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When Feedback Doubles the Prelog in AWGN
Networks

Michael Gastpar, Amos Lapidoth, Michèle Wigger

Abstract—We demonstrate that the sum-rate capacity of a
memoryless Gaussian network at high signal-to-signal ratio
(SNR) can be asymptotically doubled when feedback is available.
To demonstrate this phenomenon we study two networks: the
one-to-two scalar Gaussian broadcast channel (BC) and the two-
to-two scalar Gaussian interference channel (IC).
For the broadcast channel we show that if the noise sequences

experienced by the two receivers are anticorrelated, then, at
high SNR, feedback doubles the sum-rate capacity. However, this
result no longer holds if the feedback is noisy.
For the interference channel we show that if the cross gain is

positive and if the noises experienced by the two receivers are
anticorrelated and of the same variance, then feedback doubles
the high SNR sum-rate capacity.

I. INTRODUCTION

Feedback appears to provide only modest capacity gains in
memoryless networks. This has been conjectured in [1] and
confirmed for many concrete cases. In this paper we show
two networks for which this is not the case. In these networks
the capacity gains afforded by feedback tend to infinity as the
signal-to-noise ratio (SNR) tends to infinity. The networks we
consider are the real, scalar, additive white Gaussian noise
(AWGN) broadcast channel (BC) with noise-free or noisy
feedback and the symmetric, real, scalar, AWGN interference
channel (IC) with noise-free one-sided feedback.

In the scalar AWGN BC a transmitter with a single transmit
antenna wishes to simultaneously communicate to two differ-
ent receivers, each equipped with a single receive antenna.
Each receiver observes the signal sent by the transmitter cor-
rupted by its individual AWGN sequence. We show that when
the two individual AWGN sequences are anticorrelated—or
sufficiently close to anticorrelated—then at high SNR noise-
free feedback approximately doubles the sum-capacity from
1
2 log (1 + SNR) to approximately 2 · 1

2 log (1 + SNR). Thus,
with noise-free feedback the transmitter can communicate
to the two receivers at similar rates as if it was commu-
nicating over two separate AWGN channels. This results
demonstrates that with noise-free feedback the prelog1 (the
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1The prelog is often also referred to as the multiplexing gain or degrees of
freedom.

factor in the sum-capacity high-SNR expansion in front of
1
2 log (1 + SNR)) can exceed the number of transmit antennas.
This result is very different from the result of Algoet&Cioffi
[2], which states that when the received signals are corrupted
by independent AWGN sequences the prelog of an AWGN
network (with or without feedback) cannot exceed the number
of transmit or receive antennas.

The achievability of a prelog of two for the scalar AWGN
BC with anticorrelated noises is based on a coding scheme
proposed by Ozarow&Leung [3], [4]. Our main contribution
lies in our (possibly suboptimal) choice of the scheme’s pa-
rameter, a choice that leads to an easier characterization of the
scheme’s performance, and in analyzing this performance in
the asymptotic high-SNR regime. Our choice of the scheme’s
parameter reduces the task of finding the solutions to a sixth-
order equation as in [3], [4], [5] to the task of finding the
solutions to a cubic equation.

We also consider the AWGN BC with noisy feedback where
the feedback links are corrupted by independent AWGN se-
quences. We show that—irrespective of the positive feedback-
noise variances and of the correlation of the forward noise-
sequences—the prelog of this setup equals one (as in the
absence of feedback). Thus, the prelog of two decreases to
one as soon as the feedback is noisy. The proof of this result
is based on a genie argument inspired by the work of Kim,
Lapidoth, and Weissman [6].

The second network we consider is the symmetric scalar
AWGN IC where each of two transmitters communicates
with a different intended receiver. Each receiver observes a
linear combination of the two transmitted signals corrupted
by an individual AWGN sequence. We consider a setup with
noise-free one-sided feedback where each transmitter observes
feedback from its corresponding receiver. Our main result
for this setup is that—as in the broadcast setup before—for
anticorrelated noise sequences the prelog is two, as opposed
to only 1 in the setup without feedback. Our achievability
proof is based on the Schalkwijk-Kailath type scheme [7]
proposed by Kramer in [8]. Previously, a prelog of two was
known to be achievable for the scalar AWGN IC when the two
transmitters (or the two receivers) could fully cooperate [9].
Our result shows that partial cooperation through feedback
can be sufficient.

The paper is organized as follows. In Sections II–IV we
present the channel models and the main results for the
AWGN BC with noise-free feedback, the AWGN BC with
noisy feedback, and the AWGN IC with noise-free feedback.
In Sections V and VI we prove our results for the AWGN
BC with noise-free feedback: in Section V the achievability

http://arxiv.org/abs/1003.6082v1
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Fig. 1. The two-user AWGN BC with noise-free feedback.

of prelog 2 for anticorrelated noises and a more general
achievability result for approximately anticorrelated noises;
and in Section VI the rest of our results. In Section VII we
prove our results for the AWGN BC with noisy feedback.
In Sections VIII and IX we finally prove our results for the
AWGN IC with noise-free one-sided feedback: in Section VIII
the achievability of prelog 2 for anticorrelated noises; and in
Section IX the rest of our results.

II. BROADCAST CHANNEL WITH NOISE-FREE FEEDBACK

A. The Model
The real, scalar, AWGN BC with noise-free feedback is

depicted in Figure 1. Denoting the time-t transmitted symbol
by xt ∈ R, the symbol Y1,t that Receiver 1 receives at time-t
is

Y1,t = xt + Z1,t, (1)

and the symbol Y2,t that Receiver 2 receives at time-t is

Y2,t = xt + Z2,t, (2)

where the sequence of pairs {(Z1,t, Z2,t)} is drawn indepen-
dently and identically distributed (IID) according to a bivariate
zero-mean Gaussian distribution of covariance matrix

K =

(

σ2
1 ρzσ1σ2

ρzσ1σ2 σ2
2

)

. (3)

We assume that σ2
1 and σ2

2 are positive and refer to them as
the noise variances and to ρz ∈ [−1, 1] as the noise correlation
coefficient.

The transmitter wishes to send Message M1 to Receiver 1
and an independent message M2 to Receiver 2. The messages
M1 and M2 are assumed to be uniformly distributed over
the sets M1 ! {1, . . . , #2nR1$} and M2 ! {1, . . . , #2nR2$},
where n denotes the blocklength and R1 and R2 the respective
rates of transmission.

It is assumed that the transmitter has access to noise-free
feedback from both receivers, i.e., that after sending xt−1 it
learns both outputs Y1,t−1 and Y2,t−1. The transmitter can
thus compute its time-t channel input as a function of both
messages and all previous channel outputs:

Xt = f (n)
BC,t

(

M1,M2, Y
t−1
1 , Y t−1

2

)

, t ∈ {1, . . . , n}, (4)

where the encoding function f (n)
BC,t is of the form

f (n)
BC,t : M1 ×M2 × R

t−1 × R
t−1 → R (5)

and where Y t−1
1 ! (Y1,1, . . . , Y1,t−1) and Y t−1

2 !

(Y2,1, . . . , Y2,t−1).
The channel inputs are subject to an expected average block-

power constraint P > 0. Thus, in (4) we only allow for
encoding functions

{

f (n)
BC,t

}n

t=1
that satisfy

1

n
E
[

n
∑

t=1

(

f (n)
t (M1,M2, Y

t−1
1 , Y t−1

2 )
)2

]

≤ P. (6)

After the n-th channel use each receiver decodes its intended
message based on its observed channel output sequence.
Receiver 1 produces the guess

M̂1 = φ(n)
1 (Y n

1 ), (7)

and Receiver 2 the guess

M̂2 = φ(n)
2 (Y n

2 ), (8)

where the decoding functions φ(n)
1 and φ(n)

2 are of the form

φ(n)
1 : Rn → {1, . . . , #2nR1$}, (9)

φ(n)
2 : Rn → {1, . . . , #2nR2$}. (10)

A rate pair (R1, R2) is said to be achievable if for
every block-length n there exists a set of n encoding
functions

{

f (n)
BC,t

}n

t=1
as in (5) satisfying the power con-

straint (6) and two decoding functions φ(n)
1 and φ(n)

2 as
in (9) and (10) such that the probability of decoding error
Pr

[

(M1,M2) (= (M̂1, M̂2)
]

tends to 0 as the blocklength n
tends to infinity, i.e.,

lim
n→∞

Pr
[

(M1,M2) (= (M̂1, M̂2)
]

= 0.

The closure of the set of all achievable rate pairs (R1, R2) is
called the capacity region of this setup. The supremum of the
sum R1 +R2 over all achievable rate pairs (R1, R2) is called
its sum-capacity, and we denote it by CBC,Σ(P,σ2

1 ,σ
2
2 , ρz). In

this paper we are particularly interested in the prelog, which
characterizes the logarithmic growth of the sum-capacity at
high powers, and is defined as:

lim
P→∞

CBC,Σ(P,σ2
1 ,σ

2
2 , ρz)

1
2 log(1 + P )

. (11)

B. Results
It is well known [10] that for the AWGN BC without feed-

back the prelog equals 1, irrespective of the noise-correlation
ρz . The following Theorem 1 shows that with feedback the
prelog can be 2.
Theorem 1:
• If ρz = −1, then

lim
P→∞

CBC,Σ(P,σ2
1 ,σ

2
2 , ρz)

1
2 log(1 + P )

= 2. (12)

• If ρz ∈ (−1, 1), then

lim
P→∞

CBC,Σ(P,σ2
1 ,σ

2
2 , ρz)

1
2 log(1 + P )

= 1. (13)
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• If ρz = 1, then

1 ≤ lim
P→∞

CBC,Σ(P,σ2
1 ,σ

2
2 , ρz)

1
2 log(1 + P )

≤ 2. (14)

Moreover, if the two noise variances σ2
1 and σ2

2 coincide,
then

lim
P→∞

CBC,Σ(P,σ2
1 ,σ

2
2 , ρz)

1
2 log(1 + P )

= 1. (15)

Proof: See Section VI-A
Note 1: Theorem 1 remains valid also when the transmitter

has only one-sided feedback, i.e., when the transmitter for
example only observes the outputs {Y1,t} but not {Y2,t}.

Proof: See Section VI-C.
In Figure 2 we have plotted the relationship between the

sum-rate that our scheme achieves and the transmitted power
P for various values of the correlation ρz . It shows that
for large P , feedback can nearly double the capacity if the
correlation ρz is sufficiently close to −1. The following
theorem and also Corollary 3 ahead explore the relationship
between P and the required ρz . Since the required correlation
depends on the transmit power P , we make the dependence
explicit and denote the correlation by ρz(P ).
Theorem 2: Let P > 0 denote the transmitted power, and

let ρz(P ) ∈ [−1, 1] denote the noise correlation. Define the
limits

α ! lim
P→∞

− log(1− |ρz(P )|)
log(P )

, (16)

β ! lim
P→∞

− log(1 + ρz(P ))

log(P )
, (17)

where log(0) = −∞. The sum-capacity of the AWGN BC
with noise-free feedback satisfies the asymptotic upper bound

lim
P→∞

CBC,Σ(P,σ2
1 ,σ

2
2 , ρz(P ))

1
2 log(1 + P )

≤ min{1 + α, 2}; (18)

!M1,M2
Trans.

Xt

! !Y1,t!
"Z1,t

#D !
"W1,t

"

! !Y2,t!
"Z2,t

#D # !

$W2,t

$

Receiv.1 !M̂1

Receiv.2 !M̂2

Fig. 3. The two-user AWGN BC with noisy feedback.

and the asymptotic lower bound

lim
P→∞

CBC,Σ(P,σ2
1 ,σ

2
2 , ρz(P ))

1
2 log(1 + P )

≥ min{1 + β, 2}. (19)

Proof: See Section VI-B.
Note 2: By considering the special case where ρz(P ) is a

constant that does not depend on P we recover (12)–(14).
Corollary 3: If

lim
P→∞

ρz(P ) < 1, (20)

then the right-hand sides of (16) and (17) coincide, and

lim
P→∞

CBC,Σ(P,σ2
1 ,σ

2
2 , ρz(P ))

1
2 log(1 + P )

= min

{

1 + lim
P→∞

− log(1 + ρz(P ))

log(P )
, 2

}

.

In particular, if

ρz(P ) = −1 +
ε(P )

P ζ
, ζ ∈ [0, 1], P > 1,

where
lim

P→∞

log
(

ε(P )
)

log(P )
= 0,

then
lim

P→∞

CBC,Σ(P,σ2
1 ,σ

2
2 , ρz(P ))

1
2 log(1 + P )

= 1 + ζ. (21)

III. BROADCAST CHANNEL WITH NOISY FEEDBACK

A. The Model
In this section we study the AWGN BC with noisy feedback,

which is depicted in Figure 3. The goal of the communication
is the same as in the previous section. That is, the transmitter
wishes to convey Message M1 to Receiver 1 and Message
M2 to Receiver 2 by communicating over the AWGN BC
described in (1) and (2). The transmitter has access to noisy
feedback. Thus, instead of observing the channel outputs Y1,t

and Y2,t as in the previous section, it observes the noisy
feedback outputs

V1,t = Y1,t +W1,t,

V2,t = Y2,t +W2,t.

The feedback-noise sequences {(W1,t,W2,t)} are assumed
to be independent of the messages (M1,M2) and of the
noise sequences on the forward path {(Z1,t, Z2,t)} and IID
according to a zero-mean bivariate Gaussian distribution of
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Fig. 4. The two-user AWGN IC with one-sided noise-free feedback.

diagonal2 covariance matrix
(

σ2
W1 0
0 σ2

W2

)

. We shall assume
throughout that the feedback noise variances are positive

σW1,σW2 > 0. (22)

In this setup the transmitter computes its channel inputs as

Xt = f (n)
BCNoisy,t

(

M1,M2, V
t−1
1 , V t−1

2

)

, t ∈ {1, . . . , n},
(23)

where the encoding function f (n)
BCNoisy,t is of the form

f (n)
BCNoisy,t : M1 ×M2 × R

t−1 × R
t−1 → R, (24)

and where V t−1
1 ! (V1,1, . . . , V1,t−1) and V t−1

2 !

(V2,1, . . . , V2,t−1).
The channel input sequence is again subject to an expected

average block-power constraint P > 0 as in (6).
The decoding rules, achievable rates, capacity region, sum-

capacity and prelog are defined as in the previous section. The
sum-capacity for this setup with noisy feedback is denoted by
CBCNoisy,Σ(P,σ2

1 ,σ
2
2 , ρz,σ

2
W1,σ

2
W2).

B. Result
Noisy feedback does not increase the prelog.
Theorem 4: Irrespective of the correlation ρz ∈ [−1, 1], the

prelog is one:

lim
P→∞

CBCNoisy,Σ(P,σ2
1 ,σ

2
2 , ρz,σ

2
W1,σ

2
W2)

1
2 log (1 + P )

= 1.

Proof: See Section VII.

IV. INTERFERENCE CHANNEL WITH NOISE-FREE
FEEDBACK

The real scalar AWGN IC with noise-free feedback is de-
picted in Figure 4. Unlike the broadcast channel, this channel
has two transmitters, each of which wishes to send a message
to its corresponding receiver.

A. The Model
Transmitter 1 wishes to send Message M1 to Receiver 1, and

Transmitter 2 wishes to send Message M2 to Receiver 2. The
messages M1 and M2 are as defined previously. We assume
a symmetric channel: if at time t Transmitter 1 sends the real

2For simplicity, we do not treat setups with correlated feedback noises or
setups with feedback noises that are correlated with the forward noises.

symbol x1,t and Transmitter 2 sends the real symbol x2,t, then
Receiver 1 observes

Y1,t = x1,t + ax2,t + Z1,t, (25)

and Receiver 2 observes

Y2,t = ax1,t + x2,t + Z2,t. (26)

Here the “cross gain” a

a > 0, (27)

is a positive, real constant and the noise sequences
{(Z1,t, Z2,t)} are IID according to a zero-mean bivariate
Gaussian distribution of symmetric covariance matrix K =

σ2

(

1 ρz
ρz 1

)

.
Each transmitter has access to noise-free feedback from

its corresponding receiver. Thus, each of the two transmitters
computes its time-t channel input as

Xν,t = f (n)
IC,ν,t

(

Mν , Y
t−1
ν

)

, ν ∈ {1, 2},

for some encoding functions f (n)
IC,ν,t of the form

f (n)
IC,ν,t : Mν × R

t−1 → R, ν ∈ {1, 2}.

The two channel input sequences are subject to the same
average block-power constraint P > 0:

1

n
E
[

n
∑

t=1

(

f (n)
IC,ν,t

(

Mν , Y
t−1
ν

)

)2
]

≤ P, ν ∈ {1, 2}. (28)

Decoding rules, achievable rate pairs, capacity region, sum-
capacity, and prelog are defined as for the AWGN BC. We
denote the sum-capacity of the symmetric AWGN IC by
CIC,Σ(P,σ2, ρz, a).

In this paper, we do not consider negative cross gains, be-
cause the (feedback) capacity region of the symmetric AWGN
IC with cross gain a, power constraints P , noise variance σ2,
and noise correlation ρz coincides with the (feedback) capacity
region of the symmetric AWGN IC with cross gain (−a),
power constraints P , noise variance σ2, and noise correlation
(−ρz). Indeed, in a symmetric AWGN IC with parameters
a, P,σ2, ρz Transmitter 2 and Receiver 2 (or Transmitter 1
and Receiver 1) can simulate an AWGN IC with parameters
(−a), P,σ2, (−ρz). This is accomplished if Transmitter 2
multiplies its inputs {X2,t} by −1 before feeding them to the
channel (which obviously does not affect the transmit power)
and if Transmitter 2 and Receiver 2 multiply the outputs {Y2,t}
by −1 before processing them.

B. Result
Without feedback, the prelog of the AWGN IC equals 1;

with noise-free feedback it can be 2, depending on the noise
correlation ρz ∈ [−1, 1].
Theorem 5: The prelog of the AWGN IC with noise-free

feedback satisfies the following three statements.
• If ρz = −1, then the prelog is given by

lim
P→∞

CIC,Σ(P,σ2, ρz, a)
1
2 log(1 + P )

= 2. (29)
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• If ρz ∈ (−1, 1), then the prelog is given by

lim
P→∞

CIC,Σ(P,σ2, ρz, a)
1
2 log(1 + P )

= 1. (30)

• If ρz = 1, then the prelog satisfies

1 ≤ lim
P→∞

CIC,Σ(P,σ2, ρz, a)
1
2 log(1 + P )

≤ 2. (31)

Moreover, when the cross gain a is equal to 1, the prelog
is more precisely given by

lim
P→∞

CIC,Σ(P,σ2, ρz, a)
1
2 log(1 + P )

= 1. (32)

Proof: See Section IX.

V. ACHIEVABILITY OF PRELOG LARGER THAN 1 FOR THE
AWGN BC WITH NOISE-FREE FEEDBACK

In this section we consider the AWGN BC with noise-
free feedback, and prove the achievability of prelog 2 when
ρz = −1 and the more general achievability result (19).
These asymptotic results are achieved by the Ozarow-Leung
scheme [3], [4] when the scheme’s parameter is chosen appro-
priately. For completeness, we briefly describe the Ozarow-
Leung scheme with such an appropriate choice of parameter
(Section V-A) and analyze its performance (Section V-B). We
finally analyze the high-SNR asymptotics of the sum-rates
achieved by this scheme (Sections V-C and V-D).

A. Scheme

The scheme by Ozarow and Leung [3], [4] (see also [5] and
[8]) is based on the iterative strategy proposed by Schalkwijk
and Kailath [7].

Prior to transmission, the transmitter maps the Message Mν ,
for ν ∈ {1, 2}, into a Message point Θν :

Θν ! 1/2−
Mν − 1

#2nRν $
. (33)

It then describes Message point Θν in n channel uses to
Receiver ν.

The transmission starts with an initialization phase consist-
ing of the first two channel uses. Channel use ν ∈ {1, 2} is
dedicated to Receiver ν only, and the transmitter sends

Xν =

√

P

P + σ2
N

(
√

P

Var(Θν)
Θν +N

)

,

where Var(Θν) denotes the variance of the random variable
Θν and where N is a zero-mean Gaussian random variable
of variance σ2

N independent of the messages M1 and M2

and of the noise sequence {(Z1,t, Z2,t)}.3 At the end of this
initialization phase, each receiver estimates its desired message

3The described scheme can easily be turned into a deterministic scheme of
the same asymptotic probability of error using a trick introduced in [11] and
applied in the scheme in Section VIII-A.

point. Specifically, Receiver ν, for ν ∈ {1, 2}, produces the
estimate Θ̂ν,2 based on channel output Yν,ν :

Θ̂ν,2 !

√

Var(Θν)

P

√

P + σ2
N

P
Yν,ν

= Θν +

√

Var(Θν)

P

√

P + σ2
N

P
(N + Zν,ν),

and thus has an estimation error:

εν,2 ! Θ̂ν,2 −Θν =

√

Var(Θν)

P

√

P + σ2
N

P
(N + Zν,ν).

The subsequent n − 2 channel uses are used to refine the
receivers’ estimates. To this end, the transmitter sends in each
subsequent channel use t ∈ {3, . . . , n} a linear combination
of Receiver 1’s estimation error ε1,t−1 about Message point
Θ1 and of Receiver 2’s estimation error ε2,t−2 about Message
point Θ2. Notice that the transmitter knows these estimation
errors because it is cognizant of both message points Θ1 and
Θ2, and through the feedback, also of the receivers’ estimates.
Specifically, at time t ∈ {3, . . . , n} the transmitter sends

Xt =

√

P

1 + γ2 + 2γ|ρt−1|

·
(

ε1,t−1√
α1,t−1

+ γsign(ρt−1)
ε2,t−1√
α2,t−1

)

,

where

αν,t−1 ! Var(εν,t−1) ,

and

ρt−1 !
Cov[ε1,t−1, ε2,t−1]

√

Var(ε1,t−1)
√

Var(2, t− 2)
,

and where sign(·) denotes the signum function, i.e., sign(x) =
1 if x ≥ 0 and sign(x) = −1 otherwise. The parameter γ is
(possibly suboptimally) chosen as

γ !
σ1

σ2
. (34)

After each channel use t ∈ {3, . . . , n} the two receivers update
their message-point estimates according to the rule:

Θ̂ν,t = Θ̂ν,t−1 −
Cov[εν,t−1, Yν,t]

Var(Yν,t)
Yν,t, ν ∈ {1, 2}. (35)

Each receiver decodes its intended message as follows. After
the reception of the n-th channel output, each Receiver ν
produces as its guess the message M̂ν whose message point
is closest to its last estimate Θ̂ν,n, i.e.,

M̂ν = argminm∈{1,...,%enRν &}

∣

∣

∣
Θν(m)− Θ̂ν,n

∣

∣

∣
,

where ties can be resolved arbitrarily.
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B. Analysis of Performance
We only present a rough analysis of the scheme. For details

see [3], [4].
The probability of error of the described scheme tends to 0

as the blocklength n tends to infinity, if:

Rν < lim
n→∞

1

n

n
∑

t=2

1

2
log

(

αν,t−1

αν,t

)

, ν ∈ {1, 2}; (36)

here αν,1 ! Var(Θν),

αν,2 !
Var(Θν)

P

P + σ2
N

P
(σ2

N + σ2
ν), ν ∈ {1, 2},

and the variances {α1,t}nt=3 and {α2,t}nt=3 are defined through
the recursions:

α1,t = α1,t−1

σ1

σ2
P (1− ρ2t−1) + σ2

1(
σ1

σ2
+ σ2

σ1
+ 2|ρt−1|)

(σ1

σ2
+ σ2

σ1
+ 2|ρt−1|)(P + σ2

1)
, (37)

and

α2,t = α2,t−1

σ2

σ1
P (1− ρ2t−1) + σ2

2(
σ1

σ2
+ σ2

σ1
+ 2|ρt−1|)

(σ1

σ2
+ σ2

σ1
+ 2|ρt−1|)(P + σ2

2)
. (38)

The sequence of correlation coefficients {ρt}nt=2 is defined as

ρ2 !
Cov[ε1,2, ε2,2]

√

Var(ε1,2)Var(ε2,2)
=

σ2
N

√

σ2
N + σ2

1

√

σ2
N + σ2

2

(39)

and for t ∈ {3, . . . , n} through Recursion (40) on top of the
next page. We shall choose the variance σ2

N such that the
sequence {ρt}nt=2 is constant in magnitude but alternates in
sign, i.e., such that for some ρ∗ ∈ (0, 1):

ρt = (−1)tρ∗, t ∈ {2, . . . , n}. (41)

This way, the ratios α1,t−1

α1,t
and α2,t−1

α2,t
are constant for t ∈

{3, . . . , n}, and trivially the limit on the right-hand side of
(36) equals

lim
n→∞

1

n

n
∑

t=2

1

2
log

(

αν,t−1

αν,t

)

=
1

2
log2





P + σ2
ν

σ2
ν

σ2
1+σ2

2+2σ1σ2ρ∗
P (1− (ρ∗)2) + σ2

ν



 . (42)

By Equation (39), we can set the correlation coefficient ρ2
to every desired value in [0, 1) if we choose the variance
σ2
N appropriately. Therefore, Condition (41) can be satisfied

for all ρ∗ ∈ [0, 1) with the following “fixed point” property:
substituting ρ∗ for ρt−1 in Recursion (40) yields ρt = −ρ∗,
and similarly, substituting −ρ∗ for ρt−1 in Recursion (40)
yields ρt = ρ∗. In [3], [4] it was shown that Recursion (40) has
at least one such “fixed point”. Also, using simple algebraic
manipulations, the “fixed points” ρ∗ of Recursion (40) are
found to be the solutions in (0, 1) to the following cubic
equation in ρ:

ρ3 + c2ρ
2 + c1ρ+ c0 = 0, (43)

where

c2 ! −
2σ1σ2

P
−

P + σ2
1 + σ2

2 + ρzσ1σ2
√

P + σ2
1

√

P + σ2
2

−
2σ2

1σ
2
2

P
√

P + σ2
1

√

P + σ2
2

, (44)

c1 ! −1−
σ2
1 + σ2

2

P
− ρz

(σ2
1 + σ2

2)
√

P + σ2
1

√

P + σ2
2

−
σ1σ2(σ2

1 + σ2
2)

P
√

P + σ2
1

√

P + σ2
2

, (45)

c0 !
P + σ2

1 + σ2
2 − ρzσ1σ2

√

P + σ2
1

√

P + σ2
2

. (46)

Combining these observations with (36) and (42), we obtain
the following lemma.
Lemma 1: Choosing the parameter γ as in (34), the

Ozarow-Leung scheme achieves all nonnegative rate pairs
(R1, R2) satisfying

R1 <
1

2
log2





P + σ2
1

σ2
1

σ2
1+σ2

2+2σ1σ2ρ∗
P (1− (ρ∗)2) + σ2

1



 , (47)

R2 <
1

2
log2





P + σ2
2

σ2
2

σ2
1+σ2

2+2σ1σ2ρ∗
P (1− (ρ∗)2) + σ2

2



 , (48)

where ρ∗ is a4 solution in the open interval (0, 1) to the cubic
equation (43).
Remark 1: To characterize the scheme’s performance for a

general parameter γ requires finding the solutions to a sixth-
order equation [3], [4]. Our (possibly suboptimal) choice of
γ in (34) makes it possible to find the scheme’s performance
while solving only a cubic equation; see (43).

C. High-SNR asymptotics for constant ρz = −1

In this section we prove that the above described scheme
achieves prelog 2 when ρz = −1.
Proposition 6: When ρz = −1 the Ozarow-Leung scheme

with parameter γ = σ1

σ2
achieves prelog 2.

Proof: Let ρz be −1. By Lemma 1, for every power P
and every ε > 0 the Ozarow-Leung scheme with parameter
γ = σ1

σ2
achieves a sum-rate

RΣ(P )

=
1

2
log





P + σ2
1

σ2
1(1+ρ∗(P ))

σ2
1+σ2

2+2σ1σ2ρ∗(P )
P (1− ρ∗(P )) + σ2

1





+
1

2
log





P + σ2
2

σ2
2(1+ρ∗(P ))

σ2
1+σ2

2+2σ1σ2ρ∗(P )
P (1− ρ∗(P )) + σ2

2



− ε,

where the parameter ρ∗(P ) is defined as a solution in (0, 1)
to the cubic equation (43).

Since for each power P > 0 the parameter ρ∗(P ) lies in
the open interval (0, 1), we have

σ2
1(1 + ρ∗(P ))

σ2
1 + σ2

2 + 2σ1σ2ρ∗(P )
≤

2σ2
1

σ2
1 + σ2

2

, (49)

σ2
2(1 + ρ∗(P ))

σ2
1 + σ2

2 + 2σ1σ2ρ∗(P )
≤

2σ2
2

σ2
1 + σ2

2

, (50)

4If there is more than one solution in [0, 1] to (43) we can freely choose
one. Numerical results suggest that there is only one solution.
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ρt = sign(ρt−1) ·
√

P + σ2
1

√

P + σ2
2

P (1− |ρt−1|2) + (σ2
1 + σ2

2 + 2σ1σ2|ρt−1|)

·
(

|ρt−1|
(

σ1

σ2
+

σ2

σ1
+ 2|ρt−1|

)

−
(

σ1

σ2
+ |ρt−1|

)(

σ2

σ1
+ |ρt−1|

)

P (P + σ2
1 + σ2

2 − ρzσ1σ2)

(P + σ2
1)(P + σ2

2)

)

(40)

and we can thus lower bound the achievable sum-rate RΣ(P )
by

RΣ(P ) ≥
1

2
log





P + σ2
1

2σ2
1

σ2
1+σ2

2

P (1− ρ∗(P )) + σ2
1





+
1

2
log





P + σ2
2

2σ2
2

σ2
1+σ2

2

P (1− ρ∗(P )) + σ2
2



− ε. (51)

The desired lower bound on the prelog

lim
P→∞

RΣ(P )
1
2 log (1 + P )

≥ 2,

is then obtained from (51) by showing that as P → ∞ the se-
quence of solutions {ρ∗(P )}{P>0} tends to -1 approximately
as −1+P−1. This follows from Lemma 2 that we state next.

Lemma 2: Let ρz be −1. For each power P > 0 let ρ∗(P )
be the solution in the interval (0, 1) to (43). Then, for every
ε > 0

lim
P→∞

P 1−ε(1− ρ∗(P )) = 0. (52)

Proof: The result could be proved by first computing for
each P > 0 the solution ρ∗(P ) to the cubic equation (43) (e.g.,
using Cardano’s formula), and then analyzing the asymptotics
of the solutions as P → ∞. However, this line of attack
is rather cumbersome. Instead, we show that if a sequence
{ρ∗(P )}{P>0} in (0, 1) violates (52) for some ε > 0, then
there exists some power P > 0 such that ρ∗(P ) cannot be a
solution to (43). For details, see Appendix A.

D. High-SNR asymptotics for ρz(P ) varying with P

We prove the more general asymptotic high-SNR achiev-
ability result in (19).
Proposition 7: Fix a sequence {ρz(P )}{P>0} and define

the limit β as in (17):

β = lim
P→∞

− log(1 + ρz(P ))

log(P )
.

The Ozarow-Leung scheme with parameter γ = σ1

σ2
achieves

sum-rates {RΣ(P )}{P>0} satisfying

lim
P→∞

RΣ(P )
1
2 log(1 + P )

≥ min{1 + β, 2}. (53)

Proof: By Lemma 1 and Inequalities (49) and (50) in
the previous subsection, for each power P > 0 and ε > 0,
the Ozarow-Leung scheme with parameter γ = σ1

σ2
achieves a

sum-rate RΣ(P ) that is lower bounded by

RΣ(P ) ≥
1

2
log2





P + σ2
1

2σ2
1

σ2
1+σ2

2

P (1 − ρ∗(P )) + σ2
1





+
1

2
log2





P + σ2
2

2σ2
2

σ2
1+σ2

2

P (1− ρ∗(P )) + σ2
2



− ε, (54)

where ρ∗(P ) is defined as a solution in (0, 1) to the cubic
equation (43). The desired asymptotic lower bound (53) then
follows from (54) and the following Lemma 3.
Lemma 3: for each power P > 0, let a noise correlation

ρz(P ) ∈ [−1, 1] be given, and let ρ∗(P ) be a solution in
(0, 1) to the cubic equation in (43). Then,

lim
P→∞

P 1−ε(1− ρ∗(P )) = 0, ∀ε > max

{

1− β

2
, 0

}

.

Proof: See Appendix B.

VI. PROOFS OF THEOREMS 1 AND 2 AND NOTE 1 FOR THE
AWGN BC WITH NOISE-FREE FEEDBACK

As mentioned in Note 2, Relations (12)–(14) in Theorem 1
can be directly obtained from Theorem 2. Nevertheless, for
convenience to the reader we provide a separate proof for each
of the relations in Theorem 1.

A. Proof of Theorem 1
Equation (14) follows from the following more general

relation: irrespective of the noise correlation ρz ∈ [−1, 1] and
the noise variances σ2

1 ,σ
2
2 > 0 the prelog satisfies

1 ≤ lim
P→∞

CBC,Σ(P,σ2
1 ,σ

2
2 , ρz)

1
2 log(1 + P )

≤ 2. (55)

The lower bound in (55) holds because without feedback the
prelog of the AWGN BC equals 1 irrespective of ρz ∈ [−1, 1]
(see the capacity result of the AWGN BC without feedback in
[10]). The upper bound in (55) holds because whenever a rate
pair (R1, R2) is achievable over the AWGN BC with noise-
free feedback, then the rates R1 and R2 cannot exceed the
single-user capacities (with feedback) of the AWGN channels
from the transmitter to the corresponding receiver, i.e.,

Rν ≤
1

2
log

(

1 +
P

σ2
ν

)

, ν ∈ {1, 2}. (56)

Equation (12) follows from Relation (55) and Proposition 6.
We next establish Equation (15). Notice that when ρz = 1

and σ2
1 = σ2

2 , the two noise sequences {Z1,t} and {Z2,t}
coincide, and thus the two receivers observe exactly the same
output sequences, i.e., Y1,t = Y2,t at all time instances t ∈
{1, . . . , n}. Consequently, if Receiver 2 can decode M2, then
so can Receiver 1 and hence (R1, R2) can be achievable only
if R1 + R2 does not exceed the capacity of the channel to
Receiver 1. This implies that the sum-capacity of the AWGN
BC with noise-free feedback coincides with the single-user
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feedback capacity of the AWGN channel from the transmitter
to one of the two receivers:

CBC,Σ(P,σ
2,σ2, ρz = 1) =

1

2
log

(

1 +
P

σ2

)

. (57)

This establishes the desired result in (15).
We finally prove Equation (13). By Relation (55) it suffices

to show that when ρz lies in the open interval (−1, 1), then
the prelog is upper bounded by 1. Invoking the cutset bound
[12, Theorem 15.10.1] with a cut between the transmitter and
both receivers we can upper bound the sum-capacity as

CBC,Σ(P,σ
2
1 ,σ

2
2 , ρz) ≤ max I(X ;Y1Y2), (58)

where the maximization is over all input distributions on X
satisfying E

[

X2
]

≤ P . By the entropy maximizing property
of the Gaussian distribution under a covariance matrix con-
straint [12], the upper bound in (58) is equivalent to

CBC,Σ(P,σ
2
1 ,σ

2
2 , ρz) ≤

1

2



1 +
P

σ2
1σ

2
2

σ2
1+σ2

2

(1− ρ2z)



 , (59)

which establishes that for every ρz ∈ (−1, 1) the prelog is
upper bounded by 1.

B. Proof of Theorem 2

The asymptotic upper bound (18) follows again from the
cutset bound and the entropy maximizing property of Gaussian
distributions under a covariance constraint. In fact, applying
the cutset bound with a cut between the transmitter and both
receivers (in analogy to (59)) for given power P > 0, noise
variances σ2

1 ,σ
2
2 > 0, and noise correlation ρz(P ) ∈ (−1, 1)

we can upper bound the sum-capacity as

CBC,Σ(P,σ
2
1 ,σ

2
2 , ρz(P ))

≤
1

2
log



1 +
P

σ2
1σ

2
2

σ2
1+σ2

2

(1− |ρz(P )|2)





≤
1

2
log



1 +
P

2 σ2
1σ

2
2

σ2
1+σ2

2

(1− |ρz(P )|)



 , (60)

where in the second inequality we used that ρz(P ) ∈ (−1, 1).
Moreover—as argued in (56)—the sum-capacity cannot ex-
ceed the sum of the two single-user capacities of the channels
from the transmitter to the two receivers, i.e.,

CBC,Σ(P,σ
2
1 ,σ

2
2 , ρz)

≤
1

2
log

(

1 +
P

σ2
1

)

+
1

2
log

(

1 +
P

σ2
2

)

. (61)

The asymptotic upper bound (18) follows then by combining
(60) and (61) with the definition of α in (16).

The asymptotic lower bound (19) follows from Proposi-
tion 7 in Section V-D.

C. Proof of Note 1

We have to show that the achievability results in Theorem 1
remain valid also in the weaker setup with only one-sided
feedback. The achievability results in (13) and (14) remain
valid because a prelog of 1 is trivially achievable for all values
of ρz ∈ [−1, 1] even without feedback [10]. The achievability
result in (12) remains valid because for ρz = −1 the capacity
regions of the setups with one-sided and two-sided feedback
coincide. In fact, after each channel use t the transmitter can
locally compute the missing output Y2,t (or Y1,t) from the
observed feedback output Y1,t (or Y2,t) and the input Xt:

Y2,t = −
σ2

σ1
(Y1,t −Xt) +Xt, t ∈ {1, . . . , n}.

VII. PROOF OF THEOREM 4 FOR THE AWGN BC WITH
NOISY FEEDBACK

Since for all correlation coefficients ρz ∈ [−1, 1] prelog 1
is achievable even without feedback [10], the interesting part
of Theorem 4 is the converse result. We prove this converse
result using a genie-argument similar to [6].

Our proof is based on the following three steps. In the
first step we introduce a genie-aided AWGN BC without
feedback and show that its sum-capacity upper bounds the
sum-capacity of the original AWGN BC with noisy feedback.
In the second step we introduce a less noisy AWGN BC with
neither genie-information nor feedback and show that its sum-
capacity coincides with the sum-capacity of the genie-aided
AWGN BC. In the third step, we finally show that the prelog
of the less noisy AWGN BC equals 1, irrespective of the noise
variances σ2

1 ,σ
2
2 ,σ

2
W1,σ

2
W2 > 0 and the correlation coefficient

ρz ∈ [−1, 1]. These three steps establish the desired converse
result.

We elaborate on these three steps starting with the first
one. The genie-aided AWGN BC is defined as the original
AWGN BC without feedback, but with a genie that prior to
transmission reveals the sequences {(Z1,t + W1,t)}nt=1 and
{(Z2,t+W2,t)}nt=1 to the transmitter and both receivers. Notice
that with this genie information, after each channel use t, the
transmitter can locally compute the missing feedback outputs
V1,t and V2,t:

V1,t = Xt + (Z1,t +W1,t), (62)
V2,t = Xt + (Z2,t +W2,t). (63)

We can thus conclude that the sum-capacity of the genie-aided
AWGN BC is at least as large as the sum-capacity of the
original AWGN BC with feedback.

We next elaborate on the second step. The less noisy AWGN
BC is described by the channel law:

Ỹ1,t = xt + Z̃1,t, (64)
Ỹ2,t = xt + Z̃2,t, (65)

where the noise sequences are defined as

Z̃1,t ! Z1,t − E[Z1,t|(Z1,t +W1,t), (Z2,t +W2,t)] , (66)
Z̃2,t ! Z2,t − E[Z2,t|(Z1,t +W1,t), (Z2,t +W2,t)] , (67)
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and are of variances

Var
(

Z̃1,t

)

= σ2
1

σ2
W1σ

2
2(1 − ρ2z) + σ2

W1σ
2
W2

(σ2
1 + σ2

W1)(σ
2
2 + σ2

W2)− σ2
1σ

2
2ρ

2
z
, (68)

Var
(

Z̃2,t

)

= σ2
2

σ2
W2σ

2
1(1 − ρ2z) + σ2

W2σ
2
W1

(σ2
1 + σ2

W1)(σ
2
2 + σ2

W2)− σ2
1σ

2
2ρ

2
z
. (69)

By the following two observations, the sum-capacity of this
less noisy AWGN BC coincides with the sum-capacity of the
genie-aided AWGN BC. Firstly, the sum-capacity of the less
noisy AWGN BC remains unchanged if prior to transmission
a genie reveals the sequences {Z1,t+W1,t} and {Z2,t+W2,t}
to the transmitter and both receivers. This follows because by
Definitions (66) and (67) the genie-information {Z1,t+W1,t}
and {Z2,t + W2,t} is independent of the reduced noise se-
quences {Z̃1,t, Z̃2,t}, and thus plays only the role of common
randomness which does not increase capacity. Secondly, the
sum-capacity of the genie-aided AWGN BC coincides with
the sum-capacity of the less noisy AWGN BC, when in this
latter case the transmitter and both receivers additionally know
the genie-information {(Z1,t + W1,t)} and {(Z2,t + W2,t)}.
This holds because knowing the genie-information {(Z1,t +
W1,t)}nt=1 and {(Z2,t + W2,t)}nt=1 the outputs Ỹ1,t and Ỹ2,t

can be transformed into the outputs Y1,t and Y2,t, and vice
versa.

We finally elaborate on the third step. The less noisy AWGN
BC is a classical AWGN BC with neither feedback nor genie-
information, and its sum-capacity is given by [10]:

CBCLessNoisy,Σ(P,σ
2
1 ,σ

2
2 , ρz,σ

2
W1,σ

2
W2)

=
1

2
log



1 +
P

min
{

Var
(

Z̃1,t

)

,Var
(

Z̃2,t

)}



 , (70)

where the variances Var
(

Z̃1,t

)

,Var
(

Z̃2,t

)

are defined in
(68) and (69). By (68)–(70) the prelog of the less noisy
AWGN BC equals 1, irrespective of the noise variances
σ2
1 ,σ

2
2 ,σ

2
W1,σ

2
W2 > 0 and the noise correlation ρz ∈ [−1, 1].

This concludes the third step, and thus our proof.

VIII. ACHIEVABILITY OF PRELOG 2 FOR THE AWGN IC
WITH NOISE-FREE FEEDBACK

We prove that the prelog of the AWGN IC with one-sided
noise-free feedback equals 2 when ρz = −1. As in the
previous section, this prelog is achieved with a Schalkwijk-
Kailath-type scheme. More specifically, it is achieved by a
straightforward extension of Kramer’s memoryless-LMMSE
scheme for interference channels [8, Section VI-B] to channels
with correlated noises.

A. Scheme for ρz = −1

Prior to transmission, each transmitter maps its message into
a message point as in (33). The transmitters then describe these
message points to their intended receivers using n channel
uses.

The first three channel uses are part of an initialization
procedure. In the first channel use both transmitters remain
silent. Via the feedback both transmitters then observe the

Gaussian random variable N ! Z1,1 = −Z2,1, which will
serve them as common randomness in future transmissions.
In the second channel use Transmitter 2 remains again silent
and Transmitter 1 sends:

X1,2 =

√

P

P + σ2
N

(
√

P

Var(Θ1)
Θ1 +N

σN

σ

)

,

where σN will be defined later on. In the third channel use
Transmitter 1 remains silent and Transmitter 2 sends:

X2,3 =

√

P

P + σ2
N

(
√

P

Var(Θ2)
Θ2 +N

σN

σ

)

.

At the end of this initialization phase Receiver 1 produces
the estimate Θ̂1,3 !

√

P+σ2
N

P

√

Var(Θ1)
P Y1,2 and Receiver 2

the estimate Θ̂2,3 !

√

P+σ2
N

P

√

Var(Θ2)
P Y2,3. Their estimation

errors are thus given by:

ε1,3 ! Θ̂1,3 −Θ1 =

√

Var(Θ1)

P

√

P + σ2
N

P
(N + Z1,2),

and

ε2,3 ! Θ̂2,3 −Θ2 =

√

Var(Θ2)

P

√

P + σ2
N

P
(N + Z2,2).

In the subsequent (n−3) channel uses, the two transmitters
transmit symbols in order to help the receivers refine these
estimates. In channel use t ∈ {4, . . . , n}, Transmitter 1 sends
a scaled version of Receiver 1’s estimation error ε1,t−1 about
message point Θ1 and Transmitter 2 sends Receiver 2’s esti-
mation error ε2,t−2 about message point Θ2. Notice that each
transmitter knows the estimation error of its corresponding
receiver because it is cognizant of its own message point
and through the noise-free one-sided feedback also of the
estimate at its corresponding receiver. Specifically, at time
t ∈ {4, . . . , n} Transmitter 1 sends

X1,t =

√

P

α1,t−1
ε1,t−1,

and Transmitter 2 sends

X2,t = sign(ρt−1)

√

P

α2,t−1
ε2,t−1.

After each channel use t ∈ {4, . . . , n} the two receivers update
their message-point estimates according to the updating rule
(35) in Section V-A.

After the reception of the n-th channel output, Receiver ν
produces as its guess the message M̂ν whose message point
is closest to its estimate Θ̂ν,n, i.e.,

M̂ν = argminm∈{1,...,%enRν &}

∣

∣

∣
Θν(m)− Θ̂ν,n

∣

∣

∣
,

where ties can be resolved arbitrarily.
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B. Analysis
We present only a rough analysis of the scheme. For more

details, see [8].
The probability of error of the described scheme tends to 0

as the blocklength n tends to infinity, if for ν ∈ {1, 2}:

Rν ≤ lim
n→∞

1

n

n
∑

t=3

1

2
log

(

αν,t−1

αν,t

)

, (71)

where αν,2 = Var(Θν);

αν,3 =
Var(Θ)ν

P

P + σ2
N

P
(σ2

N + σ2), ν ∈ {1, 2}; (72)

and for t ∈ {4, . . . , n}:

αν,t = αν,t−1
Pa2(1− |ρt−1|2) + σ2

P (1 + a2 + 2a|ρt−1|) + σ2
, ν ∈ {1, 2}.

(73)

The correlation coefficients {ρt}nt=3 are defined as

ρ3 =
σ2
N

σ2
N + σ2

, (74)

and for t ∈ {4, . . . , n} through Recursion (75) on top of the
next page. We shall choose the variance σ2

N such that the
sequence {ρt}nt=2 is constant in magnitude but alternates in
sign, i.e., such that for some ρ∗IC ∈ (0, 1):

ρt = (−1)tρ∗IC, t ∈ {3, . . . , n}. (76)

This way, the ratios α1,t−1

α1,t
and α2,t−1

α2,t
are constant for t ∈

{4, . . . , n}, and trivially the limit on the right-hand side of
(71) equals

lim
n→∞

1

n

n
∑

t=3

1

2
log

(

αν,t−1

αν,t

)

=
1

2
log

(

P (1 + a2 + 2aρ∗IC) + σ2

Pa2(1 − (ρ∗IC)
2) + σ2

)

. (77)

By Equation (74), we can set ρ3 to every value in [0, 1) if
we appropriately choose the variance σ2

N . Therefore, Condi-
tion (76) can be satisfied for all ρ∗ ∈ [0, 1) that correspond
to “fixed points” of Recursion (75), i.e., for all ρ∗ such that
substituting ρt−1 = ρ∗ into Recursion (75) yields ρt = −ρ∗,
and substituting ρt−1 = −ρ∗ into Recursion (75) yields
ρt = ρ∗. Using simple algebraic manipulations it can be
seen that the set of such “fixed points” is given by the set
of solutions in [0, 1) to the quartic equation

ρ4 + d3ρ
3 + d2ρ

2 + d1ρ+ d0 = 0, (78)

where

d3 =
σ2

2aP
, (79)

d2 = −2−
σ2(4 + aρz)

2a2P
, (80)

d1 = −
σ2(1 + 2a2 + 2aρz)

2a3P
−

σ4

a3P 2
, (81)

d0 = 1 +
σ2(2a− ρz)

2a3P
. (82)

Notice that Equation (78) has at least one solution in [0, 1),
and thus, Recursion (75) has at least one “fixed point” ρ∗IC in
[0, 1). This follows by the Intermediate-Value Theorem and
because for ρ = 0 and ρz = −1 the left hand-side of (78)
evaluates to 1 + σ2(2a+1)

2a3P > 0 and for ρ = 1 and ρz = −1 it
evaluates to − σ4

a3P 2 < 0. Combining these observations with
(71) and (77) leads to the following lemma.
Lemma 4: Let power P > 0, noise variance σ2 > 0, noise

correlation ρz ∈ [−1, 1], and cross gain a (= 0 be given. The
scheme described in Section VIII-A achieves all rate pairs
(R1, R2) satisfying

Rν <
1

2
log

(

P (1 + a2 + 2aρ∗IC) + σ2

Pa2(1− (ρ∗IC)
2) + σ2

)

, ν ∈ {1, 2},

(83)

where ρ∗IC is defined as a solution5 in (0, 1) to the quartic
equation (78).

C. High-SNR Asymptotics
Proposition 8: When ρz = −1 and a > 0 the above

described scheme achieves prelog 2.
Proof: By Lemma 4, for each power P > 0 and ε > 0

the scheme in the previous section VIII-A achieves a sum-rate

RΣ(P ) = log

(

P (1 + a2ρ∗IC) + σ2

Pa2(1 − (ρ∗IC)
2) + σ2

)

− ε

≥ log

(

P (1 + a2) + σ2

2Pa2(1− ρ∗IC) + σ2

)

− ε, (84)

where ρ∗IC is defined as a solution in (0, 1) to the quartic
equation (78), and where the inequality follows because ρ∗IC
lies in the interval (0, 1).

The desired asymptotic lower bound (29) follows from (84)
and from the following Lemma 5.
Lemma 5: Let the noise variance σ2 > 0, noise correlation

ρz = −1, and cross gain a > 0 be given. For each power
P > 0 let ρ∗IC(P ) to be a solution in the interval (0, 1) to the
quartic equation (78) in ρ. Then,

lim
P→∞

P 1−ε(1− ρ∗IC(P )) = 0, ∀ε > 0.

Proof: See Appendix C.

IX. PROOF OF THEOREM 5 FOR THE AWGN IC WITH
NOISE-FREE FEEDBACK

We first prove Relation (31), which follows from the fol-
lowing more general relation. Irrespective of the symmetric
noise-variance σ2 > 0, the noise correlation ρz ∈ [−1, 1], and
the cross gain a > 0, the prelog satisfies

1 ≤ lim
P→∞

CIC,Σ(P,σ, ρz , a)
1
2 log(1 + P )

≤ 2. (85)

The lower bound can be achieved, e.g., by silencing Transmit-
ter 1 and letting Transmitter 2 communicate its Message M2 to
Receiver 2 over the resulting interference-free AWGN channel
Y2,t = X2,t + Z2,t at a rate R2 = 1

2 log
(

1 + P
σ2

)

. The upper

5If there is more than one such solution, then one can freely choose one
of them.
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ρt = sign(ρt−1)
P (1 + a2 + 2a|ρt−1|) + σ2

Pa2(1 − |ρ2t−1|) + σ2

·
(

|ρt−1 − 2
P (a+ |ρt−1|)(1 + a|ρt−1|)
P (1 + a2 + 2a|ρt−1|) + σ2

+
P (1 + a|ρt−1|)2

(P (1 + a2 + 2a|ρt−1|) + σ2)2
(P (2a+ |ρt−1|(1 + a2)) + σ2ρz)

)

.

(75)

bound can be derived using the cutset bound and the entropy
maximizing property of the Gaussian distribution under a
covariance matrix constraint. In fact, applying the cutset bound
with a cut between both transmitters and Receiver 2 on one
side and Receiver 1 on the other side yields

R1 ≤ max I(X1X2;Y1)

=
1

2
log

(

1 +
(1 + a)2P

σ2

)

,

where the maximization is over all joint laws on the pair
(X1, X2) satisfying the power constraints E

[

X2
1

]

≤ P and
E
[

X2
2

]

≤ P . Similarly, applying the cutset bound with a cut
between both transmitters and Receiver 1 on one side and
Receiver 2 on the other side yields

R2 ≤ max I(X1X2;Y2)

=
1

2
log

(

1 +
(1 + a)2P

σ2

)

.

These two upper bounds establish the converse result in (31).
Equation (29) is established by the general Relation (85)

and Proposition 8 in Section VIII-C.
We next establish Equation (32). Towards this end, we

notice that for a = 1 and ρz = 1 the two output sequences
{Y1,t} and {Y2,t} coincide. Therefore, whenever Receiver 1
can decode its message M1 so can Receiver 2, and similarly
whenever Receiver 2 can decode M2 so can Receiver 1. Thus,
for a = 1 and ρz = 1 the feedback capacity of our AWGN
IC coincides with the feedback capacity of the AWGN MACs
from both transmitters to one of the two receivers. Since these
AWGN MACs have prelog 1 (with or without feedback) [13],
[14], [15] Relation (32) follows.

We finally show that irrespective of the cross gain a > 0,
for ρz ∈ (−1, 1) the prelog is upper bounded by 1, i.e.,

lim
P→∞

CIC,Σ(P,σ, ρz , a)
1
2 log(1 + P )

≤ 1, ρz ∈ (−1, 1). (86)

Combined with (85) this establishes (30).
We prove (86) based on a genie-argument and a generalized

Sato-MAC bound [16], similar to the upper bounds in [17],
[18]. Our proof consists of the following three steps. In the
first step, we consider a scenario where prior to transmission a
genie reveals the symbols Un = Zn

1 − 1
aZ

n
2 to Receiver 1. This

obviously can only increase the sum-capacity of our channel.
In the second step, we apply Sato’s MAC-bound argument

[16] to the genie-aided AWGN IC obtained in the first step:6 we

6Unlike in Sato’s setup, here both transmitters have feedback. As we shall
see, Sato’s MAC-bound argument applies unchanged also to feedback-setups,
as the argument affects only the receivers.

show that the capacity of this IC is included in the capacity of
the MAC that results from the IC when Receiver 1 is required
to decode both messages and Receiver 2 no message at all. The
inclusion can be proved based on the following observation.
Whenever Receiver 1 has successfully decoded Message M1,
then it can reconstruct the inputs Xn

1 and also the outputs
observed at Receiver 2:

Y n
2 =

1

a
(Y n

1 −Xn
1 ) + Un. (87)

Consequently, under this assumption it can decode Message
M2 in the same way as Receiver 2. This implies that for
fixed encoding strategies applied at the two transmitters, the
minimum probability of error in the MAC setup cannot exceed
the minimum probability of error in the IC setup and proves
the desired inclusion.

In the third step we show that the MAC to Receiver 1 has
prelog no larger than 1. Combined with the previous two steps
this yields the desired upper bound (86). Before elaborating
on this third step, we recall some properties of the considered
MAC: Its channel law is described by

Y1,t = X1,t + aX2,t + Z1,t, t ∈ {1, . . . , n};

its two transmitters observe the generalized feedback signals
{Y1,t} and {Y2,t}; and before the transmission starts its
receiver learns the genie-information Un.

We now prove that the prelog of this MAC is upper bounded
by 1. To this end we fix an arbitrary sequence of blocklength-
n, rates-(R1, R2) coding schemes for the considered MAC
such that the probability of error ε(n) tends to zero as n tends
to infinity. Then, for every blocklength n we have:

R1 +R2

≤
1

n
I(M1,M2;Y

n
1 , Un) +

ε(n)

n

=
1

n
I(M1,M2;Y

n
1 |Un) +

ε(n)

n

=
1

n

n
∑

t=1

(

h(Y1,t|Y t−1
1 , Un)

−h(Y1,t|Y t−1
1 ,M1,M2, U

n)
)

+
ε(n)

n

≤
1

n

n
∑

t=1

(

h(Y1,t|Ut)

−h(Y1,t|Y t−1
1 ,M1,M2, Y

t−1
2 , Un)

)

+
ε(n)

n

=
1

n

n
∑

t=1

(

h(Y1,t|Ut)− h(Y1,t|X1,t, X2,t, Ut)
)
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=
1

n

n
∑

t=1

I(Y1,t;X1,t, X2,t|Ut)

≤
1

2
log

(

1 +
(1 + a)2P

σ2 1−ρ2
z

1+a2−2aρz

)

+
ε(n)

n
,

where the first inequality follows by Fano’s inequality; the first
equality follows by the independence of the genie-information
Un and the messages M1 and M2; the second inequality fol-
lows because conditioning cannot increase differential entropy
and because the vector Y t−1

2 can be computed as a function
of M1, Y

t−1
1 , and U t−1, see (87); the third equality follows

because the input X1,t is a function of the Message M1 and
the feedback outputs Y t−1

1 , and similarly X2,t is a function
of M2 and Y t−1

2 , and because of the Markov relation

(M1,M2, Y
t−1
1 , Y t−1

2 , U t−1, Un
t+1)− (X1,t, X2,t, Ut)− Y1,t;

and the last inequality follows because the Gaussian dis-
tribution maximizes differential entropy under a covariance
constraint. Since by assumption the probabilities of error ε(n)
tend to 0 as n → ∞ the sum-rate of the considered scheme
must satisfy

R1 +R2 ≤
1

2
log

(

1 +
(1 + a)2P

σ2 (1−ρ2
z)

1+a2−2aρz

)

,

and thus the sum-capacity of the MAC to Receiver 1

CMAC,Σ(P,σ
2, ρz, a) ≤

1

2
log

(

1 +
(1 + a)2P

σ2 (1−ρ2
z)

1+a2−2aρz

)

.

It immediately follows that for a > 0 and ρz ∈ (−1, 1) the
prelog is upper bounded by 1, which concludes the third step
and the proof of (86).
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APPENDIX

A. Proof of Lemma 2
Since for every P > 0 the parameter ρ∗(P ) lies in the

interval (0, 1):

lim
P→∞

P 1−ε (1− ρ∗(P )) ≥ 0, ∀ε > 0.

Thus, we have to prove that

lim
P→∞

P 1−ε (1− ρ∗(P )) ≤ 0, ∀ε > 0. (88)

To this end, we introduce for every P > 0 the parameter

g∗(P ) ! 1− ρ∗(P ), (89)

which by (43) and (44)–(46) satisfies

0 = − (g∗(P ))3 + γ2(P ) (g∗(P ))2 + γ1(P )g∗(P ) + γ0(P ),
(90)

where

γ2(P ) = 3−
2σ1σ2

P
−

P + σ2
1 + σ2

2 + ρzσ1σ2
√

P + σ2
1

√

P + σ2
2

−
2σ2

1σ
2
2

P
√

P + σ2
1

√

P + σ2
2

, (91)

γ1(P ) = −2

(

1−
P

√

P + σ2
1

√

P + σ2
2

)

+
(2 + ρz)σ2

1 + (2 + ρz)σ2
2 + 2ρzσ1σ2

√

P + σ2
1

√

P + σ2
2

+
σ2
1 + σ2

2 + 4σ1σ2

P

+
σ1σ2(σ2

1 + 4σ1σ2 + σ2
2)

P
√

P + σ2
1

√

P + σ2
2

, (92)

γ0(P ) = −
σ2
1 + 2σ1σ2 + σ2

2

P

(

1 + ρz
P

√

P + σ2
1

√

P + σ2
2

)

−
σ1σ2(σ2

1 + 2σ1σ2 + σ2
2)

P
√

P + σ2
1

√

P + σ2
2

. (93)

Proving (88) is then equivalent to proving

lim
P→∞

P 1−εg∗(P ) ≤ 0, ∀ε > 0. (94)

We shall prove (94) by contradiction, and thus assume that
there exists an ε > 0 such that

lim
P→∞

P 1−εg∗(P ) > 0. (95)

By our assumption, the parameter

ε∗ ! sup
{

ε : lim
P→∞

P 1−εg∗(P ) > 0
}

, (96)

is strictly positive, and we can choose an ε1 in the open interval
(0, ε∗).

In the rest of this appendix we show that under our
assumption

lim
P→∞

∆BC(P ) > 0, (97)

where for each P > 0 we define

∆BC(P ) ! P 2−ε∗−ε1
(

− (g∗(P ))3 + γ2(P )(g∗(P ))2

+γ1(P )g∗(P ) + γ0(P )
)

. (98)

Inequality (97) implies that there exist (finite) values P > 0
for which ∆BC(P ) > 0 and thus the cubic equation (90) is
violated. This leads to the desired contradiction.

In the following we establish Inequality (97) by proving the
following three limits

lim
P→∞

P 2−ε∗−ε1
(

−(g∗(P ))3 + γ2(P )(g∗(P ))2
)

> 0, (99)

lim
P→∞

P 2−ε∗−ε1γ1(P )g∗(P ) = 0, (100)

lim
P→∞

P 2−ε∗−ε1γ0(P ) = 0. (101)

We first notice that

lim
P→∞

γ2(P ) = 2, (102)

lim
P→∞

γ1(P ) = 0, (103)
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lim
P→∞

γ0(P ) = 0, (104)

and thus by continuity the solutions to the cubic equation (90)
tend to the solutions to the cubic equation −g3 + 2g2 = 0.
Since for this latter equation g = 0 is the only solution in the
interval [0, 1], it must hold that

lim
P→∞

g∗(P ) = 0. (105)

Inequality (99) is then proved as follows. Since
(

ε∗+ε1
2

)

< ε∗

Definition (96) implies that

lim
P→∞

(

P 1−
ε∗+ε1

2 g∗(P )
)

> 0, (106)

which combined with limits (102) and (105) yields the desired
inequality (99):

lim
P→∞

P 2−ε∗−ε1
(

−(g∗(P ))3 + γ2(P )(g∗(P ))2
)

= lim
P→∞

(

P 1−
ε∗+ε1

2 g∗(P )
)2

(−g∗(P ) + γ2(P ))

> 0.

To prove equations (100) and (101) we employ the following
limit

lim
P→∞

P

(

1−
P

√

P + σ2
1

√

P + σ2
2

)

=
σ2
1 + σ2

2

2
, (107)

which can be proved with Bernoulli-de l’Hôpital’s rule. Since
(ε∗ + ε1) > 0, Limit (107) combined with the definition of
γ0(P ) in (93) establishes Equation (101). Similarly, since ε1 >
0, Limit (107) combined with the definition of γ1(P ) in (92)
yields

lim
P→∞

P 1−
ε1
2 γ1(P ) = 0. (108)

Moreover, since (ε∗ + ε1
2 ) > ε∗ by the definition of ε∗:

lim
P→∞

P 1−ε∗−ε1/2g∗(P ) = 0, (109)

which combined with (108) establishes the desired equal-
ity (100).

B. Proof of Lemma 3
The first part of the proof is analogous to the proof in

Appendix A. Again, since for each P > 0 the parameter ρ∗(P )
lies in the interval (0, 1) the lower bound

lim
P→∞

P 1−ε (1− ρ∗(P )) ≥ 0, ∀ε > max

{

1− β

2
, 0

}

trivially holds, and the interesting part is to prove

lim
P→∞

P 1−ε (1− ρ∗(P )) ≤ 0, ∀ε > max

{

1− β

2
, 0

}

.

(110)
Define for every P > 0

g∗(P ) ! 1− ρ∗(P ),

which lies in (0, 1) and by (43) and (44)–(46) satisfies

−(g∗(P ))3 + γ2(P )(g∗(P ))2 + γ1(P )g∗(P ) + γ0(P ) = 0,

(111)

where in this appendix in the definitions of γ2(P ), γ1(P ),
and γ0(P ) (Definitions (91)–(93)) the correlation coefficient
ρz should be replaced by ρz(P ). Instead of proving (110), we
shall prove the equivalent limit

lim
P→∞

P 1−εg∗(P ) ≤ 0, ∀ε > max

{

1− β

2
, 0

}

. (112)

The proof is lead by contradiction. Thus, assume that there
exists an ε > max

{

1−β
2 , 0

}

satisfying

lim
P→∞

P 1−εg∗(P ) > 0. (113)

Under this assumption, the parameter

ε∗ ! sup
{

ε : lim
P→∞

P 1−εg∗(P ) > 0
}

, (114)

is larger than max
{

1−β
2 , 0

}

, and we can choose ε1 in the

open interval
(

max
{

1−β
2 , 0

}

, ε∗
)

. To establish the desired
contradiction, we prove that

lim
P→∞

∆BC,2(P ) > 0, (115)

where we define

∆BC,2(P ) ! P 2−ε∗−ε1
(

− (g∗(P ))3 + γ2(P )(g∗(P ))2

+γ1(P )g∗(P ) + γ0(P )
)

.

This implies that for some values P > 0 the term ∆BC,2(P ) >
0 and thus Equation (111) is violated, which leads to the
desired contradiction.

Using similar steps as for the proof of Equations (99) and
(100) in Appendix A, it can be shown that

lim
P→∞

P 2−ε∗−ε1
(

− (g∗(P ))3 + γ2(P )(g∗(P ))2

+γ1(P )g∗(P )
)

> 0.

(116)

It therefore suffices to prove

lim
P→∞

P 2−ε∗−ε1γ0(P ) = 0, (117)

in order to establish (115). Towards proving (117), we first
rewrite γ0(P ) as

γ0(P ) = −
σ2
1 + 2σ1σ2 + σ2

2

P
((

1−
P

√

P + σ2
1

√

P + σ2
2

)

+(1 + ρz(P ))
P

√

P + σ2
1

√

P + σ2
2

−
σ1σ2

P
√

P + σ2
1

√

P + σ2
2

)

,

and notice that the following limit

lim
P→∞

P (1−ε∗−ε1)

((

1−
P

√

P + σ2
1

√

P + σ2
2

)
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+(1 + ρz(P ))
P

√

P + σ2
1

√

P + σ2
2

−
σ1σ2

P
√

P + σ2
1

√

P + σ2
2

)

= 0,

(118)

directly leads to the desired result (117). We now prove
Limit (118). Obviously, since (ε1 + ε∗) > 0:

lim
P→∞

P 1−ε∗−ε1 σ1σ2

P
√

P + σ2
1

√

P + σ2
2

= 0, (119)

and by (107) also

lim
P→∞

P 1−ε∗−ε1

(

1−
P

√

P + σ2
1

√

P + σ2
2

)

= 0. (120)

Moreover, as we shall shortly see, by the definition of the
parameter β, Equation (17), for all β′ < β:

lim
P→∞

P β′

(1 + ρz(P )) = 0, (121)

and thus, since (1− ε∗ − ε1) < β:

lim
P→∞

P 1−ε∗−ε1 (1 + ρz(P ))
P

√

P + σ2
1

√

P + σ2
2

= 0. (122)

Combined with (119) and (120) this limit establishes (118)
and thus (117), and concludes the proof.

We are left with proving Limit (121). By Equation (17), i.e.,

β = lim
P→∞

− log(1 + ρz(P ))

log(P )

there exists for every ε′ > 0 an unbounded increasing sequence
{Pk}k∈N such that

(β − ε′) log(Pk) ≤ − log(1 + ρz(Pk)), k ∈ N,

i.e., such that

P−ε′

k ≥ P β−2ε′(1 + ρz(Pk)), k ∈ N. (123)

Since the sequence P−ε′

k tends to 0 as k → ∞ and since the
right-hand side of (123) is nonnegative for k ∈ N, we can
conclude that

lim
k→∞

P β−2ε′(1 + ρz(Pk)) = 0.

Finally, since this argument holds for any ε′ > 0, Limit (121)
is established.

C. Proof of Lemma 5
The proof of Lemma 5 is similar to the proof of Lemma 2

in Appendix A.
Again, since for every P > 0 the parameter ρ∗IC(P ) lies in

the interval (0, 1) we have to prove that

lim
P→∞

P 1−ε (1− ρ∗IC(P )) ≤ 0, ∀ε > 0. (124)

To this end, we introduce for every P > 0 the parameter

g∗IC(P ) ! 1− ρ∗IC(P ), (125)

which by (78) and (79)—(82) satisfies

(g∗IC(P ))4 + δ3(P ) (g∗IC(P ))3

+δ2(P ) (g∗IC(P ))2 + δ1(P )g∗(P ) + δ0(P ) = 0, (126)

where

δ3(P ) ! −4−
σ2

2aP
, (127)

δ2(P ) ! 4−
σ2(4 + aρz − 3a)

2a2P

= 4−
2σ2(1 − a)

a2P
, (128)

δ1(P ) !
σ2(−a2 + 2a2ρz + 8a+ 2aρz + 1)

2a3P
+

σ4

a3P 2

=
σ2(−3a2 + 6a+ 1)

2a3P
+

σ4

a3P 2
, (129)

δ0(P ) ! −
σ2(1 + ρz)(1 + 2a+ a2)

2a3P
−

σ4

a3P 2

= −
σ4

a3P 2
, (130)

where in (128)–(130) we used that ρz = −1. Proving (124) is
then equivalent to proving

lim
P→∞

P 1−εg∗IC(P ) ≤ 0, ∀ε > 0. (131)

We shall prove (131) by contradiction, and thus assume that
there exists an ε > 0 such that

lim
P→∞

P 1−εg∗IC(P ) > 0. (132)

By this assumption, the parameter

ε∗ ! sup
{

ε : lim
P→∞

P 1−εg∗IC(P ) > 0
}

, (133)

is strictly positive, and we can choose an ε1 in the open interval
(0, ε∗).

In the rest of this appendix we prove that

lim
P→∞

P 2−ε∗−ε1∆IC(P ) > 0, (134)

where we define for each P > 0:

∆IC(P ) ! (g∗IC(P ))4 + δ3(P )(g∗IC(P ))3

+δ2(P )(g∗IC(P ))2 + δ1(P )g∗IC(P ) + δ0(P ).

Inequality (134) implies that there exist (finite) values P >
0 such that ∆IC > 0 and thus the quartic equation (126) is
violated. This leads to the desired contradiction.

We prove (134) by establishing the following three inequal-
ities:

lim
P→∞

(

P 2−ε∗−ε1
(

(g∗IC)
4 + δ3(P )(g∗IC(P ))3

)

+δ2(P )(g∗IC(P ))2
)

> 0, (135)

lim
P→∞

P 2−ε∗−ε1δ1(P )g∗IC(P ) = 0, (136)

lim
P→∞

P 2−ε∗−ε1δ0(P ) = 0. (137)

To this end, we first notice that

lim
P→∞

δ3(P ) = −4, (138)

lim
P→∞

δ2(P ) = 4, (139)
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lim
P→∞

δ1(P ) = 0, (140)

lim
P→∞

δ0(P ) = 0, (141)

and thus the solutions to the quartic equation (126) tend to the
solutions to the quartic equation g4 − 4g3 + 4g2 = 0. Since
g = 0 is the only solution in the interval [0, 1] to this latter
quartic equation, we obtain:

lim
P→∞

g∗IC(P ) = 0. (142)

Inequality (135) can then be proved as follows. Since
ε∗+ε1

2 < ε∗,

lim
P→∞

P 1−
ε∗+ε1

2 g∗(P ) > 0, (143)

which can be combined with (138), (139), and (142) to
establish Inequality (135):

lim
P→∞

P 2−ε∗−ε1

(

(g∗IC(P ))4

+δ3(P )(g∗IC(P ))3 + δ2(P )(g∗IC(P ))2
)

= lim
P→∞

(

P 1−
ε∗+ε1

2 g∗IC(P )
)2

·
(

(g∗IC(P ))2 + δ3(P )g∗IC(P ) + δ2(P )
)

> 0. (144)

Equation (136) is proved by combining the following two
limits. Since ε1

2 > 0, by the definition of δ1(P ) in (129)
we have

lim
P→∞

P 1−
ε2
2 δ1(P ) = 0,

and since
(

ε∗ + ε1
2

)

> ε∗, by the definition of ε∗ we have:

lim
P→∞

P 1−ε∗−
ε1
2 g∗(P ) = 0.

Finally, Equation (137) follows immediately by the defini-
tion of δ0(P ) in (130) and because ε∗, ε1 > 0. This concludes
the proof.

REFERENCES

[1] T. M. Cover and B. Gopinath, Open problems in communication and
computation, Springer Verlag, New York, 1987.

[2] P. Algoet and J. Cioffi, “The capacity of a channel with Gaussian noise
and intersymbol interference,” in Proc. of ISIT 91, Budapest, Hungary,
June 1991, p. 16.

[3] L. H. Ozarow, Coding and Capacity for Additive White Gaussian
Noise Multi-user Channels with Feedback, Ph.D. thesis, Massachusetts
Institute of Technology, Cambridge, MA, 1979.

[4] L. H. Ozarow and C. S. K. Leung., “An achievable region and
outer bound for the Gaussian broadcast channel with feedback,” IEEE
Transactions on Information Theory, vol. IT–30, pp. 667–671, July 1984.

[5] F. M. J. Willems and E. C. van der Meulen, “Een verbetering en
veralgemening van het transmissiegebied van Ozarow voor het gaus-
sische broadcast kanaal met feedback,” in Tweede Symposium over
Informatietheorie in de Benelux, Zoetermeer, The Netherlands, May
1981, pp. 129–138, In Dutch.

[6] Y.-H. Kim, A. Lapidoth, and T. Weissman, “Bounds on the error
exponent of the AWGN channel with AWGN corrupted feedback,” in
Proc. IEEE 24th Convention of Electrical and Electronics Engineers in
Israel, Eilat, Israel, Nov 2006, pp. 184–188.

[7] J. P. M. Schalkwijk and T. Kailath, “A coding scheme for additive
noise channels with feedback—Part I: No bandwidth constraint,” IEEE
Transactions on Information Theory, vol. IT–12, pp. 172–182, April
1966.

[8] G. Kramer, “Feedback strategies for white Gaussian interference
networks,” IEEE Transactions on Information Theory, vol. 48, no. 6,
pp. 1423–1437, June 2002.

[9] N. Devroye and M. Sharif, “The multiplexing gain of mimo x-channels
wiht partial transmit side information,” in Proc. of ISIT 2007, Nice,
France, June 2007.

[10] P. Bergmans, “A simple converse for broadcast channels with additive
white Gaussian noise,” IEEE Transactions on Information Theory, vol.
IT–20, no. 2, pp. 279–280, Mar 1974.

[11] A. El Gamal and Y.-H. Kim, “Lecture notes in multi-user information
theory,” .

[12] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley,
New York, 2nd edition, 2006.

[13] L. H. Ozarow, “The capacity of the white Gaussian multiple access
channel with feedback,” IEEE Transactions on Information Theory, vol.
IT–30, no. 4, pp. 623–629, July 1984.

[14] A. D. Wyner, “Recent results in the Shannon theory,” vol. 20, pp. 2–10,
Jan. 1974.

[15] T. M. Cover, “Some advances in broadcast channels,” in Advances
in Communication Systems, A. Viterbi, Ed., vol. 4. San Francisco:
Academic Press, 1975.

[16] H. Sato, “The capacity of the Gaussian interference channel under strong
interference,” IEEE Transactions on Information Theory, vol. IT–27, no.
6, pp. 786–788, November 1981.

[17] A. Lapidoth, S. Shamai (Shitz), and M. A. Wigger, “On cognitive
interference networks,” in IEEE Information Theory Workshop, Lake
Tahoe, USA, September 2007, pp. 325–330.

[18] A. Lapidoth, N. Levy, S. Shamai (Shitz), and M. A. Wigger, “A cognitive
interference network with clustered decoding,” in Proc. of ISIT 09,
Seoul, Korea, June/July 2009, pp. 198–202.


	I Introduction
	II Broadcast Channel with Noise-Free Feedback
	II-A The Model
	II-B Results

	III Broadcast Channel with Noisy Feedback
	III-A The Model
	III-B Result

	IV Interference Channel with Noise-Free Feedback
	IV-A The Model
	IV-B Result

	V Achievability of Prelog larger than 1 for the AWGN BC with Noise-Free Feedback
	V-A Scheme
	V-B Analysis of Performance
	V-C High-SNR asymptotics for constant z=-1
	V-D High-SNR asymptotics for z(P) varying with P

	VI Proofs of Theorems ?? and ?? and Note ?? for the AWGN BC with Noise-Free Feedback
	VI-A Proof of Theorem ??
	VI-B Proof of Theorem ??
	VI-C Proof of Note ??

	VII Proof of Theorem ?? for the AWGN BC with Noisy Feedback
	VIII Achievability of Prelog 2 for the AWGN IC with Noise-Free Feedback
	VIII-A Scheme for z=-1
	VIII-B Analysis
	VIII-C High-SNR Asymptotics

	IX Proof of Theorem ?? for the AWGN IC with Noise-Free Feedback
	Appendix
	A Proof of Lemma ??
	B Proof of Lemma ??
	C Proof of Lemma ??

	References

