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Abstract— We propose an encoding scheme for the Gaussian
relay channel with receiver-transmitter feedback based onthe
Schalkwijk-Kailath coding strategy for the memoryless Gaussian
single-user channel with feedback. The scheme has the advantage
over previous schemes for the relay channel of being of very low
complexity and, for certain channel parameters, achievingmuch
higher rates.

I. I NTRODUCTION

The relay channel was first introduced by van der Meulen
in [1]. Cover and El Gamal in [2] then introduced the idea
of block-Markov superposition encoding for the relay channel
by proposing two encoding schemes based on this idea: the
compress-and-forward scheme and the decode-and-forward
scheme. Block-Markov superposition encoding is also used
in the best schemes [6] known today. Nevertheless, only in a
few special cases, i.e., for semi-deterministic relay channels [4]
or for physically degraded relay channels [2] a block-Markov
encoding strategy was shown to achieve capacity. In general
the capacity of the relay channel is not known, not even in the
Gaussian case.

In the presence of feedback links either from the receiver
to the transmitter, or from the relay to the transmitter, the
best schemes [5] proposed so far are as well based on block-
Markov strategies, and are known to be capacity achieving
only in the same special cases as without feedback. The
situation changes only when a feedback link from the receiver
to the relay is introduced. For this case it was shown in [2]
that a block-Markov strategy achieves capacity.

In this work we consider the Gaussian relay channel where
the transmitter has access to feedback from the receiver. We
propose an encoding scheme which does not rely on block-
Markov encoding, instead we design the transmitter and the
relay to be linear. Thus, in this scheme the transmitter, relay
and receiver are all of very low complexity.

The encoding scheme is based on the Schalkwijk-Kailath
signaling scheme [7] for the additive white Gaussian single-
user channel with feedback. Their scheme has been extended
to various basic memoryless Gaussian communication settings
with feedback: Ozarow extended the scheme for the two-user
multiple-access channel [8] and the broadcast channel [10];

Kramer extended it for the multi-user access channel and the
interference channel [9], and finally Merhav and Weissman
extended the scheme for Costa’s Writing on Dirty Paper
channel [11]. Note that for the single-user channel, the two-
user multiple-access channel and Costa’s Writing on Dirty
Paper channel the schemes are capacity achieving. Unfortu-
nately, we cannot prove this property for our extension for the
relay channel. Nevertheless, for specific channel parameters
the scheme outperforms all existing block-Markov encoding
schemes by far. Thus, we show that at least in the case of
a receiver-transmitter feedback link there are low-complexity
alternatives which outperform the best known block-Markov
encoding schemes.

II. SETTING AND RESULTS

The Gaussian relay channel consists of three terminals, a
transmitter, a receiver, and a relay. The transmitter wishes to
transmit a messageW to the receiver, and the relay helps in
this transmission. The messageW is a random variable which
is uniformly distributed over the setW = {1, . . . ,

⌊

enR
⌋

}
wheren denotes the blocklength andR denotes the transmis-
sion rate.

Independent of the messageW let {(Z1,k, Z2,k)} be a
sequence of independent identically distributed (i.i.d.)pairs
of independent Gaussian random variables of zero mean and
variancesN1 andN2. The sequence{Z1,k} models the noise
on the link from the transmitter to the relay and the sequence
{Z2,k} models the noise on the multiple-access link from the
transmitter plus relay to the receiver. Thus, the time-k channel
outputs at the relay and at the receiver for given channel inputs
x1,k at the transmitter andx2,k at the relay are

Y1,k = x1,k + Z1,k,

Yk = x1,k + dx2,k + Z2,k.

Hered is the gain coefficient of the relay-to-receiver link. The
gain coefficients of the other links can be set to one without
loss of generality.

The transmitter has access to causal and noise-free feedback
from the receiver’s output and thus forms its time-k channel
input x1,k as a function of the given messagew ∈ W



and the sequence of previous channel outputs at the receiver
y1, . . . , yk−1. The relay does not have any feedback and forms
the time-k channel inputx2,k as a function of the sequence of
previous channel outputs at the relayy1,1, . . . , y1,k−1. Thus,
the time-k encoding functions are of the form

f
(n)
1,k : W × R

k−1−→ R, (1)

f
(n)
2,k : R

k−1 −→ R (2)

for k = 1, . . . , n and the time-k channel inputs are given by

x1,k = f
(n)
1,k (w, yk−1),

x2,k = f
(n)
2,k (yk−1

1 )

wherevk−1 denotes the vector(v1, . . . , vk−1).
The encoding functions are restricted to fulfill average block

power constraints

1

n

n
∑

k=1

E

[

(

f
(n)
1,k (W, Y k−1)

)2
]

≤ P1 (3)

and

1

n

n
∑

k=1

E

[

(

f
(n)
2,k (Y k−1

1 )
)2
]

≤ P2, (4)

whereE denotes the expectation operator.
A rate R is said to be achievable if for every blocklength

n there exists a sequence of pairs of encoding functions
{f (n)

1,k , f
(n)
2,k }n

k=1 as in (1) and (2) fulfilling the constraints (3)
and (4), and a decoding function

φ(n) : R
n −→ W

such that the probability of a decoding error

Pe , Pr
(

φ(n) (Y n) 6= W
)

tends to 0 whenn → ∞.
Now we are ready to state the main result of this work.

Theorem 1: Consider the Gaussian relay channel with
causal noiseless feedback from receiver to transmitter, power
constraintsP1 andP2, noise variancesN1 andN2, and a gaind
on the link from the relay to the receiver. A rateR is achievable
for this channel if

R ≤ max
0≤P̃2≤P2

1

2
ln











1 +

P1

(

1 + d
√

P̃2

P1+N1

ρ∗
)2

d2 P̃2

P1+N1

N1 + N2











(5)

where the correlation coefficientρ∗ is given by the unique
solution in [0, 1] of the following quartic equation inρ

ρ2





(

√

P1 + d

√

P1

P1 + N1

√

P̃2ρ

)2

+ d2 N1

P1 + N1
P̃2 + N2





= d2 N1

P1 + N1
P̃2 + N2. (6)

From [12] we report the highest rate which is known to
be achievable with a block-Markov strategy in a receiver-
transmitter feedback setting. The encoding scheme achieving
this rate combines the ideas of restricted decoding [13] and
the form of backward decoding introduced in [6] for the relay
channel without feedback.

Theorem 2 ([12], Theorem 4 and Corollary 2): A rate R
is achievable for the Gaussian relay channel with causal noise-
less feedback from receiver to transmitter, power constraints
P1 andP2, noise variancesN1 andN2, and link gaind if

R ≤ sup min

{

1

2
ln

(

1 +
P1 + d2P2 + 2d

√
P1P2

√
ᾱ1ᾱ2ρ

N2

)

−1

2
ln

(

1 +
N1

N ′

)

,
1

2
ln

(

1 +
α1P1

N2
+

α1P1

N1 + N ′

)

+
1

2
ln

(

1 +
ᾱ1P1

(

1 − ρ2
)

α1P1 + N1

)}

(7)

where the supremum is over the parametersα1, α2, ρ, N ′

fulfilling

0 ≤ α1, α2, ρ ≤ 1 and N ′ ≥ N1N2

d2α2P2
. (8)

III. E NCODING SCHEME

In this section we describe the encoding scheme which
achieves the rates in Theorem 1.

Prior to transmission the encoder maps the messageW
into a real number on the unit interval[−1/2, 1/2] with the
following one-to-one mapping

θ : w 7→ w − 1

⌊enR⌋ − 1
− 1

2
.

Consequently, the random variableθ(W ) is distributed uni-
formly over⌊enR⌋ equally spaced values within

[

− 1
2 , 1

2

]

. We
will denoteθ(W ) as the message point and simply writeθ for
it.

The transmitter wishes to convey this message point to the
receiver and uses the following scheme: in the first transmis-
sion step the encoder transmits a scaled version of the message
point θ; based on the noisy channel output the receiver then
produces an estimate ofθ; thanks to the feedback link the
encoder can observe the channel output as well and thus can
compute the receiver’s estimate; in the next transmission step
the encoder sends a scaled version of the receiver’s estimation
error of θ; based on the noisy channel output the receiver
corrects its estimate ofθ; again thanks to the feedback link the
encoder can compute the decoder’s new estimate, and in the
next step it sends a scaled version of the new estimation error;
and so on and so forth. Thus, the strategy is to send maximally
informative updates at the transmitter in order to successively
refine the receiver’s estimate of the message point, a strategy
first described by Schalkwijk-Kailath in [7].

The relay helps in this transmission by simply amplifying
and forwarding its previous observation.



After the reception of then channel outputs the receiver
guesses the messageW based on its estimate of the message
point θ.

In the remaining of this section we describe the transmission
steps and the decoding in detail, followed by an analysis of
the performance.

First Transmission Step: k = 1

In the first transmission step the encoder transmits a scaled
version of powerP1 of the message pointθ, i.e., X1,1 =
√

P1

Var(θ)θ. Here Var(θ) denotes the variance ofθ.
The relay stays quiet and the decoder observesY1 =

√

P1

Var(θ)θ + Z2,1 and estimatesθ as follows

θ̂1 =

√

Var(θ)
P1

Y1 = θ +

√

Var(θ)
P1

Z2,1.

As a result, the decoder’s estimation errorǫ1 , θ̂1 − θ =
√

Var(θ)
P1

Z2,1 is zero-mean Gaussian and of variance

α1 , Var(ǫ1) =
Var(θ)N2

P1
.

In the subsequent transmissions the encoder sends resolu-
tion information in order to successively refine the decoder’s
estimate ofǫ1 and equivalently ofθ.

Second Transmission Step: k = 2

Before the second transmission step the encoder observes
the channel outputY1 via the instantaneous feedback link
and thus can compute the receiver’s estimateθ̂1. Additionally,
the encoder of course also knowsθ and can compute the
estimation errorǫ1.

In the second transmission step the encoder transmits a
scaled version of powerP1 of the estimation errorǫ1, this

is, X1,2 =
√

P1

α1

ǫ1.
The relay again stays quiet and the receiver observes the

channel outputY2 =
√

P1

α1

ǫ1 +Z2,2. Based onY2 the receiver
computes the linear minimum mean square error (LMMSE)
estimate ofǫ1, this is,

ǫ̂1 =

√
α1P1

P1 + N2
Y2

and updates its estimate of the message pointθ asθ̂2 = θ̂1−ǫ̂1.
The new estimation error is thenǫ2 , θ̂2 − θ = ǫ1 − ǫ̂1 and
is of variance

α2 , Var(ǫ2) = α1
N2

P1 + N2
.

In this second transmission step the relay observesY1,2 =
√

P1

α1

ǫ1 + Z1,2.

Further Transmission Steps: k = 3, . . . , n

Prior to transmission stepk the encoder observes the
feedback outputsY1, . . . , Yk−1. Based on these observations

and the message pointθ it computesǫk−1, the error of the
decoder’s time-(k − 1) estimateθ̂k−1 of the message pointθ,
i.e., ǫk−1 , θ̂k−1−θ. Note that in this schemeǫk−1 is also the
decoder’s LMMSE-estimation error when estimatingǫ1 based
on Y2, . . . , Yk−1. The computation ofǫk−1 can be performed
recursively asǫk−1 = ǫk−2−ǫ̂k−2, whereǫk−2 is the LMMSE-
estimation error when estimatingǫ1 given Y2, . . . , Yk−2 and
ǫ̂k−2 is the LMMSE-estimate ofǫk−2 given Y2, . . . , Yk−1.

In transmission stepk the encoder sends a scaled version
of powerP1 of the estimation errorǫk−1

X1,k =

√

P1

αk−1
ǫk−1

whereαk−1 , Var(ǫk−1).
The relay applies an amplify-and-forward strategy, that is,

it transmits a scaled version ofY1,k−1, its observation in the

previous step. The scaling factor is chosen as
√

P̃2

P1+N1

for

someP̃2 ∈ [0, P2] and hence the expected power of the input
symbolX2,k equalsP̃2

X2,k =

√

P̃2

P1 + N1
Y1,k−1

=

√

P̃2

P1 + N1

(
√

P1

αk−2
ǫk−2 + Z1,k−1

)

.

Thus, the time-k channel output at the receiver is given by

Yk = X1,k + dX2,k + Z2,k

=

√

P1

αk−1
ǫk−1 + d

√

P̃2

P1 + N1

√

P1

αk−2
ǫk−2

+d

√

P̃2

P1 + N1
Z1,k−1 + Z2,k.

In the above expression onlyǫk−2 depends on the previous
channel outputs(Y2, . . . , Yk−1). Therefore, the best predictor
of Yk based on(Y2, . . . , Yk−1) is a scaled version of the
estimatêǫk−2, this is,

Ŷk = d

√

P̃2

P1 + N1

√

P1

αk−2
ǫ̂k−2.

With this predictor the receiver can form the following inno-
vation

Ik , Yk − Ŷk

=

√

P1

αk−1
ǫk−1 + d

√

P̃2

P1 + N1

√

P1

αk−2
ǫk−1

+d

√

P̃2

P1 + N1
Z1,k−1 + Z2,k (9)

which is independent of the previous channel outputs
(Y2, . . . , Yk−1). Based onIk the receiver can further com-
pute ǫ̂k−1, the LMMSE-estimate ofǫk−1 when observing



(Y2, . . . , Yk), i.e.,

ǫ̂k−1 =
Cov(ǫk−1, Ik)

Var(Ik)
Ik.

The receiver then uses this term to update its estimate ofθ

θ̂k = θ̂k−1 − ǫ̂k−1

and hence the new estimation errorǫk , θ̂k − θ is

ǫk = ǫk−1 − ǫ̂k−1

= ǫk−1 −
Cov(ǫk−1, Ik)

Var(Ik)
Ik. (10)

Note thatǫk is also the LMMSE-estimation error when esti-
matingǫ1 based on(Y2, . . . , Yk).

With expressions (9) and (10) the variance of the estimation
error ǫk can be computed

αk = αk−1 −
Cov(ǫk−1, Ik)2

Var(Ik)

=
αk−1

(

d2 N1

P1+N1

P̃2 + N2

)

(√
P1 + d

√

P1

P1+N1

√

αk−1

αk−2

√

P̃2

)2

+ d2 N1

P1+N1

P̃2 + N2

.

Then, introducingρk−1 ,
√

αk−1

αk−2

in the above recursion we

obtain

αk =
αk−1

(

d2 N1

P1+N1

P̃2 + N2

)

(√
P1 + d

√

P1

P1+N1

ρk−1

√

P̃2

)2

+ d2 N1

P1+N1

P̃2 + N2

(11)
where

ρ2 =

√

N2

P1 + N2
,

and recursively fork = 3, . . . , n − 1

ρk =

√

√

√

√

√

√

d2 N1

P1+N1

P̃2 + N2

P1

(

1 + d
√

P̃2

P1+N1

ρk−1

)2

+ d2 N1

P1+N1

P̃2 + N2

.

(12)

Note thatρk equals the correlation coefficient ofǫk−1 andǫk,
and thus is proportional to the correlation of the time-(k + 1)
signal from the encoder to the receiver and the time-(k + 1)
signal from the relay to the receiver.

Decoding of the Message after Step n

After the n-th transmission step the decoder’s estimate of
the message pointθ is given by θ̂n = θ + ǫn. The decoder
then guesses that the messageŴ = ŵ was sent ifθ(ŵ) is the
message point closest tôθn, i.e.,

ŵ = arg min
w∈W

|θ̂n − θ(w)|.

Performance analysis

Without loss of generality we can assume thatW = w. Then
an error in the decoding occurs only if there is aw′ 6= w such
that the message pointθ(w′) is closer toθ̂n than the message
point θ(w). The probability of this event is upper bounded by
the probability that the magnitude ofǫn is greater than half
the distance between adjacent message points which in its turn
can be upper bounded as follows

Pe ≤ Pr

[

|ǫn| >
1

2(enR − 1)

]

< 2Q

(

1

2enR
√

αn

)

,

where Q(x) ,
∫∞

x
1√
2π

e−
t
2

2 dt is the tail of the standard
Gaussian distribution evaluated atx. In the above term the
varianceαn can be expressed by iteratively applying (11)

αn = α2·
n
∏

k=3







d2 N1

P1+N1

P̃2 + N2

(√
P1 + d

√

P1

P1+N1

ρk−1

√

P̃2

)2

+ d2 N1

P1+N1

P̃2 + N2






.

(13)

Then we obtain the upper bound on the probability of a
decoding error in (12) (shown on top of the next page) and
we see that the probability of error tends to 0 whenn → ∞
if

R < lim
n→∞

1

2n

n
∑

k=3

ln






1 +

(√
P1 + d

√

P1

P1+N1

ρk−1

√

P̃2

)2

d2 N1

P1+N1

P̃2 + N2






.

(13)
The convergence of the right hand side of (13) to the bound
for R given in Theorem 1 follows by showing that the
sequence of correlation coefficients{ρk} converges toρ∗, the
solution of (6), and then applying Cesáro’s Mean Theorem [3,
Theorem 4.2.3].

In order to prove the convergence of the sequence{ρk} to
ρ∗ we need the following lemma.

Lemma 1: Consider the functionf : x 7→
√

a
a+p(1+bx)2

defined on the closed interval[0, 1] when a, b, p ≥ 0. The
function f(·) has exactly one fixed pointx∗ in [0, 1] and the
infinite sequencex0, x1 = f(x0), x2 = f(x1), . . . converges
to this fixed point for any starting pointx0 ∈ [0, 1].

Applying Lemma 1 to the sequence of correlation co-
efficients {ρk} it follows that the sequence converges to
the unique fixed point in[0, 1] of Recursion (12) which is
equivalent to the unique solution in the interval[0, 1] of (6).

IV. D ISCUSSION

In the expression for the achievable rate of Theorem 1 the
parameterP̃2 reflects the effective power used at the relay.
Note that theP̃2 which maximizes this expression is not neces-
sarily equal toP2 which implies that in the scheme described
in Section III it is not necessarily optimal for the relay to
transmit with all the available power. This phenomenon arises
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Fig. 1. Bounds on the capacity of the Gaussian relay channel with receiver-
transmitter feedback

due to the sub-optimal amplify-and-forward strategy at the
relay. With this strategy the relay not only amplifies the signal-
part of the previous observation but also the noise-part. Thus,
the optimal choice of the effective transmit power is a tradeoff
between boosting the signal and enhancing the noise.

Figure 1 compares the performance of the achievable rates
in Theorem 1 and in Theorem 2 with the cut-set upper bound
on the capacity [3]. The comparison is for the choice ofP1 =
N1 = N2 = 1, d = 1, and is a function of the power constraint
P2 at the relay. Note that with the choiceN1 = N2 we only
consider settings where at the relay a compress-and-forward
strategy or an amplify-and-forward strategy are favorableover
a decode-and-forward strategy.

For low power constraintP2 the rates achieved with the
linear scheme increase withP2, since the relay is exploiting
all the available transmit power, and the linear scheme outper-
forms the block-Markov superposition type scheme. However,
for high power constraintP2 the rates achieved with the linear
scheme do not increase withP2, since only a part of the power
is used at the relay, and the linear scheme performs worse than
the block-Markov scheme.
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