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Abstract—This paper considers the problem of coding over
a discrete memoryless channel (DMC) with noiseless feedback.
The paper provides a stochastic control view of a variable-length
version of the posterior matching scheme which is analyzed
via a recently proposed symmetrized divergence, termed Extrin-
sic Jensen–Shannon (EJS) divergence. In particular, under the
variable-length posterior matching scheme, the EJS divergence
can be lower bounded by the Shannon capacity of the DMC,
which can be used for a relatively simple proof that the variable-
length posterior matching scheme achieves capacity.

I. INTRODUCTION

In [1], [2], see also [3], a sequential, one-phase scheme
for transmission over a BSC with noiseless feedback was pro-
posed. This scheme is briefly explained next. Each message is
represented as a subinterval of size 1

M of the unit interval. After
each transmission and given the channel output, the posterior
probability of all subintervals are updated. In the next time
slot, the transmitter sends 0 if the true message’s corresponding
subinterval is below the current median, or 1 if it is above. If
the current median lies within the true message’s subinterval,
then the transmitter sends 0 with probability equal to the
fraction of the interval above the median and 1 otherwise. As
the rounds of transmission proceed, the posterior probability
of the true message’s subinterval most likely grows larger than
1
2 , which pushes the median within the message’s subinterval
and thus leads to a randomized encoding. Although this simple
one-phase scheme was believed to achieve the capacity of a
BSC, a rigorous proof remained illusive prior to the work
by Shayevitz and Feder [3]. They generalized the described
scheme to arbitrary DMCs (satisfying some mild conditions)
and proved that their general scheme, named posterior match-
ing scheme, achieves capacity [3]. Recently, Li and El Gamal
proposed a related scheme [4] with a greatly improved error-
exponent, i.e. with exponentially smaller probability of error
than the posterior matching scheme.

In [5], we introduced the Extrinsic Jensen–Shannon (EJS)
divergence as a tool to analyze error exponents and achievable
rates for variable-length schemes. In this paper we show that
this tool allows for a relatively simple proof that a variable-
length version of the posterior matching scheme achieves the
capacity of DMCs.

We finish this section with some notation.

Notation: Let [x]+ = max{x, 0}. The ith element of vector
v is denoted by vi. The notations At and at stand for the tuples
[A0, . . . , At] and [a0, . . . , at], respectively, for positive integer

t. For any set S, |S| denotes the cardinality of S and St its
t-fold Cartesian product. All logarithms are in base 2. The
entropy function on a vector ρ = [ρ1, ρ2, . . . , ρM ] ∈ [0, 1]M

is defined as H(ρ) :=
�M

i=1 ρi log
1
ρi

, with the convention that
0 log 1

0 = 0. We denote the conditional probability P (Y |X =
x) by Px.

II. PRELIMINARIES: SYMMETRIC DIVERGENCES

We first recall that the Kullback–Leibler (KL) divergence
between two probability distributions PY and P �

Y over a finite
set Y is defined as D(PY �P �

Y ) :=
�

y∈Y PY (y) log
PY (y)
P �

Y (y)

with the convention 0 log 0
a = 0 and b log b

0 = ∞ for
a, b ∈ [0, 1] with b �= 0. The KL divergence is not symmetric,
i.e., in general D(PY �P �

Y ) �= D(P �
Y �PY ).

The J divergence [6] and L divergence [7] symmetrize the
KL divergence:

J(P1, P2) := D(P1�P2) +D(P2�P1), (1)

L(P1, P2) := D
�
P1�

1

2
P1 +

1

2
P2

�
+D

�
P2�

1

2
P1 +

1

2
P2

�
.

(2)

The Jensen–Shannon (JS) divergence [7], [8] is defined
similarly to the L divergence but for general M ≥ 2
probability distributions. Given M probability distributions
P1, P2 . . . , PM over a set Y and a vector of a priori weights
ρ = [ρ1, ρ2, . . . , ρM ], where ρ ∈ [0, 1]M and

�M
i=1 ρi = 1,

the JS divergence is defined as [7], [8]:

JS(ρ;P1, . . . , PM ) :=
M�

i=1

ρiD

�
Pi�

M�

j=1

ρjPj

�

= I(θ;Y ) (3)

where θ is a random variable that takes values in {1, 2, . . . ,M}
and has probability mass function ρ and Y ∼ Pθ (which
implies that Pr(Y = y) =

�M
i=1 ρiPi(y)).

Similarly, one can consider the Extrinsic Jensen–Shannon
(EJS) divergence [5] which extends the J divergence to general
M ≥ 2 probability distributions. For distributions P1, . . . , PM

and an M -dimensional weight vector ρ,

EJS(ρ;P1, . . . , PM ) :=
M�

i=1

ρiD

�
Pi�

�

j �=i

ρj
1− ρi

Pj

�
, (4a)
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when ρi < 1 for all i ∈ {1, . . . ,M}, and

EJS(ρ;P1, . . . , PM ) := max
j �=i

D(Pi�Pj) (4b)

when ρi = 1 for some i ∈ {1, . . . ,M}.

III. CODING OVER DMC WITH NOISELESS FEEDBACK

A. The Problem Setup

Consider the problem of variable-length coding over a
discrete memoryless channel (DMC) with noiseless feedback
as depicted in Fig. 1. The DMC is described by finite input

Encoder Chan
Xt

Yt-Yt

Decoder
Yt

ˆ
nnel

11

Fig. 1. A noisy memoryless channel with a noiseless causal feedback link.

and output sets X and Y , and a collection of conditional
probabilities P (Y |X). To simplify notation, and without loss
of generality, we assume that

X = {0, 1, . . . , |X | − 1} (5)

and
Y = {0, 1, . . . , |Y| − 1}. (6)

Let τ denote the total transmission time (or equivalently the
total length of the code). In this paper, our focus is on variable-
length coding, i.e., the case where τ is a random stopping time
decided at the receiver as a function of the observed channel
outputs. (A specific stopping rule is described later in this
section.) Thanks to the noiseless feedback, the transmitter is
also informed of the channel outputs and the stopping time.

The transmitter wishes to communicate a message θ to the
receiver, where the message is uniformly distributed over a
message set

Ω := {1, 2, . . . ,M}. (7)

To this end, it produces channel inputs Xt for t = 0, 1, . . . , τ−
1, which it can compute as a function of the message θ
and (thanks to the feedback) also of the past channel outputs
Y t−1 := [Y0, Y1, . . . , Yt−1]:

Xt = et(θ, Y
t−1), t = 0, 1, . . . , τ − 1, (8)

for some encoding function et : Ω× Yt → X .

To describe the encoding process, we shall also use the
functions {γyt−1} for yt−1 ∈ Yt and t ∈ {0, 1, . . . , τ − 1}
where

γyt−1 : Ω → X (9a)
i �→ et(i, y

t−1). (9b)

Where it is clear from the context and to simplify notation,
we omit the subscript yt−1 and simply write γ.

We will particularly be interested in randomized encoding
rules. In this case the encoding is described by the random
encoding functions {Γyt−1} whose realizations γyt−1 are of

the form in (9). Again, for notational convenience we omit the
subscript yt−1 where it is clear from the context.

After observing the τ channel outputs Y0, Y1, . . . , Yτ−1, the
receiver performs optimum maximum-likelihood decoding and
produces as its guess the message with the highest posterior:

θ̂ = argmax
i∈Ω

ρi(τ), (10)

where for each positive t and each i ∈ Ω:

ρi(t) := Pr(θ = i|Y t−1). (11)

The probability of error is

Pe := Pr(θ̂ �= θ). (12)

For a fixed DMC and for a given � > 0, the goal is to
find an encoding rule as in (8) and a stopping rule τ such
that combined with the decoding rule in (10) the probability
of error satisfies Pe ≤ � and the expected number of channel
uses E[τ ] is minimized.

Throughout the paper we assume that the receiver applies
the following possibly suboptimal stopping rule

τ := min{t : max
i∈Ω

ρi(t) ≥ 1− �}, (13)

where � > 0 is the desired probability of error.

The main interest in this paper is in achieving the capacity
of DMCs with a variable-length scheme. The capacity is
defined as follows. If for any small numbers δ > 0, 0 ≤ � < 1
and all sufficiently large positive integers � an encoding scheme
γ (or Γ) can transmit one out of M� equiprobable messages so
that with the ML decoder in (10) and an appropriate stopping
rule τ ,

Pe ≤ � (14a)
M� ≥ 2�(R−δ) (14b)
E[τ ] ≤ �, (14c)

for some positive real number R, then we say that the scheme
achieves rate R. The capacity is the supremum over all
achievable rates and is given by

C := max
PX

I(X ;Y ), (15)

as in the case of fixed-length coding.

B. Stochastic Control View

The problem of coding with noiseless feedback is a decen-
tralized team problem with two agents (the encoder and the
decoder) and non-classical information structure [9]. Appeal-
ing to [10], the problem can be interpreted as a special case
of active hypothesis testing in which a (fictitious) Bayesian
decision-maker is responsible to enhance his information about
the correct message in a speedy manner by sequentially
sampling from conditionally independent observations at the
output of the channel (given the input). Here the (fictitious)
decision maker has access to the channel output symbols
causally (common observations) and is responsible to control
the conditional distribution of the observations given the true
message (private observation) by selecting encoding functions
for the encoder which map the message θ to the input symbols
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Agent 1 Agent 2
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Xt = γ(θ)
θ Xt Yt

Y t−1

θ̂

Fig. 2. Two-agent problem with common and private observations from the
point of view of the fictitious agent.

of the channel. In other words, as also observed in [11], the
problem can be viewed as a (centralized) partially observable
Markov decision problem (POMDP) with (static) state space
Ω and the observation space Y . Let E := {γ(·) : Ω → X} be
the set of all mappings from Ω to X . The action space (for
the fictitious agent) becomes E ∪ {T } where T denotes the
termination of the transmission phase, hence the realization of
the stopping time τ .

Casting the problem as a POMDP allows for the struc-
tural characterization of the information state, also known as
sufficient statistics: The decision maker’s posteriors about the
messages collectively,

ρ(t) := [ρ1(t), ρ2(t), . . . , ρM (t)], (16)

form a sufficient statistics for our (fictitious) Bayesian decision
maker. Furthermore, this (fictitious) decision maker’s posterior
at any time t coincides with the receiver’s posterior and, thanks
to the perfect feedback, is available to the transmitter. In other
words, the selection of encoding and decoding rules as a
function of this posterior incurs no loss of optimality [12].

We also note that the dynamics of the information state, i.e.
the posterior, follows Bayes’ rule. More specifically, given an
encoding function γ at time t and an information state ρ, the
conditional distribution of the next channel output Yt, given
the past observation Y t−1, is

Pρ(y) =
M�

i=1

ρiP (Y = y|X = γ(i)).

Similarly, given also the output symbol Yt = y, according to
Bayes’ rule, the posterior at time t+ 1 is:

ρ(t+ 1) =

�
ρ1Pγ(1)(y)

Pρ(y)
, . . . ,

ρMPγ(M)(y)

Pρ(y)

�
.

This stochastic control view of the problem, suggests an
achievability analysis which generalizes the approach of [11]
beyond mutual information and is based on symmetric diver-
gence associate with the belief state ρ and {Px}x∈X . In the
sections that follow, we utilize this approach with respect to the
EJS divergence induced by the posterior matching. This allows
us to provide a concise achievability analysis for variable-
length posterior matching.

IV. MAIN RESULT

Consider the variable-length version of the posterior match-
ing encoding in [3]:

At each time t = 0, 1, . . . , τ − 1, if θ = i and given the
posterior vector ρ(t), the input X(t) takes value in the set

Xi(t) :=

�
x ∈ X :

i−1�

i�=1

ρi�(t) <
�

x�≤x

π�
x�

and
�

x�<x

π�
x� ≤

i�

i�=1

ρi�(t)

�
;

where each value x ∈ Xi(t) is taken with probability

Pr
�
X(t) = x|θ = i, Y t−1 = yt−1

�

=

min
� i�

i�=1
ρi�(t),

�
x�≤x

π�
x�

�
−max

� i−1�
i�=1

ρi�(t),
�

x�<x
π�
x�

�

ρi(t)
.

We show that the described posterior matching encoding
ΓPM combined with the ML decoding in (10) and stopping
rule (13) achieves capacity for all DMCs satisfying a mild
condition. Let C1 be the KL divergence between the two most
distinguishable inputs of the DMC:

C1 := max
x,x�∈X

D(P (Y |X = x)�P (Y |X = x�)). (18)

Theorem 1. The described posterior matching encoding ΓPM

combined with the optimal ML decoder (10) and stopping
rule (13) achieve the capacity of any DMC where C and C1

are positive and finite.1

Proof: For a fixed encoding rule γ and given a sequence
of channel outputs yt−1 with corresponding posteriors ρ(t),
we define EJS(ρ(t), γ) to be the EJS divergence between the
conditional output distributions Pγ(1), . . . , Pγ(M) with weight
vector ρ(t):

EJS(ρ(t), γ) := EJS
�
ρ(t);Pγ(1), . . . , Pγ(M)

�
. (19)

For a randomized encoding function Γ, we use

EJS(ρ(t),Γ) :=
�

γ∈E
Pr(Γ = γ|Y t−1 = yt−1)EJS(ρ(t), γ)

where recall that E denotes the set of all possible encoding
functions. Let ρ̃ := 1− (1 + max{logM, log 1

�})−1.

Our proof is based on the following theorem from [5]:

Theorem 2 (Corollary 2 in [5]). Consider a DMC with C > 0
and C1 < ∞ and a variable-length encoding Γ combined with
the ML decoding in (10) and the stopping rule (13). If for any
time t < τ and for any posterior vector ρ(t),

EJS(ρ(t),Γ) ≥ C, (20a)

then the scheme achieves the capacity C of the channel.
Furthermore, if also,

EJS(ρ(t),Γ) ≥ ρ̃C1 if max
i∈Ω

ρi(t) ≥ ρ̃, (20b)

then it also achieves the channel’s optimal reliability function.

1Notice that C ≤ C1 and C1 < ∞ if, and only if, P (Y = y|X = x) is
positive for all x ∈ X and y ∈ Y .
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Theorem 1 can thus be shown by proving that Condi-
tion (20a) is satisfied for the posterior matching encoding
Γ = ΓPM:

EJS(ρ(t),ΓPM) ≥ C. (21)

Fix a time instant t and Y t−1 = yt−1. For ease of notation,
in the following we drop the time index t for ρi(t) and simply
write ρi. Let

λγ := Pr(ΓPM = γ|Y t−1 = yt−1), γ ∈ E .

Define for each i ∈ Ω and x ∈ X :

Λi,x :=
�

γ : γ(i)=x

λγ = Pr(X = x|θ = i, Y t−1 = yt−1) (22)

and

ρ̂i,x := ρiΛi,x = Pr(X = x, θ = i|Y t−1 = yt−1). (23)

For a fixed posterior distribution, the various messages are
mapped into inputs of the channel independently of each other
and hence, for x, x� ∈ X and i, j ∈ Ω where i �= j

�

γ :
γ(i)=x
γ(j)=x�

λγ = Λi,xΛj,x� . (24)

Let π�
0 , . . . , π

�
|X |−1 denote the capacity-achieving input dis-

tribution, i.e., the maximizer of (15). Rearranging terms and
using Jensen’s inequality and the convexity of the KL diver-
gence, we have

EJS(ρ(t),ΓPM)

=
�

γ∈E
λγ

M�

i=1

ρiD

�
Pγ(i)

���
�

j �=i

ρj
1− ρi

Pγ(j)

�

=
M�

i=1

ρi
�

x∈X

�

γ : γ(i)=x

λγD

�
Px

���
�

j �=i

ρj
1− ρi

Pγ(j)

�

≥
M�

i=1

�

x∈X
ρiΛi,xD

�
Px

���
�

j �=i

ρj
1− ρi

�

γ : γ(i)=x

λγ

Λi,x
Pγ(j)

�

=
M�

i=1

�

x∈X
ρ̂i,xD

�
Px

���
�

j �=i

ρj
1− ρi

�

x�∈X

�

γ :
γ(i)=x
γ(j)=x�

λγ

Λi,x
Px�

�

(a)
=

M�

i=1

�

x∈X
ρ̂i,xD

�
Px

���
�

j �=i

�
x�∈X ρjΛj,x�Px�

1− ρi

�

=
M�

i=1

�

x∈X
ρ̂i,xD

�
Px

���
�

x�∈X (π�
x�Px� − ρ̂i,x�Px�)

1− ρi

�
,

=
M�

i=1

�

x∈X
ρ̂i,xD

�
Px

���
�

x�∈X (π�
x�Px� − ρ̂i,x�Px�)

1− ρi

�

+
M�

i=1

�

x∈X
ρ̂i,x

ρi
1− ρi

D

�
Px

���
�

x� ρ̂i,x�Px�

ρi

�

−
M�

i=1

�

x∈X
ρ̂i,x

ρi
1− ρi

D

�
Px

���
�

x� ρ̂i,x�Px�

ρi

�

≥
M�

i=1

�

x∈X

ρ̂i,x
1− ρi

D

�
Px

���
�

x�∈X
π�
x�Px�

�

−
M�

i=1

ρ2i
1− ρi

�

x∈X
Λi,xD

�
Px

���
�

x�∈X
Λi,x�Px�

�

(b)
≥

M�

i=1

�

x∈X

ρ̂i,x
1− ρi

C −
M�

i=1

ρ2i
1− ρi

C

=
M�

i=1

ρi
1− ρi

C −
M�

i=1

ρ2i
1− ρi

C

= C (25)

where (a) follows from (24); and where (b) follows from [13,
Theorem 4.5.1] because ρ̂i,x > 0 only if π�

x > 0 and from the
fact that

�
x∈X Λi,xD

�
Px

���
x�∈X Λi,x�Px�

�
= I(X ;Y ) ≤

C when X denotes an input with probability mass function
{Λi,x}x∈X and Y the output produced by the channel.

FUTURE WORK

In future work, using large-deviation analysis, we plan
to extend our EJS-divergence based proof technique to the
original fixed-length posterior matching scheme.
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