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Abstract—Consider distributed hypothesis testing over
multiple-access channels (MACs), where the receiver wishes
to maximize the type-II error exponent under a constrained
type-I error probability. For this setup, we propose a scheme
that combines hybrid coding with a MAC-version of Borades
unequal error protection. It achieves the optimal type-II error
exponent for a generalization of testing against independence
over an orthogonal MAC when the transmitters’ sources are
independent. In this case, hybrid coding can be replaced by the
simpler separate source-channel coding. The paper also presents
upper and lower bounds on the optimal type-II error exponent
for generalized testing against independence of Gaussian sources
over a Gaussian MAC. The bounds are close and significantly
larger than a type-II error exponent that is achievable using
separate source-channel coding.

I. INTRODUCTION

Consider the distributed hypothesis testing problem in
Fig. 1. Both transmitters and the receiver observe individual
source sequences and the transmitters communicate to the
receiver over a discrete memoryless multiple-access channel
(MAC). The joint distribution underlying the three sources
depends on the hypothesis H = 0 or H = 1. The goal of
the communication is that the receiver can decide on whether
H = 0 or H = 1. In this paper, the focus is on maximizing the
exponential decay of the probability of type-II error (declaring
H = 0 when H = 1) under a constrained probability of type-I
error (declaring H = 1 when H = 0).

Han and Amari [1] studied this problem when the MAC
consists of two individual noise-free bit-pipes from each of the
transmitters to the receiver. Rahman and Wagner [2] improved
the scheme in [1] for the special case known as testing
against conditional independence. This latter result has been
extended to orthogonal noisy MACs where each of the two
transmitters communicates to the receiver over an individual
discrete memoryless channel (DMC) [3].

The authors studied the general hypothesis testing problem
over a noisy point-to-point channel, i.e., a setup with only
a single transmitter and general joint distributions under the
two hypotheses [4]. That work presents an achievable error
exponent based on a scheme that combines Shimokawa-Han-
Amari’s hypothesis testing scheme [5] with Borade’s unequal
error protection (UEP) channel coding [6] by means of a
separation-based architecture. The resulting achievable error
exponent consists of three competing exponents where two
coincide with the two Shimokawa-Han-Amari exponents and
the third includes Borade’s miss-detection exponent.
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Fig. 1. Hypothesis testing over a noisy MAC

In this paper, we present a coding and testing scheme
for general distributed hypothesis testing over a MAC. Our
scheme combines hybrid coding [7] with a MAC-extension
of Borade’s unequal error protection idea [6]. The result-
ing achievable error exponent consists of nine competing
exponents: one of them is the exponent in [1], three are
associated with an incorrect decoding of the hybrid coding
scheme, another three exponents are associated with the UEP
mechanism, and two exponents with incorrect decoding and
UEP.

The proposed coding scheme is optimal when the trans-
mitters’ sources are independent, communication is over an
orthogonal MAC, and hypothesis testing is generalized testing
against independence. In generalized testing against indepen-
dence, the transmitters’ sources have same joint distribution
under both hypotheses and under H = 1 they are independent
of the receiver’s source.1 For this scenario, separate source-
channel coding suffices. This statement is shown to hold
more generally even when the transmitters’ sources are not
independent.

The paper also specializes the coding scheme to generalized
testing against independence of jointly Gaussian sources over
a Gaussian MAC. Numerical simulations show that the error
exponent achieved by our hybrid coding scheme is close to
a new upper bound on the optimal exponent. It significantly
improves over a similar scheme based on separate source-
channel coding.

1The test is thus a relaxed version of testing against independence where
the receiver’s source distribution is not required to be the same under both
hypotheses.



Notation: We mostly follow the notation in [8]. Moreover,
we use tp(·) to denote the joint type of a tuple. For a joint
type πAB over alphabets A × B, we denote by IπAB

(A;B)
the mutual information of a pair of random variables (A,B)
with probability mass function (pmf) πAB and by HπA

(A) and
HπAB

(A|B) the entropy and conditional entropy of A given
B. When it is unambiguous, we may abbreviate πAB by π.
The notation |PX − QX | denotes the total variation distance
between two distributions PX and QX on the random variable
X . We also abbreviate independent and identically distributed
by i.i.d. Logarithms are taken with respect to base 2.

II. SYSTEM MODEL

Consider a setup with two sensors that communicate to a
single decision center over a discrete memoryless multiple-
access channel (MAC), see Fig. 1. The channel is described
by the quadruple (W1 × W2,V,ΓV |W1,W2

), where W1 and
W2 denote the finite channel input alphabets, and V de-
notes the finite channel output alphabet. Each transmitter i
(i = 1, 2) observes the sequence Xn

i and produces channel
inputs Wn

i := (Wi,1, . . . ,Wi,n) as Wn
i = f

(n)
i (Xn

i ) by
means of a possibly stochastic encoding function f

(n)
i :

Xni →Wn. The receiver observes the corresponding channel
outputs V n := (V1, . . . , Vn) as well as the source sequence
Y n := (Y1, . . . , Yn). Under the null hypothesis

H = 0: (Xn
1 , X

n
2 , Y

n) i.i.d. ∼ PX1X2Y , (1)

and under the alternative hypothesis

H = 1: (Xn
1 , X

n
2 , Y

n) i.i.d. ∼ QX1X2Y , (2)

for two given pmfs PX1X2Y and QX1X2Y . The receiver should
decide on the hypothesis H. It thus produces the guess Ĥ =
g(n)(V n, Y n) using a decoding function Vn × Yn → {0, 1}.

Definition 1: For each ε ∈ (0, 1), an exponent θ is said ε-
achievable, if for each sufficiently large blocklength n, there
exist encoding and decoding functions (f (n), g(n)) such that
the corresponding type-I and type-II error probabilities at the
receiver

αn
∆
= Pr[Ĥ = 1|H = 0], (3)

βn
∆
= Pr[Ĥ = 0|H = 1], (4)

satisfy

αn ≤ ε, (5)

and

− lim
n→∞

1

n
log βn ≥ θ. (6)

The goal is to characterize the set of achievable type-II error
exponents θ.

III. CODING AND TESTING SCHEME

We describe a coding and testing scheme for distributed
hypothesis testing over a noisy MAC.
Preparations: Choose a sufficiently large blocklength n, aux-
iliary alphabets S1 and S2, and functions

fi : Si ×Xi →Wi, i ∈ {1, 2}. (7)

Define for each tuple (v, s1, s2, x1, x2) ∈ V×S1×S2×X1×X2

the shorthand notation

ΓV |S1S2X1X2
(v|s1, s2, x1, x2)

:= ΓV |W1,W2
(v|f1(s1, x1), f2(s2, x2)). (8)

Choose then a distribution PT1T2 over W1 ×W2, and for i ∈
{1, 2}, a conditional distribution PSi|XiT1T2

over Si so that:

I(S1;X1|T1, T2) < I(S1;S2, Y, V |T1, T2), (9a)
I(S2;X2|T1, T2) < I(S2;S1, Y, V |T1, T2), (9b)

I(S1, S2;X1, X2|T1, T2) < I(S1, S2;Y, V |T1, T2) (9c)

when these mutual informations and all subsequent mutual
informations in this section are evaluated according to the joint
pmf

PS1S2X1X2Y T1T2V = PT1T2 · PX1X2Y · PS1|X1T1T2

·PS2|X2T1T2
· ΓV |S1S2X1X2

. (10)

Further, choose µ > 0 and positive rates:

Ri = I(Si;Xi|T1, T2) + µ, i ∈ {1, 2}, (11)

so that the following three conditions hold:

R1 < I(S1;S2, Y, V |T1, T2), (12a)
R2 < I(S2;S1, Y, V |T2, T2), (12b)

R1 +R2 < I(S1, S2;Y, V |T1, T2) + I(S1;S2|T1, T2).
(12c)

Code Construction: Generate a pair of sequences Tn1 =
(T1,1, . . . , T1,n) and Tn2 = (T2,1, . . . , T2,n) by independently
drawing each pair (T1,k, T2,k) according to PT1T2(., .). For
i ∈ {1, 2}, construct a random codebook

CSi
=
{
Sni (mi) : mi ∈ {1, ..., b2nRic}

}
, (13)

superpositioned on (Tn1 , T
n
2 ) by independently drawing the k-

th component of each codeword according to the conditional
law PSi|T1T2

(·|xi, T1,k, T2,k). Reveal the realizations of the
codebooks and the realizations (tn1 , t

n
2 ) of (Tn1 , T

n
2 ) to all

terminals.
Transmitter i ∈ {1, 2}: Given source sequence Xn

i = xni , the
transmitter looks for an index mi that satisfies

(sni (mi), x
n
i , t

n
1 , t

n
2 ) ∈ T nµ/2(PSiXiT1T2). (14)

If successful, it picks one of these indices uniformly at random
and sends the sequence wni over the channel, where

wi,k = fi(si,k(mi), xi,k), 1 ≤ k ≤ n,

and where si,k(mi) denotes the k-th component of codeword
sni (mi). Otherwise, Transmitter i sends tni over the channel.



Receiver: Assume that the receiver observes the sequences
V n = vn and Y n = yn. It first searches for a pair of indices
(m′1,m

′
2) that satisfies the condition:

Htp(sn1 (m′
1),sn2 (m′

2),yn,ln1 ,l
n
2 ,v

n)(S1, S2|Y, T1, T2, V )

= min
m̃1,m̃2

Htp(sn1 (m̃1),sn2 (m̃2),yn,ln1 ,l
n
2 ,v

n)(S1, S2|Y, T1, T2, V ).

(15)

It picks one such pair at random and checks whether

(sn1 (m′1), sn2 (m′2), yn, tn1 , t
n
2 , v

n) ∈ T nµ (PS1S2Y T1T2V ). (16)

If successful, it declares Ĥ = 0. Otherwise, it declares Ĥ = 1.

IV. RESULTS ON THE ERROR EXPONENT

The coding and testing scheme described in the previous
section yields Theorem 1 ahead. For given (conditional) pmfs
PT1T2 , PS1|X1T1T2

, and PS2|X2T1T2
, and functions f1 and f2

as in (7), let the conditional and joint pmfs ΓV |S1S2X1X2
and

PS1S2X1X2YW1W2V T1T2
be as in (8) and (10). Define also

Γ
(1)
V |T1S2X2

(v|t1, s2, x2) := ΓV |W1W2
(v|t1, f2(s2, x2)), (17)

Γ
(2)
V |S1X1T2

(v|s1, x1, t2) := ΓV |W1W2
(v|f1(s1, x1), t2), (18)

Γ
(12)
V |T1T2

(v|t1, t2) := ΓV |W1W2
(v|t1, t2), (19)

and the following nine exponents:

θstandard := min
P̃S1S2X1X2Y T1T2V :

P̃SiXiT1T2
=PSiXiT1T2

, i∈{1,2},
P̃S1S2Y T1T2V =PS1S2Y T1T2V

D
(
P̃S1S2X1X2Y T1T2V ‖PS1|X1T1T2

PS2|X2T1T2

·QX1X2Y PT1T2ΓV |S1S2X1X2

)
,

(20)
θdec,1 := min

P̃S1S2X1X2Y T1T2V :

P̃SiXiT1T2
=PSiXiT1T2

, i∈{1,2},
P̃S2Y T1T2V =PS2Y T1T2V

H(S1|S2,Y,T1,T2,V )≤HP̃ (S1|S2,Y,T1,T2,V )

D
(
P̃S1S2X1X2Y T1T2V ‖PS1|X1T1T2

PS2|X2T1T2

·QX1X2Y PT1T2ΓV |S1S2X1X2

)
+I(S1;Y, V |S2, T1, T2)− I(S1;X1|S2, T1, T2), (21)

θdec,2 := min
P̃S1S2X1X2Y T1T2V :

P̃SiXiT1T2
=PSiXiT1T2

, i∈{1,2},
P̃S1Y T1T2V =PS1Y T1T2V

H(S2|S1,Y,T1,T2,V )≤HP̃ (S2|S1,Y,T1,T2,V )

D
(
P̃S1S2X1X2Y T1T2V ‖PS1|X1T1T2

PS2|X2T1T2

·QX1X2Y PT1T2ΓV |S1S2X1X2

)
+I(S2;Y, V |S1, T1, T2)− I(S2;X2|S1, T1, T2), (22)

θdec,12 := min
P̃S1S2X1X2Y T1T2V :

P̃SiXiT1T2
=PSiXiT1T2

, i∈{1,2},
P̃Y T1T2V =PY T1T2V

H(S1,S2|Y,T1,T2,V )≤HP̃ (S1,S2|Y,T1,T2,V )

D
(
P̃S1S2X1X2Y T1T2V ‖PS1|X1T1T2

PS2|X2T1T2

·QX1X2Y PT1T2
ΓV |S1S2X1X2

)
+I(S1, S2;Y, V |T1, T2)− I(S1, S2;X1, X2|T1, T2), (23)

θmiss,1a := min
P̃S2X2Y T1T2V :

P̃S2X2T1T2
=PS2X2T1T2

P̃Y T1T2V =PY T1T2V

H(S2|Y,T1,T2,V )≤HP̃ (S2|Y,T1,T2,V )

D
(
P̃S2X2Y T1T2V ‖PS2|X2T1T2

QX2Y PT1T2
Γ

(1)
V |T1S2X2

)
+I(S1, S2;V, Y |T1, T2)− I(S1, S2;X1, X2|T1, T2), (24)

θmiss,1b := min
P̃S1S2X2Y T1T2V :

P̃S2X2T1T2
=PS2X2T1T2

P̃S2Y T1T2V =PS2Y T1T2V

D
(
P̃S2X2Y T1T2V ‖PS2|X2T1T2

QX2Y PT1T2
Γ

(1)
V |T1S2X2

)
+I(S1;V, Y |S2, T1, T2)− I(S1;X1|S2, T1, T2), (25)

θmiss,2a := min
P̃S1X1Y T1T2V :

P̃S1X1T1T2
=PS1X1T1T2

P̃Y T1T2V =PY T1T2V

H(S1|Y,T1,T2,V )≤HP̃ (S1|V,Y,T1,T2)

D
(
P̃S1X1Y V T1T2

‖PS1|X1T1T2
QX1Y PT1T2

Γ
(2)
V |S1X1T2

)
+I(S1, S2;V, Y |T1, T2)− I(S1, S2;X1, X2|T1, T2), (26)

θmiss,2b := min
P̃S1X1Y T1T2V :

P̃S1X1T1T2
=PS1X1T1T2

P̃S1Y T1T2V =PS1Y T1T2V

D
(
P̃S1X1Y T1T2V ‖PS1|X1T1T2

QX1Y PT1T2
Γ

(2)
V |S1X1T2

)
+I(S2;V, Y |S1, T1, T2)− I(S2;X2|S1, T1, T2), (27)

θmiss,12 := EPT1T2

[
D(PY V |T1T2

‖QY Γ
(12)
V |T1T2

)
]

+I(S1, S2;Y, V |T1, T2)− I(S1, S2;X1, X2|T1, T2), (28)

where mutual informations and the conditional pmf PV Y |T1T2

are calculated according to the joint pmf PS1S2X1X2Y V T1T2

in (10).

Theorem 1: Error exponent θ ≥ 0 is achievable, if it satisfies

θ ≤ max min
{
θstandard, θdec,1, θdec,2, θdec,12,

θmiss,1a, θmiss,1b, θmiss,2a, θmiss,2b, θmiss,12
}
,

(29)

where the maximization is over all (conditional) pmfs PT1T2 ,
PS1|X1T1T2

, and PS2|X2T1T2
, and functions f1 and f2 as in (7)

so that the conditions in (9) are satisfied with strict inequalities
“<” replaced with non-strict inequalities “≤”.

Proof: See [10].

Remark 1: The error exponents in the preceding theorem are
obtained by means of the hybrid coding scheme described in
the previous section III. As usual, choosing the auxiliary ran-
dom variables S1 = (W1, S̄1) and S2 = (W2, S̄2) with the tu-
ple (S1, S2, T1, T2) independent of the tuple (S̄1, S̄2, X1, X2),



is equivalent to replacing the hybrid coding scheme by a
separate source-channel coding scheme. Specifically, S̄1, S̄2

then correspond to the source coding random variables and
(T1, T2,W1,W2) to the channel coding random variables.

Similarly, choosing the auxiliary random variables S1 and
S2 constant and W1 = f1(X1) and W2 = f2(X2), corresponds
to uncoded transmission.

It can be shown that in the MAC setup, the missed-detection
exponents are sometimes not active. This is in particular the
case for the following case of generalized testing against
conditional independence.

Corollary 1: Consider the generalized testing against con-
ditional independence scenario where Y n = (Ȳ n, Zn) and

H = 0: (Xn
1 , X

n
2 , Z

n, Ȳ n) i.i.d. ∼ PX1X2ZȲ , (30)
H = 1: (Xn

1 , X
n
2 , Z

n, Ȳ n) i.i.d. ∼ PX1X2Z ·QȲ |Z . (31)

In this case, any error exponent θ ≥ 0 is achievable that
satisfies

θ ≤ max
(
EPZV

[D(PȲ |ZV ‖QȲ |Z)
]

+ I(S1, S2; Ȳ |Z, V )
)
.

(32)
where the maximization is over all (conditional) pmfs PS1|X1

,
and PS2|X2

, and functions f1 and f2 that satisfy the following
conditions:

I(S1;X1|S2, Z) ≤ I(S1;V |S2, Z), (33a)
I(S2;X2|S1, Z) ≤ I(S2;V |S1, Z), (33b)

I(S1, S2;X1, X2|Z) ≤ I(S1, S2;V |Z), (33c)

and where all the mutual informations and the conditional pmf
PȲ |ZV need to be calculated with respect to the joint pmf

PS1S2X1X2Ȳ ZV = PS1|X1
· PS2|X2

· PX1X2Ȳ Z · ΓV |S1S2X1X2
.

(34)

Proof: See [10].
For testing against conditional independence, i.e.,

QȲ |Z = PȲ |Z , (35)

with communication over noiseless bit-pipes of given rates,
Corollary 1 recovers as a special case the result in [2]. When
specialized to separate source-channel coding, it also recovers
the achievable exponent in [3] for testing against independence
over an orthogonal MAC, i.e., over a channel where ΓV |W1W2

decomposes into two individual DMCs:

V = (V1, V2) (36a)
ΓV1V2|W1W2

= ΓV1|W1
· ΓV2|W2

, (36b)

for some choice of the DMCs ΓV1|W1
and ΓV2|W2

. Testing
against independence means that (35) holds as well as:

Z = ∅, (37a)
QȲ = PȲ . (37b)

The following theorem proves optimality of the exponent in
Corollary 1 for generalized testing against independent when
the sources are independent under both hypotheses:

PX1X2
= PX1

· PX2
(38)

Theorem 2: Consider generalized testing against indepen-
dence with independent sources when the communication
from the sensors to the decision center takes place over two
orthogonal DMCs. Thus, assume that (35)–(38) hold. If C1

and C2 denote the capacities of the two DMCs ΓV1|W1
and

ΓV2|W2
, then, the optimal error exponent is:

θ∗ = D(PY ‖QY ) + max
PS̄i|Xi

,PWi
,i∈{1,2}

I(S̄1;X1|S̄2)≤C1

I(S̄2;X2|S̄1)≤C2

I(S̄1,S̄2;X1,X2)≤C1+C2

I(S̄1, S̄2;Y ). (39)

Proof: See Appendix A.

We specialize above Theorem to an example with indepen-
dent Gaussian sources.2

Example 1: Let X1 and X2 be independent standard Gaus-
sians under both hypotheses. Under the null hypothesis,

H = 0: Y = X1 +X2 +N0, N0 ∼ N (0, σ2
0),

(40)

for an N0 independent of (X1, X2) and for a given nonnega-
tive variance σ2

0 > 0. Under the alternative hypothesis,

H = 1: Y ∼ N (0, σ2
y), independent of (X1, X2),

(41)

for a given nonnegative variance σ2
y > 0. Further assume an

orthogonal MAC as in (36) with the two individual DMCs
ΓV1|W1

and ΓV2|W2
having capacities C1 and C2.

The described setup is a special case of the setup considered
in Theorem 2. The error exponent in (39) evaluates to (for the
proof, see [10]):

θ∗ =
1

2
log

(
σ2
y

2−2C1 + 2−2C2 + σ2
0

)
+

(
2 + σ2

0

2σ2
y

− 1

2

)
· log e.

(42)

The preceding theorem showed that separate source-channel
coding is optimal for generalized testing against independence
over two orthogonal channels. The following proposition ex-
tends this result to all joint source distributions PX1X2

. The
proposition also provides a multi-letter characterization of the
optimal error exponent in this case.

Proposition 1: Consider testing against independence over
an orthogonal MAC, i.e., assume that (35)–(36) hold. Then,
the optimal error exponent is given by

θ∗ = D(PY ‖QY ) + lim
n→∞

1

n
max I(Sn1 , S

n
2 ;Y n), (43)

2Strictly speaking, the results first have to be extended to continuous
alphabets. But this is a technicality that we omit here.



where the maximization is over all PSn
1 |Xn

1
and PSn

2 |Xn
2

satisfying:

lim
n→∞

1

n
I(Xn

1 ;Sn1 |Sn2 ) ≤ C1, (44)

lim
n→∞

1

n
I(Xn

2 ;Sn2 |Sn1 ) ≤ C2, (45)

lim
n→∞

1

n
I(Xn

1 , X
n
2 ;Sn1 , S

n
2 ) ≤ C1 + C2. (46)

Proof: See [10].

V. A GAUSSIAN EXAMPLE WITH A CONVERSE BOUND

Consider a symmetric Gaussian setup where under both
hypotheses:

(X1, X2) ∼ N (0,KX1X2
) (47)

for a positive semidefinite covariance matrix

KX1X2 =

[
1 ρ
ρ 1

]
, 0 ≤ ρ ≤ 1. (48)

Assume as in Example 1 that under the null hypothesis,

H = 0: Y = X1 +X2 +N0, N0 ∼ N (0, σ2
0),

(49)

for an N0 independent of (X1, X2) and for σ2
0 > 0, and under

the alternative hypothesis,

H = 1: Y ∼ N (0, σ2
y), independent of (X1, X2),

(50)

for σ2
y > 0.

Communication takes place over the Gaussian MAC

V = W1 +W2 +N, (51)

where the noise N is zero-mean Gaussian of variance σ2 > 0,
independent of the inputs (W1,W2). Each transmitter’s input
sequence is subject to an average block-power constraint P .

The described setup corresponds to generalized testing
against independence. We can thus use Corollary 1 to obtain
an achievable error exponent for this problem. The above
choice of random variables yields the following result on the
achievable error exponent.

Corollary 2: For the described Gaussian setup any error
exponent θ ≥ 0 is achievable that satisfies the following
condition:

θ ≤
(
σ2

0 + 2 + 2ρ

2σ2
y

− 1

2

)
· log e

+ max
1

2
log

σ2
y

2ξ2(1+ρ)σ2

2ξ2(α−β)2·(1+ρ)+σ2(1+ρ+ξ2) + σ2
0

, (52)

where the maximization is over all ξ2, α2, β2, γ2 ≥ 0 such
that

γ2 + α2 + β2ξ2 ≤ P, (53)

and
(1 + ξ2)2 − ρ2

(1 + ξ2) · ξ2
≤
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Fig. 2. Upper and lower bounds on the optimal exponent θ∗ of the proposed
Gaussian example for ρ = 0.8, σ2

0 = 1, σ2
y = 1.5 and σ2 = 1.

σ2 + 2P − γ2 + 2α2ρ− (α·(1+ρ)+β·ξ2)2

1+ξ2

σ2 + 2(α−β)2·(1+ρ)ξ2

1+ρ+ξ2

, (54a)

(1 + ξ2)2 − ρ2

ξ4
≤ σ2 + 2P + 2α2ρ

σ2 + 2(α−β)2·(1+ρ)ξ2

1+ρ+ξ2

. (54b)

Proof: See [10].

The following theorem provides an upper bound on the
optimal error exponent.

Theorem 3: For the proposed Gaussian setup, the optimal
error exponent θ∗ satisfies

θ∗ ≤ 1

2
log

 σ2
y

2(1+ρ)σ2

2P (1+ρ)+σ2 + σ2
0


+

1

2

(
2 + 2ρ+ σ2

0

σ2
y

− 1

)
· log e. (55)

Proof: See [10].
Figure 2 compares the presented upper and lower bounds on
the optimal error exponent θ∗. They are very close for the
considered setup. For comparison, the figure also shows the
exponent that is achieved with the same choice of source
variables but with separate source-channel coding. That means,
by specializing the exponent in (52) to α = β = 0.

VI. CONCLUSION

In this work, distributed hypothesis testing over a MAC is
studied. A coding and testing scheme is proposed which com-
bines hybrid coding with Borade’s unequal error protection.
Optimality of the achievable error exponent is shown for some
special cases of generalized testing against independence. A
future work is to extend the proposed achievable scheme for
other communication scenarios such as broadcast channels.
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APPENDIX A
PROOF OF CONVERSE FOR THEOREM 2

All mutual informations are with respect to the distri-
bution under H = 0. Define S̄1,t

∆
= (V n1 , X

t−1
1 ) and

S̄2,t
∆
= (V n2 , X

t−1
2 ). Notice that the Markov chains S̄1,t →

X1,t → S̄2,t and S̄2,t → X2,t → S1,t hold. Define δ(ε) :=
H(ε)/n/(1− ε) as in [9]. Then:

θ ≤ 1

n(1− ε)
D(PV nY n|H=0||PV nY n|H=1) + δ(ε)

=
1

n(1− ε)
EPY n

[
D(PV n|Y n,H=0||PV n|Y n,H=1)

]
+

1

1− ε
·D(PY ‖QY ) + δ(ε)

=
1

n(1− ε)
EPY n

[
D(PV n|Y n,H=0||PV n|H=1)

]
+

1

1− ε
·D(PY ‖QY ) + δ(ε)

=
1

n(1− ε)
I(V n;Y n) +

1

1− ε
·D(PY ‖QY ) + δ(ε)

=
1

n(1− ε)

n∑
t=1

I(V n, Y t−1;Yt)

+
1

1− ε
·D(PY ‖QY ) + δ(ε)

=
1

n(1− ε)

n∑
t=1

I(V n, Y t−1;Yt)

+
1

1− ε
·D(PY ‖QY ) + δ(ε)

(a)

≤ 1

n(1− ε)

n∑
t=1

I(V n, Xt−1
1 , Xt−1

2 ;Yt)

+
1

1− ε
·D(PY ‖QY ) + δ(ε)

=
1

n(1− ε)

n∑
t=1

I(S̄1,t, S̄2,t;Yt)

+
1

1− ε
·D(PY ‖QY ) + δ(ε),

=
1

1− ε
I(S̄1, S̄2;Y ) +

1

1− ε
·D(PY ‖QY ) + δ(ε), (56)

where (a) follows from the Markov chain Y t−1 →
(V n, Xt−1

1 , Xt−1
2 ) → Yt. The last equality holds by defin-

ing a time-sharing random variable Q that is uniform over
{1, . . . , n} and S̄i := (Q,V ni , X

Q−1
i ) for i ∈ {1, 2} and

Y := YQ. Next, consider the following term,

I(Xn
1 ;V n1 |V n2 ) =

n∑
t=1

I(X1,t;V
n
1 |Xt−1

1 , V n2 )

(b)
=

n∑
t=1

I(X1,t;X
t−1
1 , V n1 |V n2 )

(c)
=

n∑
t=1

I(X1,t;X
t−1
1 , V n1 , X

t−1
2 |V n2 )

≥
n∑
t=1

I(X1,t;X
t−1
1 , V n1 |Xt−1

2 , V n2 )

=

n∑
t=1

I(X1,t; S̄1,t|S̄2,t)

= nI(X1; S̄1|S̄2) (57)

where (b) and (c) follow from the Markov chains X1,t →
V n2 → Xt−1

1 and X1,t → (V n1 , V
n
2 , X

t−1
1 ) → Xt−1

2 , respec-
tively. Both Markov chains hold because Xn

1 and Xn
2 are in-

dependent under both hypotheses and also the orthogonality of
the MAC. The last equality holds by defining Xi := (Q,Xi,Q)
for i ∈ {1, 2}. Similarly, we get

I(Xn
2 ;V n2 |V n1 ) ≥ nI(X2; S̄2|S̄1), (58)

I(Xn
1 , X

n
2 ;V n1 , V

n
2 ) ≥ nI(X1, X2; S̄1, S̄2). (59)

On the other hand, we have

I(Xn
1 ;V n1 |V n2 ) ≤ H(V n1 )−H(V n1 |Wn

1 , V
n
2 )

(d)
= H(V n1 )−H(V n1 |Wn

1 )

≤
n∑
t=1

I(W1,t;V1,t)

= nI(W1;V1)

≤ nC1, (60)

where (d) follows from the Markov chain V n1 → Wn
1 → V n2

and the orthogonality assumption. The last equality holds by
defining Wi := (Q,Wi,Q) and Vi = Vi,Q for i ∈ {1, 2}.
Similarly, we have

I(Xn
2 ;V n2 |V n1 ) ≤ nC2, (61)

I(Xn
2 , X

n
1 ;V n1 , V

n
2 ) ≤ nC1 + nC2. (62)

Combining these findings, concludes the proof of the converse.


