-B1–II-B3. Specifically, we first enhance our original
network to aRx-Cooperative Network, then we enhance this
latter network to aGenie-Aided Network, and finally we
modify the latter to the Cognitive MAC Network.

1) Rx-Cooperative Network:The Rx-Cooperative Network
is defined as the original network described in Section I with
the following enhancement. We partition the set of receivers
into Group A and Group B, as described shortly, and let all
receivers within a group cooperate. Group A is defined as the
set of all Receiversk, for which k lies in A ,

⋃γ−1
m=0 Am,

where

Am ,

{

{(γ − 1)β + iℓ + 2, . . . , K} m = γ − 1

{mβ + iℓ + 2, . . . , (m + 1)β − ir} m < γ − 1,

and where recall thatβ is defined as(Jℓ + Jr + iℓ + ir + 2).
Group B consists of all other receivers, i.e., it includes each
Receiverk, for which k ∈ B , ({1, . . . , K} \ A).

Remark 4. The setAγ−1 has at least(Jℓ + 1) and at most
(β + Jℓ) elements.

Remark 5. The union of receivers in Group A observes all
output sequences, except for output sequences{Y 1+mβ}

γ−1
m=0.

2) Genie-Aided Network:The Genie-Aided Network is
defined as the Rx-Cooperative Network with the following
enhancement. It is assumed that a genie reveals to the receivers
in Group A the sequencesV 0, . . . , V γ−1, where

V 0 , N 1 +

Jℓ+iℓ+1
∑

ν=1

(

−
1

α

)ν

N1+ν ,

and, form ∈ {1, . . . , γ − 1}:

V m , N 1+mβ +

Jℓ+iℓ+1
∑

ν=1

(

−
1

α

)ν

N 1+mβ+ν

+

Jr+ir
∑

ν=1

(−α)
ν
N 1+mβ−ν .

Remark 6. The genie informationV 0, . . . , V γ−1 is such that,
for given encoding functionsf (n)

1 , . . . , f
(n)
K as in (2), (i.e., for

encoding functions exploiting the cognition at the transmitters)
the output sequences observed at the receivers in Group B can



be reconstructed from the messages{Mk}k∈A intended to the
receivers in Group A, the output sequences observed at the
receivers in Group A, and the genie information.

Proof of Remark 6:By Remark 5, it suffices to show
that the output sequences{Y 1+mβ}

γ−1
m=0 can be perfectly

reconstructed from the messages{Mk}k∈A, all other channel
output sequences, and the genie information.

We first notice that by the definition of the setA
and by Remark 4, the set{Mk}k∈A includes messages
{Miℓ+2+ν+mβ}0≤ν≤Jℓ+Jr

0≤m≤γ−1
, where out of range indices should

be ignored. Thus, based on the messages{Mk}k∈A the input
sequences{XJℓ+iℓ+2+mβ}

γ−1
m=0, can be reconstructed as:

Xiℓ+Jℓ+2+mβ

= f
(n)
iℓ+Jℓ+2+mβ(Miℓ+2+mβ, . . . , Miℓ+Jℓ+Jr+2+mβ).

Using these reconstructed input sequences, the output se-
quences observed at the receivers in Group A, and the genie-
information {V m}γ−1

m=0 it is then possible to reconstruct the
channel outputs{Y 1+mβ}

γ−1
m=0 as follows:

Y 1 = −

Jℓ+iℓ+1
∑

ν=1

(

−
1

α

)ν

Y 1+ν

+

(

−
1

α

)Jℓ+iℓ+1

XJℓ+iℓ+2 + V 0

and, form ∈ {1, . . . , γ − 1},

Y 1+mβ

= −

Jℓ+iℓ+1
∑

ν=1

(

−
1

α

)ν

Y 1+mβ+ν −

ir+Jr
∑

ν=1

(−α)
ν
Y 1+mβ−ν

+

(

−
1

α

)Jℓ+iℓ+1

XJℓ+iℓ+2+mβ

− (−α)
Jr+ir+1

XJℓ+iℓ+2+(m−1)β + V m.

3) Cognitive MAC Network:The Cognitive MAC Network
is obtained from the Genie-Aided Network by eliminating the
receivers in Group B and by requiring that the receivers in
Group A decodeall the messagesM1, . . . , MK . Since the
receivers in Group A can cooperate and the transmitters are
unchanged compared to the original network, the Cognitive
MAC Network is indeed a MAC with cognitive transmitters. In
the following, we shall refer to the union of Group A receivers
as the Group A receiver.

4) Analysis: As previously outlined, the desired upper
bound onS(K, Jℓ, Jr, iℓ, ir) follows by Inclusion (7) and
Upper Bound (8). We first sketch the proof of (7), followed
by the proof of (8) in Lemma 2 ahead. For details, see [6].

Towards proving (7), we notice that cooperation and genie-
information at the receivers can only increase the capacity
region. Therefore, the capacity regions of the Rx-Cooperative
Network, CCoop(K, Jℓ, Jr, iℓ, ir; P ), and of the Genie-Aided
Network,CGenie(K, Jℓ, Jr, iℓ, ir; P ), trivially satisfy

C(K, Jℓ, Jr, iℓ, ir; P ) ⊆ CCoop(K, Jℓ, Jr, iℓ, ir; P )

⊆ CGenie(K, Jℓ, Jr, iℓ, ir; P ).

Combined with the following Lemma 1, this establishes (7).

Lemma 1. The capacity region of the Genie-Aided Network is
included in the capacity region of the Cognitive MAC Network:

CGenie(K, Jℓ, Jr, iℓ, ir; P ) ⊆ CMAC(K, Jℓ, Jr, iℓ, ir; P ).

Proof: Follows by proving that every coding scheme
for the Genie-Aided Network can be modified to a coding
scheme for the Cognitive MAC Network such that whenever
the original scheme is successful (i.e, all messages are decoded
correctly), then so is the modified scheme.

The idea of the modified scheme is to use the same encod-
ings as in the original scheme and to let the Group A receiver
apply the following three decoding steps: 1.) it first decodes
Messages{Mk}k∈A as in the original scheme; 2.) it then
attempts to reconstruct the channel output sequences observed
by the Group B receivers in the Genie-Aided Network (see
Remark 6); and 3.) finally, based on these reconstructions
it decodes the remaining messages in the same way as the
Group B receivers in the original scheme.

Lemma 2. The multiplexing gain of the Cognitive MAC
Network satisfies

SMAC(K, Jℓ, Jr, iℓ, ir) ≤ K − γ.

Proof: Based on showing that the multiplexing gain is
not increased by the genie-information, and thus it is upper
bounded by the number of antennas observed at the Group A
receiver.
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