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Strong Converses using Typical Changes of
Measures and Asymptotic Markov Chains

Mustapha Hamad, Michèle Wigger, Mireille Sarkiss

Abstract—The paper presents exponentially-strong converses
for source-coding, channel coding, and hypothesis testing prob-
lems. More specifically, it presents alternative proofs for the well-
known exponentially-strong converse for almost lossless source-
coding with side-information and for channel coding over a
discrete memoryless channel (DMC). These alternative proofs
are solely based on a change of measure argument on the sets of
conditionally or jointly-typical sequences that result in a correct
decision, and on the analysis of these measures in the asymptotic
regime of infinite blocklengths. The paper also presents new
exponentially-strong converses for the K-hop hypothesis testing
against independence problem with certain Markov chains and
for the two-terminal L-round interactive compression problem
with J ≥ 1 distortion constraints that depend on both sources and
both reconstructions. For this latter problem, the exponentially-
strong converse result states that whenever the rates lie out-
side the vanishing-excess-distortion-probability rate-region, then
the sum of the J excess distortion probabilities asymptotically
exceeds 1 or tends to 1 exponentially fast in the blocklength.
(When the sum of the excess distortion probabilities exceeds 1,
then a larger rate-distortion region is shown to be achievable.)
The considered L-round J-distortion interactive source coding
problem includes as special cases the Wyner-Ziv problem, the
interactive function computation problem, and the compression
with lossy common reconstruction problem. The new strong
converse proofs for lossy compression and distributed hypothesis
testing are derived using similar change of measure arguments
as mentioned earlier and by additionally proving that certain
Markov chains involving auxiliary random variables hold in the
asymptotic regime of infinite blocklengths.

Index Terms—Strong converse, change of measure, asymptotic
Markov chains, source coding, channel coding, hypothesis testing.

I. INTRODUCTION

Strong converse results have a rich history in information
theory. They refer to proofs showing that for systems operating
beyond their fundamental vanishing-error performance limits,
i.e., transmitting at communication rates above capacity or
compressing sources at rates below the rate-distortion func-
tions, the probability of error or excess distortion tends to 1 for
increasing blocklengths. Exponentially-strong converses refer
to proofs showing that this convergence happens exponentially
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fast in the blocklengths. Different techniques have been pro-
posed in the literature to obtain such strong and exponentially-
strong converses. In this paper we present a variation of the
change of measure proof techniques by Gu and Effros [2], [3]
and by Tyagi and Watanabe [4]. We consider four different
problems:

1) Lossless source coding with side-information (see Fig-
ure 1).

2) L-round interactive source coding with J ≥ 1 distortion
constraints (see Figure 2).

3) K-hop distributed hypothesis testing (see Figure 3).
4) Communication over a discrete memoryless channel

(DMC) (see Figure 4).
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Fig. 1: Almost lossless source coding problem.

The lossless source coding problem with side-information is
studied for illustration purposes to highlight the role of the
change of measure argument in our proof. Our motivation
for choosing Problems 2)–4) is to show that the method can
be applied to a wide range of applications. In particular,
the interactive lossy compression problem and the K-hop
hypothesis testing problem are complicated and the character-
ization of their fundamental limits involves several auxiliary
random variables. Through these examples we illustrate that
our methodology allows to treat even such complicated prob-
lems with relatively simple techniques. In fact, in addition to
a similar change of measure argument as we used to solve
Problem 1, we only require proving that different Markov
chains hold in the asymptotic limit of infinite blocklengths.
Besides the change of measure argument, the proof of such
asymptotic Markov chains is the second important component
in our proof.

For Problem 2)—the interactive lossy source coding
problem—we impose J ≥ 1 simultaneous distortion con-
straints. This allows for example to capture a common recon-
struction constraint [5], [6] in addition to the standard lossy
reconstruction constraint between the source and the decoder’s
reconstruction. It also allows to have different reconstruction
goals at the two interacting terminals, such as each terminal
wishing to recover a different function of the two sources
or each terminal wishing to reconstruct the other terminal’s
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Fig. 2: Two-terminal interactive lossy source coding.

observations. As we show, in this multi-constraint problem,
the exponentially-strong converse only applies to the sum of
all excess distortions. This means, we show that when the rates
lie outside the rate-distortion region with vanishing excess
distortion probabilities, then the sum (over all constraints) of
the probabilities of excess distortions either tends to 1 expo-
nentially fast in the blocklength n or exceeds 1 asymptotically
as n → ∞. Interestingly, the same statement does not apply
if we replace the sum of the excess distortion probabilities
by any of the individual excess distortion probabilities, as we
show through a counter-example. It is interesting also to notice
that this sum-of-probability condition naturally shows up in
our change of measure argument. In this sense, by tackling
Problem 2, we can show how our proof technique is well-
suited to treat multi-constraint scenarios. The following-up
work [7] indeed showed that our proof method can further be
used also to combine different constraints, such as constraints
on the excess-distortion or detection error probabilities with a
constraint on the decoding error probability.

The scenario of Problem 3—K-hop distributed hypothesis
testing—is of interest for low-energy distributed sensor sys-
tems that jointly wish to detect alerts. Due to the low-energy
conditions, the sensors will not be able to communicate in an
all-to-all manner, but communication can only be established
to the next-following sensor, i.e., is multi-hop. Stringent delay
constraints might also impose that decisions cannot wait until
communication has reached the end of the sensor-chain, but
intermediate decisions on whether to raise an alert have to be
taken. Our interest in studying Problem 3 is to show once more
that our method can treat a complicated problem with simple
steps. In particular, a previous result [8] for only K = 2 hops
had to resort to two different proof techniques to bound the
two error exponents, while we are able to present a simpler
and yet unified proof for an arbitrary number of hops and
thus exponents. Moreover, we manage to solve the problem
entirely, while [8] left open some special cases.

Finally, we study the classical channel coding Problem 4
to prove that our method also applies to channel coding. For
channel coding the change of measure technique is simple,
but might not be the very simplest one. However, given the
wide applicability of the change of measure proof also to
source coding and hypothesis testing, its interest is also in
allowing to solve problems that combine channel coding with
reconstructions or detection applications. Such problems have
recently become very popular in the context of integrated
sensing and communication (ISAC) systems. In fact, our
method recently allowed to derive converse results for ISAC
systems [7] by combining the different constraints in a similar

way as we combined the J ≥ 1 distortion constraints to solve
our interactive source coding problem.

In the following two subsections, we provide an overview
of the previous strong converse results on source coding,
hypothesis testing, and channel coding. We then describe the
main ingredients of our converse proof technique and describe
how it differs from previous related proof techniques.

A. Literature Review on Strong Converses and Contributions

1) Source Coding: For (almost) lossless source coding, the
strong converse states that any discrete-memoryless source
(DMS) cannot be compressed with a rate below the entropy
of the source and with reconstruction error probability that
stays below 1 asymptotically for infinite blocklengths. This
result essentially follows by the asymptotic equipartition prop-
erty [9], [10]. The exponentially-strong converse for lossless
compression [11] states that for all compression rates below
entropy, the probability of reconstruction error tends to 1
exponentially fast. Strong converse results also extend to lossy
compression, where the limit of compression of DMSs is not
entropy but the well-known rate-distortion function. The strong
converse for lossy compression of DMSs was established by
Körner [12], see also the related work by Kieffer [13].

Our focus in this paper is on compression scenarios where
the decoder has side-information that is correlated with the
source as depicted in Figure 1. For memoryless sources, the
fundamental limits of compression with side-information were
established by Slepian and Wolf [14] for the lossless case and
by Wyner and Ziv [15] for the lossy case. Exponentially-strong
converses were established by Oohama and Han [16] for the
lossless case and by Oohama [17] for the lossy case. Various
exponentially-strong converse results were also derived for
compression problems in more complicated networks with
and without side-information, see e.g., [2]–[4], [18], [19]. In
this paper, we reprove the exponentially-strong converse for
lossless source coding with side-information.

Our main focus on source coding is on a L ≥ 1-round
interactive lossy source coding problem (see Figure 2) with
J ≥ 1 distortion constraints, which can depend on the
source sequences observed at the two terminals, as well as
on the two terminals’ reconstruction sequences. This problem
includes as special cases Kaspi’s two-terminal interactive lossy
source-coding problem [20], Ma and Ishwar’s two-terminal
interactive function-computation problem [21], and Steinberg’s
lossy source coding problem with common reconstructions [5],
as well as its extension by Malär et al. [6].

As a new result, we prove an exponentially-strong converse
result for the sum excess distortion probability of above L-
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Fig. 3: K-hop hypothesis testing problem.
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Fig. 4: Channel coding over a DMC.

round J-distortions interactive lossy source coding problem.
Specifically, we show that whenever the rates lie outside the
vanishing-error rate-distortion region, then the sum of the J
excess distortions asymptotically either exceeds 1 or tends to
1 exponentially fast. Obviously for J = 1, our result implies
the standard strong-converse result for source coding, i.e., that
the excess distortion probability has to tend to 1 exponentially
fast if the rate lies below the vanishing-error rate-distortion
function. This same statement for a single excess distortion
probability however does not hold when J ≥ 1, as we show
through a counter-example.

2) Distributed Hypothesis Testing: In this paper, we also
prove a new exponentially-strong converse result for the
K-hop hypothesis testing problem in [22], see Figure 3.
In this problem, K + 1 terminals observe memoryless
source sequences whose underlying joint distribution depends
on a binary hypothesis H ∈ {0, 1}. The distribution is
PY0

∏K
k=1 PYk|Yk−1

under H = 0 and it is PY0

∏K
k=1 PYk

under H = 1. Upon observing its source sequence Y nk , each
terminal k = 0, . . . ,K − 1 can send a nRk+1-bits message
Mk+1 to the next-following terminal. Terminals 1, . . . ,K have
to produce a guess of the hypothesis Ĥk ∈ {0, 1} based on
their local observations Y nk and their received message Mk.
The main goal is to maximize the exponential decay of the
type-II error probability (the probability of error under H = 1)
under the constraint that for each blocklength n the type-I error
probability (the probability of error under the null hypothesis
H = 0) stays below a given threshold δk,n.

For K = 1, this problem was solved by Ahlswede and
Csiszár [23] for type-I error probabilities δ1,n that are asymp-
totically bounded away from 1. In particular, it was shown
that the maximum achievable type-II error exponent does not
depend on the values δ1,n as long as they do not tend to
1. For arbitrary K ≥ 2, the problem was studied under the
assumption that all the type-I error probabilities δk,n tend to
0 as n → ∞ [22]. In [8], it was shown that for K = 2 the
result in [22] applies unchanged for sequences of type-I error

probabilities δ1,n and δ2,n satisfying

lim
n→∞

δ1,n + δ2,n 6= 1 (1)

lim
n→∞

δk,n 6= 1, k ∈ {1, 2}, (2)

In this work, we strengthen this result to obtain exponentially-
strong converse and we get rid of Condition (1). That means,
we show that for arbitrary K ≥ 1 and arbitrary type-I
error probabilities δk,n not vanishing exponentially fast in the
blocklength, the result in [22] continues to hold. Notice that
the proof of the mentioned special cases with K = 2 in [8]
used the change of measure argument and variational charac-
terizations proposed by Tyagi and Watanabe [4] to bound the
first error exponent, and it used hypercontractivity arguments
as in [24] to bound the second error exponent. The proof of
the strong converse for K = 1 in [23] was based on the
blowing-up lemma [25], [26], same as the proof of the strong
converse for K = 1 when communication is over a DMC and
without any rate constraint [27]. The latter work also used the
Tyagi-Watanabe change of measure argument combined with
variational characterizations. Unlike these works, our proof
does not require any blowing-up lemma or hypercontractivity
arguments, nor variational characterizations.

3) Channel Coding: Wolfowitz’ strong converse [28] es-
tablished that for all rates above capacity the probability
of communication error over a discrete-memoryless channel
(DMC) (see Figure 4) tends to 1 as the blocklength increases.
The exponentially-strong converse stating that the convergence
takes place exponentially fast in the blocklength, was first
established by Arimoto and subsequently refined by Csiszár
and Körner [29] who provided lower bounds on the error
exponents at rates above capacity. Since then, various alterna-
tive proofs for the strong or exponentially-strong converse for
channel coding over a DMC have been proposed, for example
based on the blowing-up lemma [25], [26], [30], by bounding
the decoding error probabilities at finite blocklengths [31]–
[33], or by putting forward geometric and typicality argu-
ments [34]. Various extensions to multi-user communication
networks were also derived, see e.g., [30], [35], [36]. In this
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paper, we present yet-another proof, based on a change of
measure argument that restricts to output sequences that are
conditionally-typical for one of the possible codewords and lie
in the decoding set of this codeword. Related is the converse
proof for the wiretap channel by Tyagi and Watanabe [4].
(See our comparison of the two methods in the following
subsection.)

B. Relation of our Proof Technique to the Proofs by Gu and
Effros [2], [3] and by Tyagi and Watanabe [4]:

Our proof method for exponentially-strong converses has
three main components:
• A change of measure argument on the jointly-typical set

of the sequences so that there are no errors under the new
measure;

• Bounding rates in standard ways, also introducing auxil-
iary random variables;

• Proving asymptotic Markov chains under the new mea-
sure for the introduced auxiliary random variables and
proving convergence of multi-letter entropy quantities to
the single-letter entropies of the original measure.

Changing measures for proving converses has a rich history
in information theory. The change of measure proofs by Gu
and Effros [2], [3] for source coding networks and by Tyagi
and Watanabe [4] for source and channel coding are most
related to our method. More precisely, in our work we define
the set Dn of jointly-typical sequences for which there are
no errors, and we obtain the new measure by restricting the
original independent and identically distributed (i.i.d.) measure
to this new set. Gu and Effros identified the same sets Dn
but then constructed a new measure that concentrates on Dn
only in the asymptotic limit as n → ∞. This way, their new
measure does not inherit from the zero-error property like our
new measure, and the error probability has to be taken care
of.

The zero-error property was introduced by Tyagi and Watan-
abe [4], who however do not restrict their new measure on
the typical set. Without this restriction, they cannot prove the
asymptotic single-letterization of the entropy-terms under their
new measures and instead need to introduce two additional
steps in their converse proof that show variational characteri-
zations both for the multi-letter and the single-letter problems.
In this sense, their proof technique requires two additional
steps compared to ours. Notice that in our approach we have to
prove that certain Markov chains hold in the asymptotic limits.
This proof is strongly related to a different proof step of the
Tyagi-Watanabe paper where they show the single-letterization
of their variational characterizations, and thus our proofs of
the asymptotic Markov chains do not seem add additional
complexity.

C. Summary of our Contributions

We summarize the main contributions of our paper:
• We present an alternative exponentially-strong converse

proof for the lossless compression problem with side-
information for DMSs. The proof is simple and depends

only on a change of measure argument and the asymptotic
analysis of this new measure.

• We derive new strong converse results for the two-
terminal L-round interactive lossy source coding problem
for DMSs under multiple distortion constraints that de-
pend on both sources and both reconstructions. This setup
includes as special cases the Wyner-Ziv problem, the
interactive function computation problem, and the lossy
source coding problem with (lossy) common reconstruc-
tions. We show an exponentially-strong converse for the
sum of the excess distortion probabilities, i.e., we show
that when the rates lie outside the rate-distortion region
for vanishing excess distortion probabilities, then the
sum of the excess distortion probabilities asymptotically
either exceeds 1 or tends to 1 exponentially fast in the
blocklength. The constraint on the sum excess distortion
probability arises naturally in our converse proof, and
we show that this sum is the right quantity to consider
in a strong-converse statement. In fact, a larger rate-
distortion region can be achieved when the sum of the
excess distortion probabilities is allowed to exceed 1
asymptotically.
Our proof of this result relies again on a change of
measure argument and the asymptotic proofs of specific
Markov chains. It provides a method on how to combine
multiple distortion constraints in a strong converse proof,
see also the recent following-up work [7].

• We present a new exponentially-strong converse result
for the K ≥ 1-hop testing against independence problem
where the observations satisfy a Markov chain. Previ-
ously, a strong converse was only known for K = 2 and
certain assumptions on the type-I error probabilities [8].
The previous result also used two different techniques to
bound the two error exponents, while in our work we
present a simpler and unified method that can be used
to bound each of the K ≥ 1 exponents. Moreover, our
proof holds in general and makes no assumption on the
type-I error probabilities. Our proof relies on a change of
measure argument combined with the proof of asymptotic
Markov chains.

• We present an alternative exponentially-strong converse
proof for the channel coding problem over a DMC. Our
proof depends only on a change of measure argument and
the asymptotic analysis of this new measure. This proof
method combines well with our converse proof methods
for lossy compression and distributed hypothesis testing,
and was recently also used to obtain strong converse
results for ISAC systems [7].

D. Outline of the Paper

We end this section with remarks on notation. The following
Section II presents two key lemmas used in the rest of the
paper. Section III presents our new strong converse proof
for the almost lossless source coding with side-information
problem. This strong converse proof is solely based on change
of measure arguments and on the analysis of these measures in
the asymptotic regime of infinite blocklengths. The converse

4



proofs in the next two Sections IV and V are also based on
similar change of measure arguments and asymptotic analysis
of these measures, but additionally also require proving that
certain Markov chains involving auxiliary random variables
hold in the asymptotic regime of infinite blocklengths. Specif-
ically, Section IV considers the L-round interactive com-
pression problem with J ≥ 1 distortion functions that can
depend on the sources and reconstructions at both terminals.
Section V considers the K-hop hypothesis testing for testing
against independence where the observations at the various
terminals obey some Markov conditions. Section VI presents
an alternative proof of the exponentially-strong converse proof
for the capacity of a DMC. Section VII finally concludes the
paper and provides an outlook.

E. Notation

We mostly follow standard notation where upper-case letters
are used for random quantities and lower-case letters for
deterministic realizations. Sets are denoted using calligraphic
fonts. All random variables are assumed finite and discrete.
We abbreviate the n-tuples (X1, . . . , Xn) and (x1, . . . , xn)
as Xn and xn and the n − t tuples (Xt+1, . . . , Xn) and
(xt+1, . . . , xn) as Xn

t+1 and xnt+1. We further abbreviate
independent and identically distributed as i.i.d. and probability
mass function as pmf.

Entropy, conditional entropy, and mutual information func-
tionals are written as H(·), H(·|·), and I(·; ·), where the
arguments of these functionals are random variables and
whenever their probability mass function (pmf) is not clear
from the context, we add it as a subscript to these functionals.
The Kullback-Leibler divergence between two pmfs is denoted
by D(·‖·). We shall use T (n)

µ (PXY ) to indicate the jointly
strongly-typical set with respect to the pmf PXY on the
product alphabet X × Y and parameter µ as defined in
[29, Definition 2.8]. Specifically, denoting by nxn,yn(a, b) the
number of occurrences of the pair (a, b) in sequences (xn, yn):

nxn,yn(a, b) = |{t : (xt, yt) = (a, b)}| , (3)

a pair (xn, yn) lies in T (n)
µ (PXY ) if∣∣∣∣nxn,yn(a, b)

n
− PXY (a, b)

∣∣∣∣ ≤ µ, ∀(a, b) ∈ X × Y, (4)

and nxn,yn(a, b) = 0 whenever PXY (a, b) = 0. The condi-
tionally strongly-typical set with respect to a conditional pmf
PY |X from X to Y , parameter µ > 0, and sequence xn ∈ Xn

is denoted T (n)
µ (PY |X , xn) [29, Definition 2.9]. It contains all

sequences yn ∈ Yn satisfying∣∣∣∣nxn,yn(a, b)

n
− nxn(a)

n
PY |X(b|a)

∣∣∣∣ ≤ µ, ∀(a, b) ∈ X × Y,
(5)

and nxn,yn(a, b) = 0 whenever PY |X(b|a) = 0. Here nxn(a)
denotes the number of occurrences of symbol a in xn. In this
paper, we denote the joint type of (xn, yn) by πxnyn , i.e.,

πxnyn(a, b) ,
nxn,yn(a, b)

n
. (6)

Accordingly, the marginal type of xn is written as πxn . Finally,
we use Landau notation o(1) to indicate any function that tends
to 0 for blocklengths n→∞.

II. AUXILIARY LEMMAS

Lemma 1: Let {(Xi, Yi)}∞i=1 be a sequence of pairs of
i.i.d. random variables according to the pmf PXY . Further let
{µn}∞n=1 be a sequence of small positive numbers satisfying1

lim
n→∞

µn = 0 (7a)

lim
n→∞

n · µ2
n =∞ (7b)

and for each positive integer n let Dn be a subset of the
strongly-typical set T (n)

µn (PXY ) so that its probability

∆n := Pr[(Xn, Y n) ∈ Dn] (8)

satisfies
lim
n→∞

1

n
log ∆n = 0. (9)

Let further (X̃n, Ỹ n) be random variables of joint pmf

PX̃nỸ n(xn, yn) =
P⊗nXY (xn, yn)

∆n
· 1{(xn, yn) ∈ Dn} (10)

and T be uniform over {1, . . . , n} independent of all other
random variables.

For the distribution in (10), the following limits hold as
n→∞:

PX̃T ỸT
→ PXY (11)∣∣∣∣ 1nH(X̃nỸ n)−H(X̃T ỸT )

∣∣∣∣ → 0 (12)∣∣∣∣ 1nH(Ỹ n)−H(ỸT )

∣∣∣∣ → 0 (13)∣∣∣∣ 1nH(X̃n|Ỹ n)−H(X̃T |ỸT )

∣∣∣∣ → 0 (14)∣∣∣H(X̃T ỸT )−H(XY )
∣∣∣ → 0 (15)∣∣∣H(ỸT )−H(Y )
∣∣∣ → 0 (16)∣∣∣H(X̃T |ỸT )−H(X|Y )
∣∣∣ → 0. (17)

Proof: See Appendix A.
Notice that Inequality (9) states that under the original pmf

P⊗nXY the probability of the set Dn is sufficiently large and
does not decay to 0 exponentially fast in the blocklength.
This implies that the new measure PX̃nỸ n is not blown up
by an exponentially large factor compared to the original i.i.d.
measure P⊗nXY .

The second lemma dates back to Csiszár and Körner [29].
Lemma 2: Let An, Bn, and S be of arbitrary joint dis-

tribution and T be uniform over {1, . . . , n} independent of
(An, Bn, S). Then, the conditional version follows immedi-
ately from the definition of conditional entropy:

H(An|BnS)−H(Bn|AnS)

1Condition (7b) ensures that the probability of the strongly-typical set
T (n)
µn (PXY ) under P⊗n

XY tends to 1 as n → ∞ [29, Remark to Lemma 2.12].
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= n
(
H(AT |BTAT−1BnT+1S)−H(BT |ATAT−1BnT+1S)

)
.

(18)

III. LOSSLESS SOURCE CODING WITH SIDE-INFORMATION

This section studies the lossless source coding with side-
information setup in Figure 1.

A. Setup and Result

Consider two terminals, an encoder observing the source
sequence Xn, and a decoder observing the related side-
information sequence Y n, where we assume that

(Xn, Y n) i.i.d. ∼ PXY , (19)

for a given probability mass function PXY on the product
alphabet X ×Y . The encoder uses a function φ(n) to compress
the sequence Xn into a message M ∈ {1, . . . , 2nR} of given
rate R > 0:

M = φ(n)(Xn). (20)

Based on this message and its own observation Y n, the
decoder is supposed to reconstruct the source sequence Xn

with small probability of error. Thus, the decoder applies a
decoding function g(n) to (M,Y n) to produce the reconstruc-
tion sequence X̂n ∈ Xn:

X̂n = g(n)(M,Y n). (21)

Definition 1: Given a sequence of error probabilities {δn},
the rate R > 0 is said {δn}-achievable if there exist sequences
(in n) of encoding and reconstruction functions φ(n) and g(n)

such that for each blocklength n:

Pr
[
Xn 6= g(n)(φ(n)(Xn))

]
≤ δn. (22)

A well-known result in information theory is [16]:
Theorem 1: For any sequence {δn}∞n=1 satisfying

lim
n→∞

1

n
log(1− δn) = 0, (23)

any rate R < H(X|Y ) is not {δn}-achievable.
In other words, if R < H(X|Y ), then for any sequence

of encoding and reconstruction functions φ(n) and g(n) it
holds that the probability of correct reconstruction tends to
0 exponentially fast in the blocklength:

lim
n→∞

1

n
log Pr

[
Xn = g(n)(φ(n)(Xn))

]
< 0. (24)

The theorem thus implies an exponentially-strong converse.
The result is well known, but we provide an alternative proof
in the following subsection.

B. Alternative Strong Converse Proof

Fix a sequence of encoding and decoding functions
{φ(n), g(n)}∞n=1 satisfying (22). Choose a sequence of small
positive numbers {µn}∞n=1 satisfying (7), and select for each
n a subset

Dn :=
{

(xn, yn) ∈ T (n)
µn

(PXY ) : g(n)
(
φ(n)(xn), yn

)
= xn

}
,

(25)
i.e., the set of all typical (xn, yn)-sequences for which the
reconstructed sequence X̂n coincides with the source sequence
Xn. Let

∆n := Pr[(Xn, Y n) ∈ Dn], (26)

and notice that

∆n = 1− Pr
[
(Xn, Y n) /∈ T (n)

µn
(PXY ) or

g(n)
(
φ(n)(Xn), Y n

)
6= Xn

]
(27)

≥ 1−
(

Pr
[
(Xn, Y n) /∈ T (n)

µn
(PXY )

]
+ Pr

[
g(n)

(
φ(n)(Xn), Y n

)
6= Xn

])
(28)

≥ 1− |X ||Y|
4µ2

nn
− δn, (29)

where the first inequality holds by the union bound and the
second by (22) and [29, Remark to Lemma 2.12]. Therefore,
by (23) and (7b):

lim
n→∞

1

n
log ∆n = 0. (30)

Let further (X̃n, Ỹ n) be random variables of joint pmf

PX̃nỸ n(xn, yn) =
PXnY n(xn, yn)

∆n
· 1{(xn, yn) ∈ Dn}.

(31)
Let also M̃ = φ(n)(X̃n) and T be uniform over {1, . . . , n}
independent of (X̃n, Ỹ n, M̃).

The strong converse is then easily obtained as follows.
Similar to the weak converse we have:

R ≥ 1

n
H(M̃) ≥ 1

n
H(M̃ |Ỹ n) =

1

n
H(X̃n|Ỹ n), (32)

where the equality in (32) holds because under our new
measure PX̃nỸ n reconstruction errors have zero probability
and thus X̃n can be obtained as a function of M̃ and Ỹ n.
Letting n→∞, we obtain the desired limit by (14) and (17)
in Lemma 1.

The above lossless source coding example well illustrates
the idea of change of measure strong converse proofs and
why we would like to restrict the new measure to the jointly-
typical set. With the new measure, we transform the problem
into a zero-error problem (because the set Dn only includes
source sequences leading to perfect reconstructions), thus
avoiding cumbersome error terms and immediately obtaining
the equality in (32). Moreover, the conditional entropy of the
new measure tends to the one of the original i.i.d. measure,
because the former is restricted to the jointly-typical set and
compared to the original i.i.d. measure is boosted at most by
the factor ∆−1n , which does not scale exponentially in the
blocklength.
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Gu and Effros gave a related strong converse proof in [2].
Their proof however does not follow the bounding steps (32),
but instead bounds the size of the number of source sequences
xn for which (xn, yn) lies in Dn for a specific sequence yn,
which by the zero-error property of set Dn lower-bounds 2nR.

IV. INTERACTIVE LOSSY COMPRESSION

This section focuses on the interactive lossy compression
problem depicted in Figure 2.

A. Setup

Consider two terminals, observing the related source se-
quences Xn and Y n, where as in the case of source coding
with side-information:

(Xn, Y n) i.i.d. ∼ PXY , (33)

for a given probability mass function PXY on the product
alphabet X × Y . Communication between the two terminals
is over noise-free links and interactive in L > 0 rounds. The
terminal observing Xn starts communication and thus in all
odd rounds ` = 1, 3, 5, . . ., the message M` is created as:

M` = φ
(n)
` (Xn,M1, . . . ,M`−1), ` = 1, 3, 5, . . . , (34)

for an encoding function φ(n)` on appropriate domains, where
each message M` ∈ {1, . . . , 2nR`}, for given non-negative
rates R1, . . . , RL. (Note that for ` = 1, M1 = φ

(n)
1 (Xn). ) In

even rounds ` = 2, 4, 6, . . . , the message M` ∈ {1, . . . , 2nR`}
is created as:

M` = φ
(n)
` (Y n,M1, . . . ,M`−1), ` = 2, 4, 6, . . . . (35)

At the end of the L rounds, each terminal produces a recon-
struction sequence on a pre-specified alphabet. The terminal
observing Xn produces

Wn = g
(n)
X (Xn,M1, . . . ,ML) (36)

for Wn taking value on the given alphabet Wn. The terminal
observing Y n produces

Zn = g
(n)
Y (Y n,M1, . . . ,ML) (37)

for Zn taking value on the given alphabet Zn.
The reconstructions are supposed to satisfy a set of J

distortion constraints:

1

n

n∑
i=1

dj(Xi, Yi,Wi, Zi) < Dj , j ∈ {1, . . . , J}, (38)

for given non-negative symbolwise-distortion functions
dj(·, ·, ·, ·).

Definition 2: Given sequences {δj,n}, a rate-tuple
R1, . . . , RL ≥ 0 is said {δj,n}-achievable if there exist
sequences (in n) of encoding functions {φ(n)` }L`=1 and recon-
struction functions g(n)X and g(n)Y such that the excess distortion
probabilities satisfy

Pr

[
1

n

n∑
i=1

dj(Xi, Yi,Wi, Zi) > Dj

]
≤ δj,n, j ∈ {1, . . . , J}.

(39)

Remark 1: Our problem formulation includes various pre-
viously studied models as special cases. For example:
• The Wyner-Ziv problem [15] is included by restricting to

a single interaction round L = 1, to a single distortion
function J = 1, and by choosing a distortion function of
the form

d1(Xi, Yi,Wi, Zi) = d̃1(Xi, Zi) (40)

• Kaspi’s interactive source-coding problem is included by
restricting to J = 2 distortion functions of the form

d1(Xi, Yi,Wi, Zi) = d̃1(Xi, Zi) (41)
d2(Xi, Yi,Wi, Zi) = d̃2(Yi,Wi). (42)

• Lossy source coding with side-information and lossy
common reconstruction [5], [6] is included by restricting
to a single interaction round L = 1 and the J = 2
distortion measures

d1(Xi, Zi) = d̃1(Xi, Zi) (43)
d2(Xi, Yi,Wi, Zi) = d̃2(Wi, Zi). (44)

• The interactive function computation problem [21] is
obtained by choosing J = 1, D1 = 0, and distortion
function

d1(X,Y,W,Z) = 1{Z = W = f(X,Y )} (45)

for the desired function f .

Theorem 2: Given sequences
{
{δj,n}∞n=1

}J
j=1

satisfying

J∑
j=1

δj,n < 1, n = 1, 2, . . . , (46)

lim
n→∞

1

n
log

1−
J∑
j=1

δj,n

 = 0, j ∈ {1, . . . , J}, (47)

a rate-tuple (R1, . . . , RL) can only be {δj,n}-achievable if it
satisfies the rate-constraints

R` ≥ I(X;U`|U1 · · ·U`−1Y ), ` ∈ {1, . . . , L}, ` odd
(48a)

R` ≥ I(Y ;U`|U1 · · ·U`−1X), ` ∈ {1, . . . , L}, ` even,
(48b)

for some auxiliary random variables U1, . . . , UL and recon-
struction random variables W and Z satisfying the distortion
constraints

E[dj(X,Y,W,Z)] < Dj , j ∈ {1, . . . , J}, (48c)

for (X,Y ) ∼ PXY , and the Markov chains

U` →(X,U1, . . . , U`−1)→ Y, ` = 1, 3, 5, . . . , (48d)
U` →(Y, U1, . . . , U`−1)→ X, ` = 2, 4, 6, . . . , (48e)
W → (X,U1, . . . , UL)→ Y, (48f)
Z → (Y,U1, . . . , UL)→ X, (48g)
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We can thus conclude that if a rate-tuple (R1, . . . , RL) satis-
fies (48), then the sum of the excess distortions asymptotically
either exceeds 1 or it approaches 1 exponentially fast in the
blocklength.

Remark 2 (A single distortion): For a single distortion
constraint J = 1, above theorem implies that if the rate-tuple
violates the constraints in the theorem, then the probability of
excess distortion tends to 1 exponentially fast.

Remark 3 (Condition (47) cannot be relaxed): Condi-
tion (47) in Theorem 2 cannot be relaxed and Remark 2 does
not apply for J > 1, as we explain in the following. For
simplicity, consider the case J = 2, L = 1, and

δ1,n = δ2,n = 1/2 + ε, (49)

for a positive ε ∈ (0, 1/2). Then, the following rate is
achievable

R1 ≥ min
PU1|X ,PU′1|X

max {I(X;U1|Y ), I(Y ;U ′1|X)} , (50)

where the minimum is over all conditional pmfs for which
there exist reconstruction random variables W = gX(X) and
Z = gY (Y,U1) and W ′ = g′X(X) and Z ′ = g′Y (Y,U ′1)
satisfying the distortion constraints

E[d1(X,Y,W,Z)] < D1 (51)
E[d2(X,Y,W ′, Z ′)] < D2. (52)

Notice that the rate in (50) in general violates the conditions in
above Theorem 2, because the theorem would force U1 = U ′1
and W ′ = W and Z ′ = Z.

The rate in (50) is achieved by a randomized scheme,
where with probability 1/2 the encoder sends a first flagbit 0
followed by a Wyner-Ziv message using auxiliary distribution
PU1|X and it applies reconstruction function gX(·), and with
probability 1/2 it sends the flagbit 1 followed by a Wyner-Ziv
message using the auxiliary distribution PU ′1|X and applies
reconstruction function g′X . Upon receiving flagbit 0, the
decoder uses the Wyner-Ziv decoder for PU1|X and reconstruc-
tion function gY , and upon receiving flagbit 1, the decoder
uses the Wyner-Ziv decoder for PU ′1|X and reconstruction
function g′Y . Since Wyner-Ziv codes can achieve vanishing
probabilities of excess distortions, our system satisfies both
distortion constraints with probability 1/2, which by (49) is
below δ1,n and δ2,n.

Remark 4 (Vector-valued distortions): Theorem 2 extends in
a straightforward manner to vector-valued distortion functions
and vector distortions

1

n

n∑
i=1

dj(Xi, Yi,Wi, Zi) <Dj , j ∈ {1, . . . , J}, (53)

where Dj ∈ Rνj for some positive integer νj , distortion
functions are non-negative and of the form dj : X × Y ×
W × Z → Rνj , and inequality (53) is meant component-
wise. The difference between J scalar distortion constraints as
in (38) and a single J-dimensional vector-distortion function
as in (53) is that the vector-distortion constraint limits the
probability that any of the J component constraints is violated

whereas the J scalar distortion constraints individually limit
the probability of each distortion to be violated.

In the following section, we prove the strong converse,
i.e., the non-achievability of any rate-tuple (R1, . . . , RL) not
satisfying the above conditions, for any sequences {δj,n}
satisfying (47). Using standard arguments, it can be shown
that for any rate-tuple (R1, . . . , RL) satisfying constraints (48)
there exist excess probabilities {δj,n} all tending to 0 as
n→∞ and so that the the rate-tuple (R1, . . . , RL) is {δj,n}-
achievable.

B. Strong Converse Proof

Fix a sequence of encoding functions {φ(n)` }L`=1 and re-
construction functions g(n)X and g

(n)
Y satisfying (39). Choose

a sequence of positive real numbers {µn} satisfying (7), and
the set

Dn :=
{

(xn, yn) ∈ T (n)
µn

(PXY ) :

d
(n)
j

(
xn, yn, g

(n)
X (xn,mL

1 ), g
(n)
Y

(
yn,mL

1

))
≤ Dj ,

j ∈ {1, . . . , J}
}
, (54)

where we define

d
(n)
j (xn, yn, wn, zn) :=

1

n

n∑
i=1

dj(xi, yi, wi, zi), (55)

and mL
1 := (m1, . . . ,mL), where for odd values of ` we have

m` = φ
(n)
` (xn,m1, . . . ,m`−1) while for even values of ` we

have m` = φ
(n)
` (yn,m1, . . . ,m`−1).

Define also the probability

∆n := Pr[(Xn, Y n) ∈ Dn] (56)

and notice that by the union bound and the two bounds (39)
and [29, Remark to Lemma 2.12]:

∆n ≥ 1−
J∑
j=1

δj,n −
|X ||Y|
4µ2n

, (57)

which by assumptions (47) and (7b) satisfies

lim
n→∞

1

n
log ∆n = 0. (58)

Let further (X̃n, Ỹ n) be random variables of joint pmf

PX̃nỸ n(xn, yn) =
P⊗nXY (xn, yn)

∆n
· 1{(xn, yn) ∈ Dn}. (59)

Let also T be uniform over {1, . . . , n} independent of
(X̃n, Ỹ n), and define:

M̃` = φ
(n)
` (X̃n, M̃1, . . . , M̃`−1), ` = 1, 3, 5, . . . , (60)

M̃` = φ
(n)
` (Ỹ n, M̃1, . . . , M̃`−1), ` = 2, 4, 6, . . . . (61)

Note that for ` = 1, M̃1 = φ
(n)
1 (X̃n). Define the auxiliary

random variables

U1 := (X̃T−1, Ỹ nT+1, M̃1, T ) (62a)

Uτ := M̃τ , τ ∈ {2, . . . , L}. (62b)
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We start with some preliminary observations. For any odd ` ≥
1 observe the following:

1

n
H(X̃n|Ỹ nM̃1 · · · M̃`)

(d)
=

1

n

[
H(X̃n|Ỹ nM̃1 · · · M̃`)

+
∑

τ∈{1,...,`} :
τ odd

I(M̃τ ; Ỹ n|X̃nM̃1 · · · M̃τ−1)

+
∑

τ∈{2,...,`−1} :
τ even

I(M̃τ ; X̃n|Ỹ nM̃1 · · · M̃τ−1)
]

(63)

=
1

n

[
H(X̃n|Ỹ nM̃1 · · · M̃`)−H(Ỹ n|X̃nM̃1 · · · M̃`)

]
+

1

n

[
H(Ỹ n|X̃nM̃1 · · · M̃`−1)

−H(X̃n|Ỹ nM̃1 · · · M̃`−1)
]

+ · · ·

+
1

n

[
H(X̃n|Ỹ nM̃1)−H(Ỹ n|X̃nM̃1)

]
+

1

n
H(Ỹ n|X̃n) (64)

(e)
= H(X̃T |ỸTU1 · · ·U`)−H(ỸT |X̃TU1 · · ·U`)

+H(ỸT |X̃TU1 · · ·U`−1)−H(X̃T |ỸTU1 · · ·U`−1)

+ · · ·
+H(X̃T |ỸTU1)−H(ỸT |X̃TU1)

+
1

n
H(Ỹ n|X̃n) (65)

(f)
= H(X̃T |ỸTU1 · · ·U`)−H(ỸT |X̃TU1 · · ·U`)

+H(ỸT |X̃TU1 · · ·U`−1)−H(X̃T |ỸTU1 · · ·U`−1)

+ · · ·
+H(X̃T |ỸTU1)−H(ỸT |X̃TU1)

+H(ỸT |X̃T ) + o(1) (66)
(g)
= H(X̃T |ỸTU1 · · ·U`)

+
∑

τ∈{1,...,`} :
τ odd

I(Uτ ; ỸT |X̃TU1 · · ·Uτ−1)

+
∑

τ∈{2,...,`−1} :
τ even

I(Uτ ; X̃T |ỸTU1 · · ·Uτ−1) + o(1) (67)

(h)

≥ H(X̃T |ỸTU1 · · ·U`) + o(1), (68)

where:
• (d) holds because for τ odd, the message M̃τ

is a function of (X̃n, M̃1, . . . , M̃τ−1) and thus
I(M̃τ ; Ỹ n|X̃nM̃1 · · · M̃τ−1) = 0 whereas for τ even the
message M̃τ is a function of (Ỹ n, M̃1, . . . , M̃τ−1) and
thus I(M̃τ ; X̃n|Ỹ nM̃1 · · · M̃τ−1) = 0;

• (e) holds by Lemma 2 in Section II and Definitions (62);
• (f) holds by Lemma 1 in Section II, where we also used

Equation (58);
• (g) holds by dividing the entropy terms between sums

for τ odd and even and by definition of the mutual
information; and

• (h) holds by the non-negativity of mutual information.
Following similar steps, we obtain for any even ` ≥ 2:

1

n
H(Ỹ n|X̃nM̃1 · · · M̃`) ≥ H(ỸT |X̃TU1 · · ·U`) + o(1). (69)

We now apply bounds (68) and (69) to obtain the desired
bounds on the rates and prove validity of some desired
asymptotic Markov chains. For any odd ` ≥ 1, we have

R` ≥
1

n
H(M̃`) ≥

1

n
H(M̃`|Ỹ nM̃1 · · · M̃`−1) (70)

=
1

n
I(M̃`; X̃

n|Ỹ nM̃1 · · · M̃`−1) (71)

=
1

n

[
H(X̃n|Ỹ nM̃1 · · · M̃`−1)−H(X̃n|Ỹ nM̃1 · · · M̃`)

]
(72)

(h)

≥ 1

n

[
H(X̃n|Ỹ nM̃1 · · · M̃`−2)

−
n∑
i=1

H(X̃i|ỸiX̃i−1Ỹ ni+1M̃1 · · · M̃`)
]

(73)

(i)

≥ H(X̃T |ỸTU1 · · ·U`−2)−H(X̃T |ỸTU1 · · ·U`)
+o(1) (74)

= I(U`−1U`; X̃T |ỸTU1 · · ·U`−2) + o(1) (75)
≥ I(U`; X̃T |ỸTU1 · · ·U`−1) + o(1), (76)

where (h) holds because for ` odd message M̃`−1 is a function
of the tuple (Ỹ n, M̃1, . . . , M̃`−2) and because conditioning
can only reduce entropy; and (i) holds by (62) and (68). Notice
that for ` = 1:

R1 ≥ I(U1; X̃T |ỸT ) + o(1). (77)

For any even ` ≥ 2, we have:

R` ≥
1

n
H(M̃`) (78)

≥ 1

n
I(M̃`; Ỹ

n|X̃nM̃1 · · · M̃`−1) (79)

(j)
=

1

n

[
H(Ỹ n|X̃nM̃1 · · · M̃`−2)−H(Ỹ n|X̃nM̃1 · · · M̃`)

]
(80)

(k)

≥ H(ỸT |X̃TU1 · · ·U`−2)−H(ỸT |X̃TU1 · · ·U`)
+o(1) (81)

≥ I(U`; ỸT |X̃TU1 · · ·U`−1) + o(1) (82)

where (j) holds because for ` even M̃`−1 is a function of
(X̃n, M̃1, . . . , M̃`−2) and (k) holds by (62) and (69).

We next notice that for ` even (because the message M̃` is
a function of (Ỹ n, M̃1, . . . , M̃`−1)):

0 =
1

n
I(M̃`; X̃

n|Ỹ nM̃1 · · · M̃`−1) (83)

=
1

n

[
H(X̃n|Ỹ nM̃1 · · · M̃`−1)−H(X̃n|Ỹ nM̃1 · · · M̃`)

]
(84)

(l)

≥ H(X̃T |ỸTU1 · · ·U`−1) + o(1) (85)

− 1

n

n∑
i=1

H(X̃i|X̃i−1ỸiỸ
n
i+1M̃1 · · · M̃`) (86)
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= I(U`; X̃T |ỸTU1 · · ·U`−1)+o(1), (87)

where (l) holds by (68) and because conditioning can only
reduce entropy.

Similarly, for ` ≥ 1 odd (because the message M̃` is a
function of (X̃n, M̃1, . . . , M̃`−1)):

0 =
1

n
I(M̃`; Ỹ

n|X̃n · · · M̃`−1) (88)

=
1

n

[
H(Ỹ n|X̃nM̃1 · · · M̃`−1)−H(Ỹ n|X̃nM̃1 · · · M̃`)

]
(89)

≥ I(U`; ỸT |X̃TU1 · · ·U`−1) + o(1). (90)

In particular, for ` = 1, message M̃1 is a function of X̃n and
we have:

0 =
1

n
I(M̃1; Ỹ n|X̃n) ≥ I(U1; ỸT |X̃T ) + o(1). (91)

Let now W̃n := gX(X̃n, M̃1, . . . , M̃L) and Z̃n :=
gY (Ỹ n, M̃1, . . . , M̃L). Since the set Dn only contains se-
quences satisfying all J distortion constraints, the quadruple
(X̃n, Ỹ n, W̃n, Z̃n) satisfies each of the J distortion con-
straints with probability 1. Therefore, we have for any j ∈
{1, . . . , J}:

Dj ≥
1

n

n∑
i=1

E
[
dj

(
X̃i, Ỹi, W̃i, Z̃i

)]
(92)

= E
[
dj

(
X̃T , ỸT , W̃T , Z̃T

)]
, (93)

where the equality holds simply by the definition of T and the
total law of expectation.

For simplicity, in the sequel we assume that L is even;
if L is odd the proof is similar. Similarly to (87) and
(90), since W̃n := gX(X̃n, M̃1, . . . , M̃L) and Z̃n :=
gY (Ỹ n, M̃1, . . . , M̃L), we have:

0 =
1

n
I(Z̃n; X̃n|Ỹ nM̃1 · · · M̃L)

(m)
=

1

n

[
H(X̃n|Ỹ nM̃1 · · · M̃L−1)

−H(X̃n|Ỹ nM̃1 · · · M̃LZ̃
n)
]

(n)

≥ H(X̃T |ỸTU1 · · ·UL−1) + o(1)

− 1

n

n∑
i=1

H(X̃i|X̃i−1ỸiỸ
n
i+1M̃1 · · · M̃LZ̃i) (94)

= I(ULZ̃T ; X̃T |ỸTU1 · · ·UL−1) + o(1)

≥ I(Z̃T ; X̃T |ỸTU1 · · ·UL) + o(1) (95)

and

0 =
1

n
I(W̃n; Ỹ n|X̃nM̃1 · · · M̃L)

=
1

n

[
H(Ỹ n|X̃nM̃1 · · · M̃L)−H(Ỹ n|X̃nM̃1 · · · M̃LW̃

n)
]

≥ I(W̃T ; ỸT |X̃TU1 · · ·UL) + o(1), (96)

where (m) holds since for even L, message M̃L is a function
of (Ỹ n, M̃1, · · · , M̃L−1); and (n) holds by (68) since L − 1
is odd and because conditioning can only reduce entropy.

The desired rate constraints are then obtained by combining
(76), (77), (82), (87), (90), (91), (93), (95), and (96) and by

taking n → ∞. Details are as follows. By Carathéodory’s
theorem [37, Appendix C], there exist auxiliary random vari-
ables U1, . . . , UL of bounded alphabets satisfying (76), (77),
(82), (87), (90), (91), (93), (95), and (96). We restrict to such
auxiliary random variables and invoke the Bolzano-Weierstrass
theorem to conclude the existence of a pmf P ∗U1···ULXYWZ ,
also abbreviated as P ∗, and an increasing subsequence of
blocklengths {ni}∞i=1 so that

lim
i→∞

PU1···ULX̃Ỹ W̃ Z̃;ni
= P ∗U1···ULXYWZ , (97)

where PU1···ULX̃Ỹ W̃ Z̃;ni
denotes the pmf of the tuple

(U1 · · ·ULX̃T ỸT W̃T Z̃T ) at blocklength ni.
Notice that for any blocklength ni the pair

(
X̃ni , Ỹ ni

)
lies

in the jointly-typical set T (ni)
µni

(PXY ), i.e.,
∣∣PX̃Ỹ ;ni

−PXY
∣∣ ≤

µni
, and thus since µn → 0 as n → ∞, by the definition of

(X̃T , ỸT ) and by (97), the limiting pmf satisfies P ∗XY = PXY .
We further deduce from (76), (77), (82), (87), (90), (91), (93),
(95), and (96) that:

R` ≥ IP∗(X;U`|Y U1 · · ·U`−1), ` = 1, 3 . . . (98a)
R` ≥ IP∗(Y ;U`|XU1 · · ·U`−1), ` = 2, 4 . . . (98b)

0 = IP∗(Y ;U`|XU1 · · ·U`−1), ` = 1, 3 . . . (98c)
0 = IP∗(X;U`|Y U1 · · ·U`−1), ` = 2, 4 . . . (98d)
0 = IP∗(Z;X|Y U1 · · ·UL), (98e)
0 = IP∗(W ;Y |XU1 · · ·UL), (98f)

where the subscript P ∗ indicates that the mutual information
quantities should be computed with respect to P ∗.

Combined with (93), which implies

Dj ≥ EP∗ [dj(X,Y,W,Z)], j ∈ {1, . . . , J}, (99)

above (in)equalities (98) conclude the desired converse proof.

V. TESTING AGAINST INDEPENDENCE IN A K-HOP
NETWORK

In this section we focus on the K-hop hypothesis testing
setup in Figure 3.

A. Setup

Consider a system with a transmitter T0 observing the
source sequence Y n0 , K − 1 relays labelled R1, . . . ,RK−1
and observing sequences Y n1 , . . . , Y

n
K−1, respectively, and a

receiver RK observing sequence Y nK .
The source sequences (Y n0 , Y

n
1 , . . . , Y

n
K) are distributed

according to one of two distributions depending on a binary
hypothesis H ∈ {0, 1}:

if H = 0 :

(Y n0 , Y
n
1 , . . . , Y

n
K) i.i.d. ∼ PY0Y1

PY2|Y1
· · ·PYK |YK−1

; (100a)
if H = 1 :

(Y n0 , Y
n
1 , . . . , Y

n
K) i.i.d. ∼ PY0

· PY1
· · ·PYK

. (100b)

Communication takes place over K hops as illustrated
in Figure 3. The transmitter T0 sends a message M1 =

φ
(n)
0 (Y n0 ) to the first relay R1, which sends a message
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M2 = φ
(n)
1 (Y n1 ,M1) to the second relay and so on. The

communication is thus described by encoding functions

φ
(n)
0 : Yn0 → {1, . . . , 2nR1}, (101)

φ
(n)
k : Ynk × {1, . . . , 2nRk} → {1, . . . , 2nRk+1},

k ∈ {1, . . . ,K − 1}, (102)

and messages are obtained as

M1 = φ
(n)
0 (Y n0 ) (103)

Mk+1 = φ
(n)
k (Y nk ,Mk), k ∈ {1, . . . ,K − 1}. (104)

Each relay R1, . . . , RK−1 as well as the receiver RK ,
produces a guess of the hypothesis H. These guesses are
described by guessing functions

g
(n)
k : Ynk × {1, . . . , 2nRk} → {0, 1}, k ∈ {1, . . . ,K},

(105)
where we request that the guesses

Ĥk = g
(n)
k (Y nk ,Mk), k ∈ {1, . . . ,K}, (106)

have type-I error probabilities

αk,n , Pr[Ĥk = 1|H = 0], k ∈ {1, . . . ,K}, (107)

not exceeding given thresholds, and type-II error probabilities

βk,n , Pr[Ĥk = 0|H = 1], k ∈ {1, . . . ,K}, (108)

decaying to 0 exponentially fast with largest possible expo-
nents.

Definition 3: Given sequences of allowed type-I error
probabilities {δk,n} and rates R1, R2, . . . , RK ≥ 0, the
exponent tuple (θ1, θ2, . . . , θK) is called {δk,n}-achievable if
there exists a sequence of encoding and decision functions{
φ
(n)
0 , φ

(n)
1 , . . . , φ

(n)
K−1, g

(n)
1 , g

(n)
2 , . . . , g

(n)
K

}
n≥1 satisfying for

each k ∈ {1, . . . ,K} and blocklength n:

αk,n ≤ δk,n, (109a)

lim
n→∞

1

n
log

1

βk,n
≥ θk. (109b)

B. Old Results

Definition 4: For any ` ∈ {1, . . . ,K}, define the function

η` : R+
0 → R+

0 (110)
R 7→ max

PU|Y`−1
:

R≥I(U ;Y`−1)

I (U ;Y`) . (111)

The described setup was previously studied in [22] and [8],
and an extension of the setup under variable-length coding was
considered in [38]. While for a general number of users K ≥ 2
only achievability results and weak converses were presented
[22], for K = 2 users a strong converse was derived.

Theorem 3 (Theorems 2 and 3 in [8]): Let K = 2 and
consider fixed allowed type-I error probabilities

δk,n = εk, k ∈ {1, 2}, (112)

for given ε1, ε2 ∈ [0, 1) with ε1 + ε2 6= 1. An exponent pair
(θ1, θ2) is (ε1, ε2)-achievable if, and only if,

θk ≤
k∑
`=1

η`(R`), k ∈ {1, 2}. (113)

Remark 5: In [8], the presentation of Theorem 3 was
split into two separate theorems (Theorems 2 and 3 in [8])
depending on the values of ε1 and ε2. While [8, Theorem
2] considers the case ε1 + ε2 < 1 and coincides with above
formulation, [8, Theorem 3] considers the case ε1+ε2 > 1 and
is formulated as an optimization problem over three auxiliary
random variables U1, U2, V . Without loss in optimality, this
optimization can however be restricted to auxiliaries U1 = U2,
and [8, Theorem 3] simplifies to the form presented in above
Theorem 3. This observation is important to note that our
main result in this section, Theorem 4 ahead, is not only more
general, but also consistent with the existing results in [8].

Remark 6: The set of pairs (θ1, θ2) that are (ε1, ε2)-
achievable according to Theorem 3 (Theorems 2 and 3 in
[8]) does not depend on the values of ε1 and ε2 (as long as
ε1+ε2 6= 1) and forms a rectangular region. In particular, each
of the two exponents can be maximized without affecting the
other exponent. This result extends to a general number of
K ≥ 2 users, as shown by the achievability result in [22] and
by the strong converse result in our new Theorem 4, which
we present in the following subsection.

C. New Results

Our main result in this section (Theorem 4 ahead) gen-
eralizes the strong converse in Theorem 3 not only to ar-
bitrary K ≥ 2 but also to arbitrary ε1, . . . , εK ∈ [0, 1)
(even ε1 + ε2 = 1 which is not covered by the previous
Theorem 3.) Technically speaking, we prove an exponentially-
strong converse result that is a stronger statement. In fact, for
any k, an exponent θk violating Condition (115) can only be
achieved with probabilities αk,n that tend to 1 exponentially
fast in the blocklength n.

Theorem 4: Let {δk,n} be sequences satisfying

lim
n→∞

1

n
log(1− δk,n) = 0, k ∈ {1, . . . ,K}. (114)

Given rates R1, . . . , RK ≥ 0, the exponent tuple (θ1, . . . , θK)
can only be {δk,n}-achievable, if

θk ≤
k∑
`=1

η`(R`), k ∈ {1, . . . ,K}. (115)

Remark 7: The direct part of this theorem was proved in
[22] for some choice of admissible type-I error probabilities
δk,n → 0, for all k. The strong converse in this theorem thus
establishes the optimal exponents for arbitrary K ≥ 2 and
all sequences {δk,n} that satisfy (114) and do not vanish too
quickly.

Remark 8: For all permissible type-I error probabilities
{δk,n} that satisfy (114) and do not vanish too quickly, the set
of achievable exponent tuples (θ1, . . . , θK) forms a hypercube,
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implying that all decision centers, i.e., relays R1, . . . , RK−1
and receiver RK , can simultaneously achieve their optimal
type-II error exponents. To prove the desired converse result
in Theorem 4, it thus suffices to show that the bound in (115)
holds in a setup where only the single decision center Rk takes
a decision.

Remark 9: When one allows for variable-length coding
and only limits the expected sizes of the message set but
not its maximum sizes, then a tradeoff between the different
exponents θ1, . . . , θK arises [38]. Moreover, as also shown in
[38], in that case the set of all achievable exponent tuples
depends on the asymptotic values of the allowed type-I error
probabilities.

D. Strong Converse Proof for Theorem 4

Let {δk,n} be sequences of allowed type-I error probabili-
ties. Fix a sequence (in n) of encoding and decision functions
{(φ(n)0 , φ

(n)
1 , . . . , φ

(n)
K−1, g

(n)
1 , . . . , g

(n)
K )}n≥1 satisfying (109)

for {δk,n} and type-II error exponents θ1, . . . , θK .
Choose a sequence of small positive numbers {µn}∞n=1

satisfying (7). Fix now an arbitrary k ∈ {1, . . . ,K} and a
blocklength n, and let Ak denote the acceptance region of
Rk, i.e.,

Ak :=
{

(yn0 , . . . , y
n
k ) : g

(n)
k (ynk ,mk) = 0

}
, (116)

where we define recursively m1 := φ
(n)
0 (yn0 ) and

m` := φ
(n)
`−1(yn`−1,m`−1), ` ∈ {2, . . . , k}. (117)

Define also the law under H = 0:

PY0···Yk
= PY0Y1

PY2|Y1
· · ·PYk|Yk−1

, (118)

and the intersection of this acceptance region with the typical
set:

Dk , Ak ∩ T (n)
µn

(PY0···Yk
). (119)

By [29, Remark to Lemma 2.12], the type-I error probability
constraints in (109a), and the union bound:

∆k := PY n
0 Y

n
1 ···Y n

k
(Dk) ≥ 1− δk,n −

|Y0| · · · |Yk|
4µ2

nn
, (120)

and thus
lim
n→∞

1

n
log ∆k = 0. (121)

Let (Ỹ n0 , Ỹ
n
1 , . . . , Ỹ

n
k ) be random variables of joint pmf

PỸ n
0 Ỹ

n
1 ···Ỹ n

k
(yn0 , y

n
1 , . . . , y

n
k )

=
PY n

0 Y
n
1 ···Y n

k
(yn0 , y

n
1 , . . . , y

n
k )

∆k
· 1{(yn0 , yn1 , . . . , ynk ) ∈ Dk},

(122)

and notice that for each ` ∈ {0, 1, . . . , k}:

PỸ n
`

(yn` ) =
PY n

`
(yn` )

∆k
(123)

Let also M̃` = φ
(n)
`−1(M̃`−1, Ỹ n`−1) and T be uniform over

{1, . . . , n} independent of (Ỹ n0 , Ỹ
n
1 , . . . , Ỹ

n
k , M̃1, . . . , M̃k).

Notice that for any ` ∈ {1, . . . , k}:

R` ≥
1

n
H(M̃`) (124)

=
1

n
I(M̃`; Ỹ

n
0 · · · Ỹ nk ) (125)

=
1

n
H(Ỹ n0 · · · Ỹ nk )− 1

n
H(Ỹ n0 · · · Ỹ nk |M̃`) (126)

= H(Ỹ0,T · · · Ỹk,T ) + o(1)

− 1

n

n∑
t=1

H(Ỹ0,t · · · Ỹk,t|M̃`Ỹ
t−1
0 · · · Ỹ t−1k ) (127)

= H(Ỹ0,T · · · Ỹk,T ) + o(1)−H(Ỹ0,T · · · Ỹk,T |U`) (128)

= I(Ỹ0,T · · · Ỹk,T ;U`) + o(1) (129)

≥ I(Ỹ`−1,T ;U`) + o(1), (130)

where we defined U` , (M̃`, Ỹ
T−1
0 , . . . , Ỹ T−1k , T ). Here,

(127) holds by extending (12) to k tuples.
We next upper bound the exponential decay of the type-II

error probability. Define:

QM̃k
(mk) ,

∑
yn0 ,y

n
1 ,...,y

n
k−1

PỸ n
0

(yn0 ) · · ·PỸ n
k−1

(ynk−1)

·1{mk = φk(φk−1(· · · (φ1(yn0 ) · · · )), ynk−1)},
(131)

and

QMk
(mk) ,

∑
yn0 ,y

n
1 ,...,y

n
k−1

PY n
0

(yn0 ) · · ·PY n
k−1

(ynk−1)

·1{mk = φk−1(φk−2(· · · (φ0(yn0 ) · · · )), ynk−1)},
(132)

and notice that by (123) and (131):

QM̃k
PỸ n

k
(Ak) ≤ QMk

PY n
k

(Ak) ∆
−(k+1)
k

= βk,n∆
−(k+1)
k . (133)

Moreover, by (116), the probability PM̃kỸ n
k

(Ak) = 1, and thus

D
(
PM̃kỸ n

k
(Ak) ‖QM̃k

PỸ n
k

(Ak)
)

= − log
(
QM̃k

PỸ n
k

(Ak)
)
,

(134)
where on the left-hand side we slightly abused notation and
mean the KL-divergence of the two binary pmfs induced by
PM̃kỸ n

k
(Ak) and 1−PM̃kỸ n

k
(Ak) and by QM̃k

PỸ n
k

(Ak) and
1−QM̃k

PỸ n
k

(Ak). Combined with (121) and (133), and with
the data-processing inequality, we obtain from (134):

− 1

n
log βk,n ≤ −

1

n
log
(
QM̃k

PỸ n
k

(Ak)
)
− (k + 1)

n
log ∆k

(135)

≤ 1

n
D
(
PM̃kỸ n

k

∥∥∥QM̃k
PỸ n

k

)
+ o(1). (136)

We continue to upper bound the divergence term as

1

n
D(PM̃kỸ n

k
||QM̃k

PỸ n
k

)

=
1

n
I(M̃k; Ỹ nk ) +

1

n
D(PM̃k

||QM̃k
) (137)

≤ 1

n
I(M̃k; Ỹ nk ) +

1

n
D(PỸ n

k−1M̃k−1
||PỸ n

k−1
QM̃k−1

) (138)

12



≤ 1

n
I(M̃k; Ỹ nk ) +

1

n
I(M̃k−1; Ỹ nk−1)

+
1

n
D(PỸ n

k−2M̃k−2
||PỸ n

k−2
QM̃k−2

) (139)

...

≤ 1

n

k∑
`=2

I(M̃`; Ỹ
n
` ) +

1

n
D(PỸ n

1 M̃1
||PỸ n

1
QM̃1

) (140)

=
1

n

k∑
`=1

I(M̃`; Ỹ
n
` ) (141)

≤ 1

n

k∑
`=1

n∑
t=1

I(M̃`Ỹ
t−1
0 · · · Ỹ t−1k ; Ỹ`,t) (142)

≤
k∑
`=1

I(U`; Ỹ`,T ). (143)

Here
• (138) is obtained by the data processing inequality for

KL-divergence and because M̃k is a function of M̃k−1
and Ỹ nk ;

• (139) is obtained by applying the same arguments as lead-
ing to (137) and (138), but now to the pair (M̃k−1, Ỹk−1)
instead of (M̃k, Ỹk);

• (140) is obtained by iteratively applying the same ar-
guments as leading to (137) and (138) to the pairs
(M̃k−2, Ỹk−2), . . . , (M̃2, Ỹ2);

• (141) holds because PM̃1
= QM̃1

and thus
D(PỸ n

1 M̃1
||PỸ n

1
QM̃1

) = I(Ỹ1; M̃1); and
• (143) holds by the definition of U` and T .
Combined with (136), we obtain

− 1

n
log βk,n ≤

k∑
`=1

I(U`; Ỹ`,T ) + o(1). (144)

Finally, we proceed to prove that for any ` ∈ {1, . . . , k} the
Markov chain U` → Ỹ`−1,T → Ỹ`,T holds in the limit as
n→∞. We start by noticing the Markov chain M̃1 → Ỹ n0 →
(Ỹ n1 , · · · , Ỹ nk ), and thus:

0 =
1

n
I(M̃1; Ỹ n1 · · · Ỹ nk |Ỹ n0 ) (145)

=
1

n
H(Ỹ n1 · · · Ỹ nk |Ỹ n0 )− 1

n
H(Ỹ n1 · · · Ỹ nk |Ỹ n0 M̃1) (146)

= H(Ỹ1,T · · · Ỹk,T |Ỹ0,T ) + o(1)− 1

n
H(Ỹ n1 · · · Ỹ nk |Ỹ n0 M̃1)

(147)
≥ H(Ỹ1,T · · · Ỹk,T |Ỹ0,T ) + o(1)

−H(Ỹ1,T · · · Ỹk,T |Ỹ0,T Ỹ T−10 · · · Ỹ T−1k Ỹ n0,T+1M̃1T ) (148)

≥ I(Ỹ1,T · · · Ỹk,T ;U1|Ỹ0,T ) + o(1) ≥ 0, (149)

where (147) is obtained by extending (14) to multiple random
variables. We thus conclude that

lim
n→∞

I(Ỹ1,T · · · Ỹk,T ;U1|Ỹ0,T ) = 0. (150)

Notice next that for any ` ∈ {2, . . . , k}:

I(U`; Ỹ`,T |Ỹ`−1,T )

≤ I(U`Ỹ0,T · · · Ỹ`−2,T ; Ỹ`,T |Ỹ`−1,T ) (151)

= I(U`; Ỹ`,T |Ỹ0,T · · · Ỹ`−1,T )

+I(Ỹ0,T · · · Ỹ`−2,T ; Ỹ`,T |Ỹ`−1,T ) (152)

= I(U`; Ỹ`,T |Ỹ0,T · · · Ỹ`−1,T ) + o(1), (153)

where the last equality can be proved by extending (12)
and (14) to multiple random variables and by noting the
factorization PY0PY1|Y0

· · ·PYK |YK−1
.

Following similar steps to (145)–(149), we further obtain
for each ` ∈ {1, . . . , k}:

0 =
1

n
I(M̃`; Ỹ

n
` · · · Ỹ nk |Ỹ n0 · · · Ỹ n`−1) (154)

=
1

n
H(Ỹ n` · · · Ỹ nk |Ỹ n0 · · · Ỹ n`−1)

− 1

n
H(Ỹ n` · · · Ỹ nk |Ỹ n0 · · · Ỹ n`−1M̃`) (155)

= H(Ỹ`,T · · · Ỹk,T |Ỹ0,T · · · Ỹ`−1,T ) + o(1)

− 1

n
H(Ỹ n` · · · Ỹ nk |Ỹ n0 · · · Ỹ n`−1M̃`) (156)

≥ H(Ỹ`,T · · · Ỹk,T |Ỹ0,T · · · Ỹ`−1,T ) + o(1)

− 1

n

n∑
t=1

H(Ỹ`,t · · · Ỹk,t|Ỹ0,t · · · Ỹ`−1,t

Ỹ t−10 · · · Ỹ t−1k M̃`)

(157)
= H(Ỹ`,T · · · Ỹk,T |Ỹ0,T · · · Ỹ`−1,T ) + o(1)

−H(Ỹ`,T · · · Ỹk,T |Ỹ0,T · · · Ỹ`−1,T
Ỹ T−10 · · · Ỹ T−1k M̃`T )

(158)
= I(Ỹ`,T · · · Ỹk,T ;U`|Ỹ0,T · · · Ỹ`−1,T ) + o(1) (159)

≥ I(Ỹ`,T ;U`|Ỹ0,T · · · Ỹ`−1,T ) + o(1) ≥ 0. (160)

We thus conclude that

I(U`; Ỹ`,T |Ỹ0,T · · · Ỹ`−1,T ) = o(1), (161)

which combined with (153) proves

I(U`; Ỹ`,T |Ỹ`−1,T ) = o(1). (162)

The converse is then concluded by taking n → ∞, as
we explain in the following. By Carathéodory’s theorem [37,
Appendix C], for each n there must exist random variables
U1, . . . , Uk satisfying (162), (144), and (130) over alphabets
of sizes

|U`| ≤ |Y`−1| · |Y`|+ 2, ` ∈ {1, . . . , k}. (163)

We thus restrict to random variables of above (bounded) sup-
ports and invoke the Bolzano-Weierstrass theorem to conclude
for each ` ∈ {1, . . . , k} the existence of pmfs P (`)

Y`−1Y`U`
over

Y`−1 × Y` × U`, also abbreviated as P (`), and an increasing
subsequence of positive numbers {ni}∞i=1 satisfying

lim
i→∞

PỸ`−1Ỹ`U`;ni
= P

(`)
Y`−1Y`U`

, ` ∈ {1, . . . , k}, (164)

where PỸ`−1Ỹ`U`;ni
denotes the pmf at blocklength ni.

By the monotone continuity of mutual information for
discrete random variables, we can then deduce that

R` ≥ IP (`)(U`;Y`−1), ` ∈ {1, . . . , k}, (165)
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θk ≤
k∑
`=1

IP (`)(U`;Y`), (166)

where the subscripts indicate that mutual informations should
be computed according to the indicated pmfs.

Since for any blocklength ni the pair
(
Ỹ ni

`−1, Ỹ
ni

`

)
lies in

the jointly-typical set T (ni)
µni

(PY`−1Y`
), we have

∣∣PY`−1Y`;ni
−

PY`−1Y`

∣∣ ≤ µni and thus the limiting pmfs satisfy P (`)
Y`−1Y`

=
PY`−1Y`

. By similar continuity considerations and by (162),
for all ` ∈ {1, . . . , k} the Markov chain

U` → Y`−1 → Y`, (167)

holds under P (`)
Y`−1Y`U`

. This concludes the proof.

VI. COMMUNICATION OVER A MEMORYLESS CHANNEL

This section studies communication over a discrete memo-
ryless channel (DMC) as depicted in Figure 4.

A. Setup and Results

Consider a transmitter (Tx) that wishes to communicate to a
receiver (Rx) over a DMC parametrized by the finite input and
output alphabets X and Y and the transition law PY |X . The
goal of the communication is that the Tx conveys a message
M to the Rx, where M is uniformly distributed over the set
M := {1, . . . , 2nR} with R > 0 and n > 0 denoting the rate
and blocklength of communication, respectively.

For a given blocklength n, the Tx thus produces the n-length
sequence of channel inputs

Xn = φ(n)(M) (168)

for some choice of the encoding function φ(n) : M → Xn,
and the Rx observes the sequence of channel outputs Y n,
where the time-t output Yt is distributed according to the
law PY |X(·|x) when the time-t input is x, irrespective of the
previous and future inputs and outputs.

The receiver attempts to guess message M based on the
sequence of channel outputs Y n:

M̂ = g(n)(Y n) (169)

using a decoding function of the form g(n) : Yn → M. The
goal is to minimize the average decoding error probability

p(n)(error) := Pr
[
M̂ 6= M

]
. (170)

Definition 5: The rate R > 0 is said {δn}-achievable
over the DMC (X ,Y, PY |X), if there exists a sequence of
encoding and decoding functions {(φ(n), g(n))} such that for
each blocklength n the maximum probability of error

p(n)(error) ≤ δn. (171)

A well-known result in information theory states [29]:
Theorem 5: Any rate R > C, where C denotes the capacity

C := max
PX

I(X;Y ), (172)

is not {δn}-achievable for all sequences {δn} satisfying

lim
n→∞

1

n
log(1− δn) = 0. (173)

Above result implies that for all rates above capacity, the
probability of error converges exponentially fast to 1. This
result is well-known, here we present a different converse
proof.

B. Alternative Strong Converse Proof

Fix a sequence of encoding and decoding functions
{(φ(n), g(n))}∞n=1 so that (171) holds. Choose a sequence of
small positive numbers {µn} satisfying (7) and define the set

Dn :=
{

(m, yn) : yn ∈ T (n)
µn

(PY |X=xn(m))

and g(n) (yn) = m
}

(174)

and its probability

∆n := Pr[(M,Y n) ∈ Dn]. (175)

By the union bound followed by (171) and the bound on
the probability of the typical set derived in [29, Remark to
Lemma 2.12], we have:

∆n ≥ 1− δn −
|Y||X |
4µ2

nn
, (176)

and thus by (173) and (7b):

lim
n→∞

1

n
log ∆n = 0. (177)

Let further (M̃, X̃n, Ỹ n) be random variables so that

PM̃X̃Ỹ n(m,xn, yn)

=
1

2nR
·
P⊗nY |X(yn|φn(m))

∆n

·1{(m, yn) ∈ Dn} · 1
{
xn = φ(n)(m)

}
. (178)

Further, let T be independent of (M̃, X̃n, Ỹ n) and uniform
over {1, . . . , n}. By above definition

PM̃ (m) ≤ 1

2nR
· 1

∆n
, (179)

and thus
1

n
H(M̃) ≥ R+

1

n
log ∆n. (180)

Moreover, since decoding sets are disjoint, by the definition
of the new measure PM̃X̃nỸ n it is possible to determine M̃
from Ỹ with probability 1. We combine these observations
with similar steps as in the weak converse to:

R ≤ 1

n
H(M̃)− 1

n
log ∆n (181)

(a)
=

1

n
I(M̃ ; Ỹ n)− 1

n
log ∆n (182)

=
1

n
H(Ỹ n)− 1

n
H(Ỹ n|M̃)− 1

n
log ∆n (183)

≤ 1

n

n∑
i=1

H(Ỹi)−
1

n
H(Ỹ n|M̃)− 1

n
log ∆n (184)

= H(ỸT |T )− 1

n
H(Ỹ n|M̃)− 1

n
log ∆n (185)

≤ H(ỸT )− 1

n
H(Ỹ n|M̃)− 1

n
log ∆n, (186)
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where (a) holds because M̃ = g(Ỹ n) as explained above.
By (177) and the following lemma, by considering an

appropriate subsequence of blocklengths, and by the continuity
of the entropy function, we deduce that

R ≤ IPXPY |X (X;Y ) ≤ C, (187)

where the subscript indicates that mutual information is with
respect to the joint pmf PXPY |X with PX denoting the pmf
mentioned in the lemma. This concludes the proof of the
strong converse for channel coding.

Lemma 3: There exists an increasing subsequence of block-
lengths {ni}∞i=1 such that for some pmf PX :2

lim
i→∞

PỸT
(y) =

∑
x∈X

PX(x)PY |X(y|x) (188)

lim
i→∞

1

ni
H(Ỹ ni |M̃) = HPXPY |X (Y |X), (189)

where HPXPY |X (Y |X) denotes the conditional entropy of Y
given X when the pair (X,Y ) ∼ PXPY |X .

Proof: For readability, we will also write xn(m) and
xn(M̃) to indicate the (random) codewords φ(n)(m) and
φ(n)(M̃). We have:

PỸT
(y) =

1

n

n∑
t=1

PỸt
(y) (190)

= E

[
1

n

n∑
t=1

1{Ỹt = y}

]
(191)

= E [πỸ n(y)] (192)

=
∑
x∈X

E
[
πxn(M̃)Ỹ n(x, y)

]
(193)

where (193) holds because for any pair of sequences xn, yn

we have
∑
x∈X πxnyn(x, y) = πyn(y), and by exchanging

sum and expectation. By the way we defined the set Dn, we
have for all (m, yn) ∈ Dn that∣∣πxn(m)yn(x, y)− πxn(m)(x)PY |X(y|x)

∣∣ ≤ µn, (194)

and if PY |X(y|x) = 0 then πxn(m)yn(x, y) = 0. Plugging
these conditions into (193) we obtain

PỸT
(y) ≤

∑
x∈X :

PY |X(y|x)>0

E
[
πxn(M̃)(x)

]
· PY |X(y|x) + |X |µn

(195a)

and similarly:

PỸT
(y) ≥

∑
x∈X :

PY |X(y|x)>0

E
[
πxn(M̃)(x)

]
· PY |X(y|x)− |X |µn.

(195b)

Let now {ni} be an increasing subsequence of blocklengths
so that the sequence of expected types E

[
πxn(M̃)(x)

]
con-

2Recall that the random variable ỸT depends on the blocklength ni, and
thus taking the limit i → ∞ is well-defined.

verges for each x ∈ X and denote the convergence point by
PX(x). Then, since µn → 0 as n→∞, by (195):

lim
i→∞

PỸT
(y) =

∑
x∈X

PX(x)PY |X(y|x), (196)

establishing the first part of the lemma.
Notice next that by definition

1

n
H(Ỹ n|M̃ = m)

= − 1

n

∑
yn∈Dm

PỸ n|M̃=m(yn) logPỸ n|M̃=m(yn) (197)

= − 1

n

∑
yn∈Dm

PỸ n|M̃=m(yn) log
P⊗nY |X(yn|xn(m))

∆m
(198)

= − 1

n

n∑
t=1

∑
yn∈Dm

PỸ n|M̃=m(yn) logPY |X(yt|xt(m))

+
1

n
log ∆m (199)

= − 1

n

n∑
t=1

∑
yt∈Y

PỸt|M̃=m(yt) logPY |X(yt|xt(m))

+
1

n
log ∆m (200)

= − 1

n

n∑
t=1

∑
y∈Y

E
[
1

{
Ỹt = y

} ∣∣∣M̃ = m
]

logPY |X(y|xt(m))

+
1

n
log ∆m (201)

= −
∑
x∈X

∑
y∈Y

E

[
1

n

n∑
t=1

1

{
xt(m) = x, Ỹt = y

} ∣∣∣M̃ = m

]
· logPY |X(y|x)

+
1

n
log ∆m (202)

= −
∑
x∈X

∑
y∈Y

E
[
πxn(m)Ỹ n(x, y)

∣∣∣M̃ = m
]

logPY |X(y|x)

+
1

n
log ∆m. (203)

Taking expectation with respect to PM̃ , we obtain

1

n
H(Ỹ n|M̃) (204)

= −
∑
x∈X

∑
y∈Y

E
[
πxn(M̃)Ỹ n(x, y)

]
logPY |X(y|x)

+
1

n
log ∆m. (205)

By (194) and by recalling the definition of PX as the
convergence point of E

[
πxn(M̃)(x)

]
for the sequence of

blocklengths {ni}∞i=1, one can follow the same bounding steps
as leading to (195) to obtain:

lim
i→∞

1

ni
H(Ỹ ni |M̃)

= −
∑
x∈X

PX(x)PY |X(y|x) logPY |X(y|x) (206)

= HPXPY |X (Y |X), (207)
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which concludes the second part of the proof.

VII. CONCLUSIONS AND OUTLOOK

This paper presented new exponentially-strong converse
proofs for source and channel coding setups and for hypoth-
esis testing, i.e., our results allow to conclude that either
the decoding or detection error probabilities or the sum of
the excess distortion probabilities tend to 1 exponentially
fast whenever the rates (or error exponents) violate certain
conditions. The proofs for the standard almost lossless source
coding with side-information problem and for communication
over discrete memoryless channels (DMC) are solely based
on change of measure arguments as inspired by [2]–[4] and
by asymptotic analysis of the distributions implied by these
changes of measure. Notice in particular that the restriction to
strongly-typical and conditionally strongly-typical sets allows
to simplify the proofs and circumvent proof steps establishing
variational characterizations of multi-letter and single-letter
expressions as in [4].

The results for the L-round interactive compression and the
K-hop hypothesis testing setups are novel contributions in this
article. Only special cases had been reported previously. Our
proofs for these setups use similar change of measure argu-
ments as in almost lossless source coding, but additionally also
rely on the proofs of Markov chains that hold in the asymptotic
regime of infinite blocklengths. These Markov chains are
required to conclude existence of the desired auxiliary random
variables. Strong converses of several special cases of our L-
round interactive compression had been reported previously,
in particular see [4]. A strong converse proof for the 2-hop
hypothesis testing setup was already presented in [8], but
not for the fully general setup and using different techniques
to bound the two exponents. In our work, we presented a
simplified and unified proof that applies to all exponents and
without further assumptions.

In related publications, we show that the proof technique
presented in this paper can be extended to more complicated
setups including either additional expectation constraints (e.g.,
constraints on the expected rate or expected equivocation
in a secrecy setup) or setups with mixed channel coding,
reconstruction, and detection constraints. For example, in
[38], [39] and [40], we used the presented proof method to
derive fundamental limits of hypothesis testing systems under
expected rate constraints and (expected) secrecy constraints.
In contrast to the results presented in this paper, these funda-
mental limits depend on the allowed type-I error probabilities.
It turns out that the proposed proof technique based on change
of measure arguments naturally captures the dependence be-
tween the allowed error probabliities and the fundamental
limits under expectation constraints. In another related work
[7], we considered an integrated sensing and communication
(ISAC) systems that combines channel coding with either
source coding or detection. With appropriate modifications,
the proof method presented in this paper could be used to
derive exponentially-strong converse results also for ISAC.
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APPENDIX A
PROOF OF LEMMA 1

Notice that (15)–(17) follow directly from (11) and conti-
nuity of entropy. To prove (11), notice that

PX̃T ỸT
(x, y) =

1

n

n∑
t=1

PX̃tỸt
(x, y) (208)

= E

[
1

n

n∑
t=1

1{X̃t = x, Ỹt = y}

]
(209)

= E[πX̃nỸ n(x, y)], (210)

where the expectations are with respect to the tuples X̃n and
Ỹ n. Since by the definition of the typical set,

|πX̃nỸ n(x, y)− PXY (x, y)| ≤ µn, (211)

we conclude that as n→∞ the probability PX̃T ỸT
(x, y) tends

to PXY (x, y).
To prove (12), notice first that

1

n
H(X̃nỸ n) +

1

n
D(PX̃nỸ n‖P⊗nXY )

= − 1

n

∑
(xn,yn)∈Dn

PX̃nỸ n(xn, yn) logP⊗nXY (xn, yn) (212)

= − 1

n

n∑
t=1

∑
(xn,yn)∈Dn

PX̃nỸ n(xn, yn) logPXY (xt, yt) (213)

= − 1

n

n∑
t=1

∑
(xt,yt)∈X×Y

PX̃tỸt
(xt, yt) logPXY (xt, yt) (214)

= −
∑

(x,y)∈X×Y

(
1

n

n∑
t=1

PX̃tỸt
(x, y)

)
logPXY (x, y) (215)

= −
∑

(x,y)∈X×Y
PX̃T ỸT

(x, y) logPXY (x, y) (216)

= H(X̃T ỸT ) +D(PX̃T ỸT
‖PXY ), (217)

where (214) holds by the law of total probability applied to
the random variables X̃t−1, X̃n

t+1, Ỹ
t−1, Ỹ nt+1. Combined with

the following two limits (218) and (219) this establishes (12).
The first relevant limit is

D(PX̃T ỸT
‖PXY )→ 0, (218)

which holds by (11) and because PX̃T ỸT
(x, y) = 0 whenever

PXY (x, y) = 0. The second limit is

1

n
D(PX̃nỸ n‖P⊗nXY )→ 0, (219)

and holds because 1
n log ∆n → 0 and by the following set of

inequalities:

0 ≤ 1

n
D(PX̃nỸ n‖P⊗nXY )

=
1

n

∑
(xn,yn)∈Dn

PX̃nỸ n(xn, yn) log
PX̃nỸ n(xn, yn)

P⊗nXY (xn, yn)
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(220)

= − 1

n

∑
(xn,yn)∈Dn

PX̃nỸ n(xn, yn) log ∆n (221)

= − 1

n
log ∆n. (222)

To prove (13), notice that by the same arguments as we
concluded (217), we also have
1

n
H(Ỹ n) +

1

n
D(PỸ n‖P⊗nY ) = H(ỸT ) +D(PỸT

‖PY ). (223)

Moreover, (218) and (219) imply
1

n
D(PỸ n‖P⊗nY )→ 0 (224)

D(PỸT
‖PY )→ 0, (225)

which combined with (223) imply (13).
The last limit (14) follows by the chain rule and limits (12)

and (13). This concludes the proof.

REFERENCES

[1] M. Hamad, M. Wigger, and M. Sarkiss, “Strong converses using change
of measure and asymptotic markov chains,” in 2022 IEEE Information
Theory Workshop (ITW), pp. 535–540, 2022.

[2] W. Gu and M. Effros, “A strong converse for a collection of network
source coding problems,” in 2009 IEEE International Symposium on
Information Theory, pp. 2316–2320, 2009.

[3] W. Gu and M. Effros, “A strong converse in source coding for super-
source networks,” in 2011 IEEE International Symposium on Informa-
tion Theory, pp. 395–399, 2011.

[4] H. Tyagi and S. Watanabe, “Strong converse using change of measure
arguments,” IEEE Transactions on Information Theory, vol. 66, no. 2,
pp. 689–703, 2019.

[5] Y. Steinberg, “Coding and common reconstruction,” IEEE Transactions
on Information Theory, vol. 55, no. 11, pp. 4995–5010, 2009.

[6] A. Lapidoth, A. Malär, and M. Wigger, “Constrained source-coding with
side information,” IEEE Transactions on Information Theory, vol. 60,
no. 6, pp. 3218–3237, 2014.

[7] M. Ahmadipour, M. Wigger, and S. Shamai, “Strong converses for
memoryless bi-static ISAC,” in 2023 IEEE International Symposium on
Information Theory (ISIT), pp. 1818–1823, 2023.

[8] D. Cao, L. Zhou, and V. Y. F. Tan, “Strong converse for hypothesis
testing against independence over a two-hop network,” Entropy (Special
Issue on Multiuser Information Theory II), vol. 21, Nov. 2019.

[9] A. I. Khinchin, “The entropy concept in probability theory,” Usp. Mat.
Nay, vol. 8, pp. 3–20, 1953.

[10] B. McMillan, “The basic theorems of information theory,” Ann. Math.
Stat., vol. 24, pp. 196–219, 1953.

[11] I. Csiszár and G. Longo, “On error exponent for source coding and
for testing simple statistical hypotheses,” Studia Sci. Math. Hungar.,
pp. 181–191, 1977.

[12] J. Körner, “Coding of an information source having ambiguous alphabet
and the entropy of graphs,” in Transactions of the 6th Prague conference
on Information Theory, pp. 411–425, 1973.

[13] J. Kieffer, “Strong converses in source coding relative to a fidelity
criterion,” IEEE Transactions on Information Theory, vol. 37, no. 2,
pp. 257–262, 1991.

[14] D. Slepian and J. Wolf, “Noiseless coding of correlated information
sources,” IEEE Transactions on Information Theory, vol. 19, no. 4,
pp. 471–480, 1973.

[15] A. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,” IEEE Transactions on Information
Theory, vol. 22, no. 1, pp. 1–10, 1976.

[16] Y. Oohama and T. S. Han, “Universal coding for the Slepian-Wolf
data compression system and the strong converse theorem,” IEEE
Transactions on Information Theory, vol. 40, no. 6, pp. 1908–1919,
1994.

[17] Y. Oohama, “Exponential strong converse for source coding with side
information at the decoder,” Entropy, vol. 20, no. 5, p. 352, 2018.

[18] Y. Oohama, “Exponential strong converse for one helper source coding
problem,” Entropy, vol. 21, no. 6, p. 567, 2019.

[19] O. Kosut and J. Kliewer, “Strong converses are just edge removal
properties,” IEEE Transactions on Information Theory, vol. 65, no. 6,
pp. 3315–3339, 2018.

[20] A. Kaspi, “Two-way source coding with a fidelity criterion,” IEEE
Transactions on Information Theory, vol. 31, no. 6, pp. 735–740, 1985.

[21] N. Ma and P. Ishwar, “Some results on distributed source coding for
interactive function computation,” IEEE Transactions on Information
Theory, vol. 57, no. 9, pp. 6180–6195, 2011.

[22] S. Salehkalaibar, M. Wigger, and L. Wang, “Hypothesis testing in multi-
hop networks.” [Online]. Available: https://arxiv.org/abs/1708.05198v1,
2017.

[23] R. Ahlswede and I. Csiszár, “Hypothesis testing with communica-
tion constraints,” IEEE Transactions on Information Theory, vol. 32,
pp. 533–542, Jul. 1986.

[24] J. Liu, R. Van Handel, and S. Verdú, “Beyond the blowing-up lemma:
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finite blocklength regime,” IEEE Transactions on Information Theory,
vol. 56, no. 5, pp. 2307–2359, 2010.

[34] R. Graczyk, “An elementary proof of the strong converse of the channel
coding theorem.” Nov. 2022.

[35] S. L. Fong and V. Y. F. Tan, “A proof of the strong converse theorem for
Gaussian multiple access channels,” IEEE Transactions on Information
Theory, vol. 62, no. 8, pp. 4376–4394, 2016.

[36] S. L. Fong and V. Y. F. Tan, “A proof of the strong converse theorem
for Gaussian broadcast channels via the Gaussian Poincaré inequality,”
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then joined Télécom Paris, France, where she is currently a full professor. She
has held visiting professor appointments at the Technion–Israel Institute of
Technology, at the University of Zurich, and at ETH Zurich. Michèle Wigger
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