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Abstract

The paper presents exponentially-strong converses for source-coding, channel coding, and hypothesis testing
problems. More specifically, it presents alternative proofs for the well-known exponentially-strong converse bounds
for almost lossless source-coding with side-information and for channel coding over a discrete memoryless channel
(DMC). These alternative proofs are solely based on a change of measure argument on the sets of conditionally or
jointly typical sequences that result in a correct decision, and on the analysis of these measures in the asymptotic regime
of infinite blocklengths. The paper also presents new exponentially-strong converses for the K-hop hypothesis testing
against independence problem with certain Markov chains and for the two-terminal L-round interactive compression
problem with J ≥ 1 distortion constraints that depend on both sources and both reconstructions. For this latter problem,
the exponentially-strong converse result states that whenever the rates lie outside the rate-distortion region with
vanishing excess distortion probabilities, then the sum of the J excess distortion probabilities asymptotically exceeds
1 or tends to 1 exponentially fast in the blocklength. (When the sum of the excess distortion probabilities exceeds 1,
then a larger rate-distortion region is shown to be achievable.) The considered L-round J-distortion interactive source
coding problem includes as special cases the Wyner-Ziv problem, the interactive function computation problem, and
the compression with lossy common reconstruction problem. The new strong converse proofs for lossy compression
and distributed hypothesis testing are derived using similar change of measure arguments as mentioned earlier and by
additionally proving that certain Markov chains involving auxiliary random variables hold in the asymptotic regime
of infinite blocklengths.
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I. INTRODUCTION

Strong converse results have a rich history in information theory. They refer to proofs showing that for systems
operating beyond their fundamental vanishing-error performance limits, i.e., transmitting at communication rates
above capacity or compressing sources at rates below the rate-distortion functions, the probability of error or
excess distortion tends to 1 for increasing blocklengths. Exponentially-strong converses refer to proofs showing
that this convergence happens exponentially fast in the blocklengths. Different techniques have been proposed in
the literature to obtain such strong and exponentially-strong converses. In this paper we present a variation of the
change of measure proof techniques [2], [3] and by Tyagi and Watanabe [4] for at hand of four problems:

1) Lossless source coding with side-information (see Figure 1).
2) L-round interactive source coding problem with J ≥ 1 distortion constraints (see Figure 2).
3) K-hop distributed hypothesis testing problem (see Figure 3).
4) Communication over a discrete memoryless channel (DMC) (see Figure 4).
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Fig. 1: Almost lossless source coding of a DMS.

The lossless source coding problem with side-information is studied for illustration purposes to highlight the role
of the change of measure argument in our proof. Our motivation for choosing Problems 2)–4) is to show that the
method can be applied to a wide range of applications. In particular, the interactive lossy compression problem
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and the K-hop hypothesis testing problem are complicated and the characterization of their fundamental limits
involves several auxiliary random variables. Through these examples we illustrate that our methodology allows to
treat even such complicated problems with relatively simple techniques. In fact, in addition to a similar change of
measure argument as we used to solve Problem 1, we only require proving that different Markov chains hold in the
asymptotic limit of infinite blocklengths. Besides the change of measure argument, the proof of such asymptotic
Markov chains is a second important component in our proof.
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Fig. 2: Two-terminal interactive lossy source coding.

For Problem 2)—the interactive lossy source coding problem—we impose J ≥ 1 simultaneous distortion
constraints. This allows for example to capture a common reconstruction constraint [5], [6] in addition to the
standard lossy reconstruction constraint between the source and the decoder’s reconstruction. It also allows to
have different reconstruction goals at the two interacting terminals, such as each terminal wishing to recover a
different function of the two sources or each terminal wishing to reconstruct the other terminal’s observations. As
we show, in this multi-constraint problem, the exponentially-strong converse only applies to the sum of all excess
distortions. This means, we show that when the rates lie outside the rate-distortion region with vanishing excess
distortion probabilities, then the sum (over all constraints) of the probabilities of excess distortions either tends to
1 exponentially fast in the blocklength n or exceeds 1 asymptotically as n→∞. Interestingly, the same statement
does not apply for the single excess distortion probabilities, as we show through counter examples. It is interesting
also to notice that this sum-of-probability condition naturally shows up in our change of measure argument. In
this sense, by tackling Problem 2, we can show how our proof technique is well-suited to treat multi-constraint
scenarios. The following-up work [7] indeed showed that our proof method can further be used also to combine
different constraints, such as constraints on the excess distortion or detection error probabilities with constraints on
the decoding error probability.

Fig. 3: K-hop hypothesis testing problem.

The scenario of Problem 3—K-hop distributed hypothesis testing—is of interest for low-energy distributed sensor
systems that jointly wish to detect alerts. Due to the low-energy conditions, they will not be able to communicate
in a all-to-all manner, but communication can only be established to the next-following sensor, i.e., is multi-hop.
Stringent delay constraints might also impose that decisions cannot wait until communication has reached the end
of the sensor-chain, but intermediate decisions on whether to raise an alert have to be taken. Our interest in studying
Problem 3 was to show once more that our method can treat a complicated problem with simple steps. In particular,
a previous result [8] for only K = 2 hops had to resort to two different proof techniques to bound the two error
exponents, while we were able to present a simpler and yet unified proof for an arbitrary number of hops and thus
exponents. Moreover, we managed to solve the problem entirely, while [8] left open some special cases.

Finally, we study the classical channel coding Problem 4 to prove that our method also applies to channel coding.
For channel coding the change of measure technique is simple, but might not be the very simplest one. However,
given the wide applicability of the change of measure proof also to source coding and hypothesis testing, its interest
is also in allowing to solve problems that combine channel coding with reconstructions or detection applications.
Such problems have recently become very popular in the context of integrated sensing and communication (ISAC)
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Fig. 4: Channel coding over a DMC.

systems. In fact, our method recently allowed to derive converse results for ISAC systems [7] by combining the
different constraints in a similar way as we combined the J ≥ 1 distortion constraints to solve our interactive source
coding problem.

In the following two subsections, we provide an overview of the previous strong converse results on source coding,
hypothesis testing, and channel coding. We then describe the main ingredients of our converse proof technique and
describe how it differs from previous related proof techniques.

A. Literature Review on Strong Converses and Contributions

1) Source Coding: For (almost) lossless source coding, the strong converse states that any discrete-memoryless
source (DMS) cannot be compressed with a rate below the entropy of the source and with reconstruction error
probability that stays below 1 asymptotically for infinite blocklengths. This result essentially follows by the
asymptotic equipartition property [9], [10]. The exponentially-strong converse for lossless compression [11] states
that for all compression rates below entropy, the probability of reconstruction error tends to 1 exponentially fast.
Strong converse results also extend to lossy compression, where the limit of compression of DMSs is not entropy
but the well-known rate-distortion function. The strong converse for lossy compression of DMSs was established
by Körner [12], see also the related work by Kieffer [13].

Our focus in this paper is on compression scenarios where the decoder has side-information that is correlated
with the source as depicted in Figure 1. For memoryless sources, the fundamental limits of compression with side-
information were established by Slepian and Wolf [14] for the lossless case and by Wyner and Ziv [15] for the
lossy case. Exponentially-strong converses were established by Oohama and Han [16] for the lossless case and by
Oohama [17] for the lossy case. Various exponentially-strong converse results were also derived for compression
problems in more complicated networks with and without side-information, see e.g., [2]–[4], [18], [19]. In this
paper, we reprove the exponentially-strong converse for lossless source coding with side-information.

Our main focus on source coding is on a L ≥ 1-round interactive lossy source coding problem (see Figure 2) with
J ≥ 1 distortion constraints, which can depend on the source sequences observed at the two terminals, as well as on
the two terminals’ reconstruction sequences. This problem includes as special cases Kaspi’s two-terminal interactive
lossy source-coding problem [20], Ma and Ishwar’s two-terminal interactive function-computation problem [21],
and Steinberg’s lossy source coding problem with common reconstructions [5], as well as its extension by Malär
et al. [6].

As a new result, we prove an exponentially-strong converse result for the sum excess-distortion probability of
above L-round J-distortions interactive lossy source coding problem. Specifically, we show that whenever the rates
lie outside the vanishing-error rate-distortion region, then the sum of the J excess-distortions asymptotically either
exceeds 1 or tends to 1 exponentially fast. Obviously for J = 1, our result implies the standard strong-converse
result for source coding, i.e., that the excess distortion probability has to tend to 1 exponentially fast if the rate lies
below the vanishing-error rate-distortion function. This same statement for a single excess distortion probability
however does not hold when J ≥ 1, as we show through a counter-example.

2) Distributed Hypothesis Testing: In this paper, we also prove a new exponentially-strong converse result for the
K-hop hypothesis testing problem in [22], see Figure 3. In this problem, all K−1 relays as well as the final receiver
guess the hypothesis by testing against independence. The figure of merit is the type-II error exponents that can
be achieved at these K terminals subject to rate constraints on the K links and the constraint that the type-I error
probabilities at these terminals have to stay below predefined thresholds δk,n. Specifically, we consider a scenario
where K + 1 terminals observe memoryless source sequences whose underlying joint distribution depends on a
binary hypothesis H ∈ {0, 1}. The distribution is PY0

∏K
k=1 PYk|Yk−1

under H = 0 and it is PY0

∏K
k=1 PYk

under
H = 1. Upon observing its source sequence Y nk , each terminal k = 0, . . . ,K − 1 can send a nRk+1-bits message
Mk+1 to the next-following terminal. Terminals 1, . . . ,K have to produce a guess of the hypothesis Ĥk ∈ {0, 1}
based on their local observations Y nk and their received message Mk. The main goal is to maximize their type-II
error probability (the probability of error under H = 1) under the constraint that for each blocklength n the type-I
error probability (the probability of error under the null hypothesis H = 0) stays below a given threshold δk,n.
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For K = 1, this problem was solved by Ahlswede and Csiszár [23] for type-I error probabilities δ1,n that
are asymptotically bounded away from 1. In particular, it was shown that the maximum achievable type-II error
exponent does not depend on the values δ1,n as long as they do not tend to 1. For arbitrary K ≥ 2, the problem
was studied under the assumption that all the type-I error probabilities δk,n tend to 0 as n → ∞ [22]. In [8], it
was shown that for K = 2 the result in [22] applies unchanged for sequences of type-I error probabilities δ1,n and
δ2,n satisfying

lim
n→∞

δ1,n + δ2,n 6= 1 (1)

lim
n→∞

δk,n 6= 1, k ∈ {1, 2}, (2)

In this work, we strengthen this result to obtain exponentially-strong converse and we get rid of Condition (1). That
means, we show that for arbitrary K ≥ 1 and arbitrary type-I error probabilities δk,n not vanishing exponentially
fast in the blocklength, the result in [22] continues to hold. Notice that the proof of the mentioned special cases
with K = 2 in [8] used the change of measure argument and variational characterizations proposed by Tyagi
and Watanabe [4] to bound the first error exponent, and it used hypercontractivity arguments as in [24] to bound
the second error exponent. The proof of the strong converse for K = 1 in [23] was based on the blowing-up
lemma [25], [26], same as the proof of the strong converse for K = 1 when communication is over a DMC
and without any rate constraint [27]. The latter work also used the Tyagi-Watanabe change of measure argument
combined with variational characterizations. Unlike these works, our proof does not require any blowing-up lemma
or hypercontractivity arguments, nor variational characterizations.

3) Channel Coding: Wolfowitz’ strong converse [28] established that for all rates above capacity the probability
of communication error over a discrete-memoryless channel (DMC) (see Figure 4) tends to 1 as the blocklength
increases. The exponentially-strong converse stating that the convergence takes place exponentially fast in the
blocklength, was first established by Arimoto and subsequently refined by Csiszár and Körner [29] who provided
lower bounds on the error exponents at rates above capacity. Since then, various alternative proofs for the strong
or exponentially-strong converse for channel coding over a DMC have been proposed, for example based on the
blowing-up lemma [25], [26], [30], by bounding the decoding error probabilities at finite blocklengths [31]–[33],
or by putting forward geometric and typicality arguments [34]. Various extensions to multi-user communication
networks were also derived, see e.g., [30], [35], [36]. In this paper, we present yet-another proof, based on a
change of measure argument that restricts to output sequences that are conditionally-typical for one of the possible
codewords and lie in the decoding set of this codeword. Related is the converse proof for the wiretap channel by
Tyagi and Watanabe [4]. (See our comparison of the two methods in the following subsection.)

B. Relation of our Proof Technique to the Proofs by Gu and Effros [2], [3] and by Tyagi and Watanabe [4]:

Our proof method for exponentially-strong converses has three main components:
• A change of measure argument on the jointly-typical set of the sequences so that there are no errors under the

new measure;
• Bounding rates in standard ways, also introducing auxiliary random variables;
• Proof of asymptotic Markov chains of the newly introduced auxiliary random variables and convergence of

multi-letter entropy quantities to single-letter entropies.
Changing measures for proving converses has a rich history in information theory. The change of measure proofs

by Gu and Effros [2], [3] for source coding networks and by Tyagi and Watanabe [4] for source and channel coding
are most related to our method. More precisely, in our work we define the set Dn of jointly-typical sequences for
which there are no errors, and we obtain the new measure by restricting the original i.i.d. measure to this new set.
Gu and Effros identified the same sets Dn but then constructed a new measure that concentrates on Dn only in the
asymptotic limit as n → ∞. This way, their new measure does not inherit from the zero-error property like our
new measure, and the error probability has to be taken care of.

The zero-error property was introduced by Tyagi and Watanabe [4], who however do not restrict their new measure
on the typical set. Without this restriction, they cannot prove the asymptotic single-letterization of their new measures
and instead need to introduce two additional steps in their converse proof that show variational characterizations
both for the multi-letter and the single-letter problems. In this sense, their proof technique requires two additional
steps compared to ours. Notice that in our approach we have to prove that certain Markov chains hold in the
asymptotic limits. This proof is strongly related to a different proof step of the Tyagi-Watanabe paper where they
show the single-letterization of their variational characterizations, and thus does not add additional complexity to
the proof.
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C. Summary of our Contributions
We summarize the main contributions of our paper:
• We present an alternative exponentially-strong converse proof for the lossless compression problem with side-

information for DMSs. The proof is simple and depends only on a change of measure argument and the
asymptotic analysis of this new measure.

• We derive new strong converse results for the two-terminal L-round interactive lossy source coding problem for
DMSs under multiple distortion constraints that depend on both sources and both reconstructions. This setup
includes as special cases the Wyner-Ziv problem, the interactive function computation problem, and the lossy
source coding problem with (lossy) common reconstructions. We show an exponentially-strong converse for the
sum of the excess distortion probabilities, i.e., we show that when the rates lie outside the rate-distortion region
for vanishing excess distortion probabilities, then the sum of the excess-distortion probabilities asymptotically
either exceeds 1 or tends to 1 exponentially fast in the blocklength. The constraint on the sum excess-distortion
probability arises naturally in our converse proof, and we show that this sum is the right quantity to consider
in a strong-converse statement. In fact, a larger rate-distortion region can be achieved when the sum of the
excess-distortion probabilities is allowed to exceed 1 asymptotically.
Our proof of this result relies again on a change of measure argument and the asymptotic proofs of specific
Markov chains. It provides a method on how to combine multiple distortion constraints in a strong converse
proof, see also the recent following-up work [7].

• We present a new exponentially-strong converse result for the K ≥ 1-hop testing against independence problem
where the observations satisfy a Markov chain. Previously, a strong converse was only known for K = 2 and
certain assumptions on the missed-detection error probabilities [8]. The previous result also used two different
techniques to bound the two error exponents, while in our work we present a simpler and unified method
that can be used to bound each of the K ≥ 1 exponents. Moreover, our proof holds in general and makes
no assumption on the type-I error probabilities. Our proof relies on a change of measure argument combined
with the proof of asymptotic Markov chains.

• We present an alternative exponentially-strong converse proof for the channel coding problem over a DMC.
Our proof depends only on a change of measure argument and the asymptotic analysis of this new measure.
This proof method combines well with our converse proof methods for lossy compression and distributed
hypothesis testing, and was recently also used to obtain strong converse results for ISAC systems [7].

D. Outline of the Paper
We end this section with remarks on notation. The following Section II presents two key lemmas used in the

rest of the paper. Section III presents our new strong converse proof for the almost lossless source coding with
side-information problem. This strong converse proof is solely based on change of measure arguments and on the
analysis of these measures in the asymptotic regime of infinite blocklengths. The converse proofs in the next two
Sections IV and V are also based on similar change of measure arguments and asymptotic analysis of these measures,
but additionally also require proving that certain Markov chains involving auxiliary random variables hold in the
asymptotic regime of infinite blocklengths. Specifically, Section IV considers the L-round interactive compression
problem with J ≥ 1 distortion functions that can depend on the sources and reconstructions at both terminals.
Section V considers the K-hop hypothesis testing for testing against independence where the observations at the
various terminals obey some Markov conditions. Section VI presents an alternative proof of the exponentially-strong
converse proof for the capacity of a DMC. Section VII finally concludes the paper and provides an outlook.

E. Notation
We mostly follow standard notation where upper-case letters are used for random quantities and lower-case

letters for deterministic realizations. Sets are denoted using calligraphic fonts. All random variables are assumed
finite and discrete. We abbreviate the n-tuples (X1, . . . , Xn) and (x1, . . . , xn) as Xn and xn and the n− t tuples
(Xt+1, . . . , Xn) and (xt+1, . . . , xn) as Xn

t+1 and xnt+1. We further abbreviate independent and identically distributed
as i.i.d. and probability mass function as pmf.

Entropy, conditional entropy, and mutual information functionals are written as H(·), H(·|·), and I(·; ·), where
the arguments of these functionals are random variables and whenever their probability mass function (pmf) is not
clear from the context, we add it as a subscript to these functionals. The Kullback-Leibler divergence between two
pmfs is denoted by D(·‖·). We shall use T (n)

µ (PXY ) to indicate the jointly strongly-typical set with respect to the
pmf PXY on the product alphabet X ×Y and parameter µ as defined in [29, Definition 2.8]. Specifically, denoting
by nxn,yn(a, b) the number of occurrences of the pair (a, b) in sequences (xn, yn):

nxn,yn(a, b) = |{t : (xt, yt) = (a, b)}| , (3)
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a pair (xn, yn) lies in T (n)
µ (PXY ) if∣∣∣∣nxn,yn(a, b)

n
− PXY (a, b)

∣∣∣∣ ≤ µ, ∀(a, b) ∈ X × Y, (4)

and nxn,yn(a, b) = 0 whenever PXY (a, b) = 0. The conditionally strongly-typical set with respect to a conditional
pmf PY |X from X to Y , parameter µ > 0, and sequence xn ∈ Xn is denoted T (n)

µ (PY |X , xn) [29, Definition 2.9].
It contains all sequences yn ∈ Yn satisfying∣∣∣∣nxn,yn(a, b)

n
− nxn(a)

n
PY |X(b|a)

∣∣∣∣ ≤ µ, ∀(a, b) ∈ X × Y, (5)

and nxn,yn(a, b) = 0 whenever PY |X(b|a) = 0. Here nxn(a) denotes the number of occurrences of symbol a in
xn. In this paper, we denote the joint type of (xn, yn) by πxnyn , i.e.,

πxnyn(a, b) ,
nxn,yn(a, b)

n
. (6)

Accordingly, the marginal type of xn is written as πxn . Finally, we use Landau notation o(1) to indicate any
function that tends to 0 for blocklengths n→∞.

II. AUXILIARY LEMMAS

Lemma 1: Let {(Xi, Yi)}∞i=1 be a sequence of pairs of i.i.d. random variables according to the pmf PXY . Further
let {µn}∞n=1 be a sequence of small positive numbers satisfying1

lim
n→∞

µn = 0 (7a)

lim
n→∞

n · µ2
n =∞ (7b)

and for each positive integer n let Dn be a subset of the strongly-typical set T (n)
µn (PXY ) so that its probability

∆n := Pr[(Xn, Y n) ∈ Dn] (8)

satisfies
lim
n→∞

1

n
log ∆n = 0. (9)

Let further (X̃n, Ỹ n) be random variables of joint pmf

PX̃nỸ n(xn, yn) =
P⊗nXY (xn, yn)

∆n
· 1{(xn, yn) ∈ Dn} (10)

and T be uniform over {1, . . . , n} independent of all other random variables.
For the distribution in (10), the following limits hold as n→∞:

PX̃T ỸT
→ PXY (11)∣∣∣∣ 1nH(X̃nỸ n)−H(X̃T ỸT )

∣∣∣∣ → 0 (12)∣∣∣∣ 1nH(Ỹ n)−H(ỸT )

∣∣∣∣ → 0 (13)∣∣∣∣ 1nH(X̃n|Ỹ n)−H(X̃T |ỸT )

∣∣∣∣ → 0 (14)∣∣∣H(X̃T ỸT )−H(XY )
∣∣∣ → 0 (15)∣∣∣H(ỸT )−H(Y )
∣∣∣ → 0 (16)∣∣∣H(X̃T |ỸT )−H(X|Y )
∣∣∣ → 0. (17)

Proof: See Appendix A.
Notice that Inequality (9) states that under the original pmf P⊗nXY the probability of the set Dn is sufficiently

large and does not decay to 0 exponentially fast. This implies that the new measure PX̃nỸ n is not blown up by an
exponentially large factor compared to the original i.i.d. measure P⊗nXY .

1Condition (7b) ensures that the probability of the strongly typical set T (n)
µn (PXY ) under P⊗n

XY tends to 1 as n → ∞ [29, Remark to
Lemma 2.12].
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The second lemma dates back to Csiszár and Körner [29].
Lemma 2: Let An, Bn, and S be of arbitrary joint distribution and T be uniform over {1, . . . , n} independent

of (An, Bn, S). Then: The conditional version follows immediately from the definition of conditional entropy:

H(An|BnS)−H(Bn|AnS)

= n
(
H(AT |BTAT−1BnT+1S)−H(BT |ATAT−1BnT+1S)

)
. (18)

III. LOSSLESS SOURCE CODING WITH SIDE-INFORMATION

This section studies the lossless source coding with side-information setup in Figure 1.

A. Setup and Result

Consider two terminals, an encoder observing the source sequence Xn and a decoder observing the related
side-information sequence Y n, where we assume that

(Xn, Y n) i.i.d. ∼ PXY , (19)

for a given probability mass function PXY on the product alphabet X × Y . The encoder uses a function φ(n) to
compress the sequence Xn into a message M ∈ {1, . . . , 2nR} of given rate R > 0:

M = φ(n)(Xn). (20)

Based on this message and its own observation Y n, the decoder is supposed to reconstruct the source sequence
Xn with small probability of error. Thus, the decoder applies a decoding function g(n) to (M,Y n) to produce the
reconstruction sequence X̂n ∈ Xn:

X̂n = g(n)(M,Y n). (21)

Definition 1: Given a sequence of error probabilities {δn}, the rate R > 0 is said {δn}-achievable if there exist
sequences (in n) of encoding and reconstruction functions φ(n) and g(n) such that for each blocklength n:

Pr
[
Xn 6= g(n)(φ(n)(Xn))

]
≤ δn. (22)

A well-known result in information theory is [16]:
Theorem 1: For any sequence {δn}∞n=1 satisfying

lim
n→∞

1

n
log(1− δn) = 0, (23)

any rate R < H(X|Y ) is not {δn}-achievable.
In other words, if R < H(X|Y ), then for any sequence of encoding and reconstruction functions φ(n) and g(n)

it holds that the probability of correct reconstruction tends to 0 exponentially fast in the blocklength:

lim
n→∞

1

n
log Pr

[
Xn = g(n)(φ(n)(Xn))

]
< 0 (24)

The theorem thus implies an exponentially-strong converse. The result is well known, but we provide an alternative
proof in the following subsection.

B. Alternative Strong Converse Proof

Fix a sequence of encoding and decoding functions {φ(n), g(n)}∞n=1 satisfying (22). Choose a sequence of small
positive numbers {µn}∞n=1 satisfying (7), and select for each n a subset

Dn :=
{

(xn, yn) ∈ T (n)
µn

(PXY ) : g(n)
(
φ(n)(xn), yn

)
= xn

}
, (25)

i.e., the set of all typical (xn, yn)-sequences for which the reconstructed sequence X̂n coincides with the source
sequence Xn. Let

∆n := Pr[(Xn, Y n) ∈ Dn], (26)

and notice that

∆n = 1− Pr
[
(Xn, Y n) /∈ T (n)

µn
(PXY ) or g(n)

(
φ(n)(Xn), Y n

)
6= Xn

]
(27)

≥ 1−
(

Pr
[
(Xn, Y n) /∈ T (n)

µn
(PXY )

]
+ Pr

[
g(n)

(
φ(n)(Xn), Y n

)
6= Xn

])
(28)

≥ 1− |X ||Y|
4µ2

nn
− δn, (29)
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where the first inequality holds by the union bound and the second by (22) and [29, Remark to Lemma 2.12].
Therefore, by (23) and (7b):

lim
n→∞

1

n
log ∆n = 0. (30)

Let further (X̃n, Ỹ n) be random variables of joint pmf

PX̃nỸ n(xn, yn) =
PXnY n(xn, yn)

∆n
· 1{(xn, yn) ∈ Dn}. (31)

Let also M̃ = φ(n)(X̃n) and T be uniform over {1, . . . , n} independent of (X̃n, Ỹ n, M̃).
The strong converse is then easily obtained as follows. Similar to the weak converse we have:

R ≥ 1

n
H(M̃) ≥ 1

n
H(M̃ |Ỹ n) =

1

n
H(X̃n|Ỹ n), (32)

where the equality in (32) holds because under our new measure PX̃nỸ n reconstruction errors have zero probability
and thus X̃n can be obtained as a function of M̃ and Ỹ n. Letting n→∞, we obtain the desired limit by (14) and
(17) in Lemma 1.

Above lossless source coding example well illustrates the idea of change of measure strong converse proofs and
why we would like to restrict the new measure to the jointly typical set. With the new measure we transform
the problem into a zero-error problem (because the set Dn only includes source sequences leading to perfect
reconstructions), thus avoiding cumbersome error terms and immediately obtaining the equality in (32). Moreover,
the conditional entropy of the new measure tends to the one of the original i.i.d. measure, because the former is
restricted to the jointly typical set and compared to the original i.i.d. measure is boosted at most by the factor ∆−1n ,
which does not scale exponentially in the blocklength.

Gu and Effros gave a related strong converse proof in [2]. Their proof however does not follow the bounding
steps (32), but instead bounds the size of the number of source sequences xn for which (xn, yn) lies in Dn for a
specific sequence yn, which by the zero-error property of set Dn lower-bounds 2nR.

IV. INTERACTIVE LOSSY COMPRESSION

This section focuses on the interactive lossy compression problem depicted in Figure 2.

A. Setup

Consider two terminals, observing the related source sequences Xn and Y n, where as in the case of source
coding with side-information:

(Xn, Y n) i.i.d. ∼ PXY , (33)

for a given probability mass function PXY on the product alphabet X × Y . Communication between the two
terminals is over noise-free links and interactive in L > 0 rounds. The terminal observing Xn starts communication
and thus in all odd rounds ` = 1, 3, 5, . . ., the message M` is created as:

M` = φ
(n)
` (Xn,M1, . . . ,M`−1), ` = 1, 3, 5, . . . , (34)

for an encoding function φ
(n)
` on appropriate domains, where each message M` ∈ {1, . . . , 2nR`}, for given non-

negative rates R1, . . . , RL. (Note that for ` = 1, M1 = φ
(n)
1 (Xn). ) In even rounds ` = 2, 4, 6, . . . , the message

M` ∈ {1, . . . , 2nR`} is created as:

M` = φ
(n)
` (Y n,M1, . . . ,M`−1), ` = 2, 4, 6, . . . . (35)

At the end of the L rounds, each terminal produces a reconstruction sequence on a pre-specified alphabet. The
terminal observing Xn produces

Wn = g
(n)
X (Xn,M1, . . . ,ML) (36)

for Wn taking value on the given alphabet Wn. The terminal observing Y n produces

Zn = g
(n)
Y (Y n,M1, . . . ,ML) (37)

for Zn taking value on the given alphabet Zn.
The reconstructions are supposed to satisfy a set of J distortion constraints:

1

n

n∑
i=1

dj(Xi, Yi,Wi, Zi) < Dj , j ∈ {1, . . . , J}, (38)

8



for given non-negative symbolwise-distortion functions dj(·, ·, ·, ·).

Definition 2: Given sequences {δj,n}, a rate-tuple R1, . . . , RL ≥ 0 is said {δj,n}-achievable if there exist
sequences (in n) of encoding functions {φ(n)` }L`=1 and reconstruction functions g(n)X and g(n)Y such that the excess
distortion probabilities satisfy

Pr

[
1

n

n∑
i=1

dj(Xi, Yi,Wi, Zi) > Dj

]
≤ δj,n, j ∈ {1, . . . , J}.

(39)

Remark 1: Our problem formulation includes various previously studied models as special cases. For example:
• The Wyner-Ziv problem [15] is included by restricting to a single interaction round L = 1, to a single distortion

function J = 1, and by choosing a distortion function of the form

d1(Xi, Yi,Wi, Zi) = d̃1(Xi, Zi) (40)

• Kaspi’s interactive source-coding problem is included by restricting to J = 2 distortion functions of the form

d1(Xi, Yi,Wi, Zi) = d̃1(Xi, Zi) (41)
d2(Xi, Yi,Wi, Zi) = d̃2(Yi,Wi). (42)

• Lossy source coding with side-information and lossy common reconstruction [5], [6] is included by restricting
to a single interaction round L = 1 and the J = 2 distortion measures

d1(Xi, Zi) = d̃1(Xi, Zi) (43)
d2(Xi, Yi,Wi, Zi) = d̃2(Wi, Zi). (44)

• The interactive function computation problem [21] is obtained by choosing J = 1, D1 = 0, and distortion
function

d1(X,Y,W,Z) = 1{Z = W = f(X,Y )} (45)

for the desired function f .
Theorem 2: Given sequences

{
{δj,n}∞n=1

}J
j=1

satisfying

J∑
j=1

δj,n < 1, n = 1, 2, . . . , (46)

lim
n→∞

1

n
log

1−
J∑
j=1

δj,n

 = 0, j ∈ {1, . . . , J}, (47)

a rate-tuple (R1, . . . , RL) can only be {δj,n}-achievable if it satisfies the rate-constraints

R` ≥ I(X;U`|U1 · · ·U`−1Y ), ` ∈ {1, . . . , L}, ` odd (48a)
R` ≥ I(Y ;U`|U1 · · ·U`−1X), ` ∈ {1, . . . , L}, ` even, (48b)

for some auxiliary random variables U1, . . . , UL and reconstruction random variables W and Z satisfying the
distortion constraints

E[dj(X,Y,W,Z)] < Dj , j ∈ {1, . . . , J}, (48c)

for (X,Y ) ∼ PXY , and the Markov chains

U` →(X,U1, . . . , U`−1)→ Y, ` = 1, 3, 5, . . . , (48d)
U` →(Y, U1, . . . , U`−1)→ X, ` = 2, 4, 6, . . . , (48e)
W → (X,U1, . . . , UL)→ Y, (48f)
Z → (Y,U1, . . . , UL)→ X, (48g)

We can thus conclude that if a rate-tuple (R1, . . . , RL) satisfies (48), then the sum of the excess distortions
asymptotically either exceeds 1 or it approaches 1 exponentially fast in the blocklength.
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Remark 2 (A single distortion): For a single distortion constraint J = 1, above theorem implies that if the
rate-tuple violates the constraints in the theorem, then the probability of excess distortion tends to 1 exponentially
fast.

Remark 3 (Condition (47) cannot be relaxed): Condition (47) in Theorem 2 cannot be relaxed and Remark 2
does not apply for J > 1, as we explain in the following. For simplicity, consider the case J = 2, L = 1, and

δ1,n = δ2,n = 1/2 + ε, (49)

for a positive ε ∈ (0, 1/2). Then, the following rate is achievable

R1 ≥ min
PU1|X ,PU′1|X

max {I(X;U1|Y ), I(Y ;U ′1|X)} (50)

where the minimum is over all conditional pmfs for which there exist reconstruction random variables W = gX(X)
and Z = gY (Y,U1) and W ′ = g′X(X) and Z ′ = g′Y (Y,U ′1) satisfying the distortion constraints

E[d1(X,Y,W,Z)] < D1 (51)
E[d2(X,Y,W ′, Z ′)] < D2. (52)

Notice that the rate in (159) can violate the conditions in above Theorem 2, because the theorem would force
U1 = U ′1 and W ′ = W and Z ′ = Z.

The rate in (159) is achieved by a randomized scheme, where with probability 1/2 the encoder sends a first flagbit
0 followed by a Wyner-Ziv message using auxiliary distribution PU1|X and it applies reconstruction function gX(·),
and with probability 1/2 it sends the flagbit 1 followed by a Wyner-Ziv message using the auxiliary distribution
PU ′1|X and applies reconstruction function g′X . Upon receiving flagbit 0, the decoder uses the Wyner-Ziv decoder
for PU1|X and reconstruction function gY , and upon receiving flagbit 1, the decoder uses the Wyner-Ziv decoder
for PU ′1|X and reconstruction function g′Y . Since Wyner-Ziv codes can achieve vanishing probabilities of excess
distortions, our system satisfies both distortion constraints with probability 1/2, which by (49) is below δ1,n and
δ2,n.

Remark 4 (Vector-valued distortions): Theorem 2 extends in a straightforward manner to vector-valued distortion
functions and vector distortions

1

n

n∑
i=1

dj(Xi, Yi,Wi, Zi) <Dj , j ∈ {1, . . . , J}, (53)

where Dj ∈ Rνj for some positive integer νj , distortion functions are non-negative and of the form dj : X ×Y ×
W×Z → Rνj , and inequality (53) is meant component-wise. The difference between J scalar distortion constraints
as in (38) and a single J-valued vector-distortion function as in (53) is that the vector-distortion constraint limits
the probability that any of the J constraints is violated whereas the J scalar distortion constraints individually limit
the probability of each distortion to be violated.

In the following section, we prove the strong converse, i.e., the non-achievability of any rate-tuple (R1, . . . , RL)
not satisfying the above conditions, for any sequences {δj,n} satisfying (47). Using standard arguments, it can be
shown that for any rate-tuple (R1, . . . , RL) satisfying constraints (48) there exist excess probabilities {δj,n} all
tending to 0 as n→∞ and so that the the rate-tuple (R1, . . . , RL) is {δj,n}-achievable.

B. Strong Converse Proof

Fix a sequence of encoding functions {φ(n)` }L`=1 and reconstruction functions g(n)X and g
(n)
Y satisfying (39).

Choose a sequence of positive real numbers {µn} satisfying (7),
and the set

Dn :=
{

(xn, yn) ∈ T (n)
µn

(PXY ) :

d
(n)
j

(
xn, yn, g

(n)
X (xn,mL

1 ), g
(n)
Y

(
yn,mL

1

))
≤ Dj ,

j ∈ {1, . . . , J}
}
, (54)

where we define

d
(n)
j (xn, yn, wn, zn) :=

1

n

n∑
i=1

dj(xi, yi, wi, zi), (55)

and mL
1 := (m1, . . . ,mL), where for odd values of ` we have m` = φ

(n)
` (xn,m1, . . . ,m`−1) while for even values

of ` we have m` = φ
(n)
` (yn,m1, . . . ,m`−1).
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Define also the probability
∆n := Pr[(Xn, Y n) ∈ Dn] (56)

and notice that by the union bound and the two bounds (39) and [29, Remark to Lemma 2.12]:

∆n ≥ 1−
J∑
j=1

δj,n −
|X ||Y|
4µ2n

, (57)

which by assumptions (47) and (7b) satisfies

lim
n→∞

1

n
log ∆n = 0. (58)

Let further (X̃n, Ỹ n) be random variables of joint pmf

PX̃nỸ n(xn, yn) =
P⊗nXY (xn, yn)

∆n
· 1{(xn, yn) ∈ Dn}. (59)

Let also T be uniform over {1, . . . , n} independent of (X̃n, Ỹ n), and define:

M̃` = φ
(n)
` (X̃n, M̃1, . . . , M̃`−1), ` = 1, 3, 5, . . . , (60)

M̃` = φ
(n)
` (Ỹ n, M̃1, . . . , M̃`−1), ` = 2, 4, 6, . . . . (61)

Note that for ` = 1, M̃1 = φ
(n)
1 (X̃n). Define the auxiliary random variables

U1 := (X̃T−1, Ỹ nT+1, M̃1, T ) (62a)

Uτ := M̃τ , τ ∈ {2, . . . , L}. (62b)

We start with some preliminary observations. For any odd ` ≥ 1 observe the following:

1

n
H(X̃n|Ỹ nM̃1 · · · M̃`)

(d)
=

1

n

[
H(X̃n|Ỹ nM̃1 · · · M̃`)

+
∑

τ∈{1,...,`} :
τ odd

I(M̃τ ; Ỹ n|X̃nM̃1 · · · M̃τ−1)

+
∑

τ∈{2,...,`−1} :
τ even

I(M̃τ ; X̃n|Ỹ nM̃1 · · · M̃τ−1)
]

(63)

=
1

n

[
H(X̃n|Ỹ nM̃1 · · · M̃`)−H(Ỹ n|X̃nM̃1 · · · M̃`)

]
+

1

n

[
H(Ỹ n|X̃nM̃1 · · · M̃`−1)−H(X̃n|Ỹ nM̃1 · · · M̃`−1)

]
+ · · ·

+
1

n

[
H(X̃n|Ỹ nM̃1)−H(Ỹ n|X̃nM̃1)

]
+

1

n
H(Ỹ n|X̃n) (64)

(e)
= H(X̃T |ỸTU1 · · ·U`)−H(ỸT |X̃TU1 · · ·U`)

+H(ỸT |X̃TU1 · · ·U`−1)−H(X̃T |ỸTU1 · · ·U`−1)

+ · · ·
+H(X̃T |ỸTU1)−H(ỸT |X̃TU1)

+
1

n
H(Ỹ n|X̃n) (65)

(f)
= H(X̃T |ỸTU1 · · ·U`)−H(ỸT |X̃TU1 · · ·U`)

+H(ỸT |X̃TU1 · · ·U`−1)−H(X̃T |ỸTU1 · · ·U`−1)

+ · · ·
+H(X̃T |ỸTU1)−H(ỸT |X̃TU1)
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+H(ỸT |X̃T ) + o(1) (66)
(g)
= H(X̃T |ỸTU1 · · ·U`)

+
∑

τ∈{1,...,`} :
τ odd

I(Uτ ; ỸT |X̃TU1 · · ·Uτ−1)

+
∑

τ∈{2,...,`−1} :
τ even

I(Uτ ; X̃T |ỸTU1 · · ·Uτ−1) + o(1) (67)

(h)

≥ H(X̃T |ỸTU1 · · ·U`) + o(1), (68)

where:
• (d) holds because for τ odd, the message M̃τ is a function of (X̃n, M̃1, . . . , M̃τ−1) and thus
I(M̃τ ; Ỹ n|X̃nM̃1 · · · M̃τ−1) = 0 whereas for τ even the message M̃τ is a function of (Ỹ n, M̃1, . . . , M̃τ−1)
and thus I(M̃τ ; X̃n|Ỹ nM̃1 · · · M̃τ−1) = 0;

• (e) holds by Lemma 2 in Section II and Definitions (62);
• (f) holds by Lemma 1 in Section II, where we also used Equation (58);
• (g) holds by dividing the entropy terms between sums for τ odd and even and by definition of the mutual

information; and
• (h) holds by the non-negativity of mutual information.
Following similar steps, we obtain for any even ` ≥ 2:

1

n
H(Ỹ n|X̃nM̃1 · · · M̃`) ≥ H(ỸT |X̃TU1 · · ·U`) + o(1). (69)

We now apply bounds (68) and (69) to obtain the desired bounds on the rates and prove validity of some desired
asymptotic Markov chains. For any odd ` ≥ 1, we have

R` ≥
1

n
H(M̃`) ≥

1

n
H(M̃`|Ỹ nM̃1 · · · M̃`−1) (70)

=
1

n
I(M̃`; X̃

n|Ỹ nM̃1 · · · M̃`−1)

=
1

n

[
H(X̃n|Ỹ nM̃1 · · · M̃`−1)−H(X̃n|Ỹ nM̃1 · · · M̃`)

]
(71)

(h)

≥ 1

n

[
H(X̃n|Ỹ nM̃1 · · · M̃`−2)

−
n∑
i=1

H(X̃i|ỸiX̃i−1Ỹ ni+1M̃1 · · · M̃`)
]

(72)

(i)

≥ H(X̃T |ỸTU1 · · ·U`−2)−H(X̃T |ỸTU1 · · ·U`)
+o(1) (73)

= I(U`−1U`; X̃T |ỸTU1 · · ·U`−2) + o(1) (74)
≥ I(U`; X̃T |ỸTU1 · · ·U`−1) + o(1), (75)

where (h) holds because for ` odd message M̃`−1 is a function of the tuple (Ỹ n, M̃1, . . . , M̃`−2) and because
conditioning can only reduce entropy; and (i) holds by (62) and (68). Notice that for ` = 1:

R1 ≥ I(U1; X̃T |ỸT ) + o(1). (76)

For any even ` ≥ 2, we have:

R` ≥
1

n
H(M̃`) (77)

≥ 1

n
I(M̃`; Ỹ

n|X̃nM̃1 · · · M̃`−1) (78)

(j)
=

1

n

[
H(Ỹ n|X̃nM̃1 · · · M̃`−2)−H(Ỹ n|X̃nM̃1 · · · M̃`)

]
(79)

(k)

≥ H(ỸT |X̃TU1 · · ·U`−2)−H(ỸT |X̃TU1 · · ·U`)
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+o(1) (80)
≥ I(U`; ỸT |X̃TU1 · · ·U`−1) + o(1) (81)

where (j) holds because for ` even M̃`−1 is a function of (X̃n, M̃1, . . . , M̃`−2) and (k) holds by (62) and (69).
We next notice that for ` even (because the message M̃` is a function of (Ỹ n, M̃1, . . . , M̃`−1)):

0 =
1

n
I(M̃`; X̃

n|Ỹ nM̃1 · · · M̃`−1)

=
1

n

[
H(X̃n|Ỹ nM̃1 · · · M̃`−1)−H(X̃n|Ỹ nM̃1 · · · M̃`)

]
(l)

≥ H(X̃T |ỸTU1 · · ·U`−1) + o(1)

− 1

n

n∑
i=1

H(X̃i|X̃i−1ỸiỸ
n
i+1M̃1 · · · M̃`) (82)

= I(U`; X̃T |ỸTU1 · · ·U`−1)+o(1), (83)

where (l) holds by (68) and because conditioning can only reduce entropy.
Similarly, for ` ≥ 1 odd (because the message M̃` is a function of (X̃n, M̃1, . . . , M̃`−1)):

0 =
1

n
I(M̃`; Ỹ

n|X̃n · · · M̃`−1)

=
1

n

[
H(Ỹ n|X̃nM̃1 · · · M̃`−1)−H(Ỹ n|X̃nM̃1 · · · M̃`)

]
≥ I(U`; ỸT |X̃TU1 · · ·U`−1) + o(1). (84)

In particular, for ` = 1, message M̃1 is a function of X̃n and we have:

0 =
1

n
I(M̃1; Ỹ n|X̃n) ≥ I(U1; ỸT |X̃T ) + o(1). (85)

Let now W̃n := gX(X̃n, M̃1, . . . , M̃L) and Z̃n := gY (Ỹ n, M̃1, . . . , M̃L). Since the set Dn only contains
sequences satisfying all J distortion constraints, the quadruple (X̃n, Ỹ n, W̃n, Z̃n) satisfies each of the J distortion
constraints with probability 1. Therefore, we have for any j ∈ {1, . . . , J}:

Dj ≥
1

n

n∑
i=1

E
[
dj

(
X̃i, Ỹi, W̃i, Z̃i

)]
(86)

= E
[
dj

(
X̃T , ỸT , W̃T , Z̃T

)]
, (87)

where the equality holds simply by the definition of T and the total law of expectation.
For simplicity, in the sequel we assume that L is even; if L is odd the proof is similar. Similarly to (83) and

(84), since W̃n := gX(X̃n, M̃1, . . . , M̃L) and Z̃n := gY (Ỹ n, M̃1, . . . , M̃L), we have:

0 =
1

n
I(Z̃n; X̃n|Ỹ nM̃1 · · · M̃L)

(m)
=

1

n

[
H(X̃n|Ỹ nM̃1 · · · M̃L−1)−H(X̃n|Ỹ nM̃1 · · · M̃LZ̃

n)
]

(n)

≥ H(X̃T |ỸTU1 · · ·UL−1) + o(1)

− 1

n

n∑
i=1

H(X̃i|X̃i−1ỸiỸ
n
i+1M̃1 · · · M̃LZ̃i) (88)

= I(ULZ̃T ; X̃T |ỸTU1 · · ·UL−1) + o(1)

≥ I(Z̃T ; X̃T |ỸTU1 · · ·UL) + o(1) (89)

and

0 =
1

n
I(W̃n; Ỹ n|X̃nM̃1 · · · M̃L)

=
1

n

[
H(Ỹ n|X̃nM̃1 · · · M̃L)−H(Ỹ n|X̃nM̃1 · · · M̃LW̃

n)
]

≥ I(W̃T ; ỸT |X̃TU1 · · ·UL) + o(1), (90)

13



where (m) holds since for even L, message M̃L is a function of (Ỹ n, M̃1, · · · , M̃L−1); and (n) holds by (68)
since L− 1 is odd and because conditioning can only reduce entropy.

The desired rate constraints are then obtained by combining (75), (76), (81), (83), (84), (85), (87), (89), and (90)
and by taking n→∞. Details are as follows. By Carathéodory’s theorem [37, Appendix C], there exist auxiliary
random variables U1, . . . , UL of bounded alphabets satisfying (75), (76), (81), (83), (84), (85), (87), (89), and (90).
We restrict to such auxiliary random variables and invoke the Bolzano-Weierstrass theorem to conclude the existence
of a pmf P ∗U1···ULXYWZ , also abbreviated as P ∗, and an increasing subsequence of blocklengths {ni}∞i=1 so that

lim
i→∞

PU1···ULX̃Ỹ W̃ Z̃;ni
= P ∗U1···ULXYWZ , (91)

where PU1···ULX̃Ỹ W̃ Z̃;ni
denotes the pmf of the tuple (U1 · · ·ULX̃T ỸT W̃T Z̃T ) at blocklength ni.

Notice that for any blocklength ni the pair
(
X̃ni , Ỹ ni

)
lies in the jointly typical set T (ni)

µni
(PXY ), i.e.,

∣∣PX̃Ỹ ;ni
−

PXY
∣∣ ≤ µni

, and thus since µn → 0 as n → ∞, by the definition of (X̃T , ỸT ) and by (91), the limiting pmf
satisfies P ∗XY = PXY . We further deduce from (75), (76), (81), (83), (84), (85), (87), (89), and (90) that:

R` ≥ IP∗(X;U`|Y U1 · · ·U`−1), ` = 1, 3 . . . (92a)
R` ≥ IP∗(Y ;U`|XU1 · · ·U`−1), ` = 2, 4 . . . (92b)

0 = IP∗(Y ;U`|XU1 · · ·U`−1), ` = 1, 3 . . . (92c)
0 = IP∗(X;U`|Y U1 · · ·U`−1), ` = 2, 4 . . . (92d)
0 = IP∗(Z;X|Y U1 · · ·UL), (92e)
0 = IP∗(W ;Y |XU1 · · ·UL), (92f)

where the subscript P ∗ indicates that the mutual information quantities should be computed with respect to P ∗.
Combined with (87), which implies

Dj ≥ EP∗ [dj(X,Y,W,Z)], j ∈ {1, . . . , J}, (93)

above (in)equalities (92) conclude the desired converse proof.

V. TESTING AGAINST INDEPENDENCE IN A K-HOP NETWORK

In this section we focus on the K-hop hypothesis testing setup in Figure 3.

A. Setup

Consider a system with a transmitter T0 observing the source sequence Y n0 , K−1 relays labelled R1, . . . ,RK−1
and observing sequences Y n1 , . . . , Y

n
K−1, respectively, and a receiver RK observing sequence Y nK .

The source sequences (Y n0 , Y
n
1 , . . . , Y

n
K) are distributed according to one of two distributions depending on a

binary hypothesis H ∈ {0, 1}:

if H = 0 : (Y n0 , Y
n
1 , . . . , Y

n
K) i.i.d. ∼ PY0Y1PY2|Y1

· · ·PYK |YK−1
; (94a)

if H = 1 : (Y n0 , Y
n
1 , . . . , Y

n
K) i.i.d. ∼ PY0 · PY1 · · ·PYK

.

(94b)

Communication takes place over K hops as illustrated in Figure 3. The transmitter T0 sends a message M1 =

φ
(n)
0 (Y n0 ) to the first relay R1, which sends a message M2 = φ

(n)
1 (Y n1 ,M1) to the second relay and so on. The

communication is thus described by encoding functions

φ
(n)
0 : Yn0 → {1, . . . , 2nR1}, (95)

φ
(n)
k : Ynk × {1, . . . , 2nRk} → {1, . . . , 2nRk+1},

k ∈ {1, . . . ,K − 1}, (96)

and messages are obtained as:

M1 = φ
(n)
0 (Y n0 ) (97)

Mk+1 = φ
(n)
k (Y nk ,Mk), k ∈ {1, . . . ,K − 1}. (98)

Each relay R1, . . . , RK−1 as well as the receiver RK , produces a guess of the hypothesis H. These guesses are
described by guessing functions

g
(n)
k : Ynk × {1, . . . , 2nRk} → {0, 1}, k ∈ {1, . . . ,K}, (99)
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where we request that the guesses

Ĥk = g
(n)
k (Y nk ,Mk), k ∈ {1, . . . ,K}, (100)

have type-I error probabilities

αk,n , Pr[Ĥk = 1|H = 0], k ∈ {1, . . . ,K}, (101)

not exceeding given thresholds, and type-II error probabilities

βk,n , Pr[Ĥk = 0|H = 1], k ∈ {1, . . . ,K}, (102)

decaying to 0 exponentially fast with largest possible exponents.

Definition 3: Given sequences of allowed type-I error probabilities {δk,n} and rates R1, R2, . . . , RK ≥ 0, the
exponent tuple (θ1, θ2, . . . , θK) is called {δk,n}-achievable if there exists a sequence of encoding and decision
functions

{
φ
(n)
0 , φ

(n)
1 , . . . , φ

(n)
K−1, g

(n)
1 , g

(n)
2 , . . . , g

(n)
K

}
n≥1 satisfying for each k ∈ {1, . . . ,K} and blocklength n:

αk,n ≤ δk,n, (103a)

lim
n→∞

1

n
log

1

βk,n
≥ θk. (103b)

B. Old and New Results

Definition 4: For any ` ∈ {1, . . . ,K}, define the function

η` : R+
0 → R+

0 (104)
R 7→ max

PU|Y`−1
:

R≥I(U ;Y`−1)

I (U ;Y`) . (105)

The described setup was previously studied in [22] and [8], and an extension of the setup under variable-length
coding was considered in [38]. While for a general number of users K ≥ 2 only achievability results and weak
converses were presented [22], for K = 2 users a strong converse was derived.

Theorem 3 (Theorems 2 and 3 in [8]): Let K = 2 and consider fixed allowed type-I error probabilities

δk,n = εk, k ∈ {1, 2}, (106)

for given ε1, ε2 ∈ [0, 1) with ε1 + ε2 6= 1. An exponent pair (θ1, θ2) is (ε1, ε2)-achievable if, and only if,

θk ≤
k∑
`=1

η`(R`), k ∈ {1, 2}. (107)

Remark 5: In [8], the presentation of Theorem 3 was split into two separate theorems (Theorems 2 and 3 in [8])
depending on the values of ε1 and ε2. While [8, Theorem 2] considers the case ε1+ε2 < 1 and coincides with above
formulation, [8, Theorem 3] considers the case ε1 + ε2 > 1 and is formulated as an optimization problem over three
auxiliary random variables U1, U2, V . Without loss in optimality, this optimization can however be restricted to
auxiliaries U1 = U2, and [8, Theorem 3] simplifies to the form presented in above Theorem 3. This observation is
important to note that our main result in this section, Theorem 4 ahead, is not only more general, but also consistent
with the existing results in [8].

Remark 6: The set of pairs (θ1, θ2) that are (ε1, ε2) achievable according to Theorem 3 does not depend on the
values of ε1 and ε2 (as long as ε1 + ε2 6= 1) and forms a rectangular region. In particular, each of the two exponents
can be maximized without affecting the other exponent. This result extends to a general number of K ≥ 2 users,
as shown by the achievability result in [22] and by the strong converse result in the following Theorem 4.

Our main result in this section (Theorem 4 ahead) generalizes the strong converse in Theorem 3 to arbitrary
K ≥ 2 and arbitrary ε1, . . . , εK ∈ [0, 1). Technically speaking, we prove an exponentially-strong converse result
that is a stronger statement. In fact, for any k, an exponent θk violating Condition (109) can only be achieved with
probabilities αk,n that tend to 1 exponentially fast in the blocklength n.

Theorem 4: Let {δk,n} be sequences satisfying

lim
n→∞

1

n
log(1− δk,n) = 0, k ∈ {1, . . . ,K}. (108)
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Given rates R1, . . . , RK ≥ 0, the exponent-tuple (θ1, . . . , θK) can only be {δk,n}-achievable, if

θk ≤
k∑
`=1

η`(R`), k ∈ {1, . . . ,K}. (109)

Remark 7: The direct part of this theorem was proved in [22] for some choice of admissible type-I error
probabilities δk,n → 0, for all k. The strong converse in this theorem thus establishes the optimal exponents
for arbitrary K ≥ 2 and all sequences {δk,n} that satisfy (108) and do not vanish too quickly.

Remark 8: For all permissible type-I error probabilities {δk,n} that satisfy (108) and do not vanish too quickly,
the set of achievable exponent-tuples (θ1, . . . , θK) form a hypercube, implying that all decision centers, i.e., relays
R1, . . . , RK−1 and receiver RK , can simultaneously achieve their optimal type-II error exponents. To prove the
desired converse result in Theorem 4, it thus suffices to show that the bound in (109) holds in a setup where only
the single decision center Rk takes a decision.

Remark 9: When one allows for variable-length coding and only limits the expected sizes of the message set
but not its maximum sizes, then a tradeoff between the different exponents θ1, . . . , θK arises [38]. Moreover, as
also shown in [38], in that case the set of all achievable exponent tuples depends on the asymptotic values of the
allowed type-I error probabilities.

C. Strong Converse Proof to Theorem 4

Let {δk,n} be sequences of allowed type-I error probabilities. Fix a sequence (in n) of encoding and decision
functions {(φ(n)0 , φ

(n)
1 , . . . , φ

(n)
K−1, g

(n)
1 , . . . , g

(n)
K )}n≥1 satisfying (103) for {δk,n} and type-II error exponents

θ1, . . . , θK .
Choose a sequence of small positive numbers {µn}∞n=1 satisfying (7). Fix now an arbitrary k ∈ {1, . . . ,K} and

a blocklength n, and let Ak denote the acceptance region of Rk, i.e.,

Ak :=
{

(yn0 , . . . , y
n
k ) : g

(n)
k (ynk ,mk) = 0

}
, (110)

where we define recursively m1 := φ
(n)
0 (yn0 ) and

m` := φ
(n)
`−1(yn`−1,m`−1), ` ∈ {2, . . . , k}. (111)

Define also the law under H = 0:
PY0···Yk

= PY0Y1
PY2|Y1

· · ·PYk|Yk−1
, (112)

and the intersection of this acceptance region with the typical set:

Dk , Ak ∩ T (n)
µn

(PY0···Yk
). (113)

By [29, Remark to Lemma 2.12], the type-I error probability constraints in (103a), and the union bound:

∆k := PY n
0 Y

n
1 ···Y n

k
(Dk) ≥ 1− δk,n −

|Y0| · · · |Yk|
4µ2

nn
, (114)

and thus
lim
n→∞

1

n
log ∆k = 0. (115)

Let (Ỹ n0 , Ỹ
n
1 , . . . , Ỹ

n
k ) be random variables of joint pmf

PỸ n
0 Ỹ

n
1 ···Ỹ n

k
(yn0 , y

n
1 , . . . , y

n
k )

=
PY n

0 Y
n
1 ···Y n

k
(yn0 , y

n
1 , . . . , y

n
k )

∆k
· 1{(yn0 , yn1 , . . . , ynk ) ∈ Dk},

(116)

and notice that for each ` ∈ {0, 1, . . . , k}:

PỸ n
`

(yn` ) =
PY n

`
(yn` )

∆k
(117)

Let also M̃` = φ
(n)
`−1(M̃`−1, Ỹ n`−1) and T be uniform over {1, . . . , n} independent of

(Ỹ n0 , Ỹ
n
1 , . . . , Ỹ

n
k , M̃1, . . . , M̃k).
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Notice that for any ` ∈ {1, . . . , k}:

R` ≥
1

n
H(M̃`) (118)

=
1

n
I(M̃`; Ỹ

n
0 · · · Ỹ nk ) (119)

=
1

n
H(Ỹ n0 · · · Ỹ nk )− 1

n
H(Ỹ n0 · · · Ỹ nk |M̃`) (120)

= H(Ỹ0,T · · · Ỹk,T ) + o(1)

− 1

n

n∑
t=1

H(Ỹ0,t · · · Ỹk,t|M̃`Ỹ
t−1
0 · · · Ỹ t−1k ) (121)

= H(Ỹ0,T · · · Ỹk,T ) + o(1)−H(Ỹ0,T · · · Ỹk,T |U`) (122)

= I(Ỹ0,T · · · Ỹk,T ;U`) + o(1) (123)

≥ I(Ỹ`−1,T ;U`) + o(1), (124)

where we defined U` , (M̃`, Ỹ
T−1
0 , . . . , Ỹ T−1k , T ). Here, (121) holds by extending (12) to k-tuples.

We next upper bound the exponential decay of the type-II error probability. Define:

QM̃k
(mk) ,

∑
yn0 ,y

n
1 ,...,y

n
k−1

PỸ n
0

(yn0 ) · · ·PỸ n
k−1

(ynk−1)

·1{mk = φk(φk−1(· · · (φ1(yn0 ) · · · )), ynk−1)},
(125)

and

QMk
(mk) ,

∑
yn0 ,y

n
1 ,...,y

n
k−1

PY n
0

(yn0 ) · · ·PY n
k−1

(ynk−1)

·1{mk = φk−1(φk−2(· · · (φ0(yn0 ) · · · )), ynk−1)},
(126)

and notice that by (117) and (125):

QM̃k
PỸ n

k
(Ak) ≤ QMk

PY n
k

(Ak) ∆
−(k+1)
k

= βk,n∆
−(k+1)
k . (127)

Moreover, by (110), the probability PM̃kỸ n
k

(Ak) = 1, and thus

D
(
PM̃kỸ n

k
(Ak) ‖QM̃k

PỸ n
k

(Ak)
)

= − log
(
QM̃k

PỸ n
k

(Ak)
)
, (128)

where on the left-hand side we slightly abused notation and mean the KL divergence of the two binary pmfs induced
by PM̃kỸ n

k
(Ak) and 1− PM̃kỸ n

k
(Ak) and by QM̃k

PỸ n
k

(Ak) and 1−QM̃k
PỸ n

k
(Ak). Combined with (115), with

(127), and with the data-processing inequality, we obtain from (128):

− 1

n
log βk,n ≤ −

1

n
log
(
QM̃k

PỸ n
k

(Ak)
)
− (k + 1)

n
log ∆k

(129)

≤ 1

n
D
(
PM̃kỸ n

k

∥∥∥QM̃k
PỸ n

k

)
+ o(1). (130)

We continue to upper bound the divergence term as
1

n
D(PM̃kỸ n

k
||QM̃k

PỸ n
k

)

=
1

n
I(M̃k; Ỹ nk ) +

1

n
D(PM̃k

||QM̃k
) (131)

≤ 1

n
I(M̃k; Ỹ nk ) +

1

n
D(PỸ n

k−1M̃k−1
||PỸ n

k−1
QM̃k−1

) (132)

≤ 1

n
I(M̃k; Ỹ nk ) +

1

n
I(M̃k−1; Ỹ nk−1)

+
1

n
D(PỸ n

k−2M̃k−2
||PỸ n

k−2
QM̃k−2

) (133)
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...

≤ 1

n

k∑
`=2

I(M̃`; Ỹ
n
` ) +

1

n
D(PỸ n

1 M̃1
||PỸ n

1
QM̃1

) (134)

=
1

n

k∑
`=1

I(M̃`; Ỹ
n
` ) (135)

≤ 1

n

k∑
`=1

n∑
t=1

I(M̃`Ỹ
t−1
0 · · · Ỹ t−1k ; Ỹ`,t) (136)

≤
k∑
`=1

I(U`; Ỹ`,T ). (137)

Here
• (132) is obtained by the data processing inequality for KL-divergence and because M̃k is a function of M̃k−1

and Ỹ nk ;
• (133) is obtained by applying the same arguments as leading to (131) and (132), but now to the pair

(M̃k−1, Ỹk−1) instead of (M̃k, Ỹk);
• (134) is obtained by iteratively applying the same arguments as leading to (131) and (132) to the pairs

(M̃k−2, Ỹk−2), . . . , (M̃2, Ỹ2);
• (135) holds because PM̃1

= QM̃1
and thus D(PỸ n

1 M̃1
||PỸ n

1
QM̃1

) = I(Ỹ1; M̃1); and
• (137) holds by the definition of U` and T .
Combined with (130), we obtain

− 1

n
log βk,n ≤

k∑
`=1

I(U`; Ỹ`,T ) + o(1). (138)

Finally, we proceed to prove that for any ` ∈ {1, . . . , k} the Markov chain U` → Ỹ`−1,T → Ỹ`,T holds in the limit
as n→∞. We start by noticing the Markov chain M̃1 → Ỹ n0 → (Ỹ n1 , · · · , Ỹ nk ), and thus:

0 =
1

n
I(M̃1; Ỹ n1 · · · Ỹ nk |Ỹ n0 ) (139)

=
1

n
H(Ỹ n1 · · · Ỹ nk |Ỹ n0 )− 1

n
H(Ỹ n1 · · · Ỹ nk |Ỹ n0 M̃1) (140)

= H(Ỹ1,T · · · Ỹk,T |Ỹ0,T ) + o(1)− 1

n
H(Ỹ n1 · · · Ỹ nk |Ỹ n0 M̃1)

(141)
≥ H(Ỹ1,T · · · Ỹk,T |Ỹ0,T ) + o(1)

−H(Ỹ1,T · · · Ỹk,T |Ỹ0,T Ỹ T−10 · · · Ỹ T−1k Ỹ n0,T+1M̃1T ) (142)

≥ I(Ỹ1,T · · · Ỹk,T ;U1|Ỹ0,T ) + o(1) ≥ 0, (143)

where (141) is obtained by extending (14) to multiple random variables. We thus conclude that

lim
n→∞

I(Ỹ1,T · · · Ỹk,T ;U1|Ỹ0,T ) = 0. (144)

Notice next that for any ` ∈ {2, . . . , k}:

I(U`; Ỹ`,T |Ỹ`−1,T ) ≤ I(U`Ỹ0,T · · · Ỹ`−2,T ; Ỹ`,T |Ỹ`−1,T ) (145)

= I(U`; Ỹ`,T |Ỹ0,T · · · Ỹ`−1,T )

+I(Ỹ0,T · · · Ỹ`−2,T ; Ỹ`,T |Ỹ`−1,T ) (146)

= I(U`; Ỹ`,T |Ỹ0,T · · · Ỹ`−1,T ) + o(1), (147)

where the last equality can be proved by extending (12) and (14) to multiple random variables and by noting the
factorization PY0

PY1|Y0
· · ·PYK |YK−1

.
Following similar steps to (139)–(143), we further obtain for each ` ∈ {1, . . . , k}:

0 =
1

n
I(M̃`; Ỹ

n
` · · · Ỹ nk |Ỹ n0 · · · Ỹ n`−1) (148)
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=
1

n
H(Ỹ n` · · · Ỹ nk |Ỹ n0 · · · Ỹ n`−1)

− 1

n
H(Ỹ n` · · · Ỹ nk |Ỹ n0 · · · Ỹ n`−1M̃`) (149)

= H(Ỹ`,T · · · Ỹk,T |Ỹ0,T · · · Ỹ`−1,T ) + o(1)

− 1

n
H(Ỹ n` · · · Ỹ nk |Ỹ n0 · · · Ỹ n`−1M̃`) (150)

≥ H(Ỹ`,T · · · Ỹk,T |Ỹ0,T · · · Ỹ`−1,T ) + o(1)

− 1

n

n∑
t=1

H(Ỹ`,t · · · Ỹk,t|Ỹ0,t · · · Ỹ`−1,tỸ t−10 · · · Ỹ t−1k M̃`)

(151)
= H(Ỹ`,T · · · Ỹk,T |Ỹ0,T · · · Ỹ`−1,T ) + o(1)

−H(Ỹ`,T · · · Ỹk,T |Ỹ0,T · · · Ỹ`−1,T Ỹ T−10 · · · Ỹ T−1k M̃`T )

(152)
= I(Ỹ`,T · · · Ỹk,T ;U`|Ỹ0,T · · · Ỹ`−1,T ) + o(1) (153)

≥ I(Ỹ`,T ;U`|Ỹ0,T · · · Ỹ`−1,T ) + o(1) ≥ 0. (154)

We thus conclude that
I(U`; Ỹ`,T |Ỹ0,T · · · Ỹ`−1,T ) = o(1), (155)

which combined with (147) proves
I(U`; Ỹ`,T |Ỹ`−1,T ) = o(1). (156)

The converse is then concluded by taking n → ∞, as we explain in the following. By Carathéodory’s theorem
[37, Appendix C], for each n there must exist random variables U1, . . . , Uk satisfying (156), (138), and (124) over
alphabets of sizes

|U`| ≤ |Y`−1| · |Y`|+ 2, ` ∈ {1, . . . , k}. (157)

We thus restrict to random variables of above (bounded) supports and invoke the Bolzano-Weierstrass theorem to
conclude for each ` ∈ {1, . . . , k} the existence of pmfs P (`)

Y`−1Y`U`
over Y`−1 × Y` × U`, also abbreviated as P (`),

and an increasing subsequence of positive numbers {ni}∞i=1 satisfying

lim
i→∞

PỸ`−1Ỹ`U`;ni
= P

(`)
Y`−1Y`U`

, ` ∈ {1, . . . , k}, (158)

where PỸ`−1Ỹ`U`;ni
denotes the pmf at blocklength ni.

By the monotone continuity of mutual information for discrete random variables, we can then deduce that

R` ≥ IP (`)(U`;Y`−1), ` ∈ {1, . . . , k}, (159)

θk ≤
k∑
`=1

IP (`)(U`;Y`), (160)

where the subscripts indicate that mutual informations should be computed according to the indicated pmfs.
Since for any blocklength ni the pair

(
Ỹ ni

`−1, Ỹ
ni

`

)
lies in the jointly typical set T (ni)

µni
(PY`−1Y`

), we have∣∣PY`−1Y`;ni − PY`−1Y`

∣∣ ≤ µni and thus the limiting pmfs satisfy P
(`)
Y`−1Y`

= PY`−1Y`
. By similar continuity

considerations and by (156), for all ` ∈ {1, . . . , k} the Markov chain

U` → Y`−1 → Y`, (161)

holds under P (`)
Y`−1Y`U`

. This concludes the proof.

VI. COMMUNICATION OVER A MEMORYLESS CHANNEL

This section studies communication over a discrete memoryless channel (DMC) as depicted in Figure 4.
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A. Setup and Results

Consider a transmitter (Tx) that wishes to communicate to a receiver (Rx) over a DMC parametrized by the finite
input and output alphabets X and Y and the transition law PY |X . The goal of the communication is that the Tx
conveys a message M to the Rx, where M is uniformly distributed over the set M := {1, . . . , 2nR} with R > 0
and n > 0 denoting the rate and blocklength of communication, respectively.

For a given blocklength n, the Tx thus produces the n-length sequence of channel inputs

Xn = φ(n)(M) (162)

for some choice of the encoding function φ(n) : M→ Xn, and the Rx observes the sequence of channel outputs
Y n, where the time-t output Yt is distributed according to the law PY |X(·|x) when the time-t input is x, irrespective
of the previous and future inputs and outputs.

The receiver attempts to guess message M based on the sequence of channel outputs Y n:

M̂ = g(n)(Y n) (163)

using a decoding function of the form g(n) : Yn → M. The goal is to minimize the average decoding error
probability

p(n)(error) := Pr
[
M̂ 6= M

]
. (164)

Definition 5: The rate R > 0 is said {δn}-achievable over the DMC (X ,Y, PY |X), if there exists a sequence of
encoding and decoding functions {(φ(n), g(n))} such that for each blocklength n the maximum probability of error

p(n)(error) ≤ δn. (165)

A well-known result in information theory states [29]:
Theorem 5: Any rate R > C, where C denotes the capacity

C := max
PX

I(X;Y ), (166)

is not {δn}-achievable for all sequences {δn} satisfying

lim
n→∞

1

n
log(1− δn) = 0. (167)

Above result implies that for all rates above capacity, the probability of error converges exponentially fast to 1.
This result is well known, here we present a different converse proof.

B. Alternative Strong Converse Proof

Fix a sequence of encoding and decoding functions {(φ(n), g(n))}∞n=1 so that (165) holds. Choose a sequence of
small positive numbers {µn} satisfying (7) and define the set

Dn :=
{

(m, yn) : yn ∈ T (n)
µn

(PY |X=xn(m)) and g(n) (yn) = m
}

(168)

and its probability
∆n := Pr[(M,Y n) ∈ Dn]. (169)

By the union bound followed by (165) and the bound on the probability of the typical set derived in [29, Remark
to Lemma 2.12], we have:

∆n ≥ 1− δn −
|Y||X |
4µ2

nn
, (170)

and thus by (167) and (7b):

lim
n→∞

1

n
log ∆n = 0. (171)

Let further (M̃, X̃n, Ỹ n) be random variables so that

PM̃X̃Ỹ n(m,xn, yn) =
1

2nR
·
P⊗nY |X(yn|φn(m))

∆n
· 1{(m, yn) ∈ Dn} · 1

{
xn = φ(n)(m)

}
. (172)

Further, let T be independent of (M̃, X̃n, Ỹ n) and uniform over {1, . . . , n}. By above definition

PM̃ (m) ≤ 1

2nR
· 1

∆n
, (173)
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and thus
1

n
H(M̃) ≥ R+

1

n
log ∆n. (174)

Moreover, since decoding sets are disjoint, by the definition of the new measure PM̃X̃nỸ n it is possible to determine
M̃ from Ỹ with probability 1. We combine these observations with similar steps as in the weak converse to:

R ≤ 1

n
H(M̃)− 1

n
log ∆n (175)

(a)
=

1

n
I(M̃ ; Ỹ n)− 1

n
log ∆n (176)

=
1

n
H(Ỹ n)− 1

n
H(Ỹ n|M̃)− 1

n
log ∆n (177)

≤ 1

n

n∑
i=1

H(Ỹi)−
1

n
H(Ỹ n|M̃)− 1

n
log ∆n (178)

= H(ỸT |T )− 1

n
H(Ỹ n|M̃)− 1

n
log ∆n (179)

≤ H(ỸT )− 1

n
H(Ỹ n|M̃)− 1

n
log ∆n, (180)

where (a) holds because M̃ = g(Ỹ n) as explained above.
By (171) and the following lemma, by considering an appropriate subsequence of blocklengths, and by the

continuity of the entropy function, we deduce that

R ≤ IPXPY |X (X;Y ) ≤ C, (181)

where the subscript indicates that mutual information is with respect to the joint pmf PXPY |X with PX denoting
the pmf mentioned in the lemma. This concludes the proof of the strong converse for channel coding.

Lemma 3: There exists an increasing subsequence of blocklengths {ni}∞i=1 such that for some pmf PX :2

lim
i→∞

PỸT
(y) =

∑
x∈X

PX(x)PY |X(y|x) (182)

lim
i→∞

1

ni
H(Ỹ ni |M̃) = HPXPY |X (Y |X), (183)

where HPXPY |X (Y |X) denotes the conditional entropy of Y given X when the pair (X,Y ) ∼ PXPY |X .
Proof: For readability, we will also write xn(m) and xn(M̃) to indicate the (random) codewords φ(n)(m) and

φ(n)(M̃). We have:

PỸT
(y) =

1

n

n∑
t=1

PỸt
(y) (184)

= E

[
1

n

n∑
t=1

1{Ỹt = y}

]
(185)

= E [πỸ n(y)] (186)

=
∑
x∈X

E
[
πxn(M̃)Ỹ n(x, y)

]
(187)

where the fourth equality holds because for any pair of sequences xn, yn we have
∑
x∈X πxnyn(x, y) = πyn(y),

and by exchanging sum and expectation. By the way we defined the set Dn, we have for all (m, yn) ∈ Dn that∣∣πxn(m)yn(x, y)− πxn(m)(x)PY |X(y|x)
∣∣ ≤ µn, (188)

and if PY |X(y|x) = 0 then πxn(m)yn(x, y) = 0. Plugging these conditions into (187) we obtain

PỸT
(y) ≤

∑
x∈X :

PY |X(y|x)>0

E
[
πxn(M̃)(x)

]
· PY |X(y|x) + |X |µn (189a)

2Recall that the random variable ỸT depends on the blocklength ni, and thus taking the limit i → ∞ is well-defined.
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and similarly:

PỸT
(y) ≥

∑
x∈X :

PY |X(y|x)>0

E
[
πxn(M̃)(x)

]
· PY |X(y|x)− |X |µn. (189b)

Let now {ni} be an increasing subsequence of blocklengths so that the sequence of expected types E
[
πxn(M̃)(x)

]
converges for each x ∈ X and denote the convergence point by PX(x). Then, since µn → 0 as n→∞, by (190):

lim
i→∞

PỸT
(y) =

∑
x∈X

PX(x)PY |X(y|x), (190)

establishing the first part of the lemma.
Notice next that by definition

1

n
H(Ỹ n|M̃ = m)

= − 1

n

∑
yn∈Dm

PỸ n|M̃=m(yn) logPỸ n|M̃=m(yn) (191)

= − 1

n

∑
yn∈Dm

PỸ n|M̃=m(yn) log
P⊗nY |X(yn|xn(m))

∆m
(192)

= − 1

n

n∑
t=1

∑
yn∈Dm

PỸ n|M̃=m(yn) logPY |X(yt|xt(m))

+
1

n
log ∆m (193)

= − 1

n

n∑
t=1

∑
yt∈Y

PỸt|M̃=m(yt) logPY |X(yt|xt(m))

+
1

n
log ∆m (194)

= − 1

n

n∑
t=1

∑
y∈Y

E
[
1

{
Ỹt = y

} ∣∣∣M̃ = m
]

logPY |X(y|xt(m))

+
1

n
log ∆m (195)

= −
∑
x∈X

∑
y∈Y

E

[
1

n

n∑
t=1

1

{
xt(m) = x, Ỹt = y

} ∣∣∣M̃ = m

]
· logPY |X(y|x)

+
1

n
log ∆m (196)

= −
∑
x∈X

∑
y∈Y

E
[
πxn(m)Ỹ n(x, y)

∣∣∣M̃ = m
]

logPY |X(y|x)

+
1

n
log ∆m. (197)

Taking expectation with respect to PM̃ , we obtain
1

n
H(Ỹ n|M̃) (198)

= −
∑
x∈X

∑
y∈Y

E
[
πxn(M̃)Ỹ n(x, y)

]
logPY |X(y|x)

+
1

n
log ∆m. (199)

By (189) and by recalling the definition of PX as the convergence point of E
[
πxn(M̃)(x)

]
for the sequence of

blocklengths {ni}∞i=1, one can follow the same bounding steps as leading to (190) to obtain:

lim
i→∞

1

ni
H(Ỹ ni |M̃)
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= −
∑
x∈X

PX(x)PY |X(y|x) logPY |X(y|x)

= HPXPY |X (Y |X), (200)

which concludes the second part of the proof.

VII. CONCLUSIONS AND OUTLOOK

This paper presented new exponentially-strong converse proofs for source and channel coding setups and for
hypothesis testing, i.e., our results allow to conclude that either the decoding or detection error probabilities or the
sum of the excess-distortion probabilities tend to 1 exponentially fast whenever the rates (or error exponents) violate
certain conditions. The proofs for the standard almost lossless source coding with side-information problem and
for communication over discrete memoryless channels (DMC) are solely based on change of measure arguments as
inspired by [2]–[4] and by asymptotic analysis of the distributions implied by these changes of measure. Notice in
particular that the restriction to strongly-typical and conditionally strongly-typical sets allows to simplify the proofs
and circumvent proof steps establishing variational characterizations of multi-letter and single-letter expressions as
in [4].

The results for the L-round interactive compression and the K-hop hypothesis testing setups are novel
contributions in this article. Only special cases had been reported previously. Our proofs for these setups use
similar change of measure arguments as in almost lossless source coding, but additionally also rely on the proofs
of Markov chains that hold in the asymptotic regime of infinite blocklengths. These Markov chains are required
to conclude existence of the desired auxiliary random variables. Strong converses of several special cases of our
L-round interactive compression had been reported previously, in particular see [4]. A strong converse proof for the
2-hop hypothesis testing setup was already presented in [8], but not for the fully general setup and using different
techniques to bound the two exponents. In our work we presented a simplified and unified proof that applies to all
exponents and without further assumptions.

In related publications we show that the proof technique presented in this paper can be extended to more
complicated setups including either additional expectation constraints (e.g., constraints on the expected rate or
expected equivocation in a secrecy setup) or setups with mixed channel coding, reconstruction, and detection
constraints. For example, in [38], [39] and [40], we used the presented proof method to derive fundamental limits
of hypothesis testing systems under expected rate constraints and (expected) secrecy constraints. In contrast to the
results presented in this paper, these fundamental limits depend on the allowed type-I error probabilities. It turns
out that the proposed proof technique based on change of measure arguments naturally captures the dependence
between the allowed error probabliities and the fundamental limits under expectation constraints. In another related
work [7], we considered an integrated sensing and communication (ISAC) systems that combines channel coding
with either source coding or detection. With appropriate modifications, the proof method presented in this paper
could be used to derive exponentially-strong converse results also for ISAC.
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APPENDIX A
PROOF OF LEMMA 1

Notice that (15)–(17) follow directly from (11) and continuity of entropy. To prove (11), notice that

PX̃T ỸT
(x, y) =

1

n

n∑
t=1

PX̃tỸt
(x, y) (201)

= E

[
1

n

n∑
t=1

1{X̃t = x, Ỹt = y}

]
(202)

= E[πX̃nỸ n(x, y)], (203)

where the expectations are with respect to the tuples X̃n and Ỹ n. Since by the definition of the typical set,

|πX̃nỸ n(x, y)− PXY (x, y)| ≤ µn, (204)

we conclude that as n→∞ the probability PX̃T ỸT
(x, y) tends to PXY (x, y).
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To prove (12), notice first that

1

n
H(X̃nỸ n) +

1

n
D(PX̃nỸ n‖P⊗nXY )

= − 1

n

∑
(xn,yn)∈Dn

PX̃nỸ n(xn, yn) logP⊗nXY (xn, yn) (205)

= − 1

n

n∑
t=1

∑
(xn,yn)∈Dn

PX̃nỸ n(xn, yn) logPXY (xt, yt) (206)

= − 1

n

n∑
t=1

∑
(xt,yt)∈X×Y

PX̃tỸt
(xt, yt) logPXY (xt, yt) (207)

= −
∑

(x,y)∈X×Y

(
1

n

n∑
t=1

PX̃tỸt
(x, y)

)
logPXY (x, y) (208)

= −
∑

(x,y)∈X×Y
PX̃T ỸT

(x, y) logPXY (x, y) (209)

= H(X̃T ỸT ) +D(PX̃T ỸT
‖PXY ), (210)

where (208) holds by the law of total probability applied to the random variables X̃t−1, X̃n
t+1, Ỹ

t−1, Ỹ nt+1. Combined
with the following two limits (212) and (213) this establishes (12). The first relevant limit is

D(PX̃T ỸT
‖PXY )→ 0, (211)

which holds by (11) and because PX̃T ỸT
(x, y) = 0 whenever PXY (x, y) = 0. The second limit is:

1

n
D(PX̃nỸ n‖P⊗nXY )→ 0, (212)

and holds because 1
n log ∆n → 0 and by the following set of inequalities:

0 ≤ 1

n
D(PX̃nỸ n‖P⊗nXY )

=
1

n

∑
(xn,yn)∈Dn

PX̃nỸ n(xn, yn) log
PX̃nỸ n(xn, yn)

P⊗nXY (xn, yn)
(213)

= − 1

n

∑
(xn,yn)∈Dn

PX̃nỸ n(xn, yn) log ∆n (214)

= − 1

n
log ∆n. (215)

To prove (13), notice that by the same arguments as we concluded (211), we also have

1

n
H(Ỹ n) +

1

n
D(PỸ n‖P⊗nY ) = H(ỸT ) +D(PỸT

‖PY ). (216)

Moreover, (212) and (213) imply

1

n
D(PỸ n‖P⊗nY )→ 0 (217)

D(PỸT
‖PY )→ 0, (218)

which combined with (217) imply (13).
The last limit (14) follows by the chain rule and limits (12) and (13). This concludes the proof.
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IEEE Transactions on Information Theory, vol. 63, no. 12, pp. 7737–7746, 2017.
[37] A. El Gamal and Y. H. Kim, Network Information Theory. Cambridge University Press, 2011.
[38] M. Hamad, M. Wigger, and M. Sarkiss, “Multi-hop network with multiple decision centers under expected-rate constraints,” IEEE

Transactions on Information Theory, vol. 69, no. 7, pp. 4255–4283, 2023.
[39] M. Hamad, M. Sarkiss, and M. Wigger, “Benefits of rate-sharing for distributed hypothesis testing,” in 2022 IEEE International Symposium

on Information Theory (ISIT), pp. 2714–2719, 2022.
[40] S. Faour, M. Hamad, M. Sarkiss, and M. Wigger, “Testing against independence with an eavesdropper,” in 2023 IEEE Information Theory

Workshop (ITW), pp. 277–282, 2023.

25


