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Abstract—We derive upper and lower bounds on the secure
capacity-memory tradeoff of the K-user (K ≥ 2) wiretap erasure
broadcast channel where Kw receivers are weak and have cache
memories of equal size, and Ks receivers are strong and have no
cache. The bounds coincide for small and large cache memories.
The lower bound also exhibits that cache memories provide larger
gains under a secrecy constraint than without such a constraint.
Moreover, we show for the two-user scenario that in the regime
of small cache memories, the capacity-memory tradeoff is larger
when only the weaker receiver has cache memory than when
this cache memory is split equally among the two receivers. The
lower bound is based on a joint cache-channel coding scheme
that simultaneously exploits the cache contents and the channel
statistics.

I. INTRODUCTION

Caching has lately emerged as a promising technique
to reduce the network load and latency in dense wireless
networks. The main idea is to have a first caching phase
where popular content are pre-stored during off-peak periods
in cache memories distributed across users, and a second
delivery phase where specific requested files are conveyed
to the users. This approach allows to reduce network load
during periods of peak-traffic, because receivers can retrieve
parts of their requested files locally from their cache memories.
The technical challenge in this system is that during off-peak
periods when the servers do pre-store contents in caches, they
do not know exactly which files the receivers will demand
during the peak-traffic period.

Several recent works have studied the caching problem from
an information-theoretic perspective in order to improve the
performance limits of cache-aided communications [1]–[6]. In
[1], Maddah-Ali and Niesen assumed that the delivery phase
takes place over an error-free broadcast channel (BC) and that
all the receivers have equal cache sizes. Through a careful
design of the cached contents and by applying their new
coded caching scheme, they attain gains beyond the obvious
local caching gains arising from locally retrieving parts of the
requested files. The additional gains, which they termed global
caching gains, occur because in the coded caching scheme
the transmitter can simultaneously serve multiple receivers.
Saeedi, Timo, and Wigger showed in [2], [3] that further
global caching gains can be achieved by means of their
new piggyback coding scheme, when the delivery phase is
modeled as a packet-erasure BC and different receivers have
different channel strengths. Piggyback coding is a joint cache-
channel coding scheme where the encoder and the decoders

simultaneously exploit the cache content and the channel
statistics; this is in contrast to separate cache-channel coding
as in [1] where they are divided into cache encoder/decoders
and channel encoder/decoders that depend only on the channel
statistics or only on the cache content.

A different line of research has addressed security issues in
cache-aided BCs [4]–[6]. The works most related to ours are
[4], [6], where an external eavesdropper is not allowed to learn
any information about the messages. More precisely, in [4] it
is not allowed to learn anything about the set of all possible
messages, whereas in [6] it cannot learn anything about each of
the transmitted messages individually. We refer to the former
secrecy constraint as a joint secrecy constraint and to the latter
as an individual secrecy constraint. In both works, the external
eavesdropper does not have access to the cache memories. In
[5], any legitimate receiver acts also as an eavesdropper and
is not allowed to learn anything about the other files requested
by the other receivers. The work in [4] assumed like [1] that
delivery communication takes place over a noise-free BC, and
that each legitimate receiver has the same cache memory size.
Our previous work [6] modelled the delivery communication
with a packet-erasure BC, and assumed that only the weaker
among the two receivers has a cache memory.

In this paper, we consider the setup in [6], but under a joint
secrecy constraint and with K ≥ 2 receivers. We partition
the set of receivers into Kw weak receivers and Ks strong
receivers, and assume that only the weak receivers have equal
cache memories of size M. We establish upper and lower
bounds on the securely achievable capacity-memory tradeoff,
i.e., on the largest rates at which the transmitter can commu-
nicate reliably with the receivers for a given cache memory
size. To obtain the lower bound, we propose four different
secure coding schemes that build on sophisticatedly combining
wiretap coding, superposition coding and piggyback coding
with random secret keys, which are independent of all the
data and stored in the receivers’ caches. The necessity for
secret keys stems from the joint-secrecy constraint and had
already been observed in [4], [5]. In our previous work [6],
we were able to use cached data as “secret keys” because only
an individual secrecy-constraint had to be satisfied.

Our upper and lower bounds match for small and for
large cache memories. For small cache memories, they prove
optimality of only storing secret keys in the caches, but no
data. The reason being that a cached secret key serves in
securing any possible users’ demand, whereas cached data
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Fig. 1. Packet-erasure BC with K legitimate receivers and an eavesdropper.
The Kw weaker receivers have cache memories of size M.

serves only for a subset of demands. As a consequence, in
the low cache memory regime, the capacity-memory tradeoff
grows proportionally with the cache memory size, irrespective
of the number of possible messages in the library.

For comparison, we also provide an upper bound for the
two-user scenario on the secure capacity-memory tradeoff
under a joint secrecy constraint when both receivers have equal
cache size. We observe that in the regime of small cache
memory, it is highly beneficial to allocate all the available
cache to the weaker receiver compared to allocating the cache
memory uniformly across receivers. In fact, in our proposed
coding schemes, the data and secret keys cached at the weak
receivers are also used to secure the communication to the
stronger receivers and to render it more efficient. For the first
goal we extend ideas from wiretap coding with secret key
to include superposition coding, and for the second one we
extend the piggyback coding idea.

II. PROBLEM DEFINITION

Consider a wiretap broadcast channel (BC) with a single
transmitter, K receivers and an eavesdropper, as shown in
Figure 1. We model this channel by a memoryless packet-
erasure BC with input alphabet X := {0, 1}F and same output
alphabet Y := X ∪ ∆ at all receivers and the eavesdropper.
Here, F is a fixed positive integer and ∆ indicates the loss of
a packet at the receiver.

The K receivers are partitioned into two sets. The first set
Kw = {1, . . . ,Kw} is formed by Kw weak receivers which
have bad channels. The second set Ks = {Kw + 1, . . . ,K} is
formed by Ks = K −Kw strong receivers which have good
channels. Let δw, δs and δz be the erasure probabilities at weak
receivers, strong receivers, and the eavesdropper, respectively,
where we assume that

0 ≤ δs ≤ δw ≤ δz ≤ 1. (1)

Every weak receiver has access to a local cache mem-
ory of size nM bits, while the stronger receivers have no
cache memory. The transmitter accesses a library of D > 2
independent messages W1, . . . ,WD of rate Rs each. Every
message Wd, for d ∈ {1, . . . , D}, is uniformly distributed over

{1, . . . , b2nRsc}, where n is the transmission blocklength. The
transmitter has also access to a source of randomness θ which
we assume over some alphabet Θ.

Every receiver k demands one message Wdk from the
library. We denote the demand of receiver k by dk ∈
{1, . . . , D} , and the demand vector by d = {d1, . . . , dK} ∈
{1, . . . , D}K .

The communication takes place in two phases: the caching
phase, where information is stored in weak receivers’ cache
memories, and the delivery phase, where the demanded mes-
sages Wdk , for k ∈ {1, . . . ,K}, are conveyed to the receivers.

During the caching phase, the demand vector is unknown
to the transmitter and the receivers. Thus, the cache content
Vk of every weak receiver k ∈ Kw will be a function of the
entire library:

Vk := gk(W1, . . . ,WD, θ) k ∈ Kw (2)

for some caching function gk : {1, . . . , b2nRsc}D × Θ → V
and cache memory alphabet V := {1, . . . , b2nMc}.

Prior to the delivery phase, the demand vector d is learned
by the transmitter and the legitimate receivers1. Based on the
demand vector, the transmitter produces its channel inputs as

Xn := fd(W1, . . . ,WD, θ), (3)

for some function fd : {1, . . . , b2nRsc}D ×Θ→ Xn.
At the end of the delivery phase, receivers decode their

demanded messages. Every weak receiver k ∈ Kw uses its
observed vector Y nk and its cache content Vk to produce

Ŵk := ϕk,d(Y nk , Vk), k ∈ Kw (4)

for some function ϕk,d : Yn × V → {1, . . . , b2nRsc}. Every
strong receiver k′ ∈ Ks uses its observed vector Y nk′ to produce
the guess

Ŵk′ := ϕk′,d(Y nk′), k′ ∈ Ks (5)

for some function ϕk′,d : Yn → {1, . . . , b2nRsc}.
A decoding error occurs whenever Ŵk 6= Wdk , for k ∈

{1, . . . ,K}. We are interested in the worst-case probability of
error

PWorst
e := max

d∈{1,...,D}K
P
[ K⋃
k=1

{Ŵk 6= Wdk}
]
. (6)

The communication is considered secure if the eavesdropper
does not learn any information about the library messages from
its outputs Zn.

Definition 1. A rate-memory pair (Rs,M) is securely achiev-
able if for every ε > 0 and sufficiently large blocklength n,
there exist caching, encoding, and decoding functions as in
(2)–(5) so that

PWorst
e ≤ ε and

1

n
I(W1, . . . ,WD;Zn) < ε. (7)

We are mainly interested in the following quantity:

Definition 2. For a cache memory size M, the secure

1Informing all terminals of both demands requires zero communication rate.



capacity-memory tradeoff Cs(M) is the supremum of all rates
Rs so that the pair (Rs,M) is securely achievable:

Cs(M) := sup
{
Rs : (Rs,M) securely achievable

}
. (8)

When there is no cache, i.e., M = 0, the secure capacity-
memory tradeoff Cs(M) was determined in [8]:

Cs(M = 0) = F

(
K∑
k=1

1

δz − δk

)−1

. (9)

Since the strong receivers have no cache memory, the secure
capacity-memory tradeoff Cs(M) cannot exceed F δz−δs

Ks
, see

also Theorems 2 and 3. Rate F δz−δs
Ks

is trivially achieved for
allM≥ F δz−δs

Ks
D, because then each weak receiver can store

the entire library in its cache. In the following, we restrict
attention to MD ≤ F

δz−δs
Ks

.

III. MAIN RESULTS FOR 2 RECEIVERS

In this section, we consider only one weak and one strong
receiver. Consider the six rate-memory pairs:

• R0 := F
(δz − δw)(δz − δs)

2δz − δw − δs
, M0 := 0; (10a)

• R1 := F
(1− δw)(δz − δs)
1 + δz − δw − δs

, (10b)

M1 := F
(1− δz)(δz − δs)
1 + δz − δw − δs

; (10c)

• R2 := F (1− δs) min

{
δz − δw
1− δw

,
1− δw

2− δw − δs

}
,

(10d)
M2 := F (1− δz); (10e)

• R3 := F
(1− δs)(δz − δs)
1 + δz − δw − δs

, (10f)

M3 := F
(δz − δs)

[
(δw − δs)D + (1− δz)

]
1 + δz − δw − δs

; (10g)

• R4 := F (δz − δs), (10h)

M4 := F
(δz − δs)

[
(δz − δs)D + (1− δz)

]
1− δs

; (10i)

• R5 := F (δz − δs), M5 := F (δz − δs)D. (10j)

Theorem 1 (Lower Bound 2 Users). The upper convex hull
of the six rate-memory pairs

{
(R`,M`); ` ∈ {0, 1, . . . , 5}

}
in (10) lower bounds the secure capacity-memory tradeoff:

Cs(M) ≥ upper hull
{

(R`,M`) : ` = 0, . . . , 5
}
. (11)

Proof: It suffices to prove achievability of the six rate-
memory pairs {(R`,M`) : ` = 0, . . . , 5}. Achievability of the
upper convex hull follows by time/memory sharing arguments
as in [1]. Achievability of the pair (R0,M0) is shown in [8].

We justify achievability of (R5,M5) at the end of section II.
Achievability of the remaining rate-memory pairs is outlined
in section IV.

Theorem 2 (Upper Bound 2 Users). The secure capacity-
memory tradeoff Cs(M) is upper bounded as:

Cs(M) ≤ F (δz − δw)(δz − δs)
2δz − δw − δs

+
δz − δs

2δz − δw − δs
M, (12a)

Cs(M) ≤ F (1− δw)(1− δs)
2− δw − δs

+
M
D
, (12b)

Cs(M) ≤ F (δz − δs). (12c)

Proof: Bound (12a) follows from [3] and by ignoring the
secrecy constraint. Bound (12c) holds because receiver 2 has
no cache, and its rate cannot be larger than in the absence of
receiver 1. Bound (12b) is proved in Appendix A.

Upper bound (12a) is tight when the cache memory is small
and upper bound (12c) is tight when the cache memory is
sufficiently large.

Corollary 1. When the cache memory is small:

Cs(M) = F
(δz − δw)(δz − δs)

2δz − δw − δs
+

δz − δs
2δz − δw − δs

M, 0 ≤M ≤M1, (13)

where M1 is defined in (10c).
When the cache memory is large:

Cs(M) = F (δz − δs), M≥M4, (14)

where M4 is defined in (10i).

The following Figure 2 shows upper and lower bounds for
a specific example.
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Fig. 2. Upper and lower bounds on the secure capacity-memory tradeoff
Cs(M) for δz = 0.8, δw = 0.7, δs = 0.2, F = 5, D = 15.

We observe (see also Corollary 1 above) that for small
cache memories, the rate-memory pairs (R0,M0), (R1,M1),
and (R2,M2) determine the performance of our lower bound
in Theorem 1. The first point takes no cache memories. We
achieve the other two points by storing only random keys in
the cache memory, but no data. We thus conclude that for



small cache memories it is not worth caching data, but only
secret keys. The reason is that each piece of data will be useful
for only a subset of all possible user demands, whereas a
secret key serves with any demand. This also explains why in
the regime of small M, the secure capacity-memory tradeoff
Cs(M) can grow as a factor times M, irrespective of the
library size D. For larger values of M, it grows at most like
M/D.

A. Comparison to Other Cache Sizes and Secrecy Constraints

We compare our results also to the following scenarios:
• Symmetric Caches: Each receiver has same cache mem-

ory sizeM/2. Similarly to Theorem 2, one can prove that
the secure capacity-memory tradeoff Cs,sym(M) under
the joint secrecy-constraint in (7) and with cache size
M/2 at both receivers is upper bounded as:

Cs,sym(M) ≤ F (δz − δw)(δz − δs)
2δz − δw − δs

+
M
2
, (15a)

Cs,sym(M) ≤ F (1− δw) +
M
2D

, (15b)

Cs,sym(M) ≤ F (1− δw)(1− δs)
2− δw − δs

+
M
D
. (15c)

• Individual Secrecy Constraint: We replace (7) by the
weaker individual secrecy constraint:

lim
n→∞

1

n
I(Wd;Z

n) = 0, ∀d ∈ {1, . . . , D}. (16)

Upper and lower bounds on the secure capacity-memory
tradeoff of this scenario were given in [6].

• No Secrecy Constraint: Remove (7). Upper and lower
bounds on the capacity-memory tradeoff without any
secrecy constraint were presented in [3]. For our original
scenario where only the weaker receiver has cache mem-
ory, the (non-secure) capacity-memory tradeoff is upper
bounded by the right-hand sides of (12b) and (12c).

The following Figure 3 compares our upper and lower
bounds in Theorems 1 and 2 to the upper and lower bounds
on the secure capacity-memory tradeoff with the weaker
individual secrecy constraint in (16), see [6], and to the upper
bound in (15) on the secure capacity-memory tradeoff under
the original joint secrecy constraint when both receivers have
equal cache memory size M2 . Figure 3 shows the regime of
small cache memory sizes. We observe that in the regime of
small cache memory, our coding scheme for cache only at the
weak receiver has a much steeper slope, namely δz−δs

2δz−δw−δs ,
than the best possible coding scheme assuming that each
receiver has same cache memory size M2 . (The dashed red line
is an upper bound for this symmetric setup.) In fact, by (15),
the latter is upper bounded by 1

2 . So, for small cache memory
sizes, allocating all the cache memory to the weak receivers
results in a significantly higher performance than allocating the
available cache memory equally between the two receivers. For
larger cache sizes, depending on the channel parameters, the
upper bound for equal cache sizes is sometimes higher than
our lower bound for cache only at receiver 1. We also observe

that the capacity-memory tradeoff under an individual secrecy
constraint is generally higher than under a joint constraint.
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Fig. 3. Upper and lower bounds on the secure capacity-memory tradeoffs
Cs(M)/Cs,Sym(M) for δz = 0.8, δw = 0.7, δs = 0.3, F = 5, D = 5.

IV. PROOF OF LOWER BOUND, THEOREM 1

A. Scheme Achieving Rate-Memory Pair (R1,M1)

Divide the delivery phase into two periods of length αn and
(1−α)n, where α = δz−δs

1+δz−δw−δs . Generate a random key K1

of rate α(1 − δz)F and store it in receiver 1’s cache. In the
first period, the transmitter sends Wd1 to receiver 1 using a
wiretap code with secret key K1 [9], [7, (22.7)]. In the second
period, the transmitter sends Wd2 to receiver 2 using a wiretap
code without secret key.

B. Scheme Achieving Rate-Memory Pair (R2,M2)

Divide the delivery phase into two periods of length αn and
(1 − α)n, where α = max

{
0, (1−δs)(δz−δw)−(1−δz)(1−δw)

(δz−δw)(2−δw−δs)

}
.

For d ∈ {1, . . . , D}, split each message Wd into two sub-
messages Wd = [W

(0)
d ,W⊕d ] of rates α(1 − δw)F and (1 −

α)(1− δz)F . Generate two random keys K1 and K2 of rates
α(1− δz)F and (1− α)(1− δz)F and store them in receiver
1’s cache. In the first period, the transmitter sends message
W

(0)
d1

to receiver 1 using a wiretap code with secret key K1.
For the communication in the second period, generate a

superposition codebook with a cloud center that contains
2n(1−α)(1−δz)F codewords, and with each of the satellite code-
books containing 2nR2 codewords. The transmitter encodes
W⊕d1 ⊕ K2 into the cloud center and Wd2 into the satellite.
Receiver 1 decodes only message W⊕d1 ⊕ K2. Receiver 2
decodes both messages. Secrecy of the proposed scheme can
be proved by following the steps in [7, pp.554-555], where in
the proof of Lemma 22.1 one has to use the fact that the entire
superposition codebook contains 2n(1−α)(1−δz)F codewords
that are compatible with a given satellite message Wd2 .

C. Scheme achieving Rate-Memory Pair (R3,M3)

Let α = δz−δs
1+δz−δw−δs . For d ∈ {1, . . . , D}, split each mes-

sage Wd into three sub-messages Wd = [W
(0)
d ,W

(1)
d ,W⊕d ] of

rates α(δz − δw)F , α(δw − δs)F and α(1− δz)F . Generate a
random key K1 of rate α(1−δz)F . Store K1 and the D-tuple
W

(1)
1 , . . . ,W

(1)
D in receiver 1’s cache. Generate a piggyback
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codebook [3] C1 with Γ1 := b2nα(1−δz)F c · b2nα(δz−δw)F c ·
b2nα(δw−δs)F c codewords of length αn,

C1 :=
{
X

(αn)
1 (l1)

}Γ1

l1=1
, (17)

by drawing each entry of each codeword at random according
to a Bernoulli-1/2 distribution independently of all other
entries. The codebook is partitioned into b2nα(δz−δw)F c ·
b2nα(δw−δs)F c subcodebooks (bins) each with b2nα(1−δz)F c
codewords. We arrange the subcodebooks into an array with
b2nα(δz−δw)F c rows and b2nα(δw−δs)F c columns, as depicted
in Figure 4 where each square represents a subcodebook.

Divide the delivery phase into two periods of length αn and
(1−α)n. In the first period, the transmitter conveys messages
W

(0)
d1

and W⊕d1 to receiver 1 and W (1)
d2

to receiver 2. It gener-
ates WXOR = W⊕d1 ⊕K1 and transmits the WXOR-th codeword
of the subcodebook C1(W

(0)
d1
,W

(1)
d2

) over the channel. In the
second period, it sends message W

(0),⊕
d2

= [W
(0)
d2
,W⊕d2 ] to

receiver 2 using a wiretap code without secret key.
Decoding at receiver 1: Receiver 1 retrieves message W (1)

d2
from its cache memory, and considers its outputs yαn1 from the
first period. It looks for a unique index-pair (ŵXOR, ŵ

(0)
d1

) ∈[
1 : b2nα(1−δz)F c

]
×
[
1 : b2nα(δz−δw)F c

]
so that the

ŵXOR-th codeword in subcodebook C1(ŵ
(0)
d1
,W

(1)
d2

), which we
denote by x(αn)

1

(
ŵXOR, ŵ

(0)
d1
,W

(1)
d2

)
, is jointly typical with its

observed outputs:(
x

(αn)
1

(
ŵXOR, ŵ

(0)
d1
,W

(1)
d2

)
, yαn1

)
∈ T (αn)

ε

(
pX · pY1|X

)
,

(18)
where pX stands for the Bernoulli-1/2 distribution, pY1|X the
channel law to receiver 1, and T (αn)

ε the typical set [7].
If the desired unique pair of indexes (ŵXOR, ŵ

(0)
d1

) does not
exist, receiver 1 declares an error.

Otherwise, if the pair exists, receiver 1 retrieves the key K1

from its cache memory and generates

ŵ⊕d1 = ŵXOR ⊕K1. (19)

It finally retrieves W (1)
d1

from its cache memory and declares
the tuple Ŵ1 =

(
ŵ⊕d1 , ŵ

(0)
d1
,W

(1)
d1

)
.

Decoding at receiver 2: Receiver 2 decodes the entire
transmitted message tuple (WXOR,W

(0)
d1
,W

(0)
d2
,W

(1)
d2
,W⊕d2).

D. Scheme achieving Rate-Memory Pair (R4,M4)

Apply the same coding scheme described for (R3,M3) with
the following changes: choose α = δz−δs

1−δs , cancel W (0)
d rate

and change W (1)
d rate to α(δz − δw)F .

V. Kw WEAK AND Ks STRONG RECEIVERS

We extend the results in the previous two sections to our
more general setup with Kw weak receivers and Ks strong
receivers. (Proofs are omitted due to space limitations.)

Theorem 3 (Upper Bound K users). The secure capacity-
memory tradeoff Cs(M) of the scenario with Kw weak
receivers and Ks strong receivers is upper bounded by the
following Kw + 1 conditions:

Cs(M) ≤ F δz − δs
Ks

, (20a)

Cs(M) ≤ F
(

j

1− δw
+

Ks

1− δs

)−1

+
jM
D

, j ∈ {1, . . . ,Kw},
(20b)

and by the Kw conditions in (20c) on top of the next page.

Consider the rate-memory pair in (21g) on top of the next
page and the following five rate-memory pairs

• R
(K)
0 := F

( Kw

δz − δw
+

Ks

δz − δs

)−1

, (21a)

M(K)
0 := 0; (21b)

• R
(K)
1 := F

(1− δw)(δz − δs)
Kw(δz − δs) +Ks(1− δw)

, (21c)

M(K)
1 := F

(1− δz)(δz − δs)
Kw(δz − δs) +Ks(1− δw)

; (21d)

• R
(K)
2 := F min

{ (1− δs)(δz − δw)

Ks(1− δw)
,

(1− δs)(1− δw)

Kw(1− δs) +Ks(1− δw)

}
, (21e)

M(K)
2 := F

(1− δz)
Kw

; (21f)

• R
(K)
4 := F

δz − δs
Ks

, (21i)

M(K)
4 :=

F

Ks

[
Ks(δz − δs)(1− δz)

Ks(1− δz) +Kw(δz − δs)

+
DKw(δz − δs)2

Ks(1− δz) +Kw(δz − δs)

]
; (21j)

• R
(K)
5 := F

δz − δs
Ks

, (21k)

M(K)
5 := F

δz − δs
Ks

D. (21l)

Theorem 4 (Lower Bound K Users). The upper convex hull of
the six rate-memory pairs

{
(R

(K)
` ,M(K)

` ) : ` ∈ {0, . . . , 5}
}



Cs(M) ≤ max
αj∈[0,1]

min

{
αj
δz − δw

j
F +M,

αj(δz − δw) + (1− αj)(δz − δs)
j +Ks

F +
j

j +Ks
M

}
, j ∈ {1, . . . ,Kw}. (20c)

R
(K)
3 := F

2(1− δw)(δz − δs)
[
Ks(1− δw) +Kw(δw − δs)

]
Kw(δz − δs)

[
(Kw − 1)(δw − δs) + 2Ks(1− δw)

]
+ 2K2

s (1− δw)2
, (21g)

M(K)
3 := 2F (δz − δs)

D(1− δw)(δw − δs) + (1− δz)
[
(Kw − 1)(δw − δs) +Ks(1− δw)

]
Kw(δz − δs)

[
(Kw − 1)(δw − δs) + 2Ks(1− δw)

]
+ 2K2

s (1− δw)2
. (21h)

in (21) forms a lower bound on the secure capacity-memory
tradeoff:

Cs(M) ≥ upper hull
{

(R
(K)
` ,M(K)

` ), ` ∈ {0, . . . , 5}
}
. (22)

Upper and lower bounds are illustrated in Figure 5 assuming
there are two weak and four strong receivers.

M
F ·D

Cs(M)
F

0

0.05

0.1

0.15

0.05 0.1 0.15

Lower bound

Upper bound

Fig. 5. Generalized upper and lower bounds on the secure capacity-memory
tradeoff Cs(M) for δz = 0.8, δw = 0.7, δs = 0.2,Ks = 4,Kw = 2,
F = 5, D = 15.

APPENDIX A
PROOF OF (12b)

By Fano’s inequality and the secrecy constraint in (7), there
exists a sequence of real numbers {εn}∞n=1 with εn

n tending
to 0 as n→∞ and so that the following inequalities hold:

n Rs = H(Wd1) ≤ H(Wd1 |Zn) +
εn
2

≤ I(Wd1 ;Y n1 , V1)− I(Wd1 ;Zn) + εn

≤ I(Wd1 ;Y n1 |V1)−I(Wd1 ;Zn|V1)+I(Wd1 ;V1|Zn) + εn
(a)

≤
n∑
i=1

[
I(Wd1 , V1, Y

i−1
2 , Zni+1;Y1,i)

−I(Wd1 , V1, Y
i−1
2 , Zni+1;Zi)

]
+ nM+ εn

(b)

≤ nI(U1;Y1|Q)− nI(U1;Z|Q) + nM+ εn. (23)

where (a) can be proved following similar steps as in [8,
Appendix C] and by using I(Wd1 ;V1|Zn) ≤ nM, and (b)
follows by defining random variable Q to be uniform over
{1, . . . , n} and independent of all other random variables,

and X := XQ, Y1 := Y1,Q, Y2 := Y2,Q, Z := ZQ and
U1 := (Wd1 , V1, Y

Q−1
2 , ZnQ+1).

In a similar spirit, but also accounting for receiver 2:

2nRs = H(Wd1 ,Wd2)

≤ I(Wd1 ;Y n1 , V1) + I(Wd2 ;Y n2 , V1|Wd1)

−I(Wd1 ;Zn)− I(Wd2 ;Zn|Wd1) + εn

≤ nI(U1;Y1, Q)− nI(U1;Z|Q) + nI(X;Y2|U,Q)

−nI(X;Z|U,Q) + nM+ εn. (24)

Letting n→∞ and specializing the constraints (23) and (24)
to the erasure BC, we conclude the following: Given cache
memory M, the secure capacity-memory tradeoff is upper
bounded as:

Cs(M) ≤ (δz − δw) [H(X|Q)−H(X|U,Q)] +M, (25a)

Cs(M) ≤ 1

2
[(δz − δz)H(X|U,Q) +M] , (25b)

for some choice of random variables (Q,U,X).
Constraints (25a) and (25b) are jointly optimized by choos-

ing Q = ∅ and X uniform over {1, . . . , 2F }. Optimizing the
minimum of bounds (25a) and (25b) over H(X|U) ∈ [0, 2F ],
results in the desired bound (12c) in Theorem 2.
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