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1 CEA, LIST, Communicating Systems Laboratory, BC 173, 91191 Gif-sur-Yvette, France

mireille.sarkiss@cea.fr
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Abstract—We derive upper and lower bounds on the secure
capacity-memory tradeoff of the two-user wiretap erasure BC
with cache memory at the weaker receiver. The bounds coincide
when the cache memory exceeds a given threshold. The lower
bound also exhibits that cache memories provide larger gains
under a secrecy constraint than without such a constraint.
Moreover, for a large set of parameters the capacity-memory
tradeoff is larger if only the weaker receiver has cache memory
than when this cache memory is split equally among the two
receivers.

The lower bound is based on a joint cache-channel coding
scheme that simultaneously exploits the cache contents and the
channel statistics. Such a joint design yields significant gains over
a separation-based design.

I. INTRODUCTION
Traffic in communication systems varies as a function of

the time of day. There are periods where network congestion
is high, resulting in packet loss, delivery delays and unsatis-
fied users. During other periods, the network is barely used.
Caching is an interesting approach that allows to lighten the
burden of the network during peak-times. Its main idea is to
take advantage of the low network-traffic periods to store parts
of the data on users’ local caches or on nearby servers. The
information stored in the caches can then be used to reduce
network traffic during congested periods.

In such scenarios, communication can be divided into two
phases: the caching phase and the delivery phase. The main
challenge is that during the caching phase, the receivers’
requests are unknown. One is thus obliged to store information
about all possibly requested files (i.e., the library) in the
receivers’ cache memories. As Maddah-Ali and Niesen showed
in their seminal work [1], with a smart caching strategy it is
nevertheless possible that the delivery (high-traffic) communi-
cation benefits from the cache memories more than the obvious
local caching gain.

Another important aspect of these systems is secrecy. Wire-
less channels are extremely vulnerable against eavesdropper
attacks. In this paper, we focus on a two-receiver erasure
broadcast channel (BC) where the weaker receiver has a
cache memory. We analyze the rates at which the transmitter
can communicate with the two receivers while preventing an
external eavesdropper from learning any of the two messages.
The eavesdropper is assumed to be weaker (degraded) than the
weaker user, and has no access to the cache memories.

Secret communication in cache-aided BCs has previously
been studied in [4], [5]. In both works the BC was noiseless for
all legitimate receivers as well as for the eavesdropper, and all
legitimate receivers had equal cache memory size. Moreover,

these previous works imposed stronger secrecy constraints than
what we do in this paper. In [4] the eavesdropper is not
allowed to learn any information about the entire library. In
[5] any legitimate receiver acts also as an eavesdropper and is
not allowed to learn anything about the entire message tuple
intended for the other receivers. In contrast, in this paper, we
require only that the eavesdropper cannot learn any information
about any of the messages individually. It is allowed to learn,
for example, the XOR of two messages.

We propose a new secure coding scheme and a new
information-theoretic converse for the wiretap erasure BC with
cache memory at only the weaker receiver. The correspond-
ing lower and upper bounds on the secure capacity-memory
tradeoff are close for most scenarios and coincide when the
weak receiver’s cache memory exceeds a certain size. We thus
establish the exact secure capacity-memory tradeoff for cache
memory sizes above this threshold.

For comparison, we also present upper and lower bounds
on the secure capacity-memory tradeoff when both receivers
have cache memories of equal size. These bounds show that
for a large range of parameters, the capacity-memory tradeoff
is larger when all the cache memory is allocated to the weaker
receive instead of allocating half of it to both receivers. This
finding confirms our choice of cache memory assignment. The
lower bound further exhibits that under our secrecy constraint,
cache memories provide larger gains than in the standard
scenario without any secrecy constraints [3]. The reason being
that the cache content cannot only help to improve the rate of
communication, but also to make it more secure. In particular,
as we shall see (and as proposed also in [4]), cache content
can be used as a one-time pad.

Our secure coding scheme extends the piggyback coding
in [2], [3] to a wiretap scenario. The so obtained secure
piggyback coding is a joint cache-channel coding scheme
where the design of encoder and decoders simultaneously
exploits the cache content and the channel statistics. This is
in contrast to separate cache-channel coding schemes where:
the encoder consists of a cache-encoder that does not depend
on the channel statistics followed by a channel encoder that
does not depend on the cache content; and each decoder
consists of a channel decoder followed by a cache decoder
that are subject to similar restrictions. Most previous works
[1], [4], [5] assume such a separation-based architecture (both
under secrecy constraints and in the standard model), and
focus only on the design of the cache encoder and decoders
while assuming that the BC is a noise-free pipe from the
transmitter to all receivers. This approach was shown to be
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Fig. 1. Packet-erasure BC with two legitimate receivers and an eavesdropper.
Receiver Rx1 has cache memory of size M.

highly suboptimal when there is no secrecy constraint [2], [3];
the same is shown here in the presence of such a constraint.

II. PROBLEM DEFINITION
We consider a wiretap broadcast channel (BC) with one

transmitter, two receivers and an eavesdropper, as shown in
Figure 1. The BC is a memoryless packet-erasure BC with
input alphabet X := {0, 1}F and same output alphabet Y :=
X ∪∆ at both legitimate receivers and the eavesdropper. Here,
F is a fixed positive integer and ∆ indicates the loss of a packet
at the receiver. Let δ1, δ2 and δZ be the erasure probabilities
at receiver 1, receiver 2, and the eavesdropper, respectively,
where we assume that

0 ≤ δ2 ≤ δ1 ≤ δZ ≤ 1. (1)

The weaker receiver 1 has access to a local cache memory
of size nM bits; the stronger receiver 2 has no cache memory.
The transmitter accesses a library of D > 2 independent mes-
sages W1, . . . ,WD of rate Rs each. Every message Wd, for
d ∈ {1, . . . , D}, is uniformly distributed over {1, . . . , b2nRsc},
where n is the transmission blocklength. Receiver 1 demands
message Wd1 and receiver 2 message Wd2 . We denote by d1

and d2 in {1, . . . , D} the demands of receivers 1 and 2.
The communication consists of two consecutive phases: a

first caching phase, where information is stored in receiver 1’s
cache memory, and a subsequent delivery phase, where the de-
manded messages Wd1 and Wd2 are conveyed to the receivers.

During the caching phase, the receivers’ demands are
unknown, and thus receiver 1’s cache content V will be a
function of the entire library:

V := g(W1, . . . ,WD), (2)

for some caching function g : {1, . . . , b2nRsc}D → V and
cache memory alphabet V := {1, . . . , b2nMc}.

Prior to the delivery phase, the transmitter and both re-
ceivers1 learn the entire demand vector d := (d1, d2). The
transmitter then produces its channel inputs as

Xn := fd(W1, . . . ,WD), (3)

for some function fd : {1, . . . , b2nRsc}D → Xn.
At the end of the delivery phase, both receivers attempt to

decode their demanded messages. After observing Y n1 , receiver
1 uses its cache content V to produce the guess

Ŵ1 := ϕ1,d(Y n1 , V ), (4)

1Informing all terminals of both demands requires zero communication rate.

for some function ϕ1,d : Yn × V → {1, . . . , b2nRsc}. After
observing Y n2 , receiver 2 produces the guess

Ŵ2 := ϕ2,d(Y n2 ), (5)

for some function ϕ2,d : Yn → {1, . . . , b2nRsc}.
A decoding error occurs if Ŵk 6= Wdk , for k ∈ {1, 2}. We

are interested in the worst-case probability of error

PWorst
e := max

d∈{1,...,D}2
P
[
{Ŵ1 6= Wd1} ∪ {Ŵ2 6= Wd2}

]
. (6)

The communication is considered secure if the eavesdrop-
per’s channel outputs Zn during the delivery phase provide no
information about any of the two demanded messages.

Definition 1. We say that a rate-memory pair (Rs,M) is
securely achievable if for every ε > 0, there exists a coding
scheme with sufficiently large blocklength n such that,

PWorst
e ≤ ε, (7)

and
1

n
I(Wdk , Z

n) < ε, k ∈ {1, 2}. (8)

Our main interest in this paper is the following quantity:

Definition 2. Given memory-sizeM, the supremum of all rates
Rs so that the pair (Rs,M) is securely achievable is called
the secure capacity-memory tradeoff Cs(M):

Cs(M) := sup
{
Rs : (Rs,M) securely achievable

}
. (9)

The secure capacity-memory tradeoff is unknown even
when M = 0, i.e., when there is no cache.

III. MAIN RESULTS
Our main results are an upper and a lower bound on the

secure capacity-memory tradeoff Cs(M).

A. One-Sided Cache Assignment
Theorem 1 (Upper Bound on Cs(M)). The secure capacity-
memory tradeoff Cs(M) of the two-user wiretap erasure BC
with cache memory only at the weaker receiver satisfies the
following three conditions:

Cs(M) ≤ (δZ − δ1)F +M (10a)
Cs(M) ≤ (δZ − δ2)F (10b)

Cs(M) ≤ (1− δ1)(1− δ2)

2− δ1 − δ2
F +

M
D
. (10c)

Proof: See Section IV.

Theorem 2 (Lower Bound on Cs(M)). Every rate-memory
pair (Rs,M) is securely achievable over the two-user wiretap
erasure BC with cache memory M at only the weak receiver,
if it satisfies the following six conditions:

Rs ≤ (δZ − δ2)F (11a)

Rs ≤
(1− δ2)(δZ − δ2)

1− 2δ2 + δZ
F +

1− δ2
1− 2δ2 + δZ

M
D

(11b)

Rs ≤
(1− δ1)(δZ − δ2)

1− δ1 − δ2 + δZ
F +

M
D

(11c)

Rs ≤
(δZ − δ1)(δZ − δ2)

2δZ − δ1 − δ2
F

+
δZ − δ1 +D(δZ − δ2)

2δZ − δ1 − δ2
M
D

(11d)



Rs ≤
δZ − δ2

2
F +

D

2

M
D

(11e)

Rs ≤
D

D + 1

[
(δZ − δ2)F +

M
D

]
. (11f)

Thus, any Rs satisfying (11) forms a lower bound on Cs(M).

Proof: See Section V.

Remark 1. At M = 0, the best lower bound on Cs(M = 0)
that can be obtained from above theorem is

Cs(M = 0) ≥ R0 :=
(δZ − δ1)(δZ − δ2)

2δZ − δ1 − δ2
F. (12)

The right-hand side R0 coincides with the secrecy capacity
of the two-user wiretap BC without caching when the secrecy
constraints in (8) are replaced by the stronger constraint [7]

lim
n→∞

1

n
I(Wd1 ,Wd2 ;Zn) = 0.

Our lower and upper bound on Cs(M) are close (see
Figures 2 and 3 ahead) for many parameters; however, they
seem to coincide only for sufficiently large cache memories.

Corollary 1. When

M≥ F ·max

{
D

(δz − δ2)2

1− δ2
, δz − δ2

}
. (13)

the capacity-memory tradeoff C(M) of the two-user wiretap
erasure BC with cache memory M at the weaker receiver is

C(M) = F (δz − δ2). (14)

Proof: Under condition (13), constraints (11b)–(11f) are
less stringent than constraint (11a).

Theorem 2 is obtained by means of a joint cache-channel
coding scheme (see Section V). To demonstrate the strength of
the joint cache-channel coding approach, we also characterize
the rates that are securely-achievable under the equivalent
separate cache-channel coding scheme.

Proposition 1. Every rate-memory pair (Rs,M) is securely
achievable over the wiretap erasure BC with cache memoryM
only at the weak receiver using a separate cache-channel
coding scheme, if it satisfies the following three conditions:

Rs ≤ (δZ − δ2)F,

Rs ≤
(1− δ1)(δZ − δ2)

1− δ1 − δ2 + δZ
F +

δZ − δ2
1− δ1 − δ2 + δZ

M
D
,

Rs ≤
(δZ − δ2)(δZ − δ1)

2δZ − δ1 − δ2
F

+
(δZ − δ2)

[
(D − 1)(1− δZ) + (δZ − δ1)

]
(1− δ1)(2δZ − δ1 − δ2)

M
D
.

Proof: See Remark 2 at the end of Section V.

B. Symmetric Cache Assignment
For the purpose of comparison, we assume in this subsec-

tion that each receiver has a cache memory of rate M/2. Let
the secure capacity-memory tradeoff Cs,Sym(M) be defined in
analogy to the capacity-memory tradeoff Cs(M) for one-sided
cache memory in the previous section.

Proposition 2 (Upper Bound under Symmetric Cache Assign-
ment). The secure capacity-memory tradeoff Cs,Sym(M) of the

wiretap erasure BC with symmetric cache memory M/2 at
both receivers satisfies the following three conditions:

Cs,Sym(M) ≤ (δZ − δ1)F +
M
2

(15a)

Cs,Sym(M) ≤ (1− δ1)F +
M
2D

(15b)

Cs,Sym(M) ≤ (1− δ1)(1− δ2)

2− δ1 − δ2
F +

M
D
. (15c)

Proof: Analogous to Theorem 1. Details omitted.

Proposition 3 (Lower Bound under Symmetric Cache Assign-
ment). A rate-pair (Rs,M) is securely achievable over the
two-user wiretap erasure BC with symmetric cache assignment
M/2 at both receivers, if it satisfies the following three
constraints:

Rs ≤ 2(1− δ1)F, (16a)

Rs ≤
(1− δ1)(1− δ2)

2− δ1 − δ2
F +

3− 2δ1 − δ2
2(2− δ1 − δ2)

M
D
, (16b)

Rs ≤
(δZ − δ1)(δZ − δ2)

2δZ − δ1 − δ2
F

+

[
D(1− δZ)

[
(1− δ1)(δZ − δ1) + (1− δ2)(δZ − δ2)

]
2(1− δ1)(1− δ2)(2δZ − δ1 − δ2)

+
(δZ − δ1)(δZ − δ2)(3− 2δ1 − δ2)

2(1− δ1)(1− δ2)(2δZ − δ1 − δ2)

]
M
D
. (16c)

Proof: See Section VI.
The scheme in Section VI is a separate cache-channel

coding scheme. Under a symmetric cache assignment it is
unclear whether joint cache-channel coding can attain a better
performance than separate cache-channel coding.

C. Examples and Comparisons
Example 1. Let δ2 = 0.2, δ1 = 0.7 and δZ = 0.8. Figure 2
and 3 depict upper bounds (dashed lines) and lower bounds
(solid lines) on C(M) and on CSym(M) for library sizes D =
5 and D = 30. The black solid lines show the lower bound in
Theorem 2 which is based on our joint cache-channel coding
scheme in Section V; the blue solid lines show the lower bound
in Proposition 1 based on separate cache-channel coding; and
the red solid lines show the lower bound in Proposition 3 for
symmetric cache assignment.

We generally observe the following:
• Without cache memory, M = 0, all three schemes

achieve the same rate R0 in (12).
• For cache memories M below a given threshold, our

joint cache-channel coding scheme achieves rates

Rs = R0 +
δZ − δ1 +D(δZ − δ2)

(δZ − δ1) + (δZ − δ2)

M
D
. (17)

For small cache memories, the slope of the secure
capacity-memory tradeoff Cs(M) is larger than 1/D
and does not decrease with the library size D. This is
different in a scenario without secrecy, where the slope
is MD [3]. Caching is thus more useful in a wiretap-
communication scenario than in a standard scenario.
The reason is that the cache memory cannot only
render the transmission more efficient, but also more
secure; for example by means of a one-time pad.
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Cs(M)/Cs,Sym(M) for the wiretap erasure BC with erasure probabilities
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• For a large range of parameters, our joint cache-
channel coding scheme for one-sided cache assign-
ment improves over the best possible coding scheme
for symmetric cache assignment. Nevertheless, for
some parameters, the secure capacity-memory tradeoff
is larger under a symmetric cache assignment than
under a one-sided cache assignment. The reason is
that in the former case the cache contents can be used
to secure the communication to both receivers.

• Our joint cache-channel coding scheme achieves sig-
nificantly larger rate-memory tradeoff than the equiva-
lent separate cache-channel coding scheme. In particu-
lar, the former does not allow to derive the conclusions
in the preceding two bullet points.

IV. UPPER BOUND: PROOF OF THEOREM 1
Constraint (10c) follows from [3, Theorem 9] and by

ignoring the secrecy constraints (8). Constraint (10a) is proved
as follows. By Fanos inequality and the secrecy constraint in
(8), there exists a sequence of real numbers {εn}∞n=1 with εn

n
tending to 0 as n→∞ and so that the following inequalities

hold:

nRs
= H(Wd1) = H(Wd1 |Zn) + I(Wd1 ;Zn)

≤ H(Wd1 |Zn) +
εn
2

≤ I(Wd1 ;Y n1 , V )− I(Wd1 ;Zn) +H(Wd1 |Y n1 , V ) +
εn
2

≤ I(Wd1 ;Y n1 , V )− I(Wd1 ;Zn) + εn
≤ I(Wd1 ;Y n1 |V )− I(Wd1 ;Zn|V ) + I(Wd1 ;V |Zn) + εn

(a)
=

n∑
i=1

[
I(Wd1 ;Y1,i|V, Y i−1

1 , Zni+1)−I(Wd1 ;Zi|V, Y i−1
1 , Zni+1)

]
+nI(Wd1 ;V |Zn) + εn

(b)

≤
n∑
i=1

[
I(Wd1 ;Y1,i|V, Y i−1

1 , Zni+1)−I(Wd1 ;Zi|V, Y i−1
1 , Zni+1)

]
+

n∑
i=1

[
I(V, Y i−1

1 , Zni+1;Y1,i)− I(V, Y i−1
1 , Zni+1;Zi)

]
+

n∑
i=1

[
I(Xi;Y1,i|Wd1 , V, Y

i−1
1 , Zni+1)

−I(Xi;Zi|Wd1 , V, Y
i−1
1 , Zni+1)

]
+ nM+ εn

(c)
=

n∑
i=1

[
I(Xi;Y1,i)− I(Xi;Zi)

]
+ nM+ εn, (18)

where (a) holds by Csiszar’s sum-identity [6, pp. 25]; (b) be-
cause the eavesdropper is degraded with respect to receiver 1;
and (c) because of the Markov chain (V,Wd1 , Y

i−1
1 , Zni+1)→

Xi → (Y1,i, Zi). Letting now n → ∞ establishes con-
straint (10a).

Constraint (10b) can be proved along similar steps, when
index 1 is replaced by index 2; cache content V by a constant,
and cache memory size M by 0.

V. SECURE JOINT CACHE-CHANNEL CODING SCHEME
A. Preparations

1) Message splitting: For each d ∈ {1, . . . , D}, split the
message Wd into two sub-messages

Wd =
[
W

(0)
d ,W

(1)
d

]
(19)

of rates R(0) and R(1) that sum up to Rs = R(0) +R(1).
If R(0) > (D− 2)R(1), divide W (0)

d into two further parts

W
(0)
d =

[
W

(0)
d,1 ,W

(0)
d,2

]
of rates (D − 2)R(1) and R(0) − (D − 2)R(1). Otherwise, let
W

(0)
d,1 = W

(0)
d be of rate R(0) and W (0)

d,2 be of zero rate.
Define

ι := min

{⌈
R(0)

R(1)

⌉
, D − 2

}
. (20)

2) Codebook generation: Generate a codebook C1 with
Γ1 := b2nR(0)c · b2nR(1)c · b2nR′c codewords of length αn,

C1 :=
{
X

(αn)
1 (l1)

}Γ1

l1=1
, (21)

by drawing each entry of each codeword at random according
to a Bernoulli-1/2 distribution independently of all other
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Fig. 4. Secure piggyback codebook C1 with each dot symbolizing a codeword.
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entries. The codebook is partitioned into b2nR(0)c · b2nR(1)c
subcodebooks (bins) each with b2nR′c codewords. We ar-
range the subcodebooks into an array with b2nR(0)c rows
and b2nR(1)c columns, as depicted in Figure 4 where each
square depicts a subcodebook. The subcodebook in row w1

and column w2 is denoted C1(w1, w2).
Generate a codebook C2 with Γ2 := b2nR(1)c · b2nR′′c

codewords of length (1− α)n,

C2 :=
{
X

((1−α)n)
2 (l2)

}Γ2

l2=1
, (22)

by randomly drawing each entry of each codeword according
to a Bernoulli-1/2 distribution independently of all other en-
tries. The codebook is partitioned into b2nR(1)c subcodebooks
each with b2nR′′c codewords. Denote the w-th subcodebook
by C2(w), for w ∈

[
1 : b2nR(1)c

]
.

Codebooks C1 and C2 are revealed to all parties (including
the eavesdropper).

B. Caching phase
For each d ∈ {1, . . . , D}, store W (1)

d in the cache memory
of receiver 1. This is possible whenever

R(1) ≤ M
D
. (23)

C. Delivery phase
The delivery phase is divided into two periods of length

αn and (1− α)n, for some α ∈ [0, 1].
During the first period, the transmitter conveys message

W
(0)
d1

to receiver 1 and message W (1)
d2

to receiver 2. It randomly
chooses a set of ι indexes

{j1, j2, . . . , jι} ∈
(
{1, . . . , D} \ {d1, d2}

)
(where ι is defined in (20)) and forms

W
(0)
XOR,1 := W

(0)
d1,1
⊕
[
W

(1)
j1
,W

(1)
j2
, . . . ,W

(1)
jι

]
. (24)

It then uses the secure piggyback-codebook C1 in Figure 4.
Specifically, it picks an index J1 uniformly at random from[
1 : b2nR′c] and transmits the

J1-th codeword of subcodebook C1
(
W

(0)
XOR,W

(1)
d2

)
where

W
(0)
XOR :=

(
W

(0)
XOR,1,W

(0)
d1,2

)
.

During the second period, the transmitter conveys W (0)
d2

to receiver 2. Specifically, it picks an index J2 uniformly at
random over

[
1 : b2nR′′c

]
, and transmits the

J2-th codeword of subcodebook C2
(
W

(0)
d2

)
.

D. Decoding at Receiver 1
Receiver 1 retrieves message W (1)

d2
from its cache memory,

and considers its outputs yαn1 from the first period. Given
that it observes outputs yαn1 , it looks for a unique index-
pair (ŵ1, j) ∈

[
1 : b2nR(0)c

]
×
[
1 : b2nR′c

]
so that the j-

th codeword in subcodebook C1(ŵ1,W
(1)
d2

), which we denote
x

(αn)
1

(
ŵ1,W

(1)
d2
, j
)
, is jointly typical with its observed outputs:(

x
(αn)
1

(
ŵ1,W

(1)
d2
, j
)
, yαn1

)
∈ T (αn)

ε

(
pX · pY1|X

)
, (25)

where pX stands for the Bernoulli-1/2 distribution, PY1|X the
channel law to receiver 1, and T (αn)

ε for the typical set [6].
If the desired unique pair of indexes (ŵ1, j) does not exit,

receiver 1 declares an error.
Otherwise, if the pair exists, receiver 1 splits ŵ1 =[

ŵ11, ŵ
(0)
d1,2

]
, and using the messages W (1)

j1
,W

(1)
j2
, . . . ,W

(1)
jι

from its cache memory it forms

ŵ
(0)
d1,1

= ŵ11 ⊕
[
W

(1)
j1
,W

(1)
j2
, . . . ,W

(1)
jι

]
. (26)

It finally retrieves W (1)
d1,2

from its cache memory and declares
the tuple

(
ŵ

(0)
d1,1

, ŵ
(0)
d1,2

,W
(1)
d1,2

)
.

E. Decoding at Receiver 2
Receiver 2 decodes W (1)

d2
based on its outputs yαn2 in the

first period, and it decodes W (0)
d2

based on its outputs y(1−α)n
2

in the second period.
It first looks for a unique triple (ŵ1, ŵ

(1)
2 , j1) such that

(x
(αn)
1

(
ŵ1, ŵ

(1)
2 , j1

)
, yαn2 ) ∈ T (αn)

ε

(
pX · pY2|X

)
. (27)

Then, it looks for unique pair (ŵ
(0)
2 , j2) such that(

x
((1−α)n)
2

(
ŵ

(0)
2 , j2

)
, y

(1−α)n
2

)
∈ T ((1−α)n)

ε

(
pX · pY2|X

)
.

(28)
If the desired triple and pair exist, receiver 2 declares

Ŵd2 =
(
ŵ

(0)
2 , ŵ

(1)
2

)
. (29)

Otherwise it declares a decoding error.

F. Analysis
By standard arguments, the average probability of error at

receivers 1 and 2 (averaged over the codebooks C1, C2, channel
realizations, and messages) tend to 0 as n→∞ if

R(0) +R′ ≤ αF (1− δ1), (30a)
Rs +R′ ≤ αF (1− δ2), (30b)

R(0) +R′′ ≤ (1− α)F (1− δ2). (30c)

We now analyze the information leakage. Notice first that:

I(Wd1 ;Zn|C1, C2) = I
(
W

(1)
d1
,W

(0)
d1,1

,W
(0)
d1,2

;Zn|C1, C2
)

= I
(
W

(0)
d1,1

;Zαn|W (0)
d1,2

, C1, C2
)

+ I
(
W

(0)
d1,2

;Zαn|C1, C2
)
,



because W (1)
d1

is not sent over the channel. Furthermore,

I(W
(0)
d1,1

;Zαn|W (0)
d1,2

, C1, C2)

≤ I
(
W

(0)
d1,1

;Zαn,W
(0)
XOR,1,W

(0)
d1,2
|C1, C2

)
(a)
= I

(
W

(0)
d1,1

;W
(0)
XOR,1,W

(0)
d1,2
|C1, C2

) (b)
= 0,

where (a) holds because of the Markov chain W
(0)
d1,1

→
(W

(0)
XOR,1,W

(0)
d1,2

) → Zn; and (b) holds because W
(0)
d1,1

is
independent of the pair

(
W

(0)
XOR,1,W

(0)
d1,2

)
.

Following the steps in [6, Ch. 22], one can show that

lim
n→∞

1

n
I(W

(0)
d1,2

;Zn|C1, C2) = 0

lim
n→∞

1

n
I(W

(0)
d2

;Zn|C1, C2) = 0

lim
n→∞

1

n
I(W

(1)
d2

;Zn|C1, C2) = 0

when

(D − 1)R(1) +R′ ≥ αF (1− δZ) (31a)

R(0) +R′ ≥ αF (1− δZ) (31b)
R′′ ≥ (1− α)F (1− δZ). (31c)

To summarize, under constraints (23) and (30a)–(31c), when
averaged over the random choice of the codebooks C1 and
C2, the probabilities of error tend to 0 and the information
leakage constraints are satisfied. There must thus exist at least
one choice of C1 and C2 with these properties. Theorem 2 now
follows by eliminating R′, R′′, α from (23) and (30a)–(31c).

Remark 2. If one replaces the secure piggyback codebook C1
by two independent wiretap codebooks, one for message W (0)

XOR
and the other for message W (1)

d2
, one obtains a separate cache-

channel coding scheme that achieves the rates in Proposition 1.

VI. CODED CACHING UNDER SYMMETRIC CACHES
A. Preparations

Split every message Wd, d ∈ [1 : D], into 3 sub-messages

Wd =
[
W

(0)
d ,W

(1)
d ,W

(2)
d

]
, (32)

of rates R(0), R(1)/2, and R(1)/2, respectively.
If R(0) > (D− 2)R

(1)

2 , divide W (0)
d into two further parts

W
(0)
d =

[
W

(0)
d,1 ,W

(0)
d,2

]
of rates (D − 2)R

(1)

2 and R(0) − (D − 2)R
(1)

2 . Otherwise, let
W

(0)
d,1 = W

(0)
d be of rate R(0) and W (0)

d,2 of zero rate.

B. Caching phase
Store {W (k)

d }Dd=1 in cache memory Vk, k ∈ {1, 2}.

C. Delivery phase
If R(0) > (D − 2)R

(1)

2 , transmission takes place in five
periods, otherwise in three periods.

For k ∈ {1, 2}, the transmitter randomly chooses a
set of i := min

{⌈
2R(0)

R(1)

⌉
, D−2

2

}
indexes {j1, j2, . . . , ji} ∈

({1, . . . , D} \ {d1, d2}) and forms

Wk,XOR := W
(0)
dk,1
⊕ [W

(k)
j1
,W

(k)
j2
, . . . ,W

(k)
ji

]. (33)

It uses a regular (non-wiretap) code to send Wk,XOR to re-
ceiver k in period k. Receiver k first decodes the XOR message
Wk,XOR and, with its cache content, reconstructs the desired
W

(0)
dk,1

.
In period 3, the transmitter sends the common message

WXOR = W
(2)
d1
⊕W (1)

d2
, (34)

to both receivers using an optimal regular code. Each re-
ceiver k ∈ {1, 2} decodes the XOR message WXOR and, with
its cache content, reconstructs its desired sub-message W (3−k)

dk
.

If R(0) > (D − 2)R
(1)

2 , there are also periods 4 and 5. In
period 3 + k, k ∈ {1, 2}, the transmitter sends message W (0)

dk,2
to Receiver k using an optimal wiretap code.

VII. SUMMARY
We derived upper and lower bounds on the securely achiev-

able capacity-memory tradeoff of the two-user wiretap packet-
erasure BC where the weaker receiver has a cache memory and
where the eavesdropper is not allowed to learn any information
about each of the delivered messages individually. Upper
and lower bounds are generally very close and coincide for
large cache memories. They show that caching is much more
beneficial under a secrecy constraint than in its’ absence.

We also derived upper and lower bounds on the securely
achievable capacity-memory tradeoff when both receivers have
equal cache memory. These bounds show that when one of the
two receivers is much weaker than the other, then in most
cases it is highly beneficial to allocate all available cache
memory to this weaker receiver instead of allocating half of
the memory to each receiver. The benefits are even more
important when applying a joint cache-channel coding scheme
that simultaneously exploits the cache contents and the channel
statistics.

In contrast to the scenario without secrecy constraint, there
exist however situations where one receiver is much weaker,
but it is still better to the cache memory symmetrically. The
reason seems to be that a receiver can benefit from the cache
memory at another receiver to increase its transmission rate,
but it can only exploit its own cache memory to make it secure.
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