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Abstract—An achievable rate for the discrete memoryless relay apply a simple linear strategy at the relay. Surprisinglyder-
channel with receiver-transmitter feedback is proposed bsed on tain choices of the channel parameters, these simple ssheme

Block-Markov superposition encoding. The achievable ratecan outperform the more involved Block-Markov schemes in [3]
also be extended to Gaussian channels. A second achievabdger [13] !

for the Gaussian relay channel based on a Schalkwijk-Kailat ) . )
type scheme is presented. For some channels both achievable The relay channel with feedback has first been considered

rates strictly improve upon all previously known achievabk rates. in [3] where it was shown that in the presence of receiver-
For the discrete memoryless relay channel also a conversesut relay feedback the channel becomes a physically degraded

is provided. relay channel and hence the capacity can be achieved uging th
Index Terms—Discrete memoryless relay channel, receiver- decode-and-forward scheme. For the settings withoutvecei
transmitter feedback. relay feedback, but with either receiver-transmitter fasak,
relay-transmitter feedback, or both, the capacity is stil
|. INTRODUCTION known except for the same special cases as in the no-feedback

The relay channel was introduced by van der Meulen #€tting: in the semi-deterministic case and in the physsical
[1]. In [3] Cover and El Gamal proposed two coding scheméegraded case. Here a relay-transmitter feedback link [2]
which are based on the idea of Block-Markov superpositicﬁrnd/or a receiver-transmitter feedback link (Observafian
encoding: the decode-and-forward scheme and the comprdBis work) does not improve capacity compared to the channel
and-forward scheme. The decode-and-forward scheme wéhout feedback. However, for general relay channels with
proved to be optimal for physically degraded relay channgdéher receiver-transmitter feedback or with relay-traiter
[3]—i.e., for channels where the output observed at tfgedback the achievable rates reported in [6] are striatigelr
receiver is a degraded version of the channel output at #@n the best known achievable rates without feedback.
relay—and for semi-deterministic channels [5]—i.e., foan- ~ Outer bounds for relay channels with either receiver-
nels where the channel output at the relay is a deterministi@nsmitter feedback or relay-transmitter feedback idelthe
function of the channel input at the transmitter and the olean cut-set bound and (for relay-transmitter feedback onlyg th
input at the relay. However, for general relay channels ti@per bound in [2].
capacity is not known to date. The best known upper bound!n this work we focus on relay channels with receiver-
on capacity is given by the cut-set upper bound [3] and thensmitter feedback. We study the discrete memoryless rel
best known lower bound is due to Chong et. al [13]. Thghannel as well as the Gaussian memoryless relay channel.
scheme in [13] is a Block-Markov transmission scheme thPr the discrete memoryless relay channel we propose a new
represents a combination of the decode-and-forward schel@ier bound and a new upper bound on the channel capacity.
and the compress-and-forward scheme, while the transmittehe lower bound is due to a coding scheme which combines
message is recovered at the receiver by use of backwii@ ideas of restricted decoding used in [21], the nested
decoding combined with simultaneous decoding. The ubBEWNing used in [6], and the generalized coding strategy for
of simultaneous decoding, instead of a sequential form ®¥e relay channel in [3]. The proposed upper bound recovers
decoding, results in a relaxed constraint on the compnessife existence of an auxiliary random variable which shows up
ratio of the data sent via the compress-and-forward approd@ & similar way in most known lower bounds. In the lower
and thus (possibly) enlarges the achievable rate. The itleaP@unds the auxiliary random variable arises when buildipg u
applying backward decoding to a Block-Markov transmissiggPrrelation between the signals sent at the transmitteraand
scheme in order to allow a simultaneous form of decodirife relay. However, our upper bound is not tighter than the
was first introduced by Willems and van der Meulen for theut-set upper bound.
multiple-access channel with cribbing encoders [20]. The aforementioned bounds apply also to Gaussian re-

The described upper and lower bounds on the capacity'@f’ channels with receiver-transmitter feedback. For some
discrete memoryless relay channels hold also for Gaussf{gnnels the proposed lower bound strictly improves on all
relay channels. In addition, for Gaussian relay channels Bflevious lower bounds.

Gamal et al. [14] recently proposed coding schemes whichFor the Gaussian relay channel a second lower bound on
the capacity with receiver-transmitter feedback is defivéhis
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able rate of this scheme is shown to exceed all previously
known achievable rates (including our first lower bound) for Relay
some channels, e.g., for channels where the available power
at the relay is much smaller than the available power at the
encoder. In particular, it demonstrates that for some cblann Y Xo
the per-sample estimation based feedback signaling apiproa

of [15] — [19] outperforms the best known Block-Markov y;,_,|
feedback encoding approach.

The paper is organized as follows. The next section in- T
troduces the general relay channel with receiver-traiemit
feedback and recalls some basic results that will be used
to establish the achievable rates. In Section Ill we presdifd: 1 The relay channel with receiver-transmitter feeftba
our results concerning the time-discrete finite input/atip
alphabet memoryless relay channel, while Section IV prssen

the results concerning the time-discrete memoryless @auss We assume a causal and noiseless feedback link from the
relay channel. In Section V we prove the achievability of thgsceiver to the transmitter. Then both encoders are cogiplet
rates reported in Sections IlI-IV, as well as our converselte described by corresponding sets of encoding functions.
These functions map the message and the sequence of previous
1. PRELIMINARIES receiver outputs, or the sequence of previous relay outputs
respectively, into the next channel inputs. Specifically,

X1

Enc. p(y, y1|z1, x2) Dec. (i

A. Notation

Henceforth, we adopt the following notation conventions. z1ir = fe(W,Y1,Ys, ..., Y1), (1)
Random variables will be denoted by capital letters, wittgrt won = for(Yin,Yias ..., Vig_1), )
realizations will be denoted by the respective lower case le ’ ' ' ’ '
ters. Whenever the dimension of a random vector is clear fragmere f, ; is allowed to be a stochastic function.

the context the random vector will be denoted by a bold faCEThe decoder observes the sequence chhannel Outputs and

letter, that is, X' denotes the random vectoX, Xs,..., X,,), estimated¥ based on that. Formally, the decoder is described
andz = (21,22,...,2z,) Will designate a specific samplepby a mappingp : Y* — {1,..., M} such that

value of X. However, in those cases where it is important

to emphasize explicitly the dimension of a random vector — W = o(Y1,...,Y,) . 3)
X7t shall denote the random vectK; 1, Xi12,..., X1,n,)

andz* shall denote the sample vect@r; 1,...,1.,,). The An (M,n,¢)-code for the relay with receiver-transmitter

alphabet of a scalar random variablewill be designated by a feedback consists of two sets ofencoding functions as in
caligraphic letterY. Then-fold Cartesian power of a generic(1) and (2), and a decoder mappinguch as in (3) such that

alphabetV, that is, the set of alk-vectors overV, will be R )
denotedV™. P. =Pr [W #+ W} <e.

) A rate R is said to be achievable if for any > 0 there
B. Setting exists for alln sufficiently large an(M, n, €)-code such that
The discrete memoryless relay channel is a tripld/n)Iln M > R. The supremum over all achievable rates is
(X1 x Xa, p(y, y1]|z1,22), Y x V1), where X, and X, are fi- defined as the capacity.
nite sets corresponding to the input alphabets of the sender
and the relay respectively, whegg, and ) are finite sets
corresponding to the output alphabets of the relay and the Previous Results

receiver respectively, and wheyg-, -|z1,z) is a collection | 6], the following achievability result has been reparte
of probability laws on) x )1 indexed by the input symbolsfor g relay channel in the presence of receiver-transmitter
r1 € &1 andxs € X>. The channel’s law extends totuples feedback.

according to the memoryless law

I Theorem 1 ([6, Theorem 1])Consider the discrete memo-
i) =Wk Y1kl Tk, T2,k), ryless relay channelX; x Xz, p(y, y1|z1, 22),Y x Y1) with

wherezy j, w21, y, andy_; denote the inputs and outputs of €ceiver-transmitter feedback. Then the r&edefined by

th_e ghannel at 'F|mé:, respecu_vely. The investigated commu- Ry — sup I(X:; Y171|1~/X2), @)
nication model is shown in Fig. 1. o .
. . . VX1 X2YY1 Y]
The sender has access to an information source which
every n channel uses emits a random intedéf that is is achievable subject to the constraints
uniformly distributed over the sefl,..., M}. The goal of . -
the transmission is to communicate the messHgeto the I(Y1; 11|V X1 X5Y)
receiver. I(Y1; Y1|[VX5Y)

p(yka yl,k'x]fa :EIQCa yk

(X2 YV Xy), (5)

<I
<I(VXyY). (6)



Here the supremum in (4) is taken over all laws o X x
Xo x Y x Y1 x Y, of the form
pVX1X2YY1}A/1 (67 T1,22,Y,Y1, ﬂl)
= P{/(17)17;(1W(xlw)pxzw(xzw)l)(y,y1|1171,5172)

'pf/l\ylxzf/(gl |yla T2, f})a

(@)

and the cardinalities of both auxiliary random variabiesnd
Y; can be bounded as follows

VI < Il +2,
Il < VI A2+ 2.

is achievable subject to the constraints

IV VUX,1 XoY) < I(Xo; YUV X)),
IV Y1UXp) < T(YVi;Y|UXp) + I(VX2;Y).

(13)
(14)

The supremumin (12) is taken over all laws ¥« U x X7 x
Xy x Y x Y x Y, of the form
Puvx,xyviva (u, U, T1,22,Y,Y1, gl)
= puv(u,v)px,v(@i|w)px, v (z2v)p(y, yi|r1, v2)
'p{/1|y1X2U@1|y17 X2, u)a (15)

and the cardinalities of the auxiliary random variablésnd

To date the best known upper bound is given by the cut-9ét can be bounded as follows

bound derived by Cover and El Gamal in [3].
Theorem 2 ([3, Theorem 4])Let

VI < ullixadl X190+ 2,

IVl < IVIRAN Xl X2+ 2. (16)

(X1 X Xo,p(y,y1]x1,22), Y x Y1) be a discrete memoryless

relay channelvithout feedbackif

R> sup min{l(X1X9;Y), I(X1;YY1|X2)},

PX1XaYY]

(8)

then there exista. > 0 such thatP, > X for all n. Here the
supremum in (8) is taken over all laws dn x X5 x Y x )
of the form

Px, Xy (T1, %2, Y, Y1) = Px, x, (21, 22)p(y, y1|w1, 22). (9)

Analogously to [6, Theorem 1], the constraint (13) reflects
the minimal compression ratio sustainable at the sender as
it decodes the compressed data sent from the relay to the
receiver. The constraint (14) reflects the minimal compres-
sion ratio sustainable at the receiver taking into accohnet t
assistance it gets from both the sender and the relay.

Remark 1:The achievable rate in Theorem 4_inc|ud_es the
previously known achievable rate in Theorem 1, ife.,< R.

In general it is not known whether the cut-set upper bourithis can be seen by deriving an equivalent formulation of the
is achievable. However, EI Gamal and Aref showed in [Fhte ;. To this end, notice that for any lawy; . vy, v, Of

that for semi-deterministic relay channelithout feedbacla

decode-and-forward strategy achieves the cut-set uppercho

Theorem 3 ([5]): Let (X1 x Xy, p(y, y1lz1,22), Y x V1)
be a discrete memoryless relay chanméthout feedback
and let the channel output at the relgy be a deterministic
function of the two channel inputs; andx,. Then

I(X1X9;Y),

= {I(Xl;nXQYl) + H(Ylle)} - (0

sup min
PX1XoYYy
where the supremum is taken over all joint lawsBnx X x
Y x Y, of the form

PxX, XovY: (%1, %2, Y, Y1) = Dx, X, (@1, ©2)p(y, y1 |z, 2). (11)

IIl. DISCRETEMEMORYLESSRELAY CHANNEL

the form (7) which satisfies (5) and (6), we have that
I(X3; YY1V X2)

= I(X1; Y|V Xo) + I(X1; V1 |VX,Y)

© I(X1 X Y) = I(VX;Y) + I(X1; 1|V X2Y)

(1) . - o

S I(Xng; Y) - I(Yl; Y1|VX2Y) + I(Xl; Y1|VX2Y)
[0 X0 V) + HG VX XY V) — H(Y |V X, XsY)
= I(X1X2;Y) — I(Y1i; V1|V X1 XoY),

where

(i) follows by the Markovian relatio & (X, X5)e
(77) follows by Inequality (6); and

(7i7) follows by the Markovian relatiorX; e (f/XQYl)e Y;.

Our main result for discrete memoryless relay channgi®nsequently; can be expressed as

with receiver-transmitter feedback is an achievabilitgule

By combining the generalized coding strategy from [3, Theo-
rem 7], the nested binning technique from [6] and the resitlic

decoding from [21] we prove the following.

Theorem 4:Consider the discrete memoryless
channel (X; x XQ,p(y,y1|x1,x2),Jj x V1) with receiver-
transmitter feedback. Then the raf® defined by

),}

I(Vi; 1| UX, X5Y)
(12)

Ry =

sup
PUvX,XoYY V)

. [I(X;; Y UX) + [(U; V1|V X
min
I(Xng; Y) -

Y) - I(Y1; V1|[VX X5Y)

min I(X1 Xa;
I(X1; Y|V Xs)

sup
Py xixovvi vy

(17)

relay

where the supremum is taken over all laws of the form (7)
subject to the constraints (5) and (6). From this formutaito
is evident that?; < R, since choosindg/ = V in Theorem 4
the constraint (13) identifies with (5) and the constrairt)(1
identifies with (6), while (12) identifies with (17).

Remark 2: The achievable rate expression (12) is identical
to the achievable rate expression in [13, Theorem 2] for the



relay channel without feedback. However, the rate expoassi « Y; # Y;; and
in [13, Theorem 2] is subject to the constraint « in (20) the supremum is taken over an arbitrary joint law
- N v x, x, whereas in (17) the supremum is taken just over
I(Y1;11|UXz) < 1(XY; YIUV), (18) fhosle I2aws that sati(sfyc)le f/erg, and subject Jto the
whereas our rate expression (12) is subject to the pair of constraints (5) and (6).
constraints (13) and (14). The constraint (13) is equivalen QOur last result in this section is on the semi-deterministic
to (as shown in section V.A) relay channel. It is based on Theorem 3 and on observing that

5 > > the cut-set upper bound in Theorem 2 holds unchanged also
I(Y1;Y7|UXs) < I(XoY; YUV I( XY X4 |UVY . . .
(Vi i[UX,) < (XY YIUV) 4 T(Xe Y X ()1’9) for settings with feedback from the receiver to the sender.

so our first constraint (13) relaxes constraint (18). Conse-Qpservation 2:Let (X1 X Xo, p(y, y1|z1,22), Y X V1) be
quently, for channels where the supremum in the rate exprasdiscrete memoryless relay channel and let the channelioutp
sion (12) is attained for a law which fulfills (14) but violate at the relayy, be a deterministic function of the two channel
(18)—i.e., for a law for whichl (X»; Y|UV) < I(VX2;Y)— inputsz;, andz,. Then the capacity with receiver-transmitter
the achievable rate in Theorem 4 is strictly larger than thgedback is given by (10) where the supremum is taken over
achievable rate in [13, Theorem 2]. Hence, for such channei joint laws of the form (11).

e.g., some Gaussian channels as is shown in Section IV, ourhijs observation together with the observation in [2] imply
feedback scheme improves upon the no-feedback schemghifx the semi-deterministic relay channel is “degraded” in
[13]. the sense that neither relay-transmitter feedback noivesee

Remark 3:The bound (16) on the alphabet cardinalitiegansmitter feedback enlarges its no-feedback capacity.
necessary for computing the rafe, is partial in the sense

that the alphabet cardinalities &f andY; are upper bounded IV. GAUSSIAN RELAY CHANNEL
for a given alphabet/. So far, we've been unable to obtain

ﬁmHupper bound ofii/]| in terms of |3 ]|, || 2], | V1], and which is described as follows. L€tZ; .} be a sequence of
V. : ,

Notice that in Theorems 1 and 4 there exists an auX”iairndependent identically distributed (i.i.d.) Gaussiamdam
. ) . S 1a¥ riables of zero mean and varian®e. Independently thereof
random variablé/ which plays a role in building correlatlonIet {Zs.1} be a sequence of i.id. Gaussian random variables

between the transmitter and the relay. In Section V-B we Shovlyzero mean and variands,. The two sequences model the
D

that one can naturally recover the auxiliary random Vaﬂgbﬁr)]oise on the link from the transmitter to the relay and thes@oi
also in the upper bound (see also Observation 1), albeit the

) . ) ; . on the link from the transmitter to the receiver. For givenei
resulting expression doesn'’t provide a tighter upper babad . :
k channel inputs at the transmitter and at the refay, and
the cut-set upper bound.

Observation LiLet (X, x Xa, p(y, y1|z1,22), Y x V1) be x2,k, the channel outputs at the relay and at the receiver are
. 1 2 » Y11, L2, 1

a discrete memoryless relay channel with receiver-trattemi Yie = Tk + Zik, (22)
feedback. If Yi = a1p+deog + Zog. 23)

B> sup  min{I(X1Xo;Y), I(X0; YV1[X2V)}, (20)  Hereq is the gain coefficient of the relay-to-receiver link. The

PVX1XoYYy . .. . .
) gain coefficients of the other links can be set to one without
then there exists\ > 0 such thatP. > A for all n. The o5 of generality.

supremum in (20) is taken over all laws Bix X, x Xy x Y x 1 As in the previous section we assume a causal noiseless
of the form receiver-transmitter feedback link.

We impose an average block power constraint on the input
sequencesX; and X,:

In this section we focus on the Gaussian relay channel

PVX,XaYY; (U, z1,22,Y, y1)
:PVXIXQ(U,IMM)P(?/,y1|171,5€2)7 (21)

and the cardinality of V' is bounded by ||V| < lZ:I[-E[(Xl,k(W,Y’“_l))Q}§P1 (24)
([ (1] 2| x| + 1. "=

That the upper bound in Observation 1 equals the ct?d
set upper bound follows from the following two observa- 1 « 2
tions:ptﬁe right hand side of (20) is maximizged by choosing n ZE [(Xlk(ylk 1)) } <P (25)
V = () because conditioning reduces entropy and because k=1
Ve X1Xse YY; forms a Markov chain; and fov = () the WhereE denotes the expectation operator.
rate constraint (20) identifies with the rate constrainty@)ile =~ Our main result here demonstrates that for the described
(21) identifies with (9). Gaussian setting a combination of the Schalkwijk-Kailath
The advantage of the upper bound in Observation 1 is tfa@naling method [15] at the transmitter with a naive anyplif
it allows for a nice comparison with the lower bounds ind-forward strategy at the relay sometimes (e.qg.,dor
Theorem 1, Theorem 4, and [13, Theorem 2]. For exampled: 1 = 1,P» = 1,Ni = 1,N; = 1, see Table )
we see that the gap between the lower bound in Theoren®ytperforms the best known coding strategies. Let the fonct
and the upper bound in Observation 1 is due to: C(z) be defined a€(z) = 1/2In(1 + z).



Theorem 5:Consider the Gaussian relay channel witkxtension of this coding result to continuous random véemb
receiver-transmitter feedback. Then the rﬂf) defined by has to be proved using either the technique presented bynyne
2 in [9] or by using weak typicality and following the approach
P, <1 +d’/P1+N1P ) of Oohama in [10] (see also [13, Section II.A remark 1]).
max C i} (26) Consequently, a second achievable rate for the Gaussi rel
0<P,<P; channel with receiver-transmitter feedback may be obthine
by evaluating the achievable rate of Theorem 4 for jointly
Gaussian random variables, where the random varigblis
chosen similarly to [14] based on the Wyner-Ziv source cgdin
(with decoder side information) strategy &s = a(Y; + Z')

RO -

is achievable. Here the correlation coefficieritis given by
the unique solution o, 1] of the following quartic equation

: p ) . e .
P+ 2d /P P/ 2P with Z ~ N(O,N ). This choice is, of course, not necessarily
( 1+ 12 Py N1p+ 2P +N1 the optimal choice.
Ny
+d 5Py V) = &P 27 : Consi i i
P1+N1 2 2 2P1+N1 - (27) Corollary 1: Consider the Gaussian relay channel with

receiver-transmitter feedback. Then the rﬁ_ﬂf defined by

In Theorem 5 the poweP, denotes the transmit power R( ) _
the relay effectively uses to achieve the rate in (26), and”?
hence it can be chosen arbitrarily betwegrand P,. The .
best choice ofP; is in general not the maximum available ~ SuP  min c(ePr | P c a1 Py (1—p?)
power P, and hence the relay in general might not use aif =" ( + N1+N’) + 1P+,
the available transmit power. This is a consequence of the (28)
applied sub-optimal amplify-and-forward strategy whehme t
relay not only amplifies the signal from the transmitter t
the relay but also amplifies the noise corrupting this signal 0<a; <1,
Thus the amplification factor for the relay, and hence the P

c (P1+d2P2+2dm\/@15t2P) _C (&)

js achievable subject to the five constraints

used power, should be chosen as a trade-off between aiding 0<az<l,
the transmission from the transmitter to the receiver and 0<p=<1,
introducing additional noise disturbing this transmissio NNy N’
Note that for large powerP, the proposed Schalkwijk- dPooPy =
Kailath type scheme should be time-shared with a second cot; + o le a1p* Py + Pyd? + 2dv/a, 62 Py Pap
ing scheme which can better exploit large available power at N/ = a1PL+ a1 Pi(l—p?) + Ns
the relay. Thus, we propose to use for a fractiod v < 1 of (29)

time the Schalkwijk-Kailath type scheme with power < P,
at the relay, and use for the remaining fraction of timey the The achievable rate in Corollary 1 includes the achievable
chosen block-Markov strategy with pow®s -+ ﬁ(& — P,) rates in [6] evaluated for the Gaussian relay channel when
at the relay. Figure 2 illustrates the rates achieved by otfioosingp = 1. Table | shows achievable rates for the
Schalkwijk-Kailath type scheme, the rates achieved by o(raussian relay channel for various coding strategies with a
Block-Markov scheme, and the rates achieved by time-shariwithout receiver-transmitter feedback. The rates are cdatp
these two schemes. for a setting whereP, = P, =1, Ny = 2, and Ny = 0.5. In

The Schalkwijk-Kailath type scheme can also be improvethble IR,(EC;,Rz denotes the El Gamal et al. [14] rate for= 2,
by allowing the relay to send arbitrary linear combinauonrsf((f,\’/l)G denotes the achievable rate derived in [13, Theorem 2],

of the past observed outputs in the spirit of El Gamal et aj:g(G> denotes the achievable rate in [6, Theorem 1], g

[14]. An even more general approach would allow also thganotes the upper bound in Theorem 2. From Table | we see
transmitter to apply an arbitrary linear strategy similarthe that forqd = 0.5,P, = 1,P, = 1, N; = 2, and N, = 0.5 the
scheme proposed by Butman [22] for Gaussian single-ug@yding scheme in Theorem 5 outperforms the other coding
ghannels with feedback. In fact, sendlrll.g maX|ma_IIy informachemes (including that of Corollary 1) whereas for 2.5

tive updates as proposed by Schalkwijk and Kailath can B coding scheme in Corollary 1 outperforms the other apdin
strictly sub-optimal for multi-terminal settings, as walsc® schemes. Fod = 5 and d = 10 the coding scheme in

pointed out by Ozarow [17] in a broadcast setting. Howev&torollary 1 and the coding scheme in [13, Theorem 2] perform
both generalizations are difficult to analyze, since thdl@ms pest.

of finding the optimal linear combinations are non-convex.

A second achievable rate for the Gaussian relay channel
with receiver-transmitter feedback is obtained by evatgat
the achievable rate of Theorem 4 for the Gaussian chanrfél. Proof of Theorem 4
However, we need to exercise some care in doing this, becaus@/e propose a coding scheme which is based on Block-
the proof of Theorem 4 makes use of strong typicality in ordéarkov superposition encoding and which combines the ideas
to invoke Berger’'s Markov lemma [4, Lemma 14.8.1]. Sincef nested binning as in [6], restricted decoding as in [21]
strong typicality does not apply to continuous alphabets, #gogether with the generalized coding scheme in [3].

V. PROOFS



2 = (x21,%22,...,%2,), €ach with probability
Pr(xz|v (wo)) = [Tr_; Pxs v (22,k|vk(wo)). Label them
Va T2 (s,wp),s € {1,...,6"R°
/ e « For each v(wy) generate e"* sequencesu =
05 / T | (u1,usg,...,uy,), €ach with probabilityPr (u|v (wg)) =
e T [Tiz: pujv (uklvk(wo)). Label themu (wy,wo), w1 €
c / //’/ {1,...,6”R1}
GE) i o For each wu(wi,wp) generate e"?2 sequences
5 - z1 = (x11,%12,...,%1,n), €ach with probability
Pr(zi|u(wi,wo)) = [Ty P, v (@klue(wr, wo)).
0.4 |/ Rate R i Label themx; (waq, wi,wp) we € {1, ey e"R2}.
Rate R{®) o For each z(s,wp) and wu(w;,wo) generate
Cut-Set Upper Bound e sequences ¢, each with  probability
— - =~ Time-Shared Rate ‘ 4 Pr (ﬁ1|:132 (S7w0)7u(w17w0)) —
n

1 2 3 4 =5
P>

Fig. 2. Bounds on the capacity of the Gaussian relay chanitlelreceiver-
transmitter feedback, wheR;, = 1, Ny = 1, Ny = 1, andd = 1.

k1 P¥y x50 (91,6l %2, (8, w0), uk (w1, wo)), where for
o € Xo, 41 € Y1, andu € U we define
Py, x,u (U172, w)

Zv,ggl,y,yl Puvx,x,yviva (u,v, 21, 22,9, Y1, 1)

d | Ry | Bows | BY | BY | B | e X i POV Xovyiw (081,02, 45 51, §1)
05| 0.2027 | 0.5589 | 0.5602 | 0.5602 | 0.5750 | 0.6264 (31)
2.5 | 0.2027 | 0.6097 | 0.6097 | 0.6099 | 0.5750 | 0.6264 Label themg, (z, w1, s,wp), wheres € {1,... e},
5 | 0.2027 | 0.6209 | 0.6204 | 0.6209 | 0.5750 | 0.6264 wo € {1, ..., e(BotRp+Ran) Loy e {1,...,e"R1}, z €
10 | 0.2027 | 0.6244 | 0.6237 | 0.6244 | 0.5750 | 0.6264 {1’ § .,e"R}.

TABLE | « Partition 1: Randomly partition the set, ..., e"® ¢ into

BOUNDS ON THE CAPACITY OF THEGAUSSIAN RELAY CHANNEL WITH

nR
RECEIVER- TRANSMITTER FEEDBACK. (P; = P» =1, N; =2, N2 =0.5.) e" cells. Label the cells € {1’ T

s(z) = ¢ if z belongs to celk. )
« Partition 2: Randomly partition each cell of sige /i—Fo)
in Partition 1 intoe™®r subcells. Label the subcells in
each such subpartition, € {1,...,e"*r} and let
wo,2(z) = cif z belongs to subcell in some subpartition.
Partition 3: Create a partition ovefl,...,e"fo} with
enfo disjoint cells each containing(%o~%0) elements.
Label the cellsvy 1 € Ll nko L and letwg 1 (s) = ¢
if s belongs to celk. This partition referred as deter-
ministic partition will serve later on for the purpose of
restricted decoding21].
Partition 4: Randomly partition the sét, ..., e"f1} into
e"fir cells. Label the cellsn € {1,...,e"fv} and let
m(wy) = ¢ if wy belongs to celk.

Encoding : We denote the realizations of the sequences
(WO, (w3}, and (3"} by {w®}, {w(”}, and{w}”}.
The code builds upon a three-level Block-Markov structure.
This implies that Messaga/® = (w) @) (b)) is encoded

e"®} and let

1) Coding SchemeWe considerB + 1 blocks, each of
symbols. We split the messad® into a sequence oB — 1
sub-messagdy’®), forb =1,..., B—1, whereW ®) consists e
of the pair(V, (b) W(b)) Here the sequenc{eW } isani.i.d.
sequence of unn‘orm random variables o‘{er "Rl} and
independent thereoﬁWéb)} is an i.i.d. sequence of uniform
random variables ovefl,...,e"*2}. As B — oo, for fixed
n, the rate of the messad¥€, R = (R1+R2)(B—1)/(B+1),
is arbitrarily close toR; + Rs. .

We assume a tuple of random variables € U,V €
VX1 € X1,Xo € Xo,Y € V.Y, € V1,Y: € Y7 of joint
law

pUVX1X2YY1Y1 (U, v, T1,T2,Y,Y1, gl)
= pUV(%U)PX1|U(I1|U)PX2|V(I2|U)p(y,y1|$1,$2)
(30)

Py vaxou (1ly1, 22, ).

Random coding and partitioningtn each blockb, b =

over the three successive blodksb + 1) and (b+2), for =

1,...,

on the following

propertles.s(b) = sz, w (b

B —1. Furthermore, the code bunds u;)

Wi, wiy,m®) where

1,2,...,B 4+ 1, we shall use the following code. wé’f{ = w1 (sOD), w(()b% = wo 2 (Z(b 2)), m® = m(w gb—”),

. Generatee™(Fo+Rp+Fa) sequence® = (vi,...,v,), forb=1,...,B+ 1. Here the sequencel, ..., 2B will
each with probability Pr (v) [Ti pv(vy). La- be defined when describing the decoding at the relay and
bel themwv (wy) wherewy = (wo1,woo,m), wor € 21 =20 =w{® =1,
1. enRg} woo € {1,...,e""0}, and m e We assume that at the end of blogk-1),b=1,...,B+1
1 enfini} ’ « The sender knows  (w,w® .. w®),
e : _ _ b o
« For each w(wy) generate e"fo  sequences and it has available (W((J 257”((),%;7--- (()J)E)



(50,62,...,88), and (20,5, ... 579

« The relay knows (s (1>,s(2),..., ®)  and
(z0,2® . 20-1D) and it has available
~(1 ~(2 b (1 2 ~(b—1
(0ol 0h) and (@il 0 .... a%0).

Then in blockbd the relay transmits the codeword

mQ(S(b) ) d}(()ljg%) =
22 (5(z07V), (woa (s ), woa (:0-2) m(af’ 1)) )

and the sender transmits the codeword
T (w(b),djélg)
21 (0®, (w0155 ) w0228 P) mwl 1))

Decoding at the transmitter and at the relajfter the
reception of the block-channel outputs and feedback outputs
the transmitter and the relay perform the following decgdin
steps which enable them for three levels of cooperation.

1) In order to obtain the first level afooperation after
each blockb b = 1,2,....,B —
receivingy1 chooseaug) such that

(’v( ).y’ )>

€ AE(‘/v U7 X27 }/1)5
where A.(-) denotes the strongly typical set (see Ap-
pendix A). This determinesn®*+!) = m(w%) that
the relay transmits in blockb + 1).

(b)

b)  (b)
ol ( (

o)
1,R*%“oR )

), u(w ), T2(s ® Wor

2) The relay upon receiving!” decides that(® is “re-
ceived” if
. (b o b
CERRTELS > y” v(@f),
~(b
(@), ) (s, o)
€ A(W1,Y1,V, Xa).
3) In order to obtain the second level odoperation after
blockb, b =1,..., B — 1, the sender chooség) such
that
b) ~(b (b
(v (@), (&), 21 (w®, &),
b) ~(b
w355 44). 9
e A(V,U, X1, X5,Y).
This determines ; ( 5t )) that the sender transmits in
block b + 1.
4) In order to obtain the third level afooperation after

each blockb,b = 2,..., B the sender forms the set

Lg (y®=Y) of zg’_l) such that

Ls (y(bfl)) _{ g 1.
~(b—1 b—1) ~(b—1 — ~(b—1
(v@f ) w0l ), @ w6 ),
~(b— ~(b— _
za(85 o )y,

b—1 b—1) A(b—1) ~(b—1
y(< ), w0 50D 4o >))

€ A, (M U,Xl,Xg,Y,Yl)}.

The sender then declares th%i"l) was sent in block
(b—1) if and only if there is a unique

20V e Ly (y(b_l)) :

such thats( (b 1)) s%).
After this decodlng step, the sender and the relay coop-
erate in the sense that in blogk- 1 the relay transmits

wia™ = w2 (2(71), while the sender transmits
(b+1) (A(bfl))
0,2 = Wwo,2 ZE .

Decoding at the receiver:
For the decoding procedure at the receiver starting

1 the relay upon after the reception of blockh we assume that, upon
the decoding of blockb — 1,

the receiver has available

~(1 ~(2 b—2 ~(1 ~(2 b—3
A ) M U NI -0l
~(1)  ~(2) ~(b=1) 1) A(2) b—2)
wéDa (()Da"'v é,D ), (()S(D77S(D ), and
S0 5@ -
Then, after blockb the receiver decodes the messages
5‘7—” andwzb_Q) as follows.
1) The receiver looks fom;O such that
(v@h) ) € AV, Y), (32)
b b ~ (b ~ (b
wheredy', = (&9) p &) p: 11
2) The receiver then considers blogk— 1) and chooses
§%_1) such that
~(b—1 A(b=1) ~(b—1 _
(U(W&D ))amQ(S(D )’w((),D ))ay(b 1))
S -/46(‘/7 X27 Y)a
and such thats ; (55 = w(b{ b

This step is S|m|Iar to the restricted decoding principle,
that has been proposed in [21], for the multiple-access
channel with partial feedback.

The receiver then considers blogk— 1) and forms the
set}) (y®=) of w{’," such that

£ () = fults"

(b-1)

3)

~ ~(b—1) A (b—1
(”(WO,D )vw2(5§) )7w((),D ))7
(@), o050y, y - 1>)

€ AV, U,XQ,Y)}.



The receiver then declares thaﬁb Y was “received”

by the relay in block(b — 1) if and only if there is a
unigue
a5V e £fh (y<b_1>) ,

such thatm(wgb Yy = %’).
4) The receiver then considers blogk— 2) and forms the
set£? (y®=2) of 2" such that

LR (y(H)) _ {ng :

~(b—2 A(b—2) ~(b—2
(v(w((J,D ))7332(‘9([) )’w((),D ))7

b—2) . (b—2
(@52, 652), 4,

. b—2Ab2Ab2Ab2
yl(Z(D )wb)a(D ) éD))>

€A (V7U,X2,Y,Y1)}.

The receiver then declares th?éf_g) was sent in block
(b — 2) if and only if there is a unique

ég—z) c E(DQ) (y(b72)) ’

such thats(25, %) = 357" andwo 2 (20 %) = o).
5) The receiver declares thézéyD was sent in blockb—
2) if
b—2 A(b—=2) «(b—2
(v@057), 2257 005",

A(b—2) ~(b—2 A (b—2) A (b—2) A (b—2
u(wg,D )’wé,D ))75131(“’;@ )7w§ D )7w((JD ))7

_ N ~(b—2 ~(b—=2) A(b—2) ~(b—2
y5, 5, G, a5, 5870, 6f%5)

€ A(V,U, X1, X2, Y, V).

2) Bounding the Probability of Error:Genie-aided argu-

« E{): There existsiy p # w{"™"

m® and

such thatm(w, p) =

W1,p € ﬁ%)(y(b_l)%

. Eib): There existgp # 2(*=2) such thats(2p) = s~ 1,
WO,Q(gD) = wé %, and

ip e LYy ?).

(b—2)

. Eéb): There existsvg p # wy such that

b—2 b-2) (-2
(o) uw ),
@1 (0w’ wy ), (5072w ),
YO g1 (0w s W)
€ A(V.U, X1, X5, Y, V7).
Error events at the relay:
Eéb): There existsi, r # wf’) such that
(0wt uirr, ), @a(s®, ), ")
e A (V,U, X5, Y1).
« E": There exists na(®) such that
(529, 00,50, 0), 2, 0,
u(wl”, o), @2 (s, )
€ Ae(yvla lea Va Ua X?)

Error events at the sender:
. Eéb): There existsip # s(®) such that

b b b
('U( (g ))7u(w§ ),w(() )) wl(w(b)vwé ))’

ments as in [23] and [24] can be used to show that the £B2(§E,wéb)),y(b))

probability that the receiver makes a decoding error aftecko

b in the above scheme is upper bounded by the probability that

at least one of the following evenEéb) — Eéb) happens.
Error events at the receiver:

. Eéb):
b b b b
(o), u(l”, wf”), @1 (w®, wf),
mQ( () (b))v ()ayg)a
@1(Z(b)7w§b)a S( )7wéb)))
gAE(‘/? U7X13X27K}/175\/1)-

. Efb): There existsog, p # w(()b) such that

(v (©0,0) 7y<b)) €AVY).

Eéb): There existsp # s~V such thatvg 1 (3p) = wf
and

(v(wébil)), x2(3p, wébfl)), y(b_l)) € A (V, X5,Y).

e A(V,U, X1, X5,Y).
Eéb): There existsip # 2(*~1 such thats(zg) = 5.
EE S ﬁE(y(b)).

In the following we want to bound the probability that at
least one of event®}, . .., E% happens. To this end, we bound
the probability of errorP, averaged over all codebooks and
all random patrtitions. We define the event

9
F<béU b=1,...,B+1,

which includes the event of a decoding error after blband
which is defined over all choices of the codebooks. Then, we
can upper bound the averaged probability of error by

B+1
P <Y Pr [F(b)|F(1“'b*1)c} , (33)
b=1



where F(1--=1)° denotes the complement of the evé#t) U The following lemma considers the transmitter error event
..U F®=1_ Furthermore, we can upper bound each of thEéb) and shows that its probability can be made arbitrary small

summands as if condition (40) is satisfied.
Pr (F(b)|F(1“'b‘1)c) Lemma 1:If
R < I(Y1;X1,Y|UX2) + Ro — e, (40)

9
U E(b)|F(1...b71)c
J then for sufficiently large:

7=0
< Zpr< ) U E®) . .bl)c> Pr (E§b>\E§b>c,Egb>C|F<1---”—1>C) <e/(10(B+1)). (41)
+Pr (E(b ‘E b)c F(l - ) Uslijr:(éog Zﬁl:rpgregnudrz(ei as that of Lemma 1, finall; we
4 Pr (Egb \E b)c b)c  p(Lb=1) ) obtail::
+Pr (EQ|E, pO-0-0°) )
b (E(b)|E(b)c EO°, ”H)c) | Ry < I(U;Y|VX2) + Ry, (42)

thenPr Eéb)|Eéb)c,...,Eéb)c,F(l--b—l)c can be made
arbitrarily small, provided that is sufficiently large;
o If

In the following we separately examine each of the above
summands.

The eventE"” is independent of the evedt(-*~)* and
by Lemma 3 (Appendix A) can be made arbitrarily small for
sufficiently largen.

Also, by Lemma 4:

o If

R<I(Y1;Y|UX2) + Ro + Rp, (43)

thenPr (Eib)|Eéb)c, . B FO-2-D%) can be made
arbitrarily small, provided that is sufficiently large.
Ro+ Rp+ Ry < Iv;y), (34) Thus, we can make each of the above probabilities smaller

c . thane/(10(B + 1)) if (34)—(40), (42), and (43) are satisfied.
thenPr (E§b)|Ec(>b) , P ) can be made arbitrarily Then, by (33) the averaged probability of errBy can be

small, provided that: is sufficiently large; upper bounded by. And we conclude that there must exist
o If at least one possible code of probability of erfer< e.
Ry < I(X2;Y|V) + Ro, (35)  3) Further Analysis:To summarize our results so far, with
O )¢ 20 (1. 1) the presented scheme the mess&fecan be transmitted
then?r Ey”| Eg ’.El  F ] .can be made ar- arbitrary small probability of error if its rateR =
bitrarily small, provided that is sufficiently large; Ry + R, satisfies (34)—(40), (42), and (43) for some non-
o If negative ratesio, Ro, Rp, Ry, R and for the joint law on
Ry < I(Xl; Y, }>1|UX2), (36) (UVXngyylyl) In (30)

. . We eliminate the rateRy, Ry, Rp, and R from the rate
thenPr (B |EY”, ... EP" FO-b=1%) can be made expressions (34)—(40), (42), and (43) by means of the Fourie

arbitrar”y small, provided that, is Sufﬁcient]y |arge; Motzkin elimination. To this end, we first enminatéo by
o If combining (34) and (35) to obtain
R < I(U;Y1|VX2), (37) Ro+ Rp+ Ry < I(VXQ;Y). (44)
thenPr (Eéb)|Eéb)c,F(1"'b*1)c) can be made arbitrarily Next, we eliminateR, i.e., we combine (39), (40) and (43),
small, provided that: is sufficiently large; which yields
o If . .
R0<I(X2;Y|VUX1), (38)

I(Y;;Y1|UXo) < I(Y1;Y|UXs) + Ro+ Rp.  (46)

(b) (b)c F1.b=1)¢
thenPr (E | Eo can be made arbitrarily Then, we eliminatd?p, by combining (46) together with (44),

small, provided thah is sufficiently large. _ followed by eliminatingR, by combining (45) with (38). This
Furthermore, by [11], [7], [12] or [4, Chapter 13], if yields the two constraints

R > I(Y1;Y1|UX5), (39) IV UX,) < I(Y1; X1 Y|UXy) + I(Xo; YIVUXY),

thenPr (B BV, BY°, FO-5-D°) can be made arbitrar-  1(Y1;Y1|[UX5) < I(Y1;Y|UX2) + I(VX2;Y) — Ras,
ily small, provided that: is sufficiently large. 47
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where remember thak,; > 0. The combination of (36) once
with (37) and then with (42) yields v —{ ¢ . X}, x5,¥7)
R+ Ry < I(X1;YV1|UXy) + I(U; V1|V X5)
Ri+ Ry < I(X1;YV1|UXy) + I(U; Y|VX3) 4+ Ry
(48)

. - . Fig. 3. The first chai ting the rand iables inoféra 4.
Finally, the substitution of the upper bound @ty;, which 9 & st chain generaing fhe random variables o

results from the second constraint in (47), into the second

upper bound on the sum-rate in (48) yields independent giveriU/, X», Y1) we can write

Ri+ Ry < I(Xy;; YVIIUX2) + [(U; Y[VX2) + I(VX0;Y),  I(X,XY) — I(V1; Vi |UX, XoY)
+1 (Yl; Y|UX2) — I(Y1:Y1|UX>) =H(Y) - H(Y|X,X>)
= I(X1; YV |UX>) +I(VUX5:Y) - [H(f’lIUXleY) - H(YI|UXQYI)} . (52)
()+H(Y1|UX2Y1) H( 1|UX,Y) Furthermore,
= (

I(X1;YYV1|UXs) + I(U; V1|V Xa)
= HYV1|UX3) — HYY1|UX1X5)
+H(Y1|VXs) — HY1|UV X3), (53)

21X Y| UX) + I(VUXy;Y)
—I(V1;Y1|UX,Y)

= [(X1;Y|UXy) + I[(X1; V1| UX,Y)

+HI(VUX2Y) - I(Vi; Y1[UX2Y)

— [(X;;Y|UXs) + I(VUXs:Y) while the constraint (13) can be expressed as
+HMW|UX,YY)) — HY,|UX XoY) [(Xo; YUV Xy) — I(Y1; V1| UX X5Y)
Y (X0 Y|UXD) + [(UX2:Y) =HY|UVX)) - HY|UVX1X>)
+I(V;Y|UX,) — I(Y1; Y1 |UX1 XoY) - [H(Y1|UX1X2Y)_H(Y1|UX2Y1)] >0. (54)
(0 Y
= 1(X1 X2 Y) — I(Yi; Vi [UX 1 XoY). (49)  Letus be giventhe seté = {1,...,J}, X, = {1,..., K},
Xy ={1,...,L}, Yy = {1,...,M}, Y = {1,...,N} and
Here, Vi ={1,...,8}. Thenforj e {1,....J}, ke {1,...,K},
(a) and (b) follow by the Markov relation I e {1,...,L}, m € {l,...,M}, n € {1,...,N},
(X1,Y)e (U X3,Y1)e Y7 and s € {1,...,58} and any law P(u,z1,22,y1,¥,41) ON

(c) follows from the Markov relation§’ e (X, U)e Y and (U, X1, X,,Y1,Y,Y;) set
Ue (X1,X5)e Y.

Note however that the choice fét,, is only valid if Ry, > 0 _
which imposes the following constraint on the input distrib = ZPY(Ja k,l,m,n,s), (55)
tion

Qjrim = Pr(U=j5X1=kXo=10,Y1=m)

. R and define the conditional laws
IYi;Y1|UXe) <I(Yi;YUXs) + 1(VX2;Y).  (50)

to(k,l,m) = Pr(Y=nlU=jX1=kX2=1,Y1=m)
We consider now the first constraint in (47) which reads as > Pr(i, k,l,m,n,s)
follows - Qi nl ’
7y m
HM|UX\XaY) — HYUXoY:) < I(Xy; YIVUX,)  bskbm) = Pr(Yf) :;:'zU =5nXi=kXy=0LY1=m)
HYV1|UX1X,Y) — HVIUX1 XoYY1) < I(Xo: Y|VUXy) _ 2 g M1, 8)
IV Y UX1X2Y1) < I(Xa; YIVUX)), Jhtim
(51) Let T be the N x (J x K x L x M) (5-dimensional)

matrix with (n, (j,k,1,m))-th entry ¢,(j, k,1,m) and for

where the second step follows by the Markov relatioh = 1,2,... let A, be the simplex of probability-vectors.

(X1,Y)e (U, X5, Y1) V7. ThenQ (Q@u1,1,1, Q211,15 Quk,,m)' € Asrrm,
The combination of the first upper bound in (48) wittfnd 7Q € Ay. Thus, T' defines a channel with inputs

(49) together with the constraints (50) and (51) proves tﬁg X1,X2,Y1) and outputY. Similarly, let T be the S x
achievability of the rateR,. x K x L x M) (5-dimensional) matrix witl{s, (j, &, 1,m))-

th entry t,(j, k,I,m), thenTQ € Ag. Thus,T defines a
4) Proof of Cardinality Bounds:We start by bounding channel with input§U, X1, X»,Y7) and outputy;. This chain
the cardinality of the auxiliary random variablé. Recalling of generation of the random variablég, X;, X5, 11,7, Yl)
that the random variable¥; and (Y, X1) are conditionally is illustrated in Figure 3.



Now let {g(v)}, € V be a finite set of vectors it ;g ns,
indexed by the finite seW. Also let {\,} satisfy

A =05 > A, =1

veyY
Let V be the random variable which takes the value V

with probability \,,. Furthermore, suppose thetis the input
to a channel with outputU’, X7, X},Y{) taking values in Finally

U x Xy x Xo x Yy with transition probability
Pr(U' =4, X{ =k X, =1Y) =m|V =) = ¢j k.1.m(v),
1<j<J,1<k<K, 1<I<L,1<m<M

whereg; x.1.m (v) is the (4, k, [, m)-th component ofy(v).
Let Y’ be the output of the channel defined k¥

when (U’, X{, X5,Y{) is the input. The random variables
U, X1, X5, Y/, Y have a joint law whose marginal on

U’, X1, X5, Y] satisfies (55) if and only if
> Aav) = Q. (56

veV

Assuming that (56) is satisfied we can express, for example,

the conditional entropies
HY[UX,V) = > ANHYUX,V =),
veEY
by substituting the expression
Pr(Y =n|U =4,X1 =k, V =0)
Zl,m tn(]a ka la m)qj,k,l,m(v) N
2 tm Gikd,m (V)

An(]a k? U)?

while H(Yl|UX1X2Y) is expressed via
Pr(Y =n,U=jX1=Fkk Xa=1)
- Ztn(]a kvlvm)Qj,k,l,ma

and
Pr(Yi=sY =nU=75X, =k Xo=1)
- Ztn(jvkalam)zs(ja kvlvm)Qj,k,l,m-
Next, define
I'i(g) = HY)-HY[|X1X>)

- [H(?1|UX1X2Y) - H(?1|UX2Y1)} ;
to conclude that the functional (52) can be expressed as

I(X1X3;Y) = I(V;; iU X1 XoY) = Z AoT'1(q). (57)
veV
Similarly, define
Ia(q) = H(YV1IUXo) - HYV|UX1Xs)
+H(Y1| X2V =v) — HY1|UX2V =),
to conclude that the functional (53) can be expressed as

I(X; YV |UXy) + I(U; V1|V Xs) = > ATa(q).  (58)
veY

11
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Fig. 4. The second chain generating the random variableh@oEm 4.

define

Is(q) = HY|UX\V =0v)— HY|UX; X,V =)

—E®UX XY - H(f’1|UX2Yl)} ,
to conclude that the constraint (54) can be expressed as
I(Xp;Y[UVXy) - IV Y|UX1X2Y) = Y ATs(g) > 0.

veV
(59)
Combining (56), (57), (58) and (59) we conclude, based on
similar arguments as in [8, Appendix Al], that the cardityali
of V can be bounded by

V< il ]| X2l + 2.

We consider next an upper bound on the cardinality of the
auxiliary random variabley;. This time we use the chain
depicted in Figure 4 in order to show that the cardinality of
Y, can be bounded as follows

IVl < VIR X X2+ 2.

Finally, we prove the equivalence of constraint (13) with
the following constraint

I(Yi; 1|UXo) < I(XoYi; Y X1 |UV). (60)

This can directly be seen by expressing the right hand side of
(60) as

I(XoY1; X, Y|UV)
= I(Xo; X1 Y|UV) + I(Y1; X1 Y |UV Xo)

Y (X YIUVX)) + HOUV X)) — HO UV X, X5Y)

L 1(Xa; YUV XL) + HVI|UV Xz) = HVA|UX1 X2Y)

(61)
and the left hand side as

I(Y1;V1|UX)
— HV|UX,) — HYV|[UXoY)

Y HW UV X)) - HRUX XYY

= I(Y;; I UX1 XoY) + HY1|UVX,) — H(Y1|UX, XoY7).
(62)

Here,

follows from the Markovity of X;e (V,U)e X2 which
implies thatl(Xy; X1|UV) = 0; X
follows from the Markovity ofVe (U, X1, X2,Y)e Yi;
and

follows from the Markovity ofV e (U, X5)e Y7 and the
Markovity of (X1,Y)e (U, X3,Y1)e Yi.
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B. Derivation of Upper Bound in Observation 1 Now, let Z be a random variable independent of

Suppose there exists dd/, n, ¢)-code for the relay with VX1, X2, Y, Y1 uniformly distributed over the set
receiver-transmitter feedback. The probability mass fionc {1:--->n}, and set

on the joint ensembléW, X1, X»,Y,Y ;) is given by
X1 2 X172, Xa2 Xz, Y2Yz, iI2Y1z, VEVg

p(w7 r1,T2,Y, yl) =

1~ o1 1 Then
MHp(kalw,y P(@2,k Y7 )P (Yks Y1kl 1k T28)-
k=1 1 <
- I( X1 5; YY1 1| X0k Vi) = I(X1;YY1| X0, V, Z). (65
Now, the Fano inequality yields n; (X1 ViV | X2 Vi) (X1 fRe ). (65)
H(W|W) < eln M + h(e) £ néd,(e), (63)  Next

where i (-) denotes the binary entropy function afde) — 0
ase — 0. From (3) and (63) it follows that I(X1; YY1 X2V Z)
H(YY1|X,VZ) — HYY: | X1 X2V Z)

H(W|Y) < HW[W) < né,(e). (64)

@
= H(YY | XoVZ)-H(YY | X1 XV
Consider the identity © (Y| XeV2) = HY V1| X XeV)
< —
nR=H(W) = I(W;Y) + H(W[Y). s HIMPXGV) - HINXGXRV)
= I(X1;;YY1|XoV). (66)
Combining this with (64) we obtain
nR < I(W;Y) + né, (e). Here,
, ) . " (d) follows by the Markovian relation
We now proceed with a chain of inequalities fiV; Y), Ze Ve (X1 X3)e (YY7); and
where the explanations will follow: (e) follows since conditioning reduces entropy.
I(W;Y) The combination of (65) and (66) yields that
< I(W;Y,Y,) -
) — _ Y I Xy VY k| Xow Vi) < I(X1; YY1 | XoV). (67
(@) ZI(W§Y1@Y1.,k|Yk71Y1k X, 4) - ; (X103 YY1 | Xoa Vi) S I(X1; YY1 X0V). (67)

~
Il
—

The inequality

[
NE

(H(kal,ﬂykflylk_lek)

~
Il
—

NE

—H(YkYLk|WY’“’1Y1’“‘1X27,€)) IW:Y) < ) I(X1k X2k Vi), (68)

E
Il

1

=
R

(H(Yle,kIkaliﬁk_le,k) is proved in [3, Lemma 4].

k=1 Combining (67) and (68) we conclude that
—H(YiYi 4| X1k Xap)) )
O R<  sup min{ . 20 }+6n(e),
(_) Z (H(YkYLk'Y}’c—lY'lkleZk) PV X1 Xa¥Yy I(Xl,YY1|X2V)

k=1
where the supremum is taken over all joint laws of the form
_H(YkYLk|Y’“_1}/1k’1X17kX27k)). P :
Here, PVXiX,YY: (U,$1,£U27y,y1)
(a) follows by the functional relationship (2); = pvx:ix:(V, 21, 22)Py vy X, X, (U, Y121, 32).

(b) follows from the functional relationship (1) and from the o ) )
Markovity of (WY 1Y} 1) e (X; ,Xox)e (YiYis); Now a bound on the cardinality ¢f can be obtained via the

and technique presented in [8, Appendix A1l].
(c) follows from the fact that(Y;Y; ) are conditionally — This completes the proof of Proposition 1.
independent of Y*~1Y*~1) given (X, 1 Xo.1).

Define
Vi 2 (yk—lylk—1)7 C. Proof of Theorem 5

To prove Theorem 5 we propose a coding scheme where
the transmitter sends maximally informative updates simil

IW;Y) < ZI(Xl,k;Yle,k|X2,ka)- ts(;ra[i:g] and the relay applies a simple amplify-and-forward
Y.

then we have shown that

k=1
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1) Coding SchemePrior to transmission the encoder mapminimum means squared error (LMMSE) estimateobased
the messagé@/ onto the real line applying the following one-on Y>

to-one mapping Jai P,
~ 141
, w—1 1 (69) TP N, 2
. — - —=.
UM -1 2

Then the receiver updates its estimate of the message foint
Consequently, the random variab#él’) is distributed uni- as follows o
formly over M equally spaced values withi 2, 2} The 0y = 01 — €1,
message poird(1¥) is then transmitted ovet channel uses
to the receiver. After the reception of thechannel outputs
the receiver guesses the transmitted message ¢diri) and €02 0y—0=¢ —éq,
equivalently the messagé#’. _ )

In the remaining of this section we describe the transmissi@nd is of variance
steps and the decoding in detail, followed by an analysis of Ny
the performance. P, + Ny’

First Transmission Step;, = 1: In the first transmission step [N this second transmission step the relay obsekigs=
the encoder transmits a scaled version of the message pc,{}%el + Z1,.

and the new estimation error becomes

Qo £ Var(EQ) = 1

0=0(W
W) Further Transmission Stepg, = 3,...,n: Prior to trans-
X, = P ) mission stepk the encoder observes the feedback outputs
’ Var(0) Ys,...,Ys_1 and hence knowing the message pdirit can

compute the decoder's LMMSE estimation eregp,_;. Then

Note that the scaling factor assures that the expected pom [ransmlssmn step the encoder sends the estimation error

of the input symbol equal®;.

The relay stays quiet and the decoder thus receijes: k-1 Scaled by the factor /7= where a;.—, denotes the
Var(9)9 + Zy; and estimated as follows \é:s(trlance ofep_1. Agam: the scallng factor assures that the
pected power of the input symbol equéls
The relay applies an amplify-and-forward strategy, thais
b, = Var(6) vYatly, — o+ Var(6) T transmission step it transmits a scaled version of the symbol
1 1 Y1 x—1 received in the previous step:
As a result, the decoder’s estimation eregr2 6, — 6 = P,
vaa; Z2.1, is zero-mean Gaussian and of variance Xop =\ prp, Yok
Var(6) P,
A
£ Var(e;) = N. ) = X Z
oy (€1) >~ p P1+N1( 1k—1+ Z1k-1)
Note that this first estimate of is sub-optimal in terms of P, P
expected mean squared error. However, the advantage is that = P+ N, s €h—2+ L1 -1 ] -

with this estimate the errar; is zero-mean Gaussian, and as
we will see later on, this simplifies the analysis. Also, doe
the feedback link the encoder obserdésas well and thus
with the knowledge of} it can compute the estimation error
€1.

In the subsequent transmissions the encoder sends resoluti
information such that the decoder can form a better andrbette y, = x; K+ dXo g+ Zo,

estimate ofe; and equivalently of).
~Second Transmission Step= 2: In the second transmis- ~ \an lek 1 +d\/ pl + N, \/

sion step the encoder sends a scaled version of the estimatio

tHere, the scaling factor is chosen gsm for someP, €
[0, P2] and thus the expected power of the input symiegl;
quaIsP2 < P.

The time4 channel output at the receiver is given by

errore; while the relay stays again quite. Thixg , = 0 and
' | =——Z Z 70
. + P1 + N b k-1t Z2k. (70)
1
X12 = \/ a—1€1- Using this current and all the previous channel outputs ¢he r

ceiver updates its estimate of the message pbititcomputes
Note that here the factqy/ £- is chosen such that the expectedx -1, the LMMSE-estimate of;._, based on the observations
power of the transmitted symchl , equalsP;. Y>,..., Y, and subtracts it from the previous estiméje ;
The channel output observed at the receiver is given gg,obtaln the new estimate

Yo, = 1/a—lel + Z39 and the receiver computes the linear Op = 01 — é_1. (71)
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So, the remaining task is to compute the LMMSE-estimateguation (72) also leads to a recursive formulation of the
éx—1. As Yy is not independent of the previous outputs, theequenced py}:

easiest way to do this is to compute the best (in LMMSE- —
sense)f/;C of the channel output), based on(Ya,...,Y;_1) P> + No

and then subtract it from the: original observatibp. The Pk = —\ ? . ’ (73)
resulting innovation/;, £ Y}, — Y}, is then independent of the (v Py + pr—14/ 7P2) + P2+ N2
previous observations, and the LMMSE-estinigte, is easily
computed from this innovation only. Note that since amorg thor £ = 3,...,n — 1, and
summands ol only ¢, depends on the past observations N

. ~ . . . 2
the best predictoy}, is given by a scaled version of the p2 = ,/m.

1 2

LMMSE-estimate of;_» based on(Ya,...,Y,_;). Denoting

the LMMSE-estimate of,_, by ¢,_, the best predictor can Note thatp, equals the correlation coefficient ef , and
be written as ex, and thus is proportional to the correlation of the time-

(k + 1) signal from the encoder to the receiver and the time-

- P P - i
V. =d 2 P (k 4+ 1) signal from the relay to the receiver.
P+ N1\ ag_o

_ . _ ~ Decoding of the Message after Step After the n-th
Based on the predictor the receiver can form the innovatiofransmission step the decoder’s estimate of the message poi

A ¥ 9 is given byé,, = 6 + ¢,,. The decoder then guesses that the
I, = Y -Y < ! O .
— messagéV = w was sent ifd(w) is the message point closest
Py Py . to 6, i.e.
— - d 6 — - ny ’
ok—1 ko1t P+ N\ ap—2 (62 = &—2)

W = argmin |0, — 0(w)].

| P
+d P, + Ny k=1t 22k 2) Performance analysisAn error in the decoding occurs
only if there is aw’ # w such that the message po#ty’) is

closer tof,, than the message poif{w). The probability

= i €x—1+d _f A €h—1 of this event is upper bounded by the probability that the
Qhe—1 Prt Ny s magnitude ofe,, is greater than half the distance between
P, adjacent message points. Therefore the probability ofrerro

+d PN, Z1 k-1 + Zoj; can be upper bounded as

which, as already mentioned, is independent of the previous P, < Pr ||e,| > #> ,
observationgYs, ..., Y;_1). Note that in the second equality 2M o,

we used that where Q(z) 2 [ \/%e_%dt is the tail of the standard

x

Gaussian distribution evaluated at

<2q < (74)

=)

€h—1 = €k—2 — €2

which follows from the definition ofe;; 290, , and In the above term the variance, can be expressed by
Recursion (71) fol;_;. definingy £ d2 P]JilNl and¥y = d? — v, and by iteratively

The LMMSE-estimate ofe,_, at the receiver based onapplying (72)
(Ya, ... ,_Yk,%,lk) is gi_ven byér_1 = %L@, and the
new estimation error is

n

n

N CoViex_1, 1, Py + N,
€ =0k —0=€p1— 1= €1 _MII@- = a2 = N N
Var(ly) k=3 \ P14+ 2\/YP1Papr—1 + 7Pap}_ + vP2 + No
The variance of;. is given by The size of the message seft can be expressed in terms of
k= 01 — Covie,_1, ;)2 the transmission rat® = L In M. Then we obtain the upper
! Var(1y) bound on the probability of a decoding error in (75), on top
. of the next page. We see that the probability of error tends to
— o, TP + Ny 0 whenn — oo if
P1+2\/'7P1P2 ocz:; +’_}/az:;P2+7P2+N2 R< 1 lil" P1+2\/’7P1P2pk71 +’7P2p271
m — =
where we definedy £ d> 8- andy = d* — . Defining noeen i — vP + N2
further p, = , /52 the variancey, can be expressed as ) ) (76)
k=2 The convergence of the right hand side of (76) to the bound
Ok = for R given in Theorem 5 follows by showing that the
P LN sequence of correlation coefficier{ts, } converges te*, the
v£2 + No . . .
Qk—1 (72) solution of (27), and then applying Cesaro’s Mean Theorem

P 424/ Py Pypj_1 + ’_Ypi_lif’z + 9P + N, [4, Theorem 4.2.3].
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1 1 Py +2\/3P,Pypj_1 + P2p2 _ | + d* 50— Py + N.
Pe§2Q D) - eXp Ziln : = 21 N, Q”k : LR el 2 —nR ;
V02 s d —P1+N1P2+N2

(75)

In order to prove the convergence of the sequefigg to  equivalently showing that fog € [0, x*[:
p* we need the following lemma. 9
(f(f )

1/2
Lemma 2:Consider the functionf : = +— W
defined on the closed intervd, 1] whena,b,p > 0. For =

a 1
S|
the function f(-) exactly one fixed point:* exists in [0, 1 a Yy
) y p 0,1] a+p<1+b /7W>
a

2

and for any starting point, € [0,1] the infinite sequence
xo,21 = f(x0), 22 = f(x1),... converges to this fixed point

pu— >
* 2 2
v ay? + py? + 2bpy | aiiTege PV aratiTy

(77)

1.

Note that the expression on the left hand side of the inetyuali

Proof: First note thatf(-) is continuous and strictly de-, 77y is strictly monotonically decreasing for> 0, and also
creasing on the intervgd, 1], and that the image 46, 1] under note that fory = x* the expression must be equal to 1, since

f(-) is a subset of the interval itself. These two propertielsr is a fixed point of(f o f). Hence for ally larger thano

'mP'Y that there is exactly one fixed point df() in [0,1] and strictly smaller than* the above ratio has to be strictly
which we denote by:*. larger than 1.
Concluding we have shown that the sequenge:, yo, - - -
is strictly monotonically increasing and upper boundedcby
Now we proceed to prove the second part of the lemmghich is the only fixed point of f o f) in [0,2*]. From this
i.e., that for arbitrary starting point, € [0, 1] the sequence follows that the sequencey,yi,... converges to the fixed
obtained by iteratively applying the mappinf-) converges point z*.
to z*. To this end, for the chosen Starting point define two Similar arguments can be app“ed to show that also the
sequencesyy }32, and {z}32, where the first sequence issequencey, 21, 2o, ... converges tar* which concludes the
defined byyo = xo,y1 = f(f(y0)),y2 = f(f(y1)),..., and proof of the lemma. n
the second sequence by = f(zo),21 = f(f(20)),22 =  Applying Lemma 2 to the sequence of correlation coef-
f(f(z1)),... We will show that both sequences converge tfcients {p,} it follows that the sequence converges to the
the fixed pointz* of f(-), from which then follows that the ynique fixed point of the Recursion (73)[ih 1] which is given

sequencexg, z1, 22, . . . also converges ta*. Note that since py the unique solution in the interva, 1] of the following
z* is a fixed point of () it is clearly also a fixed point of quartic equation ip

(f o f). Note further that sinc¢(-) is strictly monotonically
decreasing or0, 1] either zo = f(z¢) = z*, 2o < z* < 2(P voa/p b pep P e
f(zo), or f(zo) < z* < x¢. For the first case the lemma P R P PN

. . N - -
follows directly. We will prove the lemma for the second case iy LB Ng) — 2P,

the proof of the third case is omitted but follows along the P+ N
same lines as the proof for the second case.

P+ Ny

N,
Py +N;y

Substitutingy by d? and# by d? — ~ one obtains (27).

Thus, in the following we assume that< =, < z*. We D- Proof of Corollary 1
start by proving the convergence of the sequepce:, o, - - - We apply the coding scheme which achieves the raie
Note first that sincg (-) is strictly monotonically decreasing it of Theorem 4 for the Gaussian relay channel. Even though a
follows that f(y) > «* and f(f(y)) < «* forall 0 <y < z*. jointly Gaussian distribution does not necessarily maxemi
From the assumption thaly = zo < z* then follows that (12) subject to the constraints (13) and (15) we Wgt ~
the sequenceo, y1, %2, . . . is upper bounded by*. Next, we N(0,p), U ~ N (0,1 —p) andV ~ N(0,1 — p) whereW, U
show that the sequence is strictly monotonically incregsimndV are independent and forth = W+U andV = W+V.
and thatz* is the only fixed point of(f o f) in the interval Independently of these random variables and independehtly
[0,2*]. Both properties follow by showing that(f(y)) >y each other we lef\; ~ N(0, a1 P1) and X5 ~ N(0, azP,)

for y € [0,2*[ or, sincey and f(f(y)) are non-negative, by and setX; = Ve PiU + X, and Xy = Vas P,V + X where



a1 = 1—a; andas = 1 — ay. Finally, we choose for the
quantization stef; = a(Y; + Z’) whereZ’ ~ N'(0, N') and
is independent of W, U, V, Z,, Zs).

Then the following rate is achievable

P1+d2P2+2d\/ P Po/&id2p Ny
¢ N —C(5)

R = min wr ) e a1 Py (1-p)
Ni+N’ a1 P1+N

¢+

where the parameters;, as, p and N’ must satisfy

0 S aq S 17
0 S Q2 S 11
0<p<1,
NNz N
d2O[2P2 -
Nl+alplﬁ < O_élp2P1—|—P2d2—|—2d\/5410_62plp2p.
N’ - aPi+aPi(1-p2)+ N
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APPENDIX

A. Strong Typicality

Let {X® x@ .. X®} denote a finite collection
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is defined by (see [4, Chapter 3,12,13])
A, A, (X<1>7X<2>’ o ,X(k))

{ (:c(l),:n@), .. .,:v(k)) :

(2, 2B, 2@, 2 ®)

_p (Iu),x(z),m’x(m) ‘

(1>

(1>

1
‘—N

n

€
< )
XD x X@ x ... x XB|

V(m(l),m(Q),...,w(k)) exM x.. . x X(k)},

where||X| is the cardinality of the set’.
Let A.(S) be defined similar tod. but now with constraints
corresponding to all nonempty subsets.$fWe recall now
two basic lemmas (for the proofs we refer to [4]).
Lemma 3:For anye > 0 the following statements hold for
every integem > 1:
1) If s € A(S), thenexp (—n(H(S)+¢)) < Pr{S =
st < exp (—n(H(S) —¢)).
2) If S1,5, C {Xl,XQ, e ,Xk} and (81, 82) S ./45(51 U
S3), then

exp (—TL(H(51|SQ) + 26)) < PI‘{Sl = 81|52 = 82}
< exp (—n(H(S1]S2) — 2¢)) .
Moreover, the following statements hold for every suf-
ficiently largen:
3) Pr{A(9)} >1—F¢,
4) (1—e)exp(n(H(S)—e)) < [[A(S)] < exp(n(H(S)+

€))

of discrete random variables with some joint distribution

P(:v(l),x@),...,x(k)) with (x(l),x@),...,x(k)) e xM x

Lemma 4:Let the discrete random variablés, Y, Z have

X®@ x ... x X® LetS denote an ordered nonempty subsgoint distribution Px y z(x,y, z). Let X’ andY” be condition-
of these random variables and consideindependent copies ally independent giver¥, with the marginals

of S. Thus, withS e (51752, .. .,Sn),

Pr{S =s} = H Pr{S; = s;}.

Let N(s;s) be the number of indiceg € {1,2,...,n} such
that S; = s. By the law of large numbers, for any subset
of random variables and for afl € S,

%N(s;s) — P(s), (78)

as well as

_% > InP(s;) — H(S). (79)

j=1

——InP ..., 8n
nn (s1, 52, ,8n)

The convergence in (78) and (79) takes place simultaneously

with probability one for all nonempty subsefs[3].
Definition 1: The setA. of e-strongly typicaln-sequences

Pxiz(z]z) = ZPX,KZ(:E,y,z)/PZ(z),
Yy
Pyiz(ylz) = Y Pxy.z(z,y,2)/Pz(2).
Let (X, Y, Z) ~ HZ:I P)Qyjz(l‘k, Yk, Z;g) and
(XY, Z) ~ [TliZy Pxz(zklze) Py z (el 2x) Pz (2k).-
Then

Pr{(X"\Y' Z) € A(X,Y,Z)} < exp(—n[I(X;Y|Z)—¢]).

B. Proof of Lemma 1

We assume that the decoding of the previous blocks
was successful, i.e, we assume the eveht-*~1° and
we assume that the relay has sefft. Then, we define

Y (2E|Y(b>) in (80) on top of the next page. The cardinality
of Lg (Y(b)) is the random variable

ez (rO) [ = 2w (o).



0 otherwise

and
IE{HEE (Y(b)) H ‘F(b)c} —-F {\IJ (Z(b)|y(b)) |F(1...b71)0}

+ Z E{\I! (2E|y(b)) ‘F(l"'b_l)c},

zp#2®)
whereE denotes the expectation operator.
Now by Lemma 4 for eachy # 2(, zp € {1, . .,e"R}

IE{\I/ (ZE|Y(b)) |F(1...b—1)0} < e (I(V1X1 Y [UX2)—¢)

Thus,

B{fles (@) 1)

<1+ (enR _ 1) (efn(I(Yl;X1Y|UX2)7E)) .

(8]
El

[10]

[11]
[12]
[13]
[14]

[15]
Furthermore conditioning on the eveﬁé‘:) implies that the
sender has decoded’—") correctly and thus the sender only1g)
declares thatg’_z) has been transmitted by the relay in block
b—1if s(7?) = s(=1. Hence, we can upper bound the, 7,

probability of the eventEéb) conditioned on that there was

decoding error in the previous blocks as follows:
Pr (Eéb)‘Eéb)c7E(()b)ch(l...b—l)c)

< Pr (Eéb) }F(l...bq)C)

(18]
[19]

[20]
<E Z Pr (ZE €Lg (Y)ﬂs(zE) :S(b‘f‘l)’
) 21]

Eéb)iF(l...bfl)c)}

< E{HEE (y(b)) H e*nRolF(l,...,b71)C}
(1 i en(R—I(%;XlY\UX2)+E)) .

[22]

< e nho 23]

Apparently for R < Ro + I(Y1; XY |UX,) — ¢ and suffi- [24]
ciently largen, the claim (41) follows.
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