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Abstract—We consider the lossless Kaspi/Heegard-Berger
source coding problem where an encoder communicates a com-
mon description of two sources to two decoders, and each
decoder wants to reconstruct one of the sources with the help
of side information. We present new results on the utility of
encoder side information for this scenario. We show that for
some sources and side informations—e.g., for some instances of
conditionally less noisy side information—the minimum rate that
is required to describe the sources is strictly reduced when the
side information is also known at the encoder. On the other
hand, we identify classes of sources and side informations—
e.g., physically degraded side information—where encoder side
information does not change the minimum description rate.

We show similar results for a scenario where one decoder has
to reconstruct both sources and for a scenario where the encoder
is informed only about one of the decoder’s side information.

I. INTRODUCTION

Consider the lossless Kaspi/Heegard-Berger source-coding
problem [1], [2] (Figure 1 without dashed arrows) in which an
encoder observes two correlated, memoryless sources Xn

1 ,
(X1,1, . . . , X1,n) and Xn

2 , (X2,1, . . . , X2,n) and communi-
cates a common description M to Decoders 1 and 2. Decoder 1
observes the side information Y n

1 , (Y1,1, . . . , Y1,n) and
wishes to reconstruct Xn

1 losslessly based on Y n
1 and M .

Similarly, Decoder 2 wishes to reconstruct Xn
2 losslessly based

on Y n
2 , (Y2,1, . . . , Y2,n) and M . We refer to this setup as

the scenario with an ignorant encoder for the encoder does
not observe the side informations Y n

1 and Y n
2 .

The minimum rate of M that is required to describe the
two sources losslessly in this scenario, R∗ign, is known for the
following sources and side informations:
(a) physically degraded side information, i.e., (Xn

1 , X
n
2 ) →

Y n
1 → Y n

2 forms a Markov chain [2];
(b) Y n

1 is conditionally less noisy [3] than Y n
2 given Xn

2 and
H(Xn

2 |Y n
1 ) ≤ H(Xn

2 |Y n
2 );

(c) equal sources Xn
1 = Xn

2 [4]; and
(d) complementary side information Y n

1 = Xn
2 and Y n

2 = Xn
1

[4].
Notice that case (b) includes case (a) as a special case.

The main interest of this paper is in the slightly modified
scenario with an informed encoder, in which the encoder
knows the side informations Y n

1 and Y n
2 (see Figure 1 with

dashed arrows). We are particularly interested in answering the
question whether the minimum description rate with informed

(Xn
1 , X

n
2 )Y n
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Fig. 1. The Kaspi/Heegard-Berger lossless source-coding problem with two
sources. With dashed arrows it depicts the scenario with an informed encoder
and without the dashed arrows the scenario with an ignorant encoder.

encoder, R∗inf, can be strictly smaller than the minimum
description rate with ignorant encoder, i.e.,

R∗inf < R∗ign. (1)

In fact, up to present, R∗inf, is known only in the above cases
(c) and (d), where

R∗inf = R∗ign. (2)

Thus, in particular, when the two decoders are interested in
reconstructing the same source Xn

1 = Xn
2 , then encoder side

information does not reduce the minimum description rate.
This is different for the lossy version of our source coding

problem, where encoder side information can strictly reduce
the minimum description rate [1], [5], [6].

In this paper, we show that this is also the case when the two
decoders wish to losslessly reconstruct two different sources.
That means, we show that in our problem (1) holds for certain
sources and side informations, e.g., for some instances of
conditionally less noisy side information. We further show
that for some sources and side informations the minimum
description rate is reduced even when the encoder knows only
one of the decoder’s side information, e.g., Y n

1 but not Y n
2 .

On the other hand, we prove that for a certain class of
sources and side informations knowledge of both side informa-
tions Y n

1 and Y n
2 at the encoder does not reduce the minimum

description rate in our lossless problem and thus (2) holds.



This class includes physically degraded side information as
special case.

We also present single-letter characterizations of the mini-
mum description rate with informed encoder for some classes
of sources and side informations.

Lastly, we consider a modified scenario, in which one of the
decoders wishes to reconstruct both sources. We show that also
here encoder side information can strictly reduce the minimum
description rate, and we characterize the minimum description
rates (both with informed and with ignorant encoder) for some
classes of sources and side informations.

II. PROBLEM STATEMENT

The setup is characterized by four finite alphabets X1,
X2, Y1, and Y2 and a joint probability law PX1X2Y1Y2 over
these alphabets. Let the tuple (X1, X2, Y1, Y2) be distributed
according to PX1X2Y1Y2

, and let (Xn
1 , X

n
2 , Y

n
1 , Y

n
2 ) denote n

independently and identically distributed copies of this tuple.
In the informed-encoder scenario, the encoder produces a

common description

M , f
(n)
inf (Xn

1 , X
n
2 , Y

n
1 , Y

n
2 )

using some encoder mapping f (n)inf : Xn
1 ×Xn

2 ×Yn
1 ×Yn

2 →
M. In the ignorant-encoder scenario, it produces

M , f
(n)
ign (Xn

1 , X
n
2 )

using some mapping f (n)ign : Xn
1 ×Xn

2 →M. In both scenarios,
each decoder j ∈ {1, 2} produces its reconstruction sequence

X̂n
j , g

(n)
j (M,Y n

j )

using some decoder mapping g(n)j :M×Yn
j → Xn

j .
A triple (f

(n)
inf , g

(n)
1 , g

(n)
2 ) or (f

(n)
ign , g

(n)
1 , g

(n)
2 ) consisting

of an encoder and two decoder mappings is called an n-
block source code with informed or with ignorant encoder,
respectively. Its description rate is defined as

κ(n) ,
1

n
log2|M|

and the average joint error probability as

P (n)
e , Pr[X̂n

1 6= Xn
1 or X̂n

2 6= Xn
2 ].

A rate R ≥ 0 is said to be achievable with informed
encoder if for every ε > 0 and all sufficiently large integers n
there exists an n-block source code (f

(n)
inf , g

(n)
1 , g

(n)
2 ) such

that P (n)
e < ε and κ(n) ≤ R + ε. In the scenario with an

ignorant encoder, achievability is defined similarly. We define
the minimum description rate:

R∗inf , min{R ≥ 0 : R achievable with informed encoder},
R∗ign , min{R ≥ 0 : R achievable with ignorant encoder}.

Since the encoder can always ignore the side information,

R∗inf ≤ R∗ign. (3)

Note that R∗ign depends on the joint distribution PX1X2Y1Y2

only via the marginal distributions PX1X2Y1 and PX1X2Y2 ; the
same is not true for R∗inf.

Remark 1. The scenario with an informed encoder can be
viewed as a scenario with an ignorant encoder if in the latter
the sources are augmented with the side informations, i.e., if
X1 is replaced by (X1, Y1) and X2 by (X2, Y2).

The following special cases will be considered. We say that
the side information is physically degraded if

(X1, X2)→ Y1 → Y2 or (X1, X2)→ Y2 → Y1

forms a Markov chain. The side information Y1 is condition-
ally less noisy than Y2 given the source component X2 (ab-
breviated (Y1 � Y2 |X2)) [3], if for all finite random variables
W that form the Markov chain W → (X1, X2)→ (Y1, Y2):

I(W ;Y1 |X2) ≥ I(W ;Y2 |X2).

We use the notation (X1, X2) ∼ DSBS (p) to indicate
that (X1, X2) is a doubly-symmetric binary source with pa-
rameter p [7]. Similarly, E ∼ Bern (p) indicates that E is
a Bernoulli-p random variable. We further use the notation
BSC (p) for a binary symmetric channel with parameter p and
BEC (q) for a binary erasure channel with parameter q [7].

III. BOUNDS ON R∗IGN AND R∗INF

Lemma 1 (Theorem 2 in [8]). With an ignorant encoder:

R∗ign ≤ min
W

{
max

{
I(W ;X1X2 |Y1), I(W ;X1X2 |Y2)

}
+H(X1 |WY1) +H(X2 |WY2)

}
where the minimization is over all finite random variables W
that take value in a set W of size |W| ≤ |X1 × X2| + 3 and
that satisfy the Markov chain W → (X1, X2)→ (Y1, Y2).

Proposition 1. With an informed encoder:

R∗inf ≥ max
{
H(X1 |Y1) +H(X2 |X1Y1Y2),

H(X2 |Y2) +H(X1 |X2Y1Y2)
}

and

R∗inf ≤ min
W

{
max

{
I(W ;X1X2Y2 |Y1), I(W ;X1X2Y1 |Y2)

}
+H(X1 |WY1) +H(X2 |WY2)

}
where the minimization is over all finite random variables W
that take value in a setW of size |W| ≤ |X1×X2×Y1×Y2|+3.

Proof: The lower bound follows by revealing the pair
(Y1, Y2) to one of the decoders and by Lemma 2-(a) on the
next page. The upper bound follows by evaluating Lemma 1
for the augmented sources (X1, Y1) and (X2, Y2), see Re-
mark 1.

Remark 2. The upper and lower bounds in Proposition 1 do
not coincide in general (see [9, Proposition 3.9]).



IV. EXACT RESULTS FOR R∗IGN AND R∗INF

The following existing results for ignorant encoder will
serve for comparison.

Lemma 2 (Previous results for ignorant encoder). The mini-
mum description rate R∗ign is known for the following distri-
butions PX1X2Y1Y2

:
(a) If the side information is physically degraded, i.e.,

(X1, X2)→ Y1 → Y2 forms a Markov chain, then [2]

R∗ign = H(X2 |Y2) +H(X1 |X2Y1).

(b) If (Y1 � Y2 |X2) and H(X2 |Y1) ≤ H(X2 |Y2), then [3]

R∗ign = H(X2 |Y2) +H(X1 |X2Y1).

(c) If we have equal sources X1 = X2 = X , then [4]

R∗ign = max
j∈{1,2}

H(X |Yj). (4)

(d) If the decoders have complementary side information, i.e.,
Y1 = X2 and Y2 = X1, then [4]

R∗ign = max{H(X1 |X2), H(X2 |X1)}.

Further results on R∗ign are obtained by exchanging the in-
dices 1 and 2 in the results above.

Remark 3. In cases (c) and (d) the minimum description
rate for an informed encoder coincides with the minimum
description rate for an ignorant encoder, i.e.,

R∗inf = R∗ign. (5)

In case (c), equality (5) follows from (4) and because
maxj∈{1,2}H(Xj |Yj) is a lower bound on the minimum
description rate even in the scenario with informed encoder.
In case (d), equality (5) holds because the sources (X1, X2)
determine the side information Y1 and Y2.

Theorem 1 (Informed encoder). For the following classes
of distributions PX1X2Y1Y2 , we can identify the minimum
description rate with informed encoder R∗inf:

(i) If the side information is physically degraded, i.e.,
(X1, X2)→ Y1 → Y2 forms a Markov chain, then

R∗inf = H(X2 |Y2) +H(X1 |X2Y1).

(ii) If X1 → (X2, Y1) → Y2 forms a Markov chain and
H(X2 |Y1) ≤ H(X2 |Y2), then

R∗inf = H(X2 |Y2) +H(X1 |X2Y1).

(iii) If X2 → (X1, Y1)→ Y2 and X1 → (X2, Y2)→ Y1 form
Markov chains, then

R∗inf = max
j∈{1,2}

H(X1X2 |Yj).

(iv) If H(X2Y2 |Y1) ≤ H(X2 |Y2), then

R∗inf = H(X2 |Y2) +H(X1 |X2Y1Y2).

Further results on R∗inf are obtained by exchanging the in-
dices 1 and 2 in the results above.

Proof: By Proposition 1. Specifically, the achievability
results follow by specializing the upper bound in Proposition 1
to the choices W = X2 (cases i and ii), W = (X1, X2)
(case iii), and W = (X2, Y2) (case iv).

Case (i) is included in case (ii) because (X1, X2)→ Y1 →
Y2 implies that the two conditions in (ii) are satisfied.

Remark 4. The two sets of distributions PX1X2Y1Y2
covered

by Theorem 1 and Lemma 2, resp., are not subsets of each
other. There are thus setups that we can solve with informed
encoder but not with ignorant encoder, and vice versa.

The following three examples illustrate some of the results
in Lemma 2 and Theorem 1. The first example satisfies the
conditions in (i) but not the ones in (iii) or (iv).
Example 1. Let (X1, X2) ∼ DSBS (p), p ∈ (0, 1/2), let Y1 =
X1 ⊕ X2, and let Y2 be the result of passing Y1 through a
BEC (q), q ∈ (0, 1). The setup is physically degraded because
(X1, X2) → Y1 → Y2 forms a Markov chain. Hence, by
Lemma 2-(a) and by Theorem 1-(i),

R∗inf = R∗ign = H(X2 |Y2) +H(X1 |X2Y1) = 1.

Our second example satisfies the conditions in (ii) but not
the conditions in (i), (iii), or (iv).
Example 2 (Example 2 in [3]). Let (X1, X2) ∼ DSBS (1/3),
and let the side information Y1 and Y2 be the results of
passing X2 through independent BEC (2/3) and BSC (1/4),
respectively. It holds that X1 → (X2, Y1) → Y2 forms a
Markov chain, and further inspection reveals (Y1 � Y2 |X2).
Moreover,

H(X2 |Y1) = 2/3,

H(X2 |Y2) = Hb(1/4) ≈ 0.81,

and hence, H(X2 |Y1) ≤ H(X2 |Y2). We can apply
Lemma 2-(b) and Theorem 1-(ii) to obtain

R∗inf = R∗ign = H(X2 |Y2) +H(X1 |X2Y1)

= Hb(1/4) +Hb(1/3).

Our third example satisfies the conditions in (iii) but not the
conditions in (i), (ii), or (iv).
Example 3. Let (X1, X2) ∼ DSBS (p), p ∈ (0, 1/2). Also, let
Y1 be the result of passing X2 through a BEC (q1) and Y2 be
the result of passing X1 through a BEC (q2). We assume that
the erasure events at the two BECs are independent and that
q1, q2 ∈ (0, 1/2). By Theorem 1-(iii),

R∗inf = max
j∈{1,2}

H(X1X2 |Yj) = max{q1, q2}+Hb(p).

The rate maxj∈{1,2}H(X1X2 |Yj) is also achievable without
encoder side information, and thus, also here, R∗ign = R∗inf.

The next example meets the conditions in case (b) of
Lemma 2. But only if q(2 + Hb(p)) ≤ 1, it also meets the
conditions in one of the cases of Theorem 1; namely case (iv).

Proposition 2. Let (X1, X2) ∼ DSBS (p), and independent
thereof let (E1, E2) be a pair of correlated binary random



variables with Ej ∼ Bern (qj), for qj ∈ (0, 1) and j ∈ {1, 2}.
Let Y1 , (Ỹ1, E2) and Y2 , (Ỹ2, E1), where

Ỹj ,

{
e if Ej = 1,

(X1, X2) if Ej = 0,
j ∈ {1, 2}.

Then,

R∗inf = max{q1, q2}+ PE1E2
(1, 1)Hb(p), (6a)

R∗ign = max{q1, q2}+min{q1, q2}Hb(p). (6b)

Proof: Equality (6b) follows from Lemma 2-(b). Equal-
ity (6a) follows from Proposition 1 where for the upper bound
we choose W , (W1,W2) with

Wj ,

{
Xj if Ej = 1,

e if Ej = 0.
j ∈ {1, 2}.

Theorem 2 (Utility of encoder side information). • For
distributions PX1X2Y1Y2 that satisfy the conditions
in cases (i), (ii), or (iii) of Theorem 1, encoder side
information does not reduce the minimum description
rate, i.e.,

R∗inf = R∗ign. (7)

• For some distributions PX1X2Y1Y2 , encoder side informa-
tion strictly reduces the minimum description rate; i.e.,

R∗inf < R∗ign. (8)

This is in particular the case for some distributions that
satisfy the conditions in case (iv) of Theorem 1 or the
conditions in case (b) of Lemma 2.

Proof: For case (i), equality (7) follows from Lemma 2-
(a) and Theorem 1-(i). For case (ii), equality (7) follows from
Lemma 2-(b), Theorem 1-(ii), and the fact that the Markov
chain X1 → (X2, Y1) → Y2 implies (Y1 � Y2 |X2). For
case (iii), equality (7) follows from Theorem 1-(iii) and by
noting that maxj∈{1,2}H(X1X2|Yj) is achievable also with
an ignorant encoder; in fact, it is achievable by describing the
pair (X1, X2) to both decoders, see Lemma 2-(c).

On the other hand, if in Proposition 2 we have
PE1E2(1, 1) = PE1E2(0, 0) = 0 and PE1E2(1, 0) = q and
PE1E2

(0, 1) = 1− q, for q ∈ (0, 1/2), then by (6)

R∗inf = 1− q,
R∗ign = 1− q + qHb(p),

and (8) holds for all p ∈ (0, 1).

V. SPECIAL CASE: DEGRADED SOURCE SETS

Consider the related scenario where Decoder 1 wants to
reconstruct the source pair (X1, X2), whereas Decoder 2 is
satisfied with reconstructing only the second source X2. More
specifically, our scenario here is as described in Section II
but where X1 has to be replaced by (X1, X2) and X̂1 has to
be replaced by (X̂1, X̂

(1)
2 ), where X̂(1)

2 denotes Decoder 1’s
reconstruction of the source component X2.

Theorem 3 (Ignorant encoder). For degraded source sets and
ignorant encoder we have the following results:
(A) If H(X1X2 |Y1) ≥ H(X1X2 |Y2) or if H(X2 |Y1) ≥

H(X2 |Y2), then

R∗ign = H(X1X2 |Y1).

(B) If (Y1 � Y2 |X2), then

R∗ign = max
j∈{1,2}

H(X2 |Yj) +H(X1 |X2Y1).

(C) If X1 → (X2, Y2)→ Y1 forms a Markov chain, then

R∗ign = max
j∈{1,2}

H(X1X2 |Yj).

Proof: Replacing in the lower bound of Proposition 1
and in the upper bound of Lemma 1 the source X1 by the pair
(X1, X2), results in lower and upper bounds for this setup with
degraded source sets and uninformed encoder. The resulting
bounds suffice to establish cases (A) and (C). To establish the
desired result in case (B), we also need Lemma 2-(b), where
again we replace X1 by (X1, X2). Details omitted.

Theorem 4 (Informed encoder). For degraded source sets and
informed encoder, we have the following results:

(I) If H(X1X2 |Y1) ≥ H(X1X2 |Y2) or if H(X2 |Y1) ≥
H(X2 |Y2), then

R∗inf = H(X1X2 |Y1).

(II) If X1 → (X2, Y1)→ Y2 forms a Markov chain, then

R∗inf = max
j∈{1,2}

H(X2 |Yj) +H(X1 |X2Y1).

(III) If X1 → (X2, Y2)→ Y1 forms a Markov chain, then

R∗inf = max
j∈{1,2}

H(X1X2 |Yj).

(IV) If H(X2Y2 |Y1) ≤ H(X2 |Y2), then

R∗inf = H(X2 |Y2) +H(X1 |X2Y1Y2).

Proof: Follows from the bounds that result when in
Proposition 1 the source X1 is replaced by (X1, X2). Details
omitted.

Remark 5. The set of distributions PX1X2Y1Y2 covered by
Lemma 2 is included in the set of distributions covered
by Theorem 3. Similarly, the set of distributions PX1X2Y1Y2

covered by Theorem 1 is included in the set of distributions
covered by Theorem 4. The following Example 4 illustrates
that the inclusions are strict. Thus, with degraded source sets
we can derive more results than in the original setup, both for
ignorant and for informed encoder.

Example 4. Let (X1, X2) ∼ DSBS (p), p ∈ (0, 1/2), and let
(E1, E2) be independent of (X1, X2) with Ej ∼ Bern (qj),
for qj ∈ (0, 1) and j ∈ {1, 2}. Also, define

Yj =

{
Xj if Ej = 0

e if Ej = 1.



Notice that X1 → (X2, Y1)→ Y2 forms a Markov chain and
(Y1 � Y2|X2). Thus, by Theorem 3-(B) and Theorem 4-(II),

R∗inf = R∗ign = max
j∈{1,2}

H(X2 |Yj) +H(X1 |X2Y1)

= max
{
q1 +Hb(p), q2 + q1Hb(p)

}
.

For q1 = q2, this example does not satisfy the conditions in
any of the cases (a)–(d) of Lemma 2 nor the conditions in any
of the cases (i)–(iv) of Theorem 1.

The next example is covered by Theorem 3 but not by
Theorem 4. In fact, it meets the conditions in case (B) of
Theorem 3 for arbitrary q ∈ (0, 1/2), but the condition in
case (IV) of Theorem 4 only when q ≤ (2 +Hb(p))

−1.

Proposition 3. For degraded source sets and the distributions
PX1X2Y1Y2 of Proposition 2:

R∗inf = max {q1(1 +Hb(p)), q2 + PE1E2
(1, 1)Hb(p)} , (9a)

R∗ign = max{q1, q2}+ q1Hb(p). (9b)

Proof: Omitted. Similar to the proof of Proposition 2.
In the example of Propositions 2 and 3, the requirement

that Decoder 1 also decodes source X2 increases the minimum
description rates R∗inf and R∗ign whenever Decoder 1 gets the
worse side information, i.e., whenever q1 > q2.

Theorem 5 (Utility of encoder side information). For de-
graded source sets, we have the following results:
• For distributions PX1X2Y1Y2

that satisfy the conditions
in cases (I)–(III) of Theorem 4, encoder side information
does not reduce the minimum description rate, i.e.,

R∗inf = R∗ign. (10)

• For certain distributions PX1X2Y1Y2
, encoder side infor-

mation reduces the minimum description rate, i.e.,

R∗inf < R∗ign. (11)

This is in particular the case for some distributions that
satisfy the conditions in case (IV) of Theorem 4 or the
conditions in case (B) of Theorem 3.

Proof: The first statement follows from Theorems 3 and 4.
The second statement follows from Proposition 3 with the

same choice of parameters as in the proof of Theorem 2.
More precisely, if in Proposition 3 we have PE1E2(1, 1) =
PE1E2

(0, 0) = 0, PE1E2
(1, 0) = q, and PE1E2

(0, 1) = 1− q,
and q ∈ (0, 1/2), then by (9),

R∗inf = max{q(1 +Hb(p)), (1− q)},
R∗ign = 1− q + qHb(p),

and (11) holds for all p ∈ (0, 1).

VI. EXTENSION: PARTIALLY INFORMED ENCODER

We reconsider the original setup in Section II but now as-
sume that the encoder knows only the side information Y n

1 but
not Y n

2 . The encoder thus produces the common description

M , f
(n)
part (X

n
1 , X

n
2 , Y

n
1 )

using some mapping f
(n)
part : Xn

1 × Xn
2 × Yn

1 → M. The
minimum description rate, R∗part, is defined as R∗inf in Section II
but where f (n)inf needs to be replaced by f (n)part . Obviously,

R∗inf ≤ R∗part ≤ R∗ign.

Proposition 4. Let (X1, X2) ∼ DSBS (p) and let (E1, E2) be
independent of (X1, X2) with Ej ∼ Bern (qj), for qj ∈ (0, 1)
and j ∈ {1, 2}. Also, let Y1 , Ỹ1 and Y2 , (Ỹ2, E1), where

Ỹj ,

{
e if Ej = 1,

X1 if Ej = 0,
j ∈ {1, 2}.

Then,

R∗part = max
{
q1 +Hb(p), q2 +

(
1− q2 + PE1E2(1, 1)

)
Hb(p)

}
,

R∗ign = max
{
q1 +Hb(p), q2 + (1− q2 + q1)Hb(p)

}
.

Thus, when PE1E2(1, 1) < q1 , then

R∗part < R∗ign. (12)

Notice that for this example the encoder cannot determine Y n
2 .

Still, R∗inf = R∗part, i.e., here a partially informed encoder is as
good as a fully informed encoder.

Proof: Omitted. Similar to the proof of Proposition 2.
We immediately obtain the following theorem:

Theorem 6 (Utility of partial encoder side information).
There are distributions PX1X2Y1Y2 for which (12) holds and
the missing side information at the encoder, Y2, is not a deter-
ministic function of X1, X2, Y1, i.e, H(Y2|X1, X2, Y2) > 0.
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