Variations of Source Coding with Side-Information at the Decoder(s)

Michèle Wigger Telecom ParisTech michele.wigger@telecom-paristech.fr

Chalmers University, 31 May 2013

joint work with T. Laich, A. Lapidoth, A. Malär, T. Oechtering, R. Timo

Source Coding with Side-Information

- A central processor stores data
- Different users want to reconstruct data
- Each user has SI about the data

- Users have SI because:
 - they can measure correlated data (e.g., correlated temperature measurements)
 - they have previously obtained descriptions of related data (previous queries)

Minimum description rate

► Encoder wishes to "control" decoder's reconstruction, even without knowing SI

Usefulness of Encoder-SI

Part I:

Constraints on the Decoder's Reconstruction (Single Decoder)

Lossless Source Coding with SI; Single Decoder

- $\{(X_i, Y_i)\}$ IID ~ P_{XY} over $\mathcal{X} \times \mathcal{Y}$
- Message $M \in \{1, \ldots, \lfloor 2^{nR} \rfloor\}$
- Side information Yⁿ known at decoder only!
- ▶ Decoder's source-reconstruction $\hat{X}^n_{\mathsf{d}}(M, Y^n)$ takes value in $\hat{\mathcal{X}}^n$
- ▶ Rate R achievable, if $\lim_{n \to \infty} \Pr \left[X^n \neq \hat{X}^n_{\mathsf{d}} \right] = 0$

Lossless Source Coding with SI; Single Decoder

Slepian-Wolf '73: Infimum over achievable rates: $R^* = H(X|Y)$

- Send bin-index of X^n to the decoder, which reconstructs X^n with Y^n
- "Coding language": Send syndrome of X^n of a code where each coset forms a good channel code for $X^n \to Y^n$

Lossy Source Coding with SI; Single Decoder

• Per-symbol distortion: $d_{\mathsf{d}} \colon \mathcal{X} \times \hat{\mathcal{X}} \to \mathbb{R}_0^+$

$$\blacktriangleright (R, D_{\mathsf{d}}) \text{ achievable if } \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathsf{E} \Big[d_{\mathsf{d}}(X_i, \hat{X}_{\mathsf{d}, i}) \Big] \leq D_{\mathsf{d}}$$

$$\begin{split} \text{Wyner-Ziv'76:} \quad R^{\star}_{\text{WZ}}(D_{\text{d}}) &= \min_{\substack{Z, \hat{X}_{\text{d}}(Z, Y) \text{ s.t.} \\ Z \multimap - X \multimap - Y \\ \text{E}\left[d_{\text{d}}(X, \hat{X}_{\text{d}})\right] \leq D_{\text{d}}}} I(X; Z|Y) \quad \text{ where } |\mathcal{Z}| &= |\mathcal{X}| + 1 \end{split}$$

 \rightarrow Encoder ignorant of $Y^n \Rightarrow$ cannot compute $\hat{X}^n_{\mathsf{d}}(M, \mathbf{Y}^n)!$

Wyner-Ziv with Common-Reconstruction Constraint (Steinberg'09)

• (R, D_d) achievable if:

1.
$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathsf{E} \left[d_{\mathsf{d}}(X_i, \hat{X}_{\mathsf{d}, i}) \right] \leq D_{\mathsf{d}}$$

2.
$$\overline{\lim_{n \to \infty}} \Pr\left[\hat{X}^n_{\mathsf{e}} \neq \hat{X}^n_{\mathsf{d}}\right] = 0$$

Wyner-Ziv with Lossy Common-Reconstruction Constraint

- Encoder-side distortion-function $d_{e} \colon \hat{\mathcal{X}} \times \hat{\mathcal{X}} \to \mathbb{R}_{0}^{+}$
- (R, D_d, D_e) achievable if:

1.
$$\overline{\lim_{n \to \infty}} \frac{1}{n} \sum_{i=1}^{n} \mathsf{E} \left[d_{\mathsf{d}}(X_i, \hat{X}_{\mathsf{d},i}) \right] \leq D_{\mathsf{d}}$$

2.
$$\overline{\lim_{n \to \infty}} \frac{1}{n} \sum_{i=1}^{n} \mathsf{E} \left[d_{\mathsf{e}}(\hat{X}_{\mathsf{d},i}, \hat{X}_{\mathsf{e},i}) \right] \leq D_{\mathsf{e}}$$

Theorem (Lapidoth/Malär/Wigger'11)

$$R_{\text{lossyCR}}(D_{d}, D_{e}) = \min_{\substack{Z, \hat{X}_{d}(Z, Y), \hat{X}_{e}(Z, X) \text{ s.t.} \\ Z \multimap - X \multimap - Y \\ \mathsf{E}[d_{d}(X, \hat{X}_{d})] \le D_{d} \\ \mathsf{E}[d_{e}(\hat{X}_{d}, \hat{X}_{e})] \le D_{e}} I(X; Z|Y)$$

where $|\mathcal{Z}| = |\mathcal{X}| + 3$ suffices

Corollary

When $d_{e}(\hat{x}_{d}, \hat{x}_{e}, x) = I\{\hat{x}_{e} \neq \hat{x}_{d}\}$, then $R_{\text{lossyCR}}(D_{d}, 0) = R_{CR}(D_{d})$

- $X \sim \mathcal{N}(0, \sigma_X^2)$
- Y = X + U, where $U \sim \mathcal{N}(0, \sigma_U^2)$ independent of X

•
$$d_{\mathsf{d}}(x, \hat{x}_{\mathsf{d}}) = (x - \hat{x}_{\mathsf{d}})^2$$

▶ $d_{e}(\hat{x}_{d}, \hat{x}_{e}) = (\hat{x}_{d} - \hat{x}_{e})^{2}$

Result: Rate-Distortions Function of Quadratic-Gaussian Setup

Theorem (Lapidoth/Malär/Wigger'11)

$$R_{\text{lossyCR}}(D_{d}, D_{e}) = \begin{cases} \left[\frac{1}{2}\log\left(\frac{\sigma_{X}^{2}\sigma_{U}^{2}}{(\sigma_{X}^{2}+\sigma_{U}^{2})D_{d}}\right)\right]^{+}, & \text{if } \sqrt{D_{e}\sigma_{U}^{2}} \geq \min\left\{D_{d}, \frac{\sigma_{X}^{2}\sigma_{U}^{2}}{\sigma_{X}^{2}+\sigma_{U}^{2}}\right\} \\ \left[\frac{1}{2}\log\left(\frac{\sigma_{X}^{2}}{\sigma_{X}^{2}+\sigma_{U}^{2}}\frac{\sigma_{U}^{2}+D_{d}-2\sqrt{\sigma_{U}^{2}D_{e}}}{D_{d}-D_{e}}\right)\right]^{+}, & \text{else.} \end{cases}$$

Corollary

• If
$$\sqrt{D_{e}\sigma_{U}^{2}} \ge \min\left\{D_{d}, \frac{\sigma_{X}^{2}\sigma_{U}^{2}}{\sigma_{X}^{2}+\sigma_{U}^{2}}\right\}$$
 or $\left(1-\sqrt{\frac{D_{e}}{\sigma_{U}^{2}}}\right)^{2}\sigma_{X}^{2} \le D_{d}-D_{e}$,
then: $R_{\text{lossyCR}} = R_{\text{WZ}} = R_{\text{SI}}$

• If
$$D_{e} = 0$$
, then $R_{\text{lossyCR}} = R_{\text{CR}}$

Plots for Quadratic-Gaussian Setup

$$\sigma_X^2 = 3; \quad \sigma_U^2 = 1; \quad D_{\mathsf{d}} = 0.5$$

 D_{e}

More General Reconstruction Constraints

- $K \ge 1$ distortion-functions $d_k : \hat{\mathcal{X}} \times \hat{\mathcal{X}} \times X \to \mathbb{R}^+_0, \quad k \in \{1, \dots, K\}$
- (R, D_1, \ldots, D_K) achievable if:

$$\overline{\lim_{n \to \infty}} \frac{1}{n} \sum_{i=1}^{n} \mathsf{E} \Big[d_k(X_i, \hat{X}_{\mathsf{d},i}, \hat{X}_{\mathsf{e},i}) \Big] \le D_k, \qquad k \in \{1, \dots, K\}$$

Theorem (Lapidoth/Malär/Wigger'11)

$$R^{\star}_{\mathsf{lossyCR}}(D_1, \dots, D_K) = \min_{\substack{T, Z, \hat{X}_{\mathsf{d}}(Z, Y), \hat{X}_{\mathsf{e}}(Z, X, T) \text{ s.t.} \\ (T, Z) \multimap - X \multimap - Y \\ \mathsf{E}[d_k(X, \hat{X}_{\mathsf{d}}, \hat{X}_{\mathsf{e}})] \le D_k, \ k \in \{1, \dots, K\}} I(X; Z|Y)$$

where $|\mathcal{Z}| = |\mathcal{X}||\mathcal{T}| + K + 1$ and $|\mathcal{T}| = K$ suffices

Comparison of Coding Schemes

Wyner-Ziv coding:

- Steinberg's coding: no estimator since encoder cannot reproduce it $\rightarrow \hat{X}^n = \hat{Z}^n$
- Our coding scheme: constrained estimator

- Identification of "single-letter" variable \hat{X}_{e}
- Gaussian case: proving optimality of (\hat{X}_d, \hat{X}_e) jointly Gaussian with (X, Y)
- \blacktriangleright Cardinality constraint on ${\cal U}$ in last setup \rightarrow wish to recover our original result

Part II:

New Results on the Lossless Kaspi/Heegard-Berger Problem

The Lossless Heegard-Berger Problem with Two Sources

• {
$$(X_{1,i}, X_{2,i}, Y_{1,i}, Y_{2,i})$$
} IID ~ $P_{X_1X_2Y_1Y_2}$

- Decoder 1 wishes to learn Xⁿ₁ and Decoder 2 Xⁿ₂
- Message $M \in \{1, \dots, \lfloor 2^{nR} \rfloor\}$
- SI Y₁ⁿ and Y₂ⁿ known at the two decoders only!
- ▶ Rate *R* achievable, if $\overline{\lim_{n \to \infty}} \Pr \Big[X_1^n \neq \hat{X}_1^n \text{ and } X_2^n \neq \hat{X}_2^n \Big] = 0$

Known Minimum Description Rates

• complementary SI $Y_1^n = X_2^n$ and $Y_2^n = X_1^n$ (Sgarro'77)

$$R^{\star} = \max\left\{H(X_1|Y_1), H(X_2|Y_2)\right\}$$

 \rightarrow send $X_1^n \oplus X_2^n$

• equal sources
$$X_1^n = X_2^n = X^n$$
 (Sgarro'77)
 $B^* = \max_{n \to \infty} H(X)$

$$R^* = \max_{i \in \{1,2\}} H(X|Y_i)$$

 \rightarrow send "random bin index" of X^n

▶ physically-degraded SI $(X_1^n, X_2^n) \rightarrow Y_1^n \rightarrow Y_2^n$ (Kaspi'94, Heegard/Berger'85) $R^* = H(X_2|Y_2) + H(X_1|Y_1X_2)$

 \rightarrow describe X_2^n to both decoders; describe X_1^n to decoder 1 which knows X_2^n, Y_1^n

Bounds on Minimum Description Rate

Achievability:

$$R^{\star} \leq \min_{W} \left\{ \max \left\{ I(W; X_1 X_2 | Y_1), I(W; X_1 X_2 | Y_2) \right\} + H(X_1 | W Y_1) + H(X_2 | W Y_2) \right\}$$

 \rightarrow send a "quantization" W^n to both decoders; then send X_1^n to Decoder 1 which knows W^n, Y_1^n and send X_2^n to Decoder 2 which knows W^n, Y_2^n

Converses:

• Reveal SI Y_2^n to Decoder $1 \Rightarrow$ physically degraded setup

$$R^{\star} \ge H(X_2|Y_2) + H(X_1|X_2Y_1Y_2)$$

Single-decoder lower bound:

$$R^{\star} \ge \max_{i \in \{1,2\}} H(X_i | Y_i)$$

Definition

 Y_1 is conditionally less noisy than Y_2 given X_2 , $(Y_1 \succeq Y_2 | X_2)$, if

 $I(U; Y_1|X_2) > I(U; Y_2|X_2)$

for all $U \rightarrow (X_1, X_2) \rightarrow (Y_1, Y_2)$.

 $\blacktriangleright \text{ If the SI is physically degraded } (X_1, X_2) \multimap -Y_1 \multimap -Y_2 \qquad \Bigg\} \Longrightarrow (Y_1 \succeq Y_2 | X_2)$

 \blacktriangleright If $X_1 \rightarrow -X_2 \rightarrow -Y_2$

Result: Minimum Description Rate for Conditionally Less-Noisy SI

Timo/Oechtering/Wigger'12

Lemma (New Converse)

If $(Y_1 \succeq Y_2 | X_2)$, then

 $R^{\star} \ge H(X_2|Y_2) + H(X_1|X_2Y_1)$

Theorem (Converse tight when also $H(X_2|Y_1) \leq H(X_2|Y_2)$) If $(Y_1 \succeq Y_2|X_2)$ and $H(X_2|Y_1) \leq H(X_2|Y_2)$, then $R^* = H(X_2|Y_2) + H(X_1|X_2Y_1)$

(achievability presented 2 slides ago, $W = X_2$)

Example: SI Conditionally Less-Noisy but not Physically Degraded

- X_2, Z independent Bernoulli-1/2 and-1/3
- $\blacktriangleright X_1 = X_2 \oplus Z$
- SI Y_1 and Y_2 defined by channels

• $H(X_2|Y_1) = 2/3 < H(X_2|Y_2) = H_b(1/4) \approx 0.8113$

Minimum description rate:

$$R^{\star} = H_b(1/4) + H_b(1/3).$$

Converse based on Entropy-Characterization Problem

- Converse for physically degraded SI does not apply/cannot be extended
- Converse for conditionally less-noisy SI relies on:

Lemma (Entropy-Characterization Lemma)

Assume

$$(R^n, S_1^n, S_2^n, T^n, L^n)$$
 IID $\sim (R, S_1, S_2, T, L)$

and

$$J \multimap (R^n, L^n) \multimap (S_1^n, S_2^n, T^n).$$

There exists a W with cardinality constraint $|W| \leq |\mathcal{R}||\mathcal{L}|$ such that

 $I(J; S_2^n | L^n) - I(J; S_1^n | L^n) = n (I(W; S_2 | L) - I(W; S_1 | L))$

and $W \rightarrow (R, L) \rightarrow (S_1, S_2, T)$.

Proof of lemma by Kramer's telescoping identity or Csiszar's sum-identity

We can extend our result on minimum description length to:

- ▶ $K \ge 2$ decoders
- \blacktriangleright Partially lossy case \rightarrow one decoder needs only a lossy reconstruction of its source
- \blacktriangleright Successive Refinement \rightarrow one decoder obtains an additional private message

Part III:

Utility of Encoder-SI (Lossless Kaspi/Heegard-Berger Problem)

Utility of Encoder-SI: Single Decoder

- Here: $M(X^n, Y^n)$
- ▶ R^{\star}_{cogn} : minimum achievable rate with encoder-SI (R^{\star}_{ign} without encoder-SI)
- ▶ R^{\star}_{cogn} with source X^n equals R^{\star}_{ign} with modified source (X^n, Y^n)

- ▶ Lossless case: $R^{\star}_{cogn} = R^{\star}_{ign} = H(X|Y) \rightarrow \text{encoder-SI useless!}$
- Lossy case: R^{*}_{cogn} ≤ R^{*}_{ign} = R^{*}_{WZ} → encoder-SI can help! (not in Quadratic-Gaussian setup)

Heegard-Berger Setup with 2 Decoders, 2 Sources, Encoder-SI

- ▶ With encoder-SI: $M(X_1^n, X_2^n, Y_1^n, Y_2^n) \rightarrow \text{minimum description rate } R_{cogn}$
- ▶ Without encoder-SI: $M(X_1^n, X_2^n) \rightarrow \text{minimum description rate } R_{ign}$
- R_{cogn} with sources X_1^n and X_2^n equals R_{ign} with modified sources (X_1^n, Y_1^n) and (X_2^n, Y_2^n)

Can
$$R^{\star}_{\text{cogn}} < R^{\star}_{\text{ign}}$$
 ?

- Yes, for lossy case, e.g., for Gaussian sources and physically degraded Gaussian SI (Kaspi'94, Perron/Diggavi/Telatar'06)
- ▶ No, for lossless case for (Sgarro'77):

▶ equal sources:
$$X_1^n = X_2^n$$

▶ complementary SI: $Y_1^n = X_2^n$ and $Y_2^n = X_1^n$

$$\Rightarrow R_{cogn}^{\star} = R_{ign}^{\star}$$

General lossless case?

Theorem (Laich/Wigger'13)

Encoder-SI useless when:

- physically degraded SI: $(X_1, X_2) \rightarrow -Y_1 \rightarrow -Y_2$
- X₁→−(X₂, Y₁)→−Y₂ and H(X₂|Y₁) ≤ H(X₂|Y₂) (subset of conditionally less-noisy SI)
- "Noisy Complementary SI": $X_2 \rightarrow -(X_1, Y_1) \rightarrow -Y_2$ and $X_1 \rightarrow -(X_2, Y_2) \rightarrow -Y_1$

Ex:
$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim \mathsf{DSBS}(p), \quad Y_1 = \begin{cases} X_2 & E_1 = 0 \\ ? & E_1 = 1 \end{cases}, \quad Y_2 = \begin{cases} X_1 & E_2 = 0 \\ ? & E_2 = 1 \end{cases}$$

Result: Encoder-SI Useful for following example!

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim \mathsf{DSBS}(p); \qquad \tilde{Y}_k = \begin{cases} X_1, X_2 & \text{if } E_k = 0 \\ ? & \text{if } E_k = 1 \end{cases}; \qquad Y_k = (\tilde{Y}_k, E_1, E_2)$$

where

$$\Pr[E_1 = 1, E_2 = 0] = q;$$
 $\Pr[E_1 = 0, E_2 = 1] = 1 - q;$ $q \le 1/3$

Encoder-SI strictly decreases minimum description rate! $R^{\star}_{cogn} = H(X_2|Y_2) + H(X_1|X_2Y_1Y_2) = 1 - q$ $R^{\star}_{ign} = H(X_2|Y_2) + H(X_1|X_2Y_1) = 1 - q + qH_b(p)$

With Enc-SI:

1. describe (X_2^n, Y_2^n) to both decoders \rightarrow describing also Y_2^n needs no extra rate (!) since $H(X_2|Y_2) = H(X_2Y_2|Y_2) \ge H(X_2Y_2|Y_1)$;

2. describe X_1^n to Decoder 1 which knows X_2^n, Y_1^n, Y_2^n

Result: Encoder-SI Useful for following example!

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim \mathsf{DSBS}(p); \qquad \tilde{Y}_k = \begin{cases} X_1, X_2 & \text{if } E_k = 0 \\ ? & \text{if } E_k = 1 \end{cases}; \qquad Y_k = (\tilde{Y}_k, E_1, E_2)$$

where

$$\Pr[E_1 = 1, E_2 = 0] = q;$$
 $\Pr[E_1 = 0, E_2 = 1] = 1 - q;$ $q \le 1/3$

Encoder-SI strictly decreases minimum description rate! $R^{\star}_{cogn} = H(X_2|Y_2) + H(X_1|X_2Y_1Y_2) = 1 - q$ $R^{\star}_{ign} = H(X_2|Y_2) + H(X_1|X_2Y_1) = 1 - q + qH_b(p)$

- in our scheme Decoder 1 learns (X_1^n, X_2^n)
- ▶ scheme & rates apply also to degraded source sets where Dec. 1 needs (X_1^n, X_2^n)

Result: Even Partial (One-Sided) Encoder-SI can be Strictly Useful

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim \mathsf{DSBS}(p); \qquad Y_1 = \begin{cases} X_1 & \text{if } E_1 = 0 \\ ? & \text{if } E_1 = 1 \end{cases}; \qquad Y_2 = \begin{cases} X_2, E_1 & \text{if } E_2 = 0 \\ ?, E_1 & \text{if } E_2 = 1 \end{cases}$$

where

$$q_2 \triangleq \mathsf{Pr}[E_2 = 1]; \qquad q_1 \triangleq \mathsf{Pr}[E_1 = 1]; \qquad \mathsf{Pr}[E_1 = E_2 = 1] = q_e$$

 $R_{\text{partial-cogn}}^{\star} = q_2 + H_b(p) + \max\left\{0, (q_1 - q_2)(1 - H_b(p)) - (q_2 - q_e)H_b(p)\right\}$ $R_{\text{ign}}^{\star} = q_2 + H_b(p) + \max\left\{0, (q_1 - q_2)(1 - H_b(p))\right\}.$

 \rightarrow if $q_2 > q_1 > q_e$, then $~R^{\star}_{\text{partial-cogn}} < R^{\star}_{\text{ign}}$

Summary

Wyner-Ziv Problem with Lossy Encoder-Decoder Reconstruction-Constraints

- Rate-distortions function (single-letter) for discrete case
- Rate-distortions function for quadratic-Gaussian case

Minimum Description Rate for Lossless Heegard-Berger problem

- Solution for conditionally less noisy SI
- Also for partially lossy problem or successive refinement problem
- Converse with new "entropy-characterization lemma"

Utility of Encoder SI for 2-sources HB problem

- Encoder-SI strictly useful! Also with degraded source sets or partial encoder-SI
- Intuition: sometimes can describe SI Y_1^n to Decoder 2 for free!

Wyner-Ziv's Scheme

- Encoding:
 - Choose M, K s.t.

 $(Z^n(M,K),X^n) \in \mathcal{T}_{\epsilon}^{(n)}(P_{ZX})$

- Message M is bin-index!
- Decoding:
 - ▶ Binning phase: Look for \hat{K} s.t. $(Z^n(M, \hat{K}), Y^n) \in \mathcal{T}_{\epsilon}^{(n)}(P_{ZY})$
 - Estimation phase: $\hat{X}_{d,i} = \phi(Z_i(M, \hat{K}), Y_i)$

With high prob: $Z^n(M, K) = Z^n(M, \hat{K})$

Steinberg's Scheme

- Encoding:
 - ▶ Choose *M*, *K* s.t.

$$(Z^n(M,K),X^n) \in \mathcal{T}_{\epsilon}^{(n)}(P_{ZX})$$

- Message M is bin-index!
- $\blacktriangleright \hat{X}^n_{\mathsf{e}} = Z^n(M, K)$
- Decoding:
 - Binning phase: Look for \hat{K} s.t. $(Z^n(M,\hat{K}),Y^n)\in \mathcal{T}_{\epsilon}^{(n)}(P_{ZY})$
 - "Estimation phase": $\hat{X}^n_d = Z^n(M, \hat{K})$

Estimation phase independent of Y^n !

Our Scheme

- Encoding:
 - ▶ Choose *M*, *K* s.t.

$$(Z^n(M,K),X^n) \in \mathcal{T}_{\epsilon}^{(n)}(P_{ZX})$$

- Message M is bin-index!
- $\blacktriangleright \hat{X}^n_{\mathsf{e}} = \psi(Z_i(M, K), X_i)$
- Decoding:
 - ▶ Binning phase: Look for \hat{K} s.t. $(Z^n(M,\hat{K}),Y^n) \in \mathcal{T}_{\epsilon}^{(n)}(P_{ZY})$
 - Estimation phase: $\hat{X}_{d,i} = \phi(Z_i(M, \hat{K}), Y_i)$

Estimation phase can *moderately* depend on Y^n !

- Previous achievability fails (strong typicality!)
- New achievability: similar, but with coding over spheres

Converse for Discrete Case

$$\begin{array}{lll} \mathsf{Converse:} & R_{\mathsf{lossyCR}}(D_{\mathsf{d}}, D_{\mathsf{e}}) \geq \bar{R}(D_{\mathsf{d}}, D_{\mathsf{e}}) \triangleq & \min_{\substack{Z, \hat{X}_{\mathsf{d}}(Z,Y), \hat{X}_{\mathsf{e}}(Z,X) \\ \mathsf{s.t.} & Z \multimap - X \multimap - Y \\ \mathsf{E}[d_{\mathsf{d}}(X, \hat{X}_{\mathsf{d}})] \leq D_{\mathsf{d}} \\ \mathsf{E}[d_{\mathsf{e}}(\hat{X}_{\mathsf{d}}, \hat{X}_{\mathsf{e}})] \leq D_{\mathsf{e}} \end{array}$$

a) Relax source coding problem, i.e., relax 2. distortion constraint

Then: $R_{\text{lossyCR}}(D_d, D_e) \ge R_{\text{Relaxed}}(D_d, D_e)$

b) Converse to relaxed problem:

 $R_{\text{Relaxed}}(D_{d}, D_{e}) \geq \bar{R}(D_{d}, D_{e})$

Converse Step a): Relax Source-Coding Problem

original problem

1.
$$\overline{\lim_{n \to \infty}} \frac{1}{n} \sum_{i=1}^{n} \mathsf{E} \left[d_{\mathsf{d}}(X_{i}, \hat{X}_{\mathsf{d},i}) \right] \leq D_{\mathsf{d}}$$

2.
$$\overline{\lim_{n \to \infty}} \frac{1}{n} \sum_{i=1}^{n} \mathsf{E} \left[d_{\mathsf{e}}(\hat{X}_{\mathsf{d},i}, \hat{X}_{\mathsf{e},i}) \right] \leq D_{\mathsf{e}}$$

• Define $Z_i \triangleq (M, Y^{i-1}, Y^n_{i+1})$

Converse Step a): Relax Source-Coding Problem

relaxed problem

1.
$$\overline{\lim_{n \to \infty}} \frac{1}{n} \sum_{i=1}^{n} \mathsf{E} \left[d_{\mathsf{d}}(X_{i}, \hat{X}_{\mathsf{d}, i}) \right] \leq D_{\mathsf{d}}$$

2.
$$\overline{\lim_{n \to \infty}} \frac{1}{n} \sum_{i=1}^{n} \mathsf{E} \left[d_{\mathsf{e}}(\hat{X}_{\mathsf{d}, i}, \hat{X}_{\mathsf{e}, i}^{\star}) \right] \leq D_{\mathsf{e}}$$

• Define $Z_i \triangleq (M, Y^{i-1}, Y^n_{i+1})$

▶ Because of $X^n \rightarrow (Z_i, X_i) \rightarrow (Z_i, Y_i)$: new constraint 2. weaker

Converse Step b): Converse to Relaxed Problem

$$1. \quad \overline{\lim_{n \to \infty}} \ \frac{1}{n} \sum_{i=1}^{n} \mathsf{E} \left[d_{\mathsf{d}}(X_{i}, \hat{X}_{\mathsf{d}, i}) \right] \leq D_{\mathsf{d}}$$
$$2. \quad \overline{\lim_{n \to \infty}} \ \frac{1}{n} \sum_{i=1}^{n} \mathsf{E} \left[d_{\mathsf{e}}(\hat{X}_{\mathsf{d}, i}, \hat{X}^{*}_{\mathsf{e}, i}) \right] \leq D_{\mathsf{e}}$$

Converse Step b): Converse to Relaxed Problem

1.
$$\overline{\lim_{n \to \infty}} \frac{1}{n} \sum_{i=1}^{n} \mathsf{E} \left[d_{\mathsf{d}}(X_{i}, \hat{X}_{\mathsf{d}, i}) \right] \leq D_{\mathsf{d}}$$

2.
$$\overline{\lim_{n \to \infty}} \frac{1}{n} \sum_{i=1}^{n} \mathsf{E} \left[d_{\mathsf{e}}(\hat{X}_{\mathsf{d}, i}, \hat{X}^{*}_{\mathsf{e}, i}) \right] \leq D_{\mathsf{e}}$$

▶ By definition
$$Z_i \triangleq (M, Y^{i-1}, Y^n_{i+1}) : Z_i \multimap X_i \multimap Y_i$$

•
$$R_{\text{Relaxed}} \ge \frac{1}{n} H(M) \ge \ldots \ge \frac{1}{n} \sum_{i=1}^{n} I(X_i; Z_i | Y_i)$$

Converse Step b): Converse to Relaxed Problem

▶ By definition
$$Z_i \triangleq (M, Y^{i-1}, Y^n_{i+1}) : Z_i \multimap X_i \multimap Y_i$$

►
$$R_{\text{Relaxed}} \ge \frac{1}{n} H(M) \ge \ldots \ge \frac{1}{n} \sum_{i=1}^{n} I(X_i; Z_i | Y_i) \ge \frac{1}{n} \sum_{i=1}^{n} \bar{R}(D_{\mathsf{d},i}, D_{\mathsf{e},i})$$

 $\ge \bar{R}\left(\frac{1}{n} \sum_{i=1}^{n} D_{\mathsf{d},i}, \frac{1}{n} \sum_{i=1}^{n} D_{\mathsf{e},i}\right) \ge \bar{R}(D_{\mathsf{d}}, D_{\mathsf{e}})$

• $X \sim \mathcal{N}(0, \sigma_X^2)$

• Y = X + U, where $U \sim \mathcal{N}(0, \sigma_U^2)$ independent of X

► $d_d(x, \hat{x}_d) = (x - \hat{x}_d)^2$ and $d_e(\hat{x}_d, \hat{x}_e) = (\hat{x}_d - \hat{x}_e)^2$

$$R_{\mathsf{lossyCR}}(D_{\mathsf{d}}, D_{\mathsf{e}}) \geq \begin{cases} \left[\frac{1}{2}\log\left(\frac{\sigma_X^2 \sigma_U^2}{(\sigma_X^2 + \sigma_U^2) D_{\mathsf{d}}}\right)\right]^+, & \text{if } \sqrt{D_{\mathsf{e}} \sigma_U^2} \geq \min\left\{D_{\mathsf{d}}, \frac{\sigma_X^2 \sigma_U^2}{\sigma_X^2 + \sigma_U^2}\right\} \\ \left[\frac{1}{2}\log\left(\frac{\sigma_X^2}{\sigma_X^2 + \sigma_U^2} \frac{\sigma_U^2 + D_{\mathsf{d}} - 2\sqrt{\sigma_U^2 D_{\mathsf{e}}}}{D_{\mathsf{d}} - D_{\mathsf{e}}}\right)\right]^+, & \text{else.} \end{cases}$$

Converse in Quadratic-Gaussian Case, First Step

Step 1:
$$R_{\text{lossyCR}}(D_{d}, D_{e}) \ge \inf_{\substack{Z, \hat{X}_{d}(Z, Y), \hat{X}_{e}(Z, X) \\ \text{s.t.: } Z \to -X \to -Y \\ \mathsf{E}[(X - \hat{X}_{d})^{2}] \le D_{d} \\ \mathsf{E}[(\hat{X}_{d} - \hat{X}_{e})^{2}] \le D_{e}}$$

$$(1)$$

Step 2-: Evaluate RHS(1);

Converse in Quadratic-Gaussian Case, First Step

Step 1: $R_{\text{lossyCR}}(D_d, D_e) \ge h(X|Y) -$

 $\sup_{\substack{Z, \hat{X}_{d}(Z,Y), \hat{X}_{e}(Z,X)\\ \text{s.t.: } Z \to -X \to -Y\\ \text{E}[(X - \hat{X}_{d})^{2}] \le D_{d}\\ \text{E}[(\hat{X}_{d} - \hat{X}_{e})^{2}] \le D_{e}}$ (1)

Step 2-: Evaluate RHS(1); First Thoughts:

- Conditional Max-Entropy Theorem: Given $K_{XYZ\hat{X}_{d}\hat{X}_{e}}$ Gaussian tuple $(Z, \hat{X}_{d}(Z, Y), \hat{X}_{e}(Z, X))$ optimizes (1)
- ▶ Not $\forall K_{XYZ\hat{X}_{\mathsf{d}}\hat{X}_{\mathsf{d}}}$ the Gaussian tuple is valid because $\hat{X}_{\mathsf{d}}(Z,Y)$ and $\hat{X}_{\mathsf{e}}(Z,X)$
- If we relax $\hat{X}_{d}(Z, Y)$ and $\hat{X}_{e}(Z, X) \Rightarrow \mathsf{RHS}(1)=0$ (too low!)

Converse in Quadratic-Gaussian Case, Further Steps

Step 1:
$$R_{\text{lossyCR}}(D_{d}, D_{e}) \ge h(X|Y) - \sup_{\substack{Z, \hat{X}_{d}(Z,Y), \hat{X}_{e}(Z,X)\\\text{s.t.: } Z \multimap - X \multimap - Y\\ \mathsf{E}[(X - \hat{X}_{d})^{2}] \le D_{d}\\ \mathsf{E}[(\hat{X}_{d} - \hat{X}_{e})^{2}] \le D_{e}}$$

$$(1)$$

Step 2: RHS(1) lower bounded by:

$$h(X|Y) - \sup_{\substack{\hat{X}_{\mathsf{d}} \text{ s.t.:}\\\mathsf{E}[(X-\hat{X}_{\mathsf{d}})^2] \le D_{\mathsf{d}}\\\left|\mathsf{E}[(X-\hat{X}_{\mathsf{d}})U]\right| \le \sqrt{\sigma_U^2 D_{\mathsf{e}}}} h(X - \hat{X}_{\mathsf{d}}|Y - \hat{X}_{\mathsf{d}}, \hat{X}_{\mathsf{d}})$$
(2)

Step 3: (2) maximized by jointly Gaussian (\hat{X}_d, X, U) (cond. max-entropy thm)

Step 4: Evaluate (2) for jointly Gaussian (\hat{X}_d, X, U)

Step 2-I: Apply $\hat{X}_{\rm d}(Z,Y)$ to transform Objective Function

• Because $\hat{X}_{d}(Z, Y)$:

$$h(X|Y,Z) = h(X|Y,Z,\hat{X}_{\mathsf{d}}) = h(X - \hat{X}_{\mathsf{d}}|Y - \hat{X}_{\mathsf{d}}, Z, \hat{X}_{\mathsf{d}})$$
$$\leq h(X - \hat{X}_{\mathsf{d}}|X - \hat{X}_{\mathsf{d}} + U, \hat{X}_{\mathsf{d}})$$

Step 2-I:

$$\begin{split} R_{\mathsf{lossyCR}}(D_\mathsf{d}, D_\mathsf{e}) \geq h(X|Y) - & \sup_{\substack{Z, \hat{X}_\mathsf{d}(Z,Y), \hat{X}_\mathsf{e}(Z,X)\\ \mathsf{s.t.:} \ Z \multimap - X \multimap - Y\\ \mathsf{E}[(X - \hat{X}_\mathsf{d})^2] \leq D_\mathsf{d}\\ \mathsf{E}[(\hat{X}_\mathsf{d} - \hat{X}_\mathsf{e})^2] \leq D_\mathsf{e}} \end{split} h(X - \hat{X}_\mathsf{d} | X - \hat{X}_\mathsf{d} + U, \hat{X}_\mathsf{d}) \end{split}$$

Step 2-I: Apply $\hat{X}_{\rm d}(Z,Y)$ to transform Objective Function

• Because $\hat{X}_{d}(Z, Y)$:

$$h(X|Y,Z) = h(X|Y,Z,\hat{X}_{\mathsf{d}}) = h(X - \hat{X}_{\mathsf{d}}|Y - \hat{X}_{\mathsf{d}}, Z, \hat{X}_{\mathsf{d}})$$

$$\leq h(X - \hat{X}_{\mathsf{d}}|X - \hat{X}_{\mathsf{d}} + U, \hat{X}_{\mathsf{d}})$$

Step 2-I:

$$\begin{split} R_{\mathsf{lossyCR}}(D_\mathsf{d}, D_\mathsf{e}) \geq h(X|Y) - & \sup_{\substack{Z, \hat{X}_\mathsf{d}(Z,Y), \hat{X}_\mathsf{e}(Z,X)\\ \mathsf{s.t.:} \ Z \multimap - X \multimap - Y\\ \mathsf{E}[(X - \hat{X}_\mathsf{d})^2] \leq D_\mathsf{d}\\ \mathsf{E}[(\hat{X}_\mathsf{d} - \hat{X}_\mathsf{e})^2] \leq D_\mathsf{e}} \end{split} h(X - \hat{X}_\mathsf{d} | X - \hat{X}_\mathsf{d} + U, \hat{X}_\mathsf{d}) \end{split}$$

- ▶ Relax function-constraint now → Wyner-Ziv result (too loose)
- ▶ First need to use $\hat{X}_{e}(Z,X)$ to limit dependence of \hat{X}_{d} on U

Step 2-II: Apply $\hat{X}_{\rm e}(Z,X)$ to transform Constraints

▶
$$Z \multimap -X \multimap -Y = X + U \Rightarrow (X, Z)$$
 ind. of U

$$\hat{X}_{e}(Z, X) \& \text{ Constraint } \mathsf{E}\left[(\hat{X}_{d} - \hat{X}_{e})^{2}\right] \leq D_{e}: \left|\mathsf{E}\left[\hat{X}_{d} \cdot U\right]\right| = \left|\mathsf{E}\left[(\hat{X}_{d} - \hat{X}_{e})U\right]\right| \leq \sqrt{\sigma_{U}^{2}D_{e}}$$

$$(3)$$

Step 2-II: relax constraints

$$\begin{split} R_{\mathsf{lossyCR}}(D_\mathsf{d}, D_\mathsf{e}) \geq h(X|Y) - & \sup_{\substack{Z, \hat{X}_\mathsf{d}(Z,Y), \hat{X}_\mathsf{e}(Z,X)\\ \mathsf{s.t.:} \quad (Z,X) \text{ ind. of } U\\ \mathsf{E}[(X-\hat{X}_\mathsf{d})^2] \leq D_\mathsf{d} \\ & \left|\mathsf{E}[\hat{X}_\mathsf{d}U]\right| \leq \sqrt{\sigma_U^2 D_\mathsf{e}} \end{split} \\ \end{split}$$

Step 2-II: Apply $\hat{X}_{\rm e}(Z,X)$ to transform Constraints

▶
$$Z \multimap -X \multimap -Y = X + U \Rightarrow (X, Z)$$
 ind. of U

$$\hat{X}_{e}(Z, X) \& \text{ Constraint } \mathsf{E}\left[(\hat{X}_{d} - \hat{X}_{e})^{2}\right] \leq D_{e}: \left|\mathsf{E}\left[\hat{X}_{d} \cdot U\right]\right| = \left|\mathsf{E}\left[(\hat{X}_{d} - \hat{X}_{e})U\right]\right| \leq \sqrt{\sigma_{U}^{2}D_{e}}$$

$$(3)$$

Step 2-II: relax constraints

$$\begin{split} R_{\mathsf{lossyCR}}(D_{\mathsf{d}}, D_{\mathsf{e}}) \geq h(X|Y) - & \sup_{\substack{Z, \hat{X}_{\mathsf{d}}(Z,Y), \hat{X}_{\mathsf{e}}(Z,X) \\ \mathsf{s.t.:} \quad (Z,X) \text{ ind. of } U \\ \mathsf{E}[(X - \hat{X}_{\mathsf{d}})^2] \leq D_{\mathsf{d}} \\ & \left|\mathsf{E}[\hat{X}_{\mathsf{d}}U]\right| \leq \sqrt{\sigma_U^2 D_{\mathsf{e}}} \end{split}$$

Relax function constraints now