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On the Relay Channel with Receiver-Transmitter
Feedback
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Abstract—An achievable rate for the discrete memoryless relay
channel with receiver-transmitter feedback is proposed based on
Block-Markov superposition encoding. The achievable ratecan
also be extended to Gaussian channels. A second achievable rate
for the Gaussian relay channel based on a Schalkwijk-Kailath
type scheme is presented. For some channels both achievable
rates strictly improve upon all previously known achievable rates.
For the discrete memoryless relay channel also a converse result
is provided.

Index Terms—Discrete memoryless relay channel, receiver-
transmitter feedback.

I. I NTRODUCTION

The relay channel was introduced by van der Meulen in
[1]. In [3] Cover and El Gamal proposed two coding schemes
which are based on the idea of Block-Markov superposition
encoding: the decode-and-forward scheme and the compress-
and-forward scheme. The decode-and-forward scheme was
proved to be optimal for physically degraded relay channels
[3]—i.e., for channels where the output observed at the
receiver is a degraded version of the channel output at the
relay—and for semi-deterministic channels [5]—i.e., for chan-
nels where the channel output at the relay is a deterministic
function of the channel input at the transmitter and the channel
input at the relay. However, for general relay channels the
capacity is not known to date. The best known upper bound
on capacity is given by the cut-set upper bound [3] and the
best known lower bound is due to Chong et. al [13]. The
scheme in [13] is a Block-Markov transmission scheme that
represents a combination of the decode-and-forward scheme
and the compress-and-forward scheme, while the transmitted
message is recovered at the receiver by use of backward
decoding combined with simultaneous decoding. The use
of simultaneous decoding, instead of a sequential form of
decoding, results in a relaxed constraint on the compression
ratio of the data sent via the compress-and-forward approach
and thus (possibly) enlarges the achievable rate. The idea of
applying backward decoding to a Block-Markov transmission
scheme in order to allow a simultaneous form of decoding
was first introduced by Willems and van der Meulen for the
multiple-access channel with cribbing encoders [20].

The described upper and lower bounds on the capacity of
discrete memoryless relay channels hold also for Gaussian
relay channels. In addition, for Gaussian relay channels El
Gamal et al. [14] recently proposed coding schemes which
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apply a simple linear strategy at the relay. Surprisingly, for cer-
tain choices of the channel parameters, these simple schemes
outperform the more involved Block-Markov schemes in [3],
[13].

The relay channel with feedback has first been considered
in [3] where it was shown that in the presence of receiver-
relay feedback the channel becomes a physically degraded
relay channel and hence the capacity can be achieved using the
decode-and-forward scheme. For the settings without receiver-
relay feedback, but with either receiver-transmitter feedback,
relay-transmitter feedback, or both, the capacity is stillun-
known except for the same special cases as in the no-feedback
setting: in the semi-deterministic case and in the physically
degraded case. Here a relay-transmitter feedback link [2]
and/or a receiver-transmitter feedback link (Observation1 in
this work) does not improve capacity compared to the channel
without feedback. However, for general relay channels with
either receiver-transmitter feedback or with relay-transmitter
feedback the achievable rates reported in [6] are strictly larger
than the best known achievable rates without feedback.

Outer bounds for relay channels with either receiver-
transmitter feedback or relay-transmitter feedback include the
cut-set bound and (for relay-transmitter feedback only) the
upper bound in [2].

In this work we focus on relay channels with receiver-
transmitter feedback. We study the discrete memoryless relay
channel as well as the Gaussian memoryless relay channel.
For the discrete memoryless relay channel we propose a new
lower bound and a new upper bound on the channel capacity.
The lower bound is due to a coding scheme which combines
the ideas of restricted decoding used in [21], the nested
binning used in [6], and the generalized coding strategy for
the relay channel in [3]. The proposed upper bound recovers
the existence of an auxiliary random variable which shows up
in a similar way in most known lower bounds. In the lower
bounds the auxiliary random variable arises when building up
correlation between the signals sent at the transmitter andat
the relay. However, our upper bound is not tighter than the
cut-set upper bound.

The aforementioned bounds apply also to Gaussian re-
lay channels with receiver-transmitter feedback. For some
channels the proposed lower bound strictly improves on all
previous lower bounds.

For the Gaussian relay channel a second lower bound on
the capacity with receiver-transmitter feedback is derived. This
lower bound is based on a scheme which builds upon a
Schalkwijk-Kailath type strategy [15] at the transmitter and a
simple amplify-and-forward strategy at the relay. The achiev-



2

able rate of this scheme is shown to exceed all previously
known achievable rates (including our first lower bound) for
some channels, e.g., for channels where the available power
at the relay is much smaller than the available power at the
encoder. In particular, it demonstrates that for some channels
the per-sample estimation based feedback signaling approach
of [15] – [19] outperforms the best known Block-Markov
feedback encoding approach.

The paper is organized as follows. The next section in-
troduces the general relay channel with receiver-transmitter
feedback and recalls some basic results that will be used
to establish the achievable rates. In Section III we present
our results concerning the time-discrete finite input/output-
alphabet memoryless relay channel, while Section IV presents
the results concerning the time-discrete memoryless Gaussian
relay channel. In Section V we prove the achievability of the
rates reported in Sections III-IV, as well as our converse result.

II. PRELIMINARIES

A. Notation

Henceforth, we adopt the following notation conventions.
Random variables will be denoted by capital letters, while their
realizations will be denoted by the respective lower case let-
ters. Whenever the dimension of a random vector is clear from
the context the random vector will be denoted by a bold face
letter, that is,X denotes the random vector(X1, X2, . . . , Xn),
and x = (x1, x2, . . . , xn) will designate a specific sample
value of X. However, in those cases where it is important
to emphasize explicitly the dimension of a random vector —
Xn1

1 shall denote the random vector(X1,1, X1,2, . . . , X1,n1)
andxn1

1 shall denote the sample vector(x1,1, . . . , x1,n1). The
alphabet of a scalar random variableX will be designated by a
caligraphic letterX . Then-fold Cartesian power of a generic
alphabetV , that is, the set of alln-vectors overV , will be
denotedVn.

B. Setting

The discrete memoryless relay channel is a triple
(X1 ×X2, p(y, y1|x1, x2),Y × Y1), whereX1 andX2 are fi-
nite sets corresponding to the input alphabets of the sender
and the relay respectively, whereY1 and Y are finite sets
corresponding to the output alphabets of the relay and the
receiver respectively, and wherep(·, ·|x1, x2) is a collection
of probability laws onY × Y1 indexed by the input symbols
x1 ∈ X1 andx2 ∈ X2. The channel’s law extends ton-tuples
according to the memoryless law

p(yk, y1,k|xk
1 , xk

2 , yk−1, yk−1
1 ) = p(yk, y1,k|x1,k, x2,k),

wherex1,k, x2,k, yk, andy1,k denote the inputs and outputs of
the channel at timek, respectively. The investigated commu-
nication model is shown in Fig. 1.

The sender has access to an information source which
every n channel uses emits a random integerW that is
uniformly distributed over the set{1, . . . , M}. The goal of
the transmission is to communicate the messageW to the
receiver.

W - Enc. -X1 p(y, y1|x1, x2) -Y Dec. -Ŵ

Relay

6
Y1

?
X2

6

Fig. 1. The relay channel with receiver-transmitter feedback.

We assume a causal and noiseless feedback link from the
receiver to the transmitter. Then both encoders are completely
described by corresponding sets ofn encoding functions.
These functions map the message and the sequence of previous
receiver outputs, or the sequence of previous relay outputs,
respectively, into the next channel inputs. Specifically,

x1,k = f1,k(W, Y1, Y2, . . . , Yk−1), (1)

x2,k = f2,k(Y1,1, Y1,2, . . . , Y1,k−1), (2)

wheref2,1 is allowed to be a stochastic function.
The decoder observes the sequence ofn channel outputs and

estimatesW based on that. Formally, the decoder is described
by a mappingφ : Yn → {1, . . . , M} such that

Ŵ = φ(Y1, . . . , Yn) . (3)

An (M, n, ε)-code for the relay with receiver-transmitter
feedback consists of two sets ofn encoding functions as in
(1) and (2), and a decoder mappingφ such as in (3) such that

Pe , Pr
[

Ŵ 6= W
]

≤ ε.

A rate R is said to be achievable if for anyε > 0 there
exists for alln sufficiently large an(M, n, ε)-code such that
(1/n) lnM ≥ R. The supremum over all achievable rates is
defined as the capacity.

C. Previous Results

In [6], the following achievability result has been reported
for a relay channel in the presence of receiver-transmitter
feedback.

Theorem 1 ([6, Theorem 1]):Consider the discrete memo-
ryless relay channel(X1 ×X2, p(y, y1|x1, x2),Y × Y1) with
receiver-transmitter feedback. Then the rateR̄1 defined by

R̄1 = sup
p

Ṽ X1X2Y Y1Ŷ1

I(X1; Y Ŷ1|Ṽ X2), (4)

is achievable subject to the constraints

I(Ŷ1; Y1|Ṽ X1X2Y ) ≤ I(X2; Y |Ṽ X1), (5)

I(Ŷ1; Y1|Ṽ X2Y ) ≤ I(Ṽ X2; Y ). (6)
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Here the supremum in (4) is taken over all laws onṼ ×X1 ×
X2 × Y × Y1 × Ŷ1 of the form

p
Ṽ X1X2Y Y1Ŷ1

(ṽ, x1, x2, y, y1, ŷ1)

= pṼ (ṽ)pX1|Ṽ (x1|ṽ)pX2|Ṽ (x2|ṽ)p(y, y1|x1, x2)

·p
Ŷ1|Y1X2Ṽ (ŷ1|y1, x2, ṽ), (7)

and the cardinalities of both auxiliary random variablesṼ and
Ŷ1 can be bounded as follows

‖Ṽ‖ ≤ ‖X1‖‖X2‖‖Y1‖ + 2,

‖Ŷ1‖ ≤ ‖Ṽ‖‖X1‖‖X2‖‖Y1‖ + 2.

To date the best known upper bound is given by the cut-set
bound derived by Cover and El Gamal in [3].

Theorem 2 ([3, Theorem 4]):Let
(X1 ×X2, p(y, y1|x1, x2),Y × Y1) be a discrete memoryless
relay channelwithout feedback. If

R > sup
pX1X2Y Y1

min {I(X1X2; Y ), I(X1; Y Y1|X2)} , (8)

then there existsλ > 0 such thatPe > λ for all n. Here the
supremum in (8) is taken over all laws onX1 ×X2 ×Y ×Y1

of the form

pX1X2Y Y1(x1, x2, y, y1) = pX1X2(x1, x2)p(y, y1|x1, x2). (9)

In general it is not known whether the cut-set upper bound
is achievable. However, El Gamal and Aref showed in [5]
that for semi-deterministic relay channelswithout feedbacka
decode-and-forward strategy achieves the cut-set upper bound.

Theorem 3 ([5]): Let (X1 ×X2, p(y, y1|x1, x2),Y × Y1)
be a discrete memoryless relay channelwithout feedback
and let the channel output at the relayy1 be a deterministic
function of the two channel inputsx1 andx2. Then

C = sup
pX1X2Y Y1

min

{

I(X1X2; Y ),
I(X1; Y |X2Y1) + H(Y1|X2)

}

, (10)

where the supremum is taken over all joint laws onX1×X2×
Y × Y1 of the form

pX1X2Y Y1(x1, x2, y, y1) = pX1X2(x1, x2)p(y, y1|x1, x2). (11)

III. D ISCRETEMEMORYLESSRELAY CHANNEL

Our main result for discrete memoryless relay channels
with receiver-transmitter feedback is an achievability result.
By combining the generalized coding strategy from [3, Theo-
rem 7], the nested binning technique from [6] and the restricted
decoding from [21] we prove the following.

Theorem 4:Consider the discrete memoryless relay
channel (X1 ×X2, p(y, y1|x1, x2),Y × Y1) with receiver-
transmitter feedback. Then the ratēR2 defined by

R̄2 =

sup
p

UV X1X2Y Y1Ŷ1

min

{

I(X1; Y Ŷ1|UX2) + I(U ; Y1|V X2),

I(X1X2; Y ) − I(Ŷ1; Y1|UX1X2Y )

}

,

(12)

is achievable subject to the constraints

I(Ŷ1; Y1|UX1X2Y ) ≤ I(X2; Y |UV X1), (13)

I(Ŷ1; Y1|UX2) ≤ I(Ŷ1; Y |UX2) + I(V X2; Y ). (14)

The supremum in (12) is taken over all laws onV ×U ×X1×
X2 × Y × Y1 × Ŷ1 of the form

pUV X1X2Y Y1Ŷ1
(u, v, x1, x2, y, y1, ŷ1)

= pUV (u, v)pX1|U (x1|u)pX2|V (x2|v)p(y, y1|x1, x2)

·p
Ŷ1|Y1X2U (ŷ1|y1, x2, u), (15)

and the cardinalities of the auxiliary random variablesV and
Ŷ1 can be bounded as follows

‖V‖ ≤ ‖U‖‖X1‖‖X2‖‖Y1‖ + 2,

‖Ŷ1‖ ≤ ‖V‖‖U‖‖X1‖‖X2‖‖Y1‖ + 2. (16)

Analogously to [6, Theorem 1], the constraint (13) reflects
the minimal compression ratio sustainable at the sender as
it decodes the compressed data sent from the relay to the
receiver. The constraint (14) reflects the minimal compres-
sion ratio sustainable at the receiver taking into account the
assistance it gets from both the sender and the relay.

Remark 1:The achievable rate in Theorem 4 includes the
previously known achievable rate in Theorem 1, i.e.,R̄1 ≤ R̄2.
This can be seen by deriving an equivalent formulation of the
rateR̄1. To this end, notice that for any lawp

Ṽ X1X2Y Y1Ŷ1
of

the form (7) which satisfies (5) and (6), we have that

I(X1; Y Ŷ1|Ṽ X2)

= I(X1; Y |Ṽ X2) + I(X1; Ŷ1|Ṽ X2Y )
(i)
= I(X1X2; Y ) − I(Ṽ X2; Y ) + I(X1; Ŷ1|Ṽ X2Y )
(ii)

≤ I(X1X2; Y ) − I(Ŷ1; Y1|Ṽ X2Y ) + I(X1; Ŷ1|Ṽ X2Y )
(iii)
= I(X1X2; Y ) + H(Ŷ1|Ṽ X1X2Y Y1) − H(Ŷ1|Ṽ X1X2Y )

= I(X1X2; Y ) − I(Ŷ1; Y1|Ṽ X1X2Y ),

where

(i) follows by the Markovian relatioñV −◦ (X1X2)−◦ (Y Y1);
(ii) follows by Inequality (6); and

(iii) follows by the Markovian relationX1−◦ (Ṽ X2Y1)−◦ Ŷ1.

Consequently,̄R1 can be expressed as

R̄1 =

sup
p

Ṽ X1X2Y Y1Ŷ1

min

{

I(X1X2; Y ) − I(Ŷ1; Y1|Ṽ X1X2Y ),

I(X1; Y Ŷ1|Ṽ X2)

}

,

(17)

where the supremum is taken over all laws of the form (7)
subject to the constraints (5) and (6). From this formulation it
is evident thatR̄1 ≤ R̄2 since choosingU = V in Theorem 4
the constraint (13) identifies with (5) and the constraint (14)
identifies with (6), while (12) identifies with (17).

Remark 2:The achievable rate expression (12) is identical
to the achievable rate expression in [13, Theorem 2] for the
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relay channel without feedback. However, the rate expression
in [13, Theorem 2] is subject to the constraint

I(Ŷ1; Y1|UX2) ≤ I(X2Ŷ1; Y |UV ), (18)

whereas our rate expression (12) is subject to the pair of
constraints (13) and (14). The constraint (13) is equivalent
to (as shown in section V.A)

I(Ŷ1; Y1|UX2) ≤ I(X2Ŷ1; Y |UV ) + I(X2Ŷ1; X1|UV Y ),
(19)

so our first constraint (13) relaxes constraint (18). Conse-
quently, for channels where the supremum in the rate expres-
sion (12) is attained for a law which fulfills (14) but violates
(18)—i.e., for a law for whichI(X2; Y |UV ) < I(V X2; Y )—
the achievable rate in Theorem 4 is strictly larger than the
achievable rate in [13, Theorem 2]. Hence, for such channels,
e.g., some Gaussian channels as is shown in Section IV, our
feedback scheme improves upon the no-feedback scheme in
[13].

Remark 3:The bound (16) on the alphabet cardinalities
necessary for computing the ratēR2 is partial in the sense
that the alphabet cardinalities ofV andŶ1 are upper bounded
for a given alphabetU . So far, we’ve been unable to obtain
an upper bound on‖U‖ in terms of‖X1‖, ‖X2‖, ‖Y1‖, and
‖Y‖.

Notice that in Theorems 1 and 4 there exists an auxiliary
random variableV which plays a role in building correlation
between the transmitter and the relay. In Section V-B we show
that one can naturally recover the auxiliary random variable
also in the upper bound (see also Observation 1), albeit the
resulting expression doesn’t provide a tighter upper boundthan
the cut-set upper bound.

Observation 1:Let (X1 ×X2, p(y, y1|x1, x2),Y × Y1) be
a discrete memoryless relay channel with receiver-transmitter
feedback. If

R > sup
pV X1X2Y Y1

min {I(X1X2; Y ), I(X1; Y Y1|X2V )} , (20)

then there existsλ > 0 such thatPe > λ for all n. The
supremum in (20) is taken over all laws onV×X1×X2×Y×Y1

of the form

pV X1X2Y Y1(v, x1, x2, y, y1)

= pV X1X2(v, x1, x2)p(y, y1|x1, x2), (21)

and the cardinality of V is bounded by ‖V‖ ≤
‖X1‖‖X2‖‖Y1‖ + 1.

That the upper bound in Observation 1 equals the cut-
set upper bound follows from the following two observa-
tions: the right hand side of (20) is maximized by choosing
V = ∅ because conditioning reduces entropy and because
V −◦ X1X2−◦ Y Y1 forms a Markov chain; and forV = ∅ the
rate constraint (20) identifies with the rate constraint (8), while
(21) identifies with (9).

The advantage of the upper bound in Observation 1 is that
it allows for a nice comparison with the lower bounds in
Theorem 1, Theorem 4, and [13, Theorem 2]. For example,
we see that the gap between the lower bound in Theorem 1
and the upper bound in Observation 1 is due to:

• Ŷ1 6= Y1; and
• in (20) the supremum is taken over an arbitrary joint law

pV X1X2 whereas in (17) the supremum is taken just over
those laws that satisfyX1−◦ Ṽ −◦ X2, and subject to the
constraints (5) and (6).

Our last result in this section is on the semi-deterministic
relay channel. It is based on Theorem 3 and on observing that
the cut-set upper bound in Theorem 2 holds unchanged also
for settings with feedback from the receiver to the sender.

Observation 2:Let (X1 ×X2, p(y, y1|x1, x2),Y × Y1) be
a discrete memoryless relay channel and let the channel output
at the relayy1 be a deterministic function of the two channel
inputsx1 andx2. Then the capacity with receiver-transmitter
feedback is given by (10) where the supremum is taken over
all joint laws of the form (11).

This observation together with the observation in [2] imply
that the semi-deterministic relay channel is “degraded” in
the sense that neither relay-transmitter feedback nor receiver-
transmitter feedback enlarges its no-feedback capacity.

IV. GAUSSIAN RELAY CHANNEL

In this section we focus on the Gaussian relay channel
which is described as follows. Let{Z1,k} be a sequence of
independent identically distributed (i.i.d.) Gaussian random
variables of zero mean and varianceN1. Independently thereof
let {Z2,k} be a sequence of i.i.d. Gaussian random variables
of zero mean and varianceN2. The two sequences model the
noise on the link from the transmitter to the relay and the noise
on the link from the transmitter to the receiver. For given time-
k channel inputs at the transmitter and at the relay,x1,k and
x2,k, the channel outputs at the relay and at the receiver are

Y1,k = x1,k + Z1,k, (22)

Yk = x1,k + dx2,k + Z2,k. (23)

Hered is the gain coefficient of the relay-to-receiver link. The
gain coefficients of the other links can be set to one without
loss of generality.

As in the previous section we assume a causal noiseless
receiver-transmitter feedback link.

We impose an average block power constraint on the input
sequencesX1 andX2:

1

n

n
∑

k=1

E

[

(

X1,k(W, Y k−1)
)2
]

≤ P1 (24)

and

1

n

n
∑

k=1

E

[

(

X2,k(Y k−1
1 )

)2
]

≤ P2 (25)

whereE denotes the expectation operator.
Our main result here demonstrates that for the described

Gaussian setting a combination of the Schalkwijk-Kailath
signaling method [15] at the transmitter with a naive amplify-
and-forward strategy at the relay sometimes (e.g., ford =
0.5, P1 = 1, P2 = 1, N1 = 1, N2 = 1, see Table I)
outperforms the best known coding strategies. Let the function
C(x) be defined asC(x) = 1/2 ln(1 + x).
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Theorem 5:Consider the Gaussian relay channel with
receiver-transmitter feedback. Then the rateR̄

(G)
3 defined by

R̄
(G)
3 = max

0≤P̃2≤P2

C











P1

(

1 + d
√

P̃2

P1+N1
ρ∗
)2

d2 P̃2

P1+N1
N1 + N2











(26)

is achievable. Here the correlation coefficientρ∗ is given by
the unique solution in[0, 1] of the following quartic equation

ρ2
(

P1 + 2d

√

P1P̃2

√

P1

P1 + N1
ρ + d2P̃2

P1

P1 + N1
ρ2

+d2 N1

P1 + N1
P̃2 + N2

)

= d2P̃2
N1

P1 + N1
+ N2. (27)

In Theorem 5 the power̃P2 denotes the transmit power
the relay effectively uses to achieve the rate in (26), and
hence it can be chosen arbitrarily between0 and P2. The
best choice ofP̃2 is in general not the maximum available
power P2 and hence the relay in general might not use all
the available transmit power. This is a consequence of the
applied sub-optimal amplify-and-forward strategy where the
relay not only amplifies the signal from the transmitter to
the relay but also amplifies the noise corrupting this signal.
Thus the amplification factor for the relay, and hence the
used power, should be chosen as a trade-off between aiding
the transmission from the transmitter to the receiver and
introducing additional noise disturbing this transmission.

Note that for large powerP2 the proposed Schalkwijk-
Kailath type scheme should be time-shared with a second cod-
ing scheme which can better exploit large available power at
the relay. Thus, we propose to use for a fraction0 ≤ γ ≤ 1 of
time the Schalkwijk-Kailath type scheme with powerP̃2 ≤ P2

at the relay, and use for the remaining fraction of time1−γ the
chosen block-Markov strategy with powerP2 + γ

1−γ
(P2− P̃2)

at the relay. Figure 2 illustrates the rates achieved by our
Schalkwijk-Kailath type scheme, the rates achieved by our
Block-Markov scheme, and the rates achieved by time-sharing
these two schemes.

The Schalkwijk-Kailath type scheme can also be improved
by allowing the relay to send arbitrary linear combinations
of the past observed outputs in the spirit of El Gamal et al.
[14]. An even more general approach would allow also the
transmitter to apply an arbitrary linear strategy similar to the
scheme proposed by Butman [22] for Gaussian single-user
channels with feedback. In fact, sending maximally informa-
tive updates as proposed by Schalkwijk and Kailath can be
strictly sub-optimal for multi-terminal settings, as was also
pointed out by Ozarow [17] in a broadcast setting. However,
both generalizations are difficult to analyze, since the problems
of finding the optimal linear combinations are non-convex.

A second achievable rate for the Gaussian relay channel
with receiver-transmitter feedback is obtained by evaluating
the achievable rate of Theorem 4 for the Gaussian channel.
However, we need to exercise some care in doing this, because
the proof of Theorem 4 makes use of strong typicality in order
to invoke Berger’s Markov lemma [4, Lemma 14.8.1]. Since
strong typicality does not apply to continuous alphabets, an

extension of this coding result to continuous random variables
has to be proved using either the technique presented by Wyner
in [9] or by using weak typicality and following the approach
of Oohama in [10] (see also [13, Section II.A remark 1]).
Consequently, a second achievable rate for the Gaussian relay
channel with receiver-transmitter feedback may be obtained
by evaluating the achievable rate of Theorem 4 for jointly
Gaussian random variables, where the random variableŶ1 is
chosen similarly to [14] based on the Wyner-Ziv source coding
(with decoder side information) strategy asŶ1 = α(Y1 + Z ′)
with Z ′ ∼ N (0, N ′). This choice is, of course, not necessarily
the optimal choice.

Corollary 1: Consider the Gaussian relay channel with
receiver-transmitter feedback. Then the rateR̄

(G)
2 defined by

R̄
(G)
2 =

sup
α1,α2,ρ,N ′

min











C
(

P1+d2P2+2d
√

P1P2
√

ᾱ1ᾱ2ρ

N2

)

− C
(

N1

N ′

)

,

C
(

α1P1

N2
+ α1P1

N1+N ′

)

+ C
(

ᾱ1P1(1−ρ2)
α1P1+N1

)











(28)

is achievable subject to the five constraints

0 ≤ α1 ≤ 1,

0 ≤ α2 ≤ 1,

0 ≤ ρ ≤ 1,
N1N2

d2α2P2
≤ N ′,

N1 + α1P1
N2

α1P1+N2

N ′ ≤ ᾱ1ρ
2P1 + P2d

2 + 2d
√

ᾱ1ᾱ2P1P2ρ

α1P1 + ᾱ1P1(1 − ρ2) + N2
.

(29)

The achievable rate in Corollary 1 includes the achievable
rates in [6] evaluated for the Gaussian relay channel when
choosing ρ = 1. Table I shows achievable rates for the
Gaussian relay channel for various coding strategies with and
without receiver-transmitter feedback. The rates are computed
for a setting whereP1 = P2 = 1, N1 = 2, andN2 = 0.5. In
Table I R(G)

EMZ denotes the El Gamal et al. [14] rate fork = 2,
R

(G)
CMG denotes the achievable rate derived in [13, Theorem 2],

R̄
(G)
1 denotes the achievable rate in [6, Theorem 1], andCUP

denotes the upper bound in Theorem 2. From Table I we see
that for d = 0.5, P1 = 1, P2 = 1, N1 = 2, andN2 = 0.5 the
coding scheme in Theorem 5 outperforms the other coding
schemes (including that of Corollary 1) whereas ford = 2.5
the coding scheme in Corollary 1 outperforms the other coding
schemes. Ford = 5 and d = 10 the coding scheme in
Corollary 1 and the coding scheme in [13, Theorem 2] perform
best.

V. PROOFS

A. Proof of Theorem 4

We propose a coding scheme which is based on Block-
Markov superposition encoding and which combines the ideas
of nested binning as in [6], restricted decoding as in [21]
together with the generalized coding scheme in [3].
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Fig. 2. Bounds on the capacity of the Gaussian relay channel with receiver-
transmitter feedback, whenP1 = 1, N1 = 1, N2 = 1, andd = 1.

d R
(G)
EMZ R

(G)
CMG R̄

(G)
1 R̄

(G)
2 R̄

(G)
3 CUP

0.5 0.2027 0.5589 0.5602 0.5602 0.5750 0.6264

2.5 0.2027 0.6097 0.6097 0.6099 0.5750 0.6264

5 0.2027 0.6209 0.6204 0.6209 0.5750 0.6264

10 0.2027 0.6244 0.6237 0.6244 0.5750 0.6264

TABLE I
BOUNDS ON THE CAPACITY OF THEGAUSSIAN RELAY CHANNEL WITH

RECEIVER-TRANSMITTER FEEDBACK. (P1 = P2 = 1, N1 = 2, N2 = 0.5.)

1) Coding Scheme:We considerB + 1 blocks, each ofn
symbols. We split the messageW into a sequence ofB − 1
sub-messagesW (b), for b = 1, . . . , B−1, whereW (b) consists
of the pair(W (b)

1 , W
(b)
2 ). Here the sequence{W (b)

1 } is an i.i.d.
sequence of uniform random variables over

{

1, . . . , enR1
}

and

independent thereof{W (b)
2 } is an i.i.d. sequence of uniform

random variables over
{

1, . . . , enR2
}

. As B → ∞, for fixed
n, the rate of the messageW , R = (R1+R2)(B−1)/(B+1),
is arbitrarily close toR1 + R2.

We assume a tuple of random variablesU ∈ U , V ∈
V , X1 ∈ X1, X2 ∈ X2, Y ∈ Y, Y1 ∈ Y1, Ŷ1 ∈ Ŷ1 of joint
law

p
UV X1X2Y Y1Ŷ1

(u, v, x1, x2, y, y1, ŷ1)

= pUV (u, v)pX1|U (x1|u)pX2|V (x2|v)p(y, y1|x1, x2)

·p
Ŷ1|Y1X2U

(ŷ1|y1, x2, u). (30)

Random coding and partitioning:In each blockb, b =
1, 2, . . . , B + 1, we shall use the following code.

• Generateen(R̃0+RD+RM) sequencesv = (v1, . . . , vn),
each with probability Pr (v) =

∏n

k=1 pV (vk). La-
bel them v (ω0) where ω0 = (ω0,1, ω0,2, m), ω0,1 ∈
{

1, . . . , enR̃0

}

, ω0,2 ∈
{

1, . . . , enRD

}

, and m ∈
{

1, . . . , enRM

}

.
• For each v (ω0) generate enR0 sequences

x2 = (x2,1, x2,2, . . . , x2,n), each with probability
Pr (x2|v (ω0)) =

∏n

k=1 pX2|V (x2,k|vk(ω0)). Label them
x2 (s, ω0) , s ∈

{

1, . . . , enR0
}

.
• For each v (ω0) generate enR1 sequencesu =

(u1, u2, . . . , un), each with probabilityPr (u|v (ω0)) =
∏n

k=1 pU|V (uk|vk(ω0)). Label themu (w1, ω0) , w1 ∈
{

1, . . . , enR1
}

.
• For each u (w1, ω0) generate enR2 sequences

x1 = (x1,1, x1,2, . . . , x1,n), each with probability
Pr (x1|u (w1, ω0)) =

∏n

k=1 pX1|U (x1,k|uk(w1, ω0)).
Label themx1 (w2, w1, ω0)w2 ∈

{

1, . . . , enR2
}

.
• For each x2 (s, ω0) and u (w1, ω0) generate

enR̂ sequences ŷ1 each with probability
Pr (ŷ1|x2 (s, ω0) , u (w1, ω0)) =
∏n

k=1 p
Ŷ1|X2,U (ŷ1,k|x2,k(s, ω0), uk(w1, ω0)), where for

x2 ∈ X2, ŷ1 ∈ Ŷ1, andu ∈ U we define

p
Ŷ1|X2U

(ŷ1|x2, u)

=

∑

v,x1,y,y1
pUV X1X2Y Y1Ŷ1

(u, v, x1, x2, y, y1, ŷ1)
∑

v,x1,y,y1,ŷ1
p

UV X1X2Y Y1Ŷ1
(u, v, x1, x2, y, y1, ŷ1)

.

(31)

Label themŷ1 (z, w1, s, ω0), wheres ∈
{

1, . . . , enR0
}

,

ω0 ∈
{

1, . . . , e(R̃0+RD+RM )
}

, w1 ∈
{

1, . . . , enR1
}

, z ∈
{

1, . . . , enR̂
}

.

• Partition 1: Randomly partition the set
{

1, . . . , enR̂
}

into

enR0 cells. Label the cellss ∈
{

1, . . . , enR0
}

and let
s(z) = c if z belongs to cellc.

• Partition 2: Randomly partition each cell of sizeen(R̂−R0)

in Partition 1 intoenRD subcells. Label the subcells in
each such subpartitionω0,2 ∈

{

1, . . . , enRD

}

and let
ω0,2(z) = c if z belongs to subcellc in some subpartition.

• Partition 3: Create a partition over
{

1, . . . , enR0
}

with

enR̃0 disjoint cells each containingen(R0−R̃0) elements.
Label the cellsω0,1 ∈

{

1, . . . , enR̃0

}

, and letω0,1(s) = c

if s belongs to cellc. This partition referred as adeter-
ministic partition will serve later on for the purpose of
restricted decoding[21].

• Partition 4: Randomly partition the set
{

1, . . . , enR1
}

into
enRM cells. Label the cellsm ∈

{

1, . . . , enRM

}

and let
m(w1) = c if w1 belongs to cellc.

Encoding : We denote the realizations of the sequences
{W (b)}, {W (b)

1 }, and{W (b)
2 } by {w(b)}, {w(b)

1 }, and{w(b)
2 }.

The code builds upon a three-level Block-Markov structure.
This implies that Messagew(b) = (w

(b)
1 , w

(b)
2 ) is encoded

over the three successive blocksb, (b + 1), and(b + 2), for =
1, . . . , B−1. Furthermore, the code builds upon the following
properties:s(b) = s(z(b−1)), ω

(b)
0 = (ω

(b)
0,1, ω

(b)
0,2, m

(b)) where

ω
(b)
0,1 = ω0,1(s

(b−1)), ω
(b)
0,2 = ω0,2(z

(b−2)), m(b) = m(w
(b−1)
1 ),

for b = 1, . . . , B + 1. Here the sequencez(1), . . . , z(B) will
be defined when describing the decoding at the relay and
z(−1) = z(0) = w

(0)
1 = 1.

We assume that at the end of block(b−1), b = 1, . . . , B+1

• The sender knows
(

w(1), w(2), . . . , w(B)
)

,

and it has available
(

ω̂
(1)
0,E , ω̂

(2)
0,E , . . . , ω̂

(b)
0,E

)

,
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(

ŝ
(1)
E , ŝ

(2)
E , . . . , ŝ

(b−1)
E

)

, and
(

ẑ
(1)
E , ẑ

(2)
E , . . . , ẑ

(b−2)
E

)

.

• The relay knows
(

s(1), s(2), . . . , s(b)
)

and
(

z(1), z(2), . . . , z(b−1)
)

, and it has available
(

ω̂
(1)
0,R, ω̂

(2)
0,R, . . . , ω̂

(b)
0,R

)

and
(

ŵ
(1)
1,R, ŵ

(2)
1,R, . . . , ŵ

(b−1)
1,R

)

.

Then in blockb the relay transmits the codeword

x2(s
(b), ω̂

(b)
0,R) =

x2

(

s(z(b−1)),
(

ω0,1(s
(b−1)), ω0,2(z

(b−2)), m(ŵ
(b−1)
1,R )

))

,

and the sender transmits the codeword

x1

(

w(b), ω̂
(b)
0E

)

=

x1

(

w(b),
(

ω0,1(ŝ
(b−1)
E ), ω0,2(ẑ

(b−2)
E ), m(w

(b−1)
1 )

))

.

Decoding at the transmitter and at the relay:After the
reception of the block-b channel outputs and feedback outputs
the transmitter and the relay perform the following decoding
steps which enable them for three levels of cooperation.

1) In order to obtain the first level ofcooperation, after
each block b, b = 1, 2, . . . , B − 1 the relay upon
receivingy

(b)
1 choosesŵ(b)

1,R such that

(

v(ω̂
(b)
0R), u(ŵ

(b)
1,R, ω̂

(b)
0R), x2(s

(b), ω̂
(b)
0R), y

(b)
1

)

∈ Aε(V, U, X2, Y1),

whereAε(·) denotes the strongly typical set (see Ap-
pendix A). This determinesm(b+1) = m(ŵ

(b)
1,R), that

the relay transmits in block(b + 1).
2) The relay upon receivingy(b)

1 decides thatz(b) is “re-
ceived” if

(

ŷ1(z
(b), ŵ

(b)
1,R, s(b), ω̂

(b)
0R), y

(b)
1 , v(ω̂

(b)
0R),

u(ŵ
(b)
1,R, ω̂

(b)
0R), x2(s

(b), ω̂
(b)
0R)
)

∈ Aε(Ŷ1, Y1, V, X2).

3) In order to obtain the second level ofcooperation, after
block b, b = 1, . . . , B − 1, the sender chooseŝs(b)

E such
that

(

v(ω̂
(b)
0E), u(w

(b)
1 , ω̂

(b)
0E), x1(w

(b), ω̂
(b)
0E),

x2(ŝ
(b)
E , ω̂

(b)
0E), y(b)

)

∈ Aε(V, U, X1, X2, Y ).

This determinesω0,1

(

ŝ
(b)
E

)

, that the sender transmits in
block b + 1.

4) In order to obtain the third level ofcooperation, after
each blockb, b = 2, . . . , B the sender forms the set

LE

(

y(b−1)
)

of z
(b−1)
E such that

LE

(

y(b−1)
)

=

{

z
(b−1)
E :

(

v(ω̂
(b−1)
0E ), u(w

(b−1)
1 , ω̂

(b−1)
0E ), x1(w

(b−1), ω̂
(b−1)
0E ),

x2(ŝ
(b−1)
E , ω̂

(b−1)
0E ), y(b−1),

ŷ1(z
(b−1)
E , w

(b−1)
1 , ŝ

(b−1)
E , ω̂

(b−1)
0E )

)

∈ Aε

(

V, U, X1, X2, Y, Ŷ1

)

}

.

The sender then declares thatẑ
(b−1)
E was sent in block

(b − 1) if and only if there is a unique

ẑ
(b−1)
E ∈ LE

(

y(b−1)
)

,

such thats(ẑ(b−1)
E ) = s

(b)
E .

After this decoding step, the sender and the relay coop-
erate in the sense that in blockb +1 the relay transmits
ω

(b+1)
0,2 = ω0,2

(

z(b−1)
)

, while the sender transmits

ω
(b+1)
0,2 = ω0,2

(

ẑ
(b−1)
E

)

.

Decoding at the receiver:
For the decoding procedure at the receiver starting

after the reception of blockb we assume that, upon
the decoding of blockb − 1, the receiver has available
(

ŵ
(1)
1,D, ŵ

(2)
1,D, . . . , ŵ

(b−2)
1,D

)

,
(

ŵ
(1)
2,D, ŵ

(2)
2,D, . . . , ŵ

(b−3)
2,D

)

,
(

ω̂
(1)
0,D, ω̂

(2)
0,D, . . . , ω̂

(b−1)
0,D

)

,
(

ŝ
(1)
D , ŝ

(2)
D , . . . , ŝ

(b−2)
D

)

, and
(

ẑ
(1)
D , ẑ

(2)
D , . . . , ẑ

(b−3)
D

)

.
Then, after blockb the receiver decodes the messages

w
(b−1)
1 andw

(b−2)
2 as follows.

1) The receiver looks for̂ω(b)
0,D such that

(

v(ω̂
(b)
0,D), y(b)

)

∈ Aε(V, Y ), (32)

whereω̂
(b)
0,D = (ω̂

(b)
0,1,D, ω̂

(b)
0,2,D, m̂

(b)
D ).

2) The receiver then considers block(b − 1) and chooses
ŝ
(b−1)
D such that
(

v(ω̂
(b−1)
0,D ), x2(ŝ

(b−1)
D , ω̂

(b−1)
0,D ), y(b−1)

)

∈ Aε(V, X2, Y ),

and such thatω0,1(ŝ
(b−1)
D ) = ω̂

(b)
0,1,D.

This step is similar to the restricted decoding principle,
that has been proposed in [21], for the multiple-access
channel with partial feedback.

3) The receiver then considers block(b− 1) and forms the
setL(1)

D

(

y(b−1)
)

of w
(b−1)
1,D such that

L(1)
D

(

y(b−1)
)

=

{

w
(b−1)
1,D :

(

v(ω̂
(b−1)
0,D ), x2(ŝ

(b−1)
D , ω̂

(b−1)
0,D ),

u(ŵ
(b−1)
1,D , ω̂

(b−1)
0,D ), y(b−1)

)

∈ Aε (V, U, X2, Y )

}

.
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The receiver then declares thatŵ
(b−1)
1,D was “received”

by the relay in block(b − 1) if and only if there is a
unique

ŵ
(b−1)
1,D ∈ L(1)

D

(

y(b−1)
)

,

such thatm(ŵ
(b−1)
1,D ) = m̂

(b)
D .

4) The receiver then considers block(b− 2) and forms the
setL(2)

D

(

y(b−2)
)

of z
(b−2)
D such that

L(2)
D

(

y(b−2)
)

=

{

z
(b−2)
D :

(

v(ω̂
(b−2)
0,D ), x2(ŝ

(b−2)
D , ω̂

(b−2)
0,D ),

u(ŵ
(b−2)
1,D , ω̂

(b−2)
0,D ), y(b−2),

ŷ1(z
(b−2)
D , ŵ

(b−2)
1,D , ŝ

(b−2)
D , ω̂

(b−2)
0,D )

)

∈ Aε

(

V, U, X2, Y, Ŷ1

)

}

.

The receiver then declares thatẑ
(b−2)
D was sent in block

(b − 2) if and only if there is a unique

ẑ
(b−2)
D ∈ L(2)

D

(

y(b−2)
)

,

such thats(ẑ(b−2)
D ) = ŝ

(b−1)
D andω0,2(ẑ

(b−2)
D ) = ω̂

(b)
0,2.

5) The receiver declares thatŵ
(b−2)
2,D was sent in block(b−

2) if
(

v(ω̂
(b−2)
0,D ), x2(ŝ

(b−2)
D , ω̂

(b−2)
0,D ),

u(ŵ
(b−2)
1,D , ω̂

(b−2)
0,D ), x1(ŵ

(b−2)
2,D , ŵ

(b−2)
1,D , ω̂

(b−2)
0,D ),

y(b−2), ŷ1(ẑ
(b−2)
D , ŵ

(b−2)
1,D , ŝ

(b−2)
D , ω̂

(b−2)
0,D )

)

∈ Aε(V, U, X1, X2, Y, Ŷ1).

2) Bounding the Probability of Error:Genie-aided argu-
ments as in [23] and [24] can be used to show that the
probability that the receiver makes a decoding error after block
b in the above scheme is upper bounded by the probability that
at least one of the following eventsE(b)

0 − E
(b)
9 happens.

Error events at the receiver:

• E
(b)
0 :
(

v(ω
(b)
0 ), u(w

(b)
1 , ω

(b)
0 ), x1(w

(b), ω
(b)
0 ),

x2(s
(b), ω

(b)
0 ), y(b), y

(b)
1 ,

ŷ1(z
(b), w

(b)
1 , s(b), ω

(b)
0 )
)

6∈ Aε(V, U, X1, X2, Y, Y1, Ŷ1).

• E
(b)
1 : There exists̃ω0,D 6= ω

(b)
0 such that

(

v (ω̃0,D) , y(b)
)

∈ Aε(V, Y ).

• E
(b)
2 : There exists̃sD 6= s(b−1) such thatω0,1(s̃D) = ωb

0,1

and
(

v(ω
(b−1)
0 ), x2(s̃D, ω

(b−1)
0 ), y(b−1)

)

∈ Aε(V, X2, Y ).

• E
(b)
3 : There existsw̃1,D 6= w

(b−1)
1 such thatm(w̃1,D) =

m(b) and

w̃1,D ∈ L(1)
D (y(b−1)),

• E
(b)
4 : There exists̃zD 6= z(b−2) such thats(z̃D) = s(b−1),

ω0,2(z̃D) = ω
(b)
0,2, and

z̃D ∈ L(2)
D (y(b−2)).

• E
(b)
5 : There existsw̃2,D 6= w

(b−2)
2 such that

(

v(ω
(b−2)
0 ), u(w

(b−2)
1 , ω

(b−2)
0 ),

x1(w̃2,D, w
(b−2)
1 , ω

(b−2)
0 ), x2(s

(b−2), ω
(b−2)
0 ),

y(b−2), ŷ1(z
(b−2), w

(b−2)
1 , s(b−2), ω

(b−2)
0 )

)

∈ Aε(V, U, X1, X2, Y, Ŷ1).

Error events at the relay:

• E
(b)
6 : There existsw̃1,R 6= w

(b)
1 such that

(

v(ω
(b)
0 ), u(w̃1,R, ω

(b)
0 ), x2(s

(b), ω
(b)
0 ), y

(b)
1

)

∈ Aε(V, U, X2, Y1).

• E
(b)
7 : There exists noz(b) such that

(

ŷ1(z
(b), w

(b)
1 , s(b), ω

(b)
0 ), y

(b)
1 , v(ω

(b)
0 ),

u(w
(b)
1 , ω

(b)
0 ), x2(s

(b), ω
(b)
0 )
)

∈ Aε(Ŷ1, Y1, V, U, X2).

Error events at the sender:

• E
(b)
8 : There exists̃sE 6= s(b) such that
(

v(ω
(b)
0 ), u(w

(b)
1 , ω

(b)
0 ), x1(w

(b), ω
(b)
0 ),

x2(s̃E , ω
(b)
0 ), y(b)

)

∈ Aε(V, U, X1, X2, Y ).

• E
(b)
9 : There exists̃zE 6= z(b−1) such thats(z̃E) = s(b).

z̃E ∈ LE(y(b)).

In the following we want to bound the probability that at
least one of eventsEb

0, . . . , E
b
9 happens. To this end, we bound

the probability of errorP̄e averaged over all codebooks and
all random partitions. We define the event

F (b) ,

9
⋃

j=0

E
(b)
j , b = 1, . . . , B + 1,

which includes the event of a decoding error after blockb and
which is defined over all choices of the codebooks. Then, we
can upper bound the averaged probability of error by

P̄e ≤
B+1
∑

b=1

Pr
[

F (b)|F (1...b−1)c
]

, (33)
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whereF (1...b−1)c
denotes the complement of the eventF (1)∪

. . . ∪ F (b−1). Furthermore, we can upper bound each of the
summands as

Pr
(

F (b)|F (1...b−1)c
)

= Pr





9
⋃

j=0

E
(b)
j |F (1...b−1)c





≤
5
∑

k=0

Pr

(

E
(b)
k

∣

∣

k−1
⋃

m=0

E(b)
m , F (1...b−1)c

)

+ Pr
(

E
(b)
6

∣

∣E
(b)
0

c
, F (1...b−1)c

)

+ Pr
(

E
(b)
7

∣

∣E
(b)
6

c
, E

(b)
0

c
, F (1...b−1)c

)

+ Pr
(

E
(b)
8

∣

∣E
(b)
0

c
, F (1...b−1)c

)

+ Pr
(

E
(b)
9 |E(b)

8

c
, E

(b)
0

c
, F (1...b−1)c

)

.

In the following we separately examine each of the above
summands.

The eventE(b)
0 is independent of the eventF (1...b−1)c

and
by Lemma 3 (Appendix A) can be made arbitrarily small for
sufficiently largen.

Also, by Lemma 4:

• If

R̃0 + RD + RM < I(V ; Y ), (34)

thenPr
(

E
(b)
1 |E(b)

0

c
, F (1...b−1)c

)

can be made arbitrarily
small, provided thatn is sufficiently large;

• If

R0 < I(X2; Y |V ) + R̃0, (35)

thenPr
(

E
(b)
2 |E(b)

0

c
, E

(b)
1

c
, F (1...b−1)c

)

can be made ar-
bitrarily small, provided thatn is sufficiently large;

• If

R2 < I(X1; Y, Ŷ1|UX2), (36)

thenPr
(

E
(b)
5 |E(b)

0

c
, . . . , E

(b)
4

c
, F (1...b−1)c

)

can be made
arbitrarily small, provided thatn is sufficiently large;

• If

R1 < I(U ; Y1|V X2), (37)

thenPr
(

E
(b)
6 |E(b)

0

c
, F (1...b−1)c

)

can be made arbitrarily
small, provided thatn is sufficiently large;

• If

R0 < I(X2; Y |V UX1), (38)

thenPr
(

E
(b)
8 |E(b)

0

c

, F (1...b−1)c
)

can be made arbitrarily
small, provided thatn is sufficiently large.

Furthermore, by [11], [7], [12] or [4, Chapter 13], if

R̂ > I(Ŷ1; Y1|UX2), (39)

thenPr
(

E
(b)
7 |E(b)

6

c

, E
(b)
0

c

, F (1...b−1)c
)

can be made arbitrar-
ily small, provided thatn is sufficiently large.

The following lemma considers the transmitter error event
E

(b)
9 and shows that its probability can be made arbitrary small

if condition (40) is satisfied.
Lemma 1: If

R̂ < I(Ŷ1; X1, Y |UX2) + R0 − ε1, (40)

then for sufficiently largen

Pr
(

E
(b)
9

∣

∣E
(b)
8

c

, E
(b)
0

c

|F (1...b−1)c
)

≤ ε/(10(B + 1)). (41)

Proof: See Appendix B.
Using a similar argument as that of Lemma 1, finally we

obtain:

• If

R1 < I(U ; Y |V X2) + RM , (42)

thenPr
(

E
(b)
3 |E(b)

0

c
, . . . , E

(b)
2

c
, F (1...b−1)c

)

can be made
arbitrarily small, provided thatn is sufficiently large;

• If

R̂ < I(Ŷ1; Y |UX2) + R0 + RD, (43)

thenPr
(

E
(b)
4 |E(b)

0

c
, . . . , E

(b)
3

c
, F (1...b−1)c

)

can be made
arbitrarily small, provided thatn is sufficiently large.

Thus, we can make each of the above probabilities smaller
thanε/(10(B + 1)) if (34)—(40), (42), and (43) are satisfied.
Then, by (33) the averaged probability of errorP̄e can be
upper bounded byε. And we conclude that there must exist
at least one possible code of probability of errorPe < ε.

3) Further Analysis:To summarize our results so far, with
the presented scheme the messageW can be transmitted
with arbitrary small probability of error if its rateR =
R1 + R2 satisfies (34)—(40), (42), and (43) for some non-
negative ratesR0, R̃0, RD, RM , R̂ and for the joint law on
(UV X1X2Y Y1Ŷ1) in (30).

We eliminate the ratesR0, R̃0, RD, and R̂ from the rate
expressions (34)—(40), (42), and (43) by means of the Fourier-
Motzkin elimination. To this end, we first eliminatẽR0 by
combining (34) and (35) to obtain

R0 + RD + RM < I(V X2; Y ). (44)

Next, we eliminateR̂, i.e., we combine (39), (40) and (43),
which yields

I(Ŷ1; Y1|UX2) < I(Ŷ1; X1Y |UX2) + R0 (45)

I(Ŷ1; Y1|UX2) < I(Ŷ1; Y |UX2) + R0 + RD. (46)

Then, we eliminateRD by combining (46) together with (44),
followed by eliminatingR0 by combining (45) with (38). This
yields the two constraints

I(Ŷ1; Y1|UX2) < I(Ŷ1; X1Y |UX2) + I(X2; Y |V UX1),

I(Ŷ1; Y1|UX2) < I(Ŷ1; Y |UX2) + I(V X2; Y ) − RM ,

(47)
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where remember thatRM ≥ 0. The combination of (36) once
with (37) and then with (42) yields

R1 + R2 < I(X1; Y Ŷ1|UX2) + I(U ; Y1|V X2)

R1 + R2 < I(X1; Y Ŷ1|UX2) + I(U ; Y |V X2) + RM .

(48)

Finally, the substitution of the upper bound onRM , which
results from the second constraint in (47), into the second
upper bound on the sum-rate in (48) yields

R1 + R2 < I(X1; Y Ŷ1|UX2) + I(U ; Y |V X2) + I(V X2; Y ),

+I
(

Ŷ1; Y |UX2

)

− I(Ŷ1; Y1|UX2)

= I(X1; Y Ŷ1|UX2) + I(V UX2; Y )

+H(Ŷ1|UX2Y1) − H(Ŷ1|UX2Y )
(a)
= I(X1; Y Ŷ1|UX2) + I(V UX2; Y )

−I(Ŷ1; Y1|UX2Y )

= I(X1; Y |UX2) + I(X1; Ŷ1|UX2Y )

+I(V UX2; Y ) − I(Ŷ1; Y1|UX2Y )

= I(X1; Y |UX2) + I(V UX2; Y )

+H(Ŷ1|UX2Y Y1) − H(Ŷ1|UX1X2Y )
(b)
= I(X1; Y |UX2) + I(UX2; Y )

+I(V ; Y |UX2) − I(Ŷ1; Y1|UX1X2Y )
(c)
= I(X1X2; Y ) − I(Ŷ1; Y1|UX1X2Y ). (49)

Here,

(a) and (b) follow by the Markov relation
(X1, Y )−◦ (U, X2, Y1)−◦ Ŷ1 and

(c) follows from the Markov relationsV −◦ (X2, U)−◦ Y and
U−◦ (X1, X2)−◦ Y .

Note however that the choice forRM is only valid if RM > 0
which imposes the following constraint on the input distribu-
tion

I(Ŷ1; Y1|UX2) < I(Ŷ1; Y |UX2) + I(V X2; Y ). (50)

We consider now the first constraint in (47) which reads as
follows

H(Ŷ1|UX1X2Y ) − H(Ŷ1|UX2Y1) < I(X2; Y |V UX1)

H(Ŷ1|UX1X2Y ) − H(Ŷ1|UX1X2Y Y1) < I(X2; Y |V UX1)

I(Ŷ1; Y |UX1X2Y1) < I(X2; Y |V UX1),

(51)

where the second step follows by the Markov relation
(X1, Y )−◦ (U, X2, Y1)−◦ Ŷ1.

The combination of the first upper bound in (48) with
(49) together with the constraints (50) and (51) proves the
achievability of the ratēR2.

4) Proof of Cardinality Bounds:We start by bounding
the cardinality of the auxiliary random variableV . Recalling
that the random variableŝY1 and (Y, X1) are conditionally

V - q -(U ′, X ′
1, X

′
2, Y

′
1) -

- T - Ŷ ′
1

T - Y ′

Fig. 3. The first chain generating the random variables in Theorem 4.

independent given(U, X2, Y1) we can write

I(X1X2; Y ) − I(Ŷ1; Y1|UX1X2Y )

= H(Y ) − H(Y |X1X2)

−
[

H(Ŷ1|UX1X2Y ) − H(Ŷ1|UX2Y1)
]

. (52)

Furthermore,

I(X1; Y Ŷ1|UX2) + I(U ; Y1|V X2)

= H(Y Ŷ1|UX2) − H(Y Ŷ1|UX1X2)

+H(Y1|V X2) − H(Y1|UV X2), (53)

while the constraint (13) can be expressed as

I(X2; Y |UV X1) − I(Ŷ1; Y1|UX1X2Y )

= H(Y |UV X1) − H(Y |UV X1X2)

−
[

H(Ŷ1|UX1X2Y ) − H(Ŷ1|UX2Y1)
]

≥ 0. (54)

Let us be given the setsU = {1, . . . , J}, X1 = {1, . . . , K},
X2 = {1, . . . , L}, Y1 = {1, . . . , M}, Y = {1, . . . , N} and
Ŷ1 = {1, . . . , S}. Then for j ∈ {1, . . . , J}, k ∈ {1, . . . , K},
l ∈ {1, . . . , L}, m ∈ {1, . . . , M}, n ∈ {1, . . . , N},
s ∈ {1, . . . , S} and any law P (u, x1, x2, y1, y, ŷ1) on
(U, X1, X2, Y1, Y, Ŷ1) set

Qj,k,l,m = Pr(U = j, X1 = k, X2 = l, Y1 = m)

=
∑

n,s

Pr(j, k, l, m, n, s), (55)

and define the conditional laws

tn(k, l, m) = Pr(Y = n|U = j, X1 = k, X2 = l, Y1 = m)

=

∑

s Pr(i, k, l, m, n, s)

Qj,k,l,m

,

ts(k, l, m) = Pr(Ŷ1 = s|U = j, X1 = k, X2 = l, Y1 = m)

=

∑

n Pr(k, l, m, n, s)

Qj,k,l,m

.

Let T be the N × (J × K × L × M) (5-dimensional)
matrix with (n, (j, k, l, m))-th entry tn(j, k, l, m) and for
` = 1, 2, . . . let ∆` be the simplex of probabilitỳ -vectors.
Then Q = (Q1,1,1,1, Q2,1,1,1, . . . , QJ,K,L,M)t ∈ ∆JKLM ,
and TQ ∈ ∆N . Thus, T defines a channel with inputs
(U, X1, X2, Y1) and outputY . Similarly, let T be theS ×
(J×K×L×M) (5-dimensional) matrix with(s, (j, k, l, m))-
th entry ts(j, k, l, m), then TQ ∈ ∆S . Thus, T defines a
channel with inputs(U, X1, X2, Y1) and outputŶ1. This chain
of generation of the random variables(U, X1, X2, Y1, Y, Ŷ1)
is illustrated in Figure 3.
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Now let {q(v)}v ∈ V be a finite set of vectors in∆JKLM ,
indexed by the finite setV . Also let {λv} satisfy

λv ≥ 0 ;
∑

v∈V
λv = 1.

Let V be the random variable which takes the valuev ∈ V
with probabilityλv. Furthermore, suppose thatV is the input
to a channel with output(U ′, X ′

1, X
′
2, Y

′
1) taking values in

U × X1 ×X2 × Y1 with transition probability

Pr(U ′ = j, X ′
1 = k, X ′

2 = l, Y ′
1 = m|V = v) = qj,k,l,m(v),

1 ≤ j ≤ J, 1 ≤ k ≤ K, 1 ≤ l ≤ L, 1 ≤ m ≤ M

whereqj,k,l,m(v) is the(j, k, l, m)-th component ofq(v).
Let Y ′ be the output of the channel defined byT

when (U ′, X ′
1, X

′
2, Y

′
1) is the input. The random variables

U ′, X ′
1, X

′
2, Y

′
1 , Y ′ have a joint law whose marginal on

U ′, X ′
1, X

′
2, Y

′
1 satisfies (55) if and only if

∑

v∈V
λvq(v) = Q. (56)

Assuming that (56) is satisfied we can express, for example,
the conditional entropies

H(Y |UX1V ) =
∑

v∈V
λvH(Y |UX1V = v),

by substituting the expression

Pr(Y = n|U = j, X1 = k, V = v)

=

∑

l,m tn(j, k, l, m)qj,k,l,m(v)
∑

l,m qj,k,l,m(v)
, An(j, k, v),

while H(Ŷ1|UX1X2Y ) is expressed via

Pr(Y = n, U = j, X1 = k, X2 = l)

=
∑

m

tn(j, k, l, m)Qj,k,l,m,

and

Pr(Ŷ1 = s, Y = n, U = j, X1 = k, X2 = l)

=
∑

m

tn(j, k, l, m)ts(j, k, l, m)Qj,k,l,m.

Next, define

Γ1(q) = H(Y ) − H(Y |X1X2)

−
[

H(Ŷ1|UX1X2Y ) − H(Ŷ1|UX2Y1)
]

,

to conclude that the functional (52) can be expressed as

I(X1X2; Y ) − I(Ŷ1; Y1|UX1X2Y ) =
∑

v∈V
λvΓ1(q). (57)

Similarly, define

Γ2(q) = H(Y Ŷ1|UX2) − H(Y Ŷ1|UX1X2)

+H(Y1|X2V = v) − H(Y1|UX2V = v),

to conclude that the functional (53) can be expressed as

I(X1; Y Ŷ1|UX2) + I(U ; Y1|V X2) =
∑

v∈V
λvΓ2(q). (58)

Ŷ1
- q -(V ′, U ′, X ′

1, X
′
2, Y

′
1) - T - Y ′

Fig. 4. The second chain generating the random variables in Theorem 4.

Finally, define

Γ3(q) = H(Y |UX1V = v) − H(Y |UX1X2V = v)

−
[

H(Ŷ1|UX1X2Y ) − H(Ŷ1|UX2Y1)
]

,

to conclude that the constraint (54) can be expressed as

I(X2; Y |UV X1) − I(Ŷ1; Y1|UX1X2Y ) =
∑

v∈V
λvΓ3(q) ≥ 0.

(59)
Combining (56), (57), (58) and (59) we conclude, based on

similar arguments as in [8, Appendix A1], that the cardinality
of V can be bounded by

‖V‖ ≤ ‖U‖‖X1‖‖X2‖‖Y1‖ + 2.

We consider next an upper bound on the cardinality of the
auxiliary random variableŶ1. This time we use the chain
depicted in Figure 4 in order to show that the cardinality of
Ŷ1 can be bounded as follows

‖Ŷ1‖ ≤ ‖V‖‖U‖‖X1‖‖X2‖‖Y1‖ + 2.

Finally, we prove the equivalence of constraint (13) with
the following constraint

I(Ŷ1; Y1|UX2) ≤ I(X2Ŷ1; Y X1|UV ). (60)

This can directly be seen by expressing the right hand side of
(60) as

I(X2Ŷ1; X1Y |UV )

= I(X2; X1Y |UV ) + I(Ŷ1; X1Y |UV X2)
(e)
= I(X2; Y |UV X1) + H(Ŷ1|UV X2) − H(Ŷ1|UV X1X2Y )
(f)
= I(X2; Y |UV X1) + H(Ŷ1|UV X2) − H(Ŷ1|UX1X2Y )

(61)

and the left hand side as

I(Y1; Ŷ1|UX2)

= H(Ŷ1|UX2) − H(Ŷ1|UX2Y1)
(g)
= H(Ŷ1|UV X2) − H(Ŷ1|UX1X2Y Y1)

= I(Ŷ1; Y1|UX1X2Y ) + H(Ŷ1|UV X2) − H(Ŷ1|UX1X2Y1).

(62)

Here,

(e) follows from the Markovity ofX1−◦ (V, U)−◦ X2 which
implies thatI(X2; X1|UV ) = 0;

(f) follows from the Markovity ofV −◦ (U, X1, X2, Y )−◦ Ŷ1;
and

(g) follows from the Markovity ofV −◦ (U, X2)−◦ Ŷ1 and the
Markovity of (X1, Y )−◦ (U, X2, Y1)−◦ Ŷ1.
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B. Derivation of Upper Bound in Observation 1

Suppose there exists an(M, n, ε)-code for the relay with
receiver-transmitter feedback. The probability mass function
on the joint ensemble(W, X1, X2, Y , Y 1) is given by

p(w, x1, x2, y, y1) =

1

M

n
∏

k=1

p(x1,k|w, yk−1)p(x2,k|yk−1
1 )p(yk, y1,k|x1,k, x2,k).

Now, the Fano inequality yields

H(W |Ŵ ) ≤ ε lnM + h(ε) , nδn(ε), (63)

where,h(·) denotes the binary entropy function andδn(ε) → 0
as ε → 0. From (3) and (63) it follows that

H(W |Y) ≤ H(W |Ŵ ) ≤ nδn(ε). (64)

Consider the identity

nR = H(W ) = I(W ;Y) + H(W |Y).

Combining this with (64) we obtain

nR ≤ I(W ;Y) + nδn(ε).

We now proceed with a chain of inequalities forI(W ;Y),
where the explanations will follow:

I(W ; Y )

≤ I(W ; Y , Y 1)

(a)
=

n
∑

k=1

I(W ; YkY1,k|Y k−1Y k−1
1 X2,k)

=

n
∑

k=1

(

H(YkY1,k|Y k−1Y k−1
1 X2,k)

−H(YkY1,k|WY k−1Y k−1
1 X2,k)

)

(b)
=

n
∑

k=1

(

H(YkY1,k|Y k−1Y k−1
1 X2,k)

−H(YkY1,k|X1,kX2,k)
)

(c)
=

n
∑

k=1

(

H(YkY1,k|Y k−1Y k−1
1 X2,k)

−H(YkY1,k|Y k−1Y k−1
1 X1,kX2,k)

)

.

Here,

(a) follows by the functional relationship (2);
(b) follows from the functional relationship (1) and from the

Markovity of (WY k−1Y k−1
1 )−◦ (X1,kX2,k)−◦ (YkY1,k);

and
(c) follows from the fact that(YkY1,k) are conditionally

independent of(Y k−1Y k−1
1 ) given (X1,kX2,k).

Define
Vk , (Y k−1Y k−1

1 ),

then we have shown that

I(W ; Y ) ≤
n
∑

k=1

I(X1,k; YkY1,k|X2,kVk).

Now, let Z be a random variable independent of
V , X1, X2, Y , Y 1 uniformly distributed over the set
{1, . . . , n}, and set

X1 , X1,Z , X2 , X2,Z , Y , YZ , Y1 , Y1,Z , V , VZ .

Then

1

n

n
∑

k=1

I(X1,k; YkY1,k|X2,kVk) = I(X1; Y Y1|X2, V, Z). (65)

Next

I(X1; Y Y1|X2V Z)

= H(Y Y1|X2V Z) − H(Y Y1|X1X2V Z)
(d)
= H(Y Y1|X2V Z) − H(Y Y1|X1X2V )
(e)

≤ H(Y Y1|X2V ) − H(Y Y1|X1X2V )

= I(X1; Y Y1|X2V ). (66)

Here,

(d) follows by the Markovian relation
Z−◦ V −◦ (X1X2)−◦ (Y Y1); and

(e) follows since conditioning reduces entropy.

The combination of (65) and (66) yields that

1

n

n
∑

k=1

I(X1,k; YkY1,k|X2,kVk) ≤ I(X1; Y Y1|X2V ). (67)

The inequality

I(W ; Y ) ≤
n
∑

k=1

I(X1,kX2,k; Yk), (68)

is proved in [3, Lemma 4].
Combining (67) and (68) we conclude that

R ≤ sup
pV X1X2Y Y1

min

{

I(X1X2; Y ),
I(X1; Y Y1|X2V )

}

+ δn(ε),

where the supremum is taken over all joint laws of the form

pV X1X2Y Y1(v, x1, x2, y, y1)

= pV X1X2(v, x1, x2)pY Y1|X1X2
(y, y1|x1, x2).

Now, a bound on the cardinality ofV can be obtained via the
technique presented in [8, Appendix A1].

This completes the proof of Proposition 1.

C. Proof of Theorem 5

To prove Theorem 5 we propose a coding scheme where
the transmitter sends maximally informative updates similar
to [15] and the relay applies a simple amplify-and-forward
strategy.
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1) Coding Scheme:Prior to transmission the encoder maps
the messageW onto the real line applying the following one-
to-one mapping

θ : w 7→ w − 1

M − 1
− 1

2
. (69)

Consequently, the random variableθ(W ) is distributed uni-
formly over M equally spaced values within

[

− 1
2 , 1

2

]

. The
message pointθ(W ) is then transmitted overn channel uses
to the receiver. After the reception of then channel outputs
the receiver guesses the transmitted message pointθ(W ) and
equivalently the messageW .

In the remaining of this section we describe the transmission
steps and the decoding in detail, followed by an analysis of
the performance.

First Transmission Step,k = 1: In the first transmission step
the encoder transmits a scaled version of the message point
θ = θ(W )

X1,1 =

√

P1

Var(θ)
θ.

Note that the scaling factor assures that the expected power
of the input symbol equalsP1.

The relay stays quiet and the decoder thus receivesY1 =
√

P1

Var(θ)θ + Z2,1 and estimatesθ as follows

θ̂1 =

√

Var(θ)
P1

Y1 = θ +

√

Var(θ)
P1

Z2,1.

As a result, the decoder’s estimation errorε1 , θ̂1 − θ =
√

P1

Var(θ)Z2,1, is zero-mean Gaussian and of variance

α1 , Var(ε1) = N2
Var(θ)

P1
.

Note that this first estimate ofθ is sub-optimal in terms of
expected mean squared error. However, the advantage is that
with this estimate the errorε1 is zero-mean Gaussian, and as
we will see later on, this simplifies the analysis. Also, due to
the feedback link the encoder observesY1 as well and thus
with the knowledge ofθ it can compute the estimation error
ε1.

In the subsequent transmissions the encoder sends resolution
information such that the decoder can form a better and better
estimate ofε1 and equivalently ofθ.

Second Transmission Step,k = 2: In the second transmis-
sion step the encoder sends a scaled version of the estimation
error ε1 while the relay stays again quite. ThusX2,2 = 0 and

X1,2 =

√

P1

α1
ε1.

Note that here the factor
√

P1

α1
is chosen such that the expected

power of the transmitted symbolX1,2 equalsP1.
The channel output observed at the receiver is given by

Y2 =
√

P1

α1
ε1 + Z2,2 and the receiver computes the linear

minimum means squared error (LMMSE) estimate ofε1 based
on Y2

ε̂1 =

√
α1P1

P1 + N2
Y2.

Then the receiver updates its estimate of the message pointθ
as follows

θ̂2 = θ̂1 − ε̂1,

and the new estimation error becomes

ε2 , θ̂2 − θ = ε1 − ε̂1,

and is of variance

α2 , Var(ε2) = α1
N2

P1 + N2
.

In this second transmission step the relay observesY1,2 =
√

P1

α1
ε1 + Z1,2.

Further Transmission Steps,k = 3, . . . , n: Prior to trans-
mission stepk the encoder observes the feedback outputs
Y2, . . . , Yk−1 and hence knowing the message pointθ it can
compute the decoder’s LMMSE estimation errorε1,k−1. Then
in transmission stepk the encoder sends the estimation error
εk−1 scaled by the factor

√

P1

αk−1
where αk−1 denotes the

variance ofεk−1. Again, the scaling factor assures that the
expected power of the input symbol equalsP1.

The relay applies an amplify-and-forward strategy, that is, in
transmission stepk it transmits a scaled version of the symbol
Y1,k−1 received in the previous step:

X2,k =

√

P̃2

P1 + N1
Y1,k−1

=

√

P̃2

P1 + N1
(X1,k−1 + Z1,k−1)

=

√

P̃2

P1 + N1

(
√

P1

αk−2
εk−2 + Z1,k−1

)

.

Here, the scaling factor is chosen as
√

P̃2

P1+N1
for someP̃2 ∈

[0, P2] and thus the expected power of the input symbolX2,k

equalsP̃2 ≤ P2.
The time-k channel output at the receiver is given by

Yk = X1,k + dX2,k + Z2,k

=

√

P1

αk−1
εk−1 + d

√

P̃2

P1 + N1

√

P1

αk−2
εk−2

+d

√

P̃2

P1 + N1
Z1,k−1 + Z2,k. (70)

Using this current and all the previous channel outputs the re-
ceiver updates its estimate of the message pointθ. It computes
ε̂k−1, the LMMSE-estimate ofεk−1 based on the observations
Y2, . . . , Yk, and subtracts it from the previous estimateθ̂k−1

to obtain the new estimate

θ̂k = θ̂k−1 − ε̂k−1. (71)
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So, the remaining task is to compute the LMMSE-estimate
ε̂k−1. As Yk is not independent of the previous outputs, the
easiest way to do this is to compute the best (in LMMSE-
sense)Ŷk of the channel outputYk based on(Y2, . . . , Yk−1)
and then subtract it from the original observationYk. The
resulting innovationIk , Yk − Ŷk is then independent of the
previous observations, and the LMMSE-estimateε̂k−1 is easily
computed from this innovation only. Note that since among the
summands ofYk only εk−2 depends on the past observations
the best predictor̂Yk is given by a scaled version of the
LMMSE-estimate ofεk−2 based on(Y2, . . . , Yk−1). Denoting
the LMMSE-estimate ofεk−2 by ε̂k−2 the best predictor can
be written as

Ŷk = d

√

P̃2

P1 + N1

√

P1

αk−2
ε̂k−2.

Based on the predictor the receiver can form the innovation

Ik , Yk − Ŷk

=

√

P1

αk−1
εk−1 + d

√

P̃2

P1 + N1

√

P1

αk−2
(εk−2 − ε̂k−2)

+d

√

P̃2

P1 + N1
Z1,k−1 + Z2,k

=

√

P1

αk−1
εk−1 + d

√

P̃2

P1 + N1

√

P1

αk−2
εk−1

+d

√

P̃2

P1 + N1
Z1,k−1 + Z2,k

which, as already mentioned, is independent of the previous
observations(Y2, . . . , Yk−1). Note that in the second equality
we used that

εk−1 = εk−2 − ε̂k−2

which follows from the definition ofεk−1 , θ − θ̂k−1 and
Recursion (71) for̂θk−1.

The LMMSE-estimate ofεk−1 at the receiver based on
(Y2, . . . , Yk−1, Ik) is given by ε̂k−1 =

Cov[εk−1,Ik]
Var(Ik) Ik, and the

new estimation error is

εk , θ̂k − θ = εk−1 − ε̂k−1 = εk−1 −
Cov[εk−1, Ik]

Var(Ik)
Ik.

The variance ofεk is given by

αk = αk−1 −
Cov[εk−1, Ik]2

Var(Ik)

= αk−1







γP̃2 + N2

P1 + 2

√

γ̄P1P̃2

√

αk−1

αk−2
+ γ̄

αk−1

αk−2
P̃2 + γP̃2 + N2







where we definedγ , d2 N1

P1+N1
and γ̄ = d2 − γ. Defining

further ρk =
√

αk−1

αk−2
the varianceαk can be expressed as

αk =

αk−1





γP̃2 + N2

P1 + 2

√

γ̄P1P̃2ρk−1 + γ̄ρ2
k−1P̃2 + γP̃2 + N2



 . (72)

Equation (72) also leads to a recursive formulation of the
sequence{ρk}:

ρk =

√

√

√

√

√

√

γP̃2 + N2
(√

P1 + ρk−1

√

γ̄P̃2

)2

+ γP̃2 + N2

, (73)

for k = 3, . . . , n − 1, and

ρ2 =

√

N2

P1 + N2
.

Note thatρk equals the correlation coefficient ofεk−1 and
εk, and thus is proportional to the correlation of the time-
(k + 1) signal from the encoder to the receiver and the time-
(k + 1) signal from the relay to the receiver.

Decoding of the Message after Stepn: After the n-th
transmission step the decoder’s estimate of the message point
θ is given byθ̂n = θ + εn. The decoder then guesses that the
messagêW = ŵ was sent ifθ(ŵ) is the message point closest
to θ̂n, i.e.,

ŵ = arg min
w

|θ̂n − θ(w)|.

2) Performance analysis:An error in the decoding occurs
only if there is aw′ 6= w such that the message pointθ(w′) is
closer to θ̂n than the message pointθ(w). The probability
of this event is upper bounded by the probability that the
magnitude ofεn is greater than half the distance between
adjacent message points. Therefore the probability of error
can be upper bounded as

Pe ≤ Pr

[

|εn| >
1

2(M − 1)

]

≤ 2Q

(

1

2M
√

αn

)

, (74)

where Q(x) ,
∫∞

x
1√
2π

e−
t
2

2 dt is the tail of the standard
Gaussian distribution evaluated atx.

In the above term the varianceαn can be expressed by
defining γ , d2 N1

P1+N1
and γ̄ = d2 − γ, and by iteratively

applying (72)

αn

= α2

n
∏

k=3





γP̃2 + N2

P1 + 2

√

γ̄P1P̃2ρk−1 + γ̄P̃2ρ2
k−1 + γP̃2 + N2



 .

The size of the message setM can be expressed in terms of
the transmission rateR = 1

n
lnM . Then we obtain the upper

bound on the probability of a decoding error in (75), on top
of the next page. We see that the probability of error tends to
0 whenn → ∞ if

R < lim
n→∞

1

n

n
∑

k=3

Γ





P1 + 2

√

γ̄P1P̃2ρk−1 + γ̄P̃2ρ
2
k−1

γP̃2 + N2



 .

(76)
The convergence of the right hand side of (76) to the bound
for R given in Theorem 5 follows by showing that the
sequence of correlation coefficients{ρk} converges toρ∗, the
solution of (27), and then applying Cesáro’s Mean Theorem
[4, Theorem 4.2.3].
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Pe ≤ 2Q





1

2
√

α2
· exp





n
∑

k=3

1

2
ln





P1 + 2

√

γ̄P1P̃2ρk−1 + γ̄P̃2ρ
2
k−1 + d2 N1

P1+N1
P̃2 + N2

d2 N1

P1+N1
P̃2 + N2



− nR







 ,

(75)

In order to prove the convergence of the sequence{ρk} to
ρ∗ we need the following lemma.

Lemma 2:Consider the functionf : x 7→
√

a
a+p(1+bx)2

defined on the closed interval[0, 1] when a, b, p ≥ 0. For
the functionf(·) exactly one fixed pointx∗ exists in [0, 1]
and for any starting pointx0 ∈ [0, 1] the infinite sequence
x0, x1 = f(x0), x2 = f(x1), . . . converges to this fixed point
x∗.

Proof: First note thatf(·) is continuous and strictly de-
creasing on the interval[0, 1], and that the image of[0, 1] under
f(·) is a subset of the interval itself. These two properties
imply that there is exactly one fixed point off(·) in [0, 1]
which we denote byx∗.

Now we proceed to prove the second part of the lemma,
i.e., that for arbitrary starting pointx0 ∈ [0, 1] the sequence
obtained by iteratively applying the mappingf(·) converges
to x∗. To this end, for the chosen starting point define two
sequences{yk}∞k=0 and {zk}∞k=0 where the first sequence is
defined byy0 = x0, y1 = f(f(y0)), y2 = f(f(y1)), . . ., and
the second sequence byz0 = f(x0), z1 = f(f(z0)), z2 =
f(f(z1)), . . . We will show that both sequences converge to
the fixed pointx∗ of f(·), from which then follows that the
sequencex0, x1, x2, . . . also converges tox∗. Note that since
x∗ is a fixed point off(·) it is clearly also a fixed point of
(f ◦ f). Note further that sincef(·) is strictly monotonically
decreasing on[0, 1] either x0 = f(x0) = x∗, x0 < x∗ <
f(x0), or f(x0) < x∗ < x0. For the first case the lemma
follows directly. We will prove the lemma for the second case,
the proof of the third case is omitted but follows along the
same lines as the proof for the second case.

Thus, in the following we assume that0 ≤ x0 < x∗. We
start by proving the convergence of the sequencey0, y1, y2, . . ..
Note first that sincef(·) is strictly monotonically decreasing it
follows thatf(y) > x∗ andf(f(y)) < x∗ for all 0 ≤ y < x∗.
From the assumption thaty0 = x0 < x∗ then follows that
the sequencey0, y1, y2, . . . is upper bounded byx∗. Next, we
show that the sequence is strictly monotonically increasing
and thatx∗ is the only fixed point of(f ◦ f) in the interval
[0, x∗]. Both properties follow by showing thatf(f(y)) > y
for y ∈ [0, x∗[ or, sincey and f(f(y)) are non-negative, by

equivalently showing that fory ∈ [0, x∗[:

(f(f(y)))
2

y2

=











a

a + p

(

1 + b
√

a
a+p(1+by)2

)2











· 1

y2

=
a

ay2 + py2 + 2bpy
√

ay2

a+p(1+by)2 + pb2 ay2

a+p(1+by)2

> 1.

(77)

Note that the expression on the left hand side of the inequality
in (77) is strictly monotonically decreasing fory ≥ 0, and also
note that fory = x∗ the expression must be equal to 1, since
x∗ is a fixed point of(f ◦ f). Hence for ally larger than0
and strictly smaller thanx∗ the above ratio has to be strictly
larger than 1.

Concluding we have shown that the sequencey0, y1, y2, . . .
is strictly monotonically increasing and upper bounded byx∗

which is the only fixed point of(f ◦ f) in [0, x∗]. From this
follows that the sequencey0, y1, . . . converges to the fixed
point x∗.

Similar arguments can be applied to show that also the
sequencez0, z1, z2, . . . converges tox∗ which concludes the
proof of the lemma.

Applying Lemma 2 to the sequence of correlation coef-
ficients {ρk} it follows that the sequence converges to the
unique fixed point of the Recursion (73) in[0, 1] which is given
by the unique solution in the interval[0, 1] of the following
quartic equation inρ

ρ2
(

P1 + 2d

√

P1P̃2

√

P1

P1 + N1
ρ + d2P̃2

P1

P1 + N1
ρ2

+d2 N1

P1 + N1
P̃2 + N2

)

= d2P̃2
N1

P1 + N1
+ N2.

Substitutingγ by d2 N1

P1+N1
and γ̄ by d2 − γ one obtains (27).

D. Proof of Corollary 1

We apply the coding scheme which achieves the rateR̄2

of Theorem 4 for the Gaussian relay channel. Even though a
jointly Gaussian distribution does not necessarily maximize
(12) subject to the constraints (13) and (15) we letW ∼
N (0, ρ), Ũ ∼ N (0, 1− ρ) and Ṽ ∼ N (0, 1− ρ) whereW, Ũ
andṼ are independent and formU = W +Ũ andV = W +Ṽ .
Independently of these random variables and independentlyof
each other we let̃X1 ∼ N (0, α1P1) and X̃2 ∼ N (0, α2P2)
and setX1 =

√
ᾱ1P1U +X̃1 andX2 =

√
ᾱ2P2V +X̃2 where
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ᾱ1 = 1 − α1 and ᾱ2 = 1 − α2. Finally, we choose for the
quantization step̂Y1 = α(Y1 +Z ′) whereZ ′ ∼ N (0, N ′) and
is independent of(W, Ũ, Ṽ , Z1, Z2).

Then the following rate is achievable

R = min











C
(

P1+d2P2+2d
√

P1P2
√

ᾱ1ᾱ2ρ

N2

)

− C
(

N1

N ′

)

,

C
(

α1P1

N2
+ α1P1

N1+N ′

)

+ C
(

ᾱ1P1(1−ρ2)
α1P1+N1

)











where the parametersα1, α2, ρ andN ′ must satisfy

0 ≤ α1 ≤ 1,

0 ≤ α2 ≤ 1,

0 ≤ ρ ≤ 1,
N1N2

d2α2P2
≤ N ′,

N1 + α1P1
N2

α1P1+N2

N ′ ≤ ᾱ1ρ
2P1 + P2d

2 + 2d
√

ᾱ1ᾱ2P1P2ρ

α1P1 + ᾱ1P1(1 − ρ2) + N2
.
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APPENDIX

A. Strong Typicality

Let
{

X(1), X(2), . . . , X(k)
}

denote a finite collection
of discrete random variables with some joint distribution
P
(

x(1), x(2), . . . , x(k)
)

with
(

x(1), x(2), . . . , x(k)
)

∈ X (1) ×
X (2) × . . .×X (k). Let S denote an ordered nonempty subset
of these random variables and considern independent copies
of S. Thus, withS , (S1, S2, . . . , Sn),

Pr{S = s} =

n
∏

j=1

Pr{Sj = sj}.

Let N(s; s) be the number of indicesj ∈ {1, 2, . . . , n} such
that Sj = s. By the law of large numbers, for any subsetS
of random variables and for alls ∈ S,

1

n
N(s; s) → P (s), (78)

as well as

− 1

n
lnP (s1, s2, . . . , sn) = − 1

n

n
∑

j=1

lnP (sj) → H(S). (79)

The convergence in (78) and (79) takes place simultaneously
with probability one for all nonempty subsetsS [3].

Definition 1: The setAε of ε-strongly typicaln-sequences

is defined by (see [4, Chapter 3,12,13])

Aε , Aε

(

X(1), X(2), . . . , X(k)
)

,

{

(

x(1), x(2), . . . , x(k)
)

:

∣

∣

∣

1

n
N
(

x(1), x(2), . . . , x(k); x(1), x(2), . . . , x(k)
)

−P
(

x(1), x(2), . . . , x(k)
) ∣

∣

∣

<
ε

‖X (1) ×X (2) × . . . ×X (k)‖ ,

∀
(

x(1), x(2), . . . , x(k)
)

∈ X (1) × . . . ×X (k)

}

,

where‖X‖ is the cardinality of the setX .
Let Aε(S) be defined similar toAε but now with constraints
corresponding to all nonempty subsets ofS. We recall now
two basic lemmas (for the proofs we refer to [4]).

Lemma 3:For anyε > 0 the following statements hold for
every integern ≥ 1:

1) If s ∈ Aε(S), then exp (−n(H(S) + ε)) ≤ Pr{S =
s} ≤ exp (−n(H(S) − ε)).

2) If S1, S2 ⊆ {X1, X2, . . . , Xk} and (s1, s2) ∈ Aε(S1 ∪
S2), then

exp (−n(H(S1|S2) + 2ε)) ≤ Pr{S1 = s1|S2 = s2}
≤ exp (−n(H(S1|S2) − 2ε)) .

Moreover, the following statements hold for every suf-
ficiently largen:

3) Pr {Aε(S)} ≥ 1 − ε,
4) (1−ε) exp(n(H(S)−ε)) ≤ ‖Aε(S)‖ ≤ exp(n(H(S)+

ε)).

Lemma 4:Let the discrete random variablesX, Y, Z have
joint distributionPX,Y,Z(x, y, z). Let X ′ andY ′ be condition-
ally independent givenZ, with the marginals

PX′|Z(x|z) =
∑

y

PX,Y,Z(x, y, z)/PZ(z),

PY ′|Z(y|z) =
∑

x

PX,Y,Z(x, y, z)/PZ(z).

Let (X , Y , Z) ∼ ∏n

k=1 PX,Y,Z(xk, yk, zk) and
(X ′, Y ′, Z) ∼ ∏n

k=1 PX′|Z(xk|zk)PY ′|Z(yk|zk)PZ(zk).
Then

Pr
{

(X ′, Y ′, Z) ∈ Aε(X, Y, Z)
}

≤ exp(−n[I(X ; Y |Z)−ε]).

B. Proof of Lemma 1

We assume that the decoding of the previous blocks
was successful, i.e, we assume the eventF (1...b−1)c

, and
we assume that the relay has sents(b). Then, we define
Ψ
(

zE|Y (b)
)

in (80) on top of the next page. The cardinality

of LE

(

Y (b)
)

is the random variable
∥

∥

∥LE

(

Y (b)
)∥

∥

∥ =
∑

zE

Ψ
(

zE |Y (b)
)

,
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Ψ
(

zE|Y (b)
)

=

{

1
(

V (ω
(b)
0 ), U(w

(b)
1 , ω

(b)
0 ), X1(w

(b), ω
(b)
0 ), X2(s

(b), ω
(b)
0 ), Y (b), Ŷ 1(zE , w

(b)
1 , s(b), ω

(b)
0 )
)

∈ Aε

0 otherwise.
(80)

and

E

{∥

∥

∥LE

(

Y (b)
)∥

∥

∥

∣

∣F (b)c
}

= E

{

Ψ
(

z(b)|y(b)
)

|F (1...b−1)c
}

+
∑

zE 6=z(b)

E

{

Ψ
(

zE |y(b)
)

∣

∣F (1...b−1)c
}

,

whereE denotes the expectation operator.
Now by Lemma 4 for eachzE 6= z(b), zE ∈

{

1, . . . , enR̂
}

E

{

Ψ
(

zE|Y (b)
)

∣

∣F (1...b−1)c
}

≤ e−n(I(Ŷ1;X1Y |UX2)−ε).

Thus,

E

{∥

∥

∥LE

(

y(b)
)∥

∥

∥

∣

∣F (1...b−1)c
}

≤ 1 +
(

enR̂ − 1
)(

e−n(I(Ŷ1;X1Y |UX2)−ε)
)

.

Furthermore conditioning on the eventE
(c)
8 implies that the

sender has decodeds(b−1) correctly and thus the sender only
declares thatz(b−2)

E has been transmitted by the relay in block
b − 1 if s(z

(b−2)
E ) = s(b−1). Hence, we can upper bound the

probability of the eventE(b)
9 conditioned on that there was

decoding error in the previous blocks as follows:

Pr
(

E
(b)
9

∣

∣E
(b)
8

c
, E

(b)
0

c
, F (1...b−1)c

)

≤ Pr
(

E
(b)
9

∣

∣F (1...b−1)c
)

≤ E







∑

zE 6=z(b)

Pr
(

zE ∈ LE (Y ) ∩ s(zE) = s(b+1)
∣

∣

E
(b)
8

c
, F (1...b−1)c

)}

≤ E

{∥

∥

∥LE

(

y(b)
)∥

∥

∥ e−nR0 |F (1,...,b−1)c
}

≤ e−nR0

(

1 + en(R̂−I(Ŷ1;X1Y |UX2)+ε)
)

.

Apparently for R̂ < R0 + I(Ŷ1; X1Y |UX2) − ε1 and suffi-
ciently largen, the claim (41) follows.
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