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Abstract—Coding and testing schemes and the corresponding
achievable type-II error exponents are presented for binary
hypothesis testing over two-hop relay networks. The schemes
are based on cascade source coding techniques and unanimous
decision-forwarding, the latter meaning that a terminal decides
on the null hypothesis only if all previous terminals have decided
on the null hypothesis. If the observations at the transmitter,
the relay, and the receiver form a Markov chain in this order,
then, without loss in performance, the proposed cascade source
code can be replaced by two independent point-to-point source
codes, one for each hop. The decoupled scheme (combined with
decision-forwarding) is shown to attain the optimal type-II error
exponents for various instances of “testing against conditional
independence.” The same decoupling is shown to be optimal also
for some instances of ‘“‘testing against independence,” when the
observations at the transmitter, the receiver, and the relay form a
Markov chain in this order, and when the relay-to-receiver link is
of sufficiently high rate. For completeness, the paper also presents
an analysis of the Shimokawa-Han-Amari binning scheme for the
point-to-point hypothesis testing setup.

I. INTRODUCTION

As part of the Internet of Things (IoT), sensor applications
are rapidly increasing, thanks to lower cost and better per-
formance of sensors. One of the major theoretical challenges
in this respect is sensor networks with multiple sensors col-
lecting correlated data, which they communicate to one or
multiple decision centers. Of special practical and theoretical
interest is to study the tradeoff between the quality of the
decisions taken at the centers and the required communication
resources. In this work, following the approach in [1], [2],
we consider problems where decision centers have to decide
on a binary hypothesis H = 0 or H = 1 that determines
the underlying joint probability mass function (pmf) of all
the terminals’ observations. Our goal is to characterize the set
of possible type-1I error exponents (i.e., the error exponent
in deciding #H = 0 when in fact # = 1) as a function of
the available communication rates such that the type-I error
probabilities (i.e., error probabilities of deciding 7 =1 when
in fact H = 0) vanish as the lengths of the observations
grow. Previous works on this exponent-rate region considered
communication scenarios over dedicated noise-free links from
one or many transmitters to a single decision center [1], [3],
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[4] or from a single transmitter to two decision centers [S]—
[7]. The hypothesis testing problem from a signal processing
perspective has been studied in several works [8]-[12]. Re-
cently, simple interactive communication scenarios were also
considered [13]-[15], as well as hypothesis testing over noisy
communication channels [5], [16], [17]. All these distributed
hypothesis testing problems are open in the general case;
exact solutions have only been found for instances of “testing
against independence” [1] and of “testing against conditional
independence” [4]. “Testing against independence” refers to
a scenario where the observations’ joint pmf under H = 1
is the product of the marginal pmfs under H# = 0, and
“testing against conditional independence” refers to a scenario
where this independence holds only conditional on some sub-
sequence that is observed at the receiver and that has the same
joint distribution with the sensor’s observations under both
hypotheses.

The focus of this paper is on the two-hop network depicted
in Fig. 1. We model a situation with three sensors and two
decision centers. The first terminal (the transmitter) models
a simple sensor that observes an n-length sequence X". The
second terminal (the relay) includes both a sensor observing
the n-length sequence Y” and a decision center which pro-
duces the guess 7:{,1, € {0,1}. Similarly, the third terminal
(the receiver) includes a sensor observing Z™ and a decision
center producing the guess H. € {0,1}. Communication is
directed and in two stages. The transmitter communicates
directly with the relay over a noise-free link of rate R > 0, but
it cannot directly communicate with the receiver, e.g., because
the receiver is too far away. Such a restriction is particularly
relevant for modern IoT applications where sensors are desired
to consume very little energy so as to last for decades without
the batteries being replaced. On the other hand, the receiver is
assumed to be sufficiently close to the relay so that the relay
can communicate directly with it over a noise-free link of rate
T > 0. The task of the relay is not only to communicate
information about its own observation to the receiver but also
to process and forward information that it receives from the
transmitter. Two-hop networks have previously been studied in
information theory for source coding or coordination. These
problems are open in general. Solutions to special cases were
presented in [18]-[25].

In this paper, we propose two coding and testing schemes
for binary hypothesis testing over the two-hop relay network.
The two schemes apply two different source coding schemes
for the two-hop relay network to convey quantization infor-
mation about the distributed observations to the relay and
the receiver, and combine these schemes with a unanimous
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Fig. 1. Hypothesis testing over a single-relay multi-hop channel

decision-forwarding strategy. In this latter strategy, each of
the terminals tests whether its reconstructed source sequences
are jointly typical with its own observation under the null
hypothesis H = 0. If the test is positive and the preceding
terminals have also decided on H = 0, then the terminal
declares this null hypothesis 7L = 0. Otherwise it declares
the alternative hypothesis #H = 1. In both cases, it forwards
its decision to the next terminal.

We characterize the relay and the receiver type-II error
exponents achieved by our schemes. Our first scheme employs
source coding without binning, which allows for a relatively
simple characterization of the achieved exponents. Our second
scheme employs source coding with binning and achieves
larger exponents in some cases. However, with binning, the
error exponent for 7:ly is characterized by two competing ex-
ponents and the exponent for H., by four competing exponents.
They are thus more complicated to evaluate.

In the second part of the manuscript, we focus on two
cases: the first is where X" — Y™ — Z" forms a Markov
chain under both hypotheses, and the second is where X" —
Z" — Y™ forms a Markov chain under both hypotheses.
The first case models an extreme situation where the relay
lies in between the transmitter and the receiver, and thus
the signals at the sensor and the receiver are conditionally
independent given the signal at the relay. In such a situation,
the two-hop network models, for example, short-range wireless
communication where the sensor’s signal only reaches the
relay but not the more distant receiver. The second case models
a situation where the receiver lies in between the sensor and
the relay, and thus the signals at the transmitter and the relay
are conditionally independent given the signal at the receiver.
In such a situation, the two-hop network models, for example,
communication in a cellular system where the relay is a
powerful base station and all communication goes through this
base station.

We show that, in the first case where X" — Y™ — 2™,
our schemes simplify considerably in the sense that the source
coding scheme for the two-hop relay network decouples into
two independent point-to-point source coding schemes. In
other words, it suffices to send quantization information about
X" from the transmitter to the relay and, independently
thereof, to send quantization information about Y™ from
the relay to the receiver (while also employing unanimous
decision-forwarding) This contrasts the general scheme where
the relay combines the quantization information about X"
with its own observation Y to create some kind of jointly
processed quantization information to send to the receiver.

The receiver error exponent achieved by the simplified scheme
equals the sum of the exponent at the relay and the exponent
achieved over the point-to-point link from the relay to the
receiver, but, to compute the second exponent, we modify the
pmf of the relay’s observation under H = 1 to being the
same as its pmf under H = 0. These simplified expressions
are proved to be optimal in different special cases of testing
against independence (achieved without binning) and testing
against conditional independence (with binning). The focus of
this paper is on weak converses where the type-I errors are also
required to vanish asymptotically as n — co. The existence of
a strong converse for one of these special cases, i.e., a proof
that the same exponents are optimal also when type-I error
probability € > 0 is tolerated, was recently proved in [26].

For the second case where X" — Z" — Y™, we present
optimality results (in the weak converse sense) for two special
cases. In the first special case, Py z is same under both
hypothesis, so Y” by itself is of no interest to the receiver. For
rates T > R, the optimal strategy is for the relay to ignore its
own observation and simply forward the transmitter’s message
to the receiver. Interestingly, this simple forwarding strategy
can become suboptimal when T' < R, because then the relay
can act as a “coordinator” to reduce the communication rate 7’
to the receiver. We present an example where the relay’s own
observation Y™ allows the relay to extract the relevant portion
of X™, and thus to reduce the required rate to the receiver 7. In
the second special case, Pxz is same under both hypothesis,
and for sufficiently large 7' the optimal strategy for the relay
is to ignore all communication from the transmitter. Again,
using an example, we show that for small 7 the transmitter
can be useful by playing the role of a coordinator who reveals
to the relay which portions of Y™ are relevant to the receiver.

Lastly, as a side-result, we also present a detailed analysis
of the Shimokawa-Han-Amari [3] coding and testing scheme
with binning for the point-to-point hypothesis testing problem.
Previously this analysis has only appeared in Japanese [27].

We conclude this introduction with remarks on notation and
an outline of the paper.

A. Notation

We mostly follow the notation in [28]. Random variables are
denoted by capital letters, e.g., X, Y, and their realizations by
lower-case letters, e.g., x, y. Script symbols such as & and
Y stand for alphabets of random variables, and X" and )"
for the corresponding n-fold Cartesian products. Sequences
of random variables (Xj, ..., X;) and realizations (z;, ..., ;)
are abbreviated by X7 and 2. When i = 1, then we also use
X7 and 27 instead of X7 and z7.

Generally, we write the probability mass function (pmf) of a
discrete random variable X as Px; but we use @) x to indicate
the pmf under hypothesis H = 1 when it is different from the
pmf under ‘H = 0. The conditional pmf of X given Y is
written as Px |y (or as x|y when H = 1). The distributions
of X™, Y™ and (X™,Y™) under the same hypothesis are
denoted by Pxn, Py~ and Pxnyn, respectively. The notation



P%5- denotes the n-fold product distribution, i.e., for every
(x™,y™) € X™ x Y™, we have:

Py (2™, y™) = [ [ Py (@i, 1) )
i=1

The term D(P||Q) stands for the Kullback-Leibler (KL)
divergence between two pmfs P and () over the same alphabet.
We use tp(-) to denote the joint type of a tuple. For a
joint type mapc over alphabet A x B x C, we denote by
In,5c(A; B|C) the mutual information assuming that the
random triple (A, B,C) has pmf mapc; similarly for the
entropy H , .. (A) and the conditional entropy H , .. (4| B).
Sometimes we abbreviate m4pc by 7. Also, when 74 p¢c has
been defined and is clear from the context, we write w4 or
map for the corresponding subtypes. When the type mapc
coincides with the actual pmf of a triple (A4, B, C'), we omit the
subscript and simply write H(A), H(A|B), and I(A; B|C).
For a given Px and a constant p > 0, the set of sequences
with the same type Px is denoted by 7"(Px). We use

T, (Px) to denote the set of p-fypical sequences in X™:

T, (Px) =

{x": ’{i:m;:x}—PX(m‘) < uPx(z), Vxe?(},
2

where |{i: x; = z}| is the number of positions where the
sequence z" equals x. Similarly, TM’"(PXY) stands for the set
of jointly p-typical sequences whose definition is as in (2)
with z replaced by (z,y).

The expectation operator is written as E[-]. The notation
U{a,...,b} is used to indicate a uniform distribution over
the set {a, ..., b}; for the uniform distribution over {0,1} we
also use B(1/2). The log function is taken with base 2. Finally,
we abbreviate left-hand side and right-hand side by LHS and
RHS.

B. Paper Outline

The remainder of the paper is organized as follows. Sec-
tion II presents the problem description. Section III presents a
coding and testing scheme without binning and the exponent
region it achieves. Section IV presents an improved scheme
employing binning and the corresponding achievable exponent
region. Sections V and VI study the proposed achievable
regions when the Markov chains X" — Y" — Z™ and
X" — Z™ — Y™ hold, respectively. The paper is concluded
in Section VII and by technical appendices.

II. DETAILED PROBLEM DESCRIPTION

Consider the multi-hop hypothesis testing problem with
three terminals in Fig. 1. The first terminal in the system, the
transmitter, observes the sequence X", the second terminal,
the relay, observes the sequence Y, and the third terminal, the
receiver, observes the sequence Z". Under the null hypothesis

H=0: (X", Y", Z") ~iid. Pxyz, 3)

whereas under the alternative hypothesis
H=1: (Xn,Yn,Zn) ~ ii.d. Qxyz, (4)

for two given pmfs Pxyz and Qxyz.

The problem encompasses a noise-free bit-pipe of rate
R from the transmitter to the relay and a noise-free bit
pipe of rate T' from the relay to the receiver. That means,
after observing X", the transmitter computes the message
M = ¢ (X™) using a possibly stochastic encoding function
o™ X" — {0, ...,|2™]} and sends it to the relay. The relay,
after observing Y™ and receiving M, computes the message
B = (bg(,”)(M, Y™) using a possibly stochastic encoding
function ¢y : Y™ x {0,...,[2"%|} — {0,..,[2"T|} and
sends it to the receiver.

The goal of the communication is that, based on their
own observations and the received messages, the relay and
the receiver can decide on the hypothesis 7. The relay thus
produces the guess

Hy =gV (Y™, M) )

using a guessing function g{ : Y™ x {0, ...., | 2" |} — {0,1},
and the receiver produces the guess

H, =g (2", B) (6)

using a guessing function ggn) : 27 x {0, ..., [2"T ]} — {0,1}.

Definition 1: For each € € (0,1), we say that the exponent-
rate tuple (1, 6, R, T) is e-achievable if there exists a sequence
of encoding and decoding functions (¢, (;S?E,n), gl,(,"), ggn’))

[l

n =1,2 ..., such that the corresponding sequences of type-I
and type-II error probabilities at the relay
. =Pr[H, = 1|H = 0], (7)
Byn : =Pr[H, = 0[H = 1], (8)
and at the receiver
Qi =Pr[H, = 1/H = 0], )
Bom : =Pr[H, = 0[H = 1], (10)
satisfy
ayn < €, (1)
Qzn <, (12)
and
— 1
— lim —logfByn > by, (13)
n—oo N
— 1
— lim —logfB,, >0.. (14)
n—oo N

Definition 2: For given rates (R, T), we define the exponent-
rate region £*(R,T) as the closure of all non-negative pairs
(6y,8,) for which (6,6, R,T) is e-achievable for every € €
(0,1).

Remark 1: In this paper we do not attempt to prove any
“strong converse.” A strong converse in hypothesis testing
would claim that the best achievable type-II error exponents
for a given type-I error probability € € (0,1) does not depend
on the value of e. For some special cases of the setting in
Fig. 1, a strong converse has recently been studied in [26].



III. A CODING AND TESTING SCHEME WITHOUT BINNING

In this section we present a first coding and testing scheme
and characterize the achieved exponent-rate region using a
relatively simple expression. The scheme is improved in
the next section; the exponent-rate region achieved by the
improved scheme is however more involved and includes
multiple competing exponents.

A. The Coding and Testing Scheme

Fix ¢ > 0, an arbitrary blocklength n, and joint conditional
pmfs Psyy x and Py gy over finite auxiliary alphabets S, U,
and V. Define the joint pmf

Psuvxyz = PxyzPsvuixPvisuy (15)

and the following nonnegative rates, which are calculated
according to the distribution in (15) and p:

Ry =I(X;5) + p, (16)
R, :=I(U; X|S) + u, 17
R, :=I(V;Y,U|S) + p. (18)

Later, we shall choose the joint distributions in such a way
that R > R; + Ry, and T > R + R,.
Code Construction: First, we randomly generate codewords

Cs:={S"(i): ie{l,...,[2""]}} (19)

by picking all entries i.i.d. according to Ps. Then, for each
i€{l,...,|2"F]}, we randomly generate codewords

Cu(@) :=={U"(jli): je{1,...,|2""]}} (20)

by choosing for each t € {1,...,n}and j € {1,..., 2"},
the ¢-th component U;(j|i) of codeword U™(j|i) indepen-
dently according to the conditional distribution Py g(-|S:(4)),
where S;(7) denotes the ¢-th component of the codeword
S™(i). For each i € {1,..., 2" ]}, generate also codewords

Cv (i) = {V"(kli): ke {1,...,[2""]}} 1)
by choosing for each t € {1,...,n} and k € {1,...,[2"Rv |}
the ¢-th component V;(k|i) of codeword V™ (k|i) indepen-
dently according to the conditional distribution Py g(-[S¢(4)).

Reveal the realizations {s™ ()}, {u™(j|¢)}, and {v"(k|i)}
of the random code constructions to all terminals.

Transmitter: Given that it observes the sequence X" = z",
the transmitter looks for a pair of indices (7, ) such that

(s (@), u" (j12), 2") € Tya(Psvx)-

If successful, it picks one such pair uniformly at random and
sends

(22)

M = (i, 5) (23)
to the relay. Otherwise, it sends M = 0.

Relay: Assume that the relay observes the sequence Y" =
y™ and receives the message M = m. If m = 0, it declares
7:ly = 1 and sends b = 0 to the receiver. Otherwise, it
decomposes m = (i,7) and looks for an index k such that

(s™ (@), u" (jlé),v" (kli), y™) € T)o(Psuvy). 24

If such an index k exists, the relay declares 7:Ly = 1 and sends
the pair

B = (i, k) (25)
to the receiver. Otherwise, it declares 7:Ly = 1 and sends the
message B = 0.

Receiver: Assume that the receiver observes Z" = z™ and
receives message B = b from the relay. If b = 0, the receiver
declares H. = 1. Otherwise, it decomposes b = (i, k) and
checks whether

(s"(),v"(kli), 2") € T (Psv z)- (26)
If the typicality check is successful, the receiver declares H, =
0. Otherwise, it declares H, = 1.

B. Achievable Exponent-Rate Region

We present the exponent region achieved by the preceding
scheme.

Given two conditional pmfs Psyx and Py|syy, define
Enobin(Psv)x» Pvisuy) as the set of all pairs (6,,0.) that
satisfy

_min
_ Psuxvy:

Psux=Psux
Psuy=Psuy

0, < D(Psuxy || PsuixQ@xy), (7)

0. <

min D(Psuvxy 7| Psuix PvisuyQxvyz),

Psuvxyz:
_Psux=Psux
Psuvy=Psuvy

Psvz=Psvz

(28)

where the joint pmf Pgyyxyz is defined as in (15) and
Psyx, Psyy, Psyvy and Pgyz are marginals of this pmf.
Define further the exponent region

gnobin (Rv T) = U

Psy|x,Pv|suy

Enobin(Psv x> Pvisuy)  (29)

where the union is over all pairs of conditional pmfs
(Psyu|x, Pyisuy) satisfying

R>I(S,U; X),

T > 1(X;S)+1(V;Y,U|S)

(30)
€29

and the mutual informations are again calculated according to
the joint pmf defined in (15).

Theorem 1 (Achievable Region without Binning): For any
pair of nonnegative rates R,T > 0, the set Eyopin(R,T) is
achievable:

gnobin(R7 T) g 5* (R7 T) (32)

Proof: See Appendix A. [ ]

In the above theorem, it suffices to consider auxiliary

random variables S, U, and V over alphabets S, U, and V

whose sizes satisfy: |S| < |X| + 4, [U| < |X]-|S] + 3 and

V| < |U|-|S]-|Y]+ 2. This follows by simple applications
of Caratheodory’s theorem.
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Fig. 2. Hypothesis testing over a point-to-point channel

IV. AN IMPROVED SCHEME WITH BINNING

In source coding, it is well known that binning can decrease
the required rate of communication when observations at dif-
ferent terminals are correlated. The same holds for hypothesis
testing. Before extending our coding and testing scheme from
the previous section to include binning, for completeness, we
provide a detailed proof of the Shimokawa, Han, and Amari
error exponent [3] achieved over a point-to-point link when
using binning. So far, a detailed proof was available only in
Japanese [27].

A. Point-to-Point Link

Consider the network in Fig. 2, which can be obtained as
a special case from the previously introduced two-hop relay
network by setting 7' = 0 and Z a constant that is the same
under both hypotheses. In this case, the exponent 6, cannot
be positive and is uninteresting. The system performance is
then characterized by the exponent 6,, and for the purpose
of this subsection, the relay can be regarded as the final
receiver. Therefore, in the remainder of this subsection, we
call the terminal that observes Y™ ‘“the receiver”. We make
the following definition:

Definition 3: Consider a single-hop system with only trans-
mitter and receiver. The exponent-rate function 0*(R) is the
supremum of all e-achievable error exponents for a given rate
R, ie.,

0" (R) :=sup {6, > 0: (0,0, R,0) is e-achievable Ve > 0}.
(33)

We recall the lower bound on 6*(R) in [3], after presenting
a coding and testing scheme that achieves this exponent. (The
presented scheme slightly deviates from the scheme in [3].)

1) Coding and Testing Scheme: Fix p > 0, a sufficiently
large blocklength n, and the conditional pmf Pg| x over a finite
auxiliary alphabet S. Define the joint pmf

Psxy = Pxy Pgs|x (34)

and, if R > I(S;X) define the nonnegative rate R = 0 and
otherwise choose R’ such that
R+ R >1(X;9)+u,
R < I(Y;S).

(35)
(36)

In the following coding scheme, when R < I(S;X), we
distribute the s™-codewords in bins. Instead of sending the
complete index of the chosen s”, the transmitter sends only
its bin number to the receiver. The receiver then selects the
s™ codeword from the indicated bin that is “most-compatible”
with its local observation Y™, and makes its decision based on

this selected codeword. By performing binning, the transmitter
and the receiver can use a smaller communication rate, but the
error probabilities may be higher.

Code Construction: Construct a random codebook

Cg:={8"(m,0): me{l,.. |2"F|},0e{1,. ., |2"F|}},
(37)

by drawing all entries of all codewords i.i.d. according to the
chosen distribution Pg.

Reveal the realization {s™(m,¢)} of the random codebook
to both terminals.

Transmitter: Given that it observes the sequence X" = z",

the transmitter looks for indices (m, ¢) such that

(s™(m, £),2") € Tpyo(Psx)-

If successful, it picks one of these indices uniformly at random
and sends the index M = m to the relay. Otherwise, it sends
M =0.

(38)

Receiver: Assume that the receiver observes YY" = y™ and
receives the message M = m from the transmitter. If m = 0,
the receiver declares H = 1. Otherwise, it looks for an index
¢ e {1,..,[2"F'|} that minimizes Hyp(sn (m,err),ym) (S]Y)
among all ¢ satisfying s™(m, ") € T"(Ps)." Then it checks
whether

(s"(m, £),y") € T7(Psy),

and declares H = 0 if this typicality check is successful and

H = 1 otherwise.

2) Result on the Error Exponent: The scheme described in
the previous subsection yields the following lower bound on
the exponent-rate function.

Theorem 2 ( [3]): For every choice of the conditional distri-
bution Pg|x satisfying that R > I(S; X|Y), the exponent-rate
function 6*(R) is lower-bounded as

0*(R) > min min D(Psxy || PsixQ@xv),
_Psxvy:

Psx=Psx

Psy=Psy

min D(ngyHPS‘XQxy) + R — I(S; X|Y)}
_Psxvy:
Psx=Psx
Py =Py
H(S[Y)<Hpg (S]Y)
(39)

For a choice of Pg|x such that R > I(S; X), the bound can
be tightened to

0*(R)> min D(Psxy|PsxQxv),
_Psxvy:
Psx=Psx

Psy=Psy

(40)

Here mutual informations and the entropy H(S|Y) in the
miniminization constraint are calculated according to the joint
pmf in (34) and the chosen conditional pmf Pg)x.

INotice that because m # 0, there exists at least one codeword
s™(m, ') € T, (Ps) in bin m.



Proof: When R > I(S;X), our scheme does not use
binning and an analysis similar to Appendix A (the analysis
of the multi-hop scheme without binning) yields the desired
result. When R < I(S;X), our scheme uses binning and is
analyzed in Appendix B. ]

In the above theorem, it suffices to consider auxiliary
random variables S over alphabets S whose sizes satisfy:
S| < |X| + 2.

The inequality in Theorem 2 holds with equality in the
special cases of ftesting against independence [1], where
Qxy = Px - Py,> and of testing against conditional inde-
pendence [4], where Y decomposes as Y = (Y, Yy) and
Qxvevy = Pxve Pry|ve-

B. The Two-Hop Relay Network

We turn back to the two-hop relay network and propose an
improved coding and testing scheme employing binning.

1) Coding and Testing Scheme: Fix p > 0, an arbitrary
blocklength n, and joint conditional pmfs Psy;x and Py syy
over finite auxiliary alphabets S, U/, and V. Define the joint
pmf Psyvxyz = PXYZPSU\XPV\SUY and the following
nonnegative rates, which are calculated according to the cho-
sen distribution,

R, =I1(X;S) + p, (41a)

Ry, + R, = I(U; X|S) + p, (41b)

R, + R, =I1(V;Y,U|S) + u, (41c)

R, < I(U;Y|9), (41d)

R, < I(V;Z|9). (41e)

The joint distributions are chosen in such a way that

R>R,+ R, (42)

T > Rs + R,. (43)

In the following coding scheme, the transmitter distributes
the ©™ codewords in bins, and sends the bin number of the
chosen u™ to the relay. The relay looks in that bin for the u"
codeword that is “most compatible” with its local observation
Y™, Similarly, the relay and the receiver perform binning on
v™. Note that for simplicity and ease of exposition, we do not
bin the s™ codewords.

Code Construction: Construct a random codebook

Cs={S"(i): ie{l,.. 2" |}}

by selecting each entry of the n-length codeword s™(i) in
an i.i.d. manner according to the pmf Ps. Then, for each i,
generate random codebooks

and V"(k, f|i) independently using the conditional pmfs
Pyys(+|S¢(i)) and Py s(-|S¢(i)), where S(i) denotes the t-
th component of codeword S™ (7).
Reveal the realizations {s™(i)}, {u™(j,eli)},
{v"™(k, f|?)} of the random codebooks to all terminals.

and

Transmitter: Given that the transmitter observes the se-
quence X" = z™, it looks for indices (i, j, e) such that

(Sn(z)vun(.]a €|Z)7xn) € 7;7/4(PSUX) (44)

If successful, it picks one such triple uniformly at random,
and sends the first two indices of the triple:

M = (i,j) (45)

to the relay. Otherwise, it sends M = 0.

Relay: Assume that the relay observes the sequence
Y™ = y" and receives the message M = m. If m =
0, it declares 7:Ly = 1 and sends B = 0 to the re-
ceiver. Otherwise, it looks for an index e’ which mini-
mizes Hy(sn (i),un (j,e]i),ym) (U]S,Y") among all e” satisfying
(s"(i),u™(j,€"]i)) € T.)o(Psu). 1t then looks for indices
(k, f) such that

(s" (), u" (4, €'i),v" (k, fli), y") € T)a(Psvvy ).

(46)

If successful, it declares 7:Ly = 0 and picks one of these index
pairs uniformly at random. It then sends the corresponding
indices

B = (i, k) 47
to the receiver. Otherwise, it declares 7:[y = 1 and sends the
message B = 0 to the receiver.

Receiver: Assume that the receiver observes Z" = 2"
and receives message B = b from the relay. If b = 0, the
receiver declares 7:[2 = 1. Otherwise, it looks for an index f’
which minimizes Hy,(sn (5),0m (k, £ ]i),27) (V']S, Z) among all f”
satisfying (s"(i),v" (k, f"|i)) € T,5(Psv). Then, it checks

whether

(s"(0),v" (k, f'li),2") € T (Psvz)- (48)
If successAful, the receiver declares 7:12 = 0. Otherwise, it
declares H, = 1.

2) Result on the Exponent-Rate Region: The coding scheme
in the previous subsection establishes the following theorem.
For any pair of conditional pmfs Pygx and Pysyy,
let &vin(Pus|x, Pvisuy) denote the set of all exponent-pairs

Cu(i) = {Um(,eli): j € {1,..., [2"F |}, e € {1,..., 2 ]}} (6y,0.) that satisfy

and

Cy (i) = {V™(k, fli): k€ {1,...., 2" |}, f € {1,..., [2"F |}}

by selecting for each ¢t € {1,...,n}, the t¢-th compo-
nents U(j,eli) and Vi(k, f|i) of the codewords U™ (j,e|)

2There is no need to apply the coding scheme with binning to attain the
optimal error exponent in this case, see [1].

0, < min{6{",0{"}, (49)
0. <min{0W:i=1,..,4}, (50)
where
1(/1) = min  D(PsuxyllPsuix@xv), (51a)

_ Psuxvy:
Psux=Psux
Psuy=Psuy



9;2) = _min D(Psuxy||PsuixQxv)
_ Psuxvy:
Psux=Psux

Psy=Psy
H(UI|S,Y)<Hp(UI|S,Y)

YR - I(S,U; X) + I(U;Y]|S), (51b)
oY == min D(Psuvxyz||Psuix Pvisuy®@xyz),
Psvvxyz:
Psux=Psux
Psuvy=Psuvy
Psvz=Psvz

(51¢)

0% .= min  D(Pspvxyzl|PsuixPvisyQxvz)
Psuvxyz:
Psux=Psux
Psvy=Psvy
Psyz=Psvz
H(U|S,Y)<H3(U|S)Y)

+R—I(S,U; X) + I(U;Y]S),(51d)
0 = _ min D(Psyvxyz||Psvix Pvisuy@xyz)
Psuvxyz:
_Psux=Psux
Psuvy=Psuvy
Psz=Psz
H(V|S,2)<Hp(V|S,Z)

+T —I1(S; X) — [(V;Y,U|S) + 1(V; Z|9), (51le)

9g4) =

min D(Psuvxy z|PsuixPvisy@xyz)

Psuvxyz:
Psux=Psvux
Psyvy=Psvy
Psz=Psz
H(U|S,Y)<Hp(UIS,Y)
H(V|S,Z2)<Hp(V|S,2)
YR+T — I(S,U; X) — I(X;8) — I(V:U,Y|S)

+I(U;Y|S)+ I(V; Z]S), (51f)
where the mutual information and entropy terms, as well as

the marginals Psyx, Psuvy, Psvy, Psvz, and Psyz are
calculated with respect to the joint pmf

Psuvxyz = PusixPvivsy Pxvy z- (52)
Define then the exponent-rate region
Eoin(R,T) = U Ein(Pusix, Pviusy)  (53)

(Pusix:Pviusy)

where the union is over all pairs of conditional distributions
so that the rate constraints

R>I(S,U;X) - I(U;Y|S),
T>1(V;Y,U|S) - I(V; Z|S) + 1(S; X),

(54)
(55)

are satisfied when the mutual informations are calculated
according to the joint pmf in (52).

Theorem 3 (Achievable Region with Binning): For any
positive rate-pair (R, T):

gbin(R7 T) - o (Ra T) (56)

Proof: See Appendix C. ]

For each choice of conditional pmfs Pygx and Py sy,
the achievable exponents-region Eyin(Pyg|x, Pviusy) is char-
acterized through two competing exponents at the relay and
four competing exponents at the receiver, see (49) and (50).

Extending our scheme by binning also the s™ codewords
achieves an exponents region that is characterized by three
competing exponents at the relay and ten competing exponents
at the receiver. Details are omitted for brevity.

V. THE SPECIAL CASE “X™ — Y™ — Z"™ UNDER BOTH
HYPOTHESES”

Consider a situation where the relay lies in between the
transmitter and the receiver, and thus the signals at the sensor
and the receiver are conditionally independent given the signal
at the relay. In this situation, the two-hop relay network
seems particularly adequate for modelling short-range wireless
communication.

Assume that the pmfs Pxyz and @ xyz decompose as

(57)
(58)

Pxyz = Px - Py|x - Pz}y,
Qxyz =Qx Qy|x - Qzy-

We start by showing that in this special case the compression
mechanisms in the previously-presented coding and testing
schemes can be simplified. There is no need to send compres-
sion information from the transmitter to the receiver. Hence,
the message sent from the relay to the receiver consists only
of the relay’s own guess and compression information of the
relay’s observation. Technically, this means that the expres-
sions for Eyopin(R, T') and Eyin (R, T') can be simplified for this
special case by setting .S to be a constant, and choosing V' to be
conditionally independent of U given Y. In the following, we
use the subscript “dcpled” to refer to the region of this special
case, which stands for “decoupled”. Here, the transmitter-relay
and relay-receiver links are basically decoupled from each
other thanks to the Markov chain X — Y — Z.

A. Simplified Exponent Regions

Given two conditional pmfs P x and Py |y, define the
exponents region Eqepled(Prix, Pyjy) as the set of all pairs
(6y,06.) that satisfy

0, < min D(Pyxy|PyxQxy), (59
_Puxy:
Pyx=Pux
Pyy=Pyy
min
_Puxvy:
Pyx=Pux
Pyy=Pyy

6, < D(PUXYHPU|XQXY)

4+ min
_Pvyz:
Pyy=Pyy
Pyz=Pyz

Ep, [D(pvzwﬂpvw@zw)}, (60)

where Pyy and Py z indicate the marginals of the joint pmfs
PU| x Pxy and PvlyPY 7, and further define

U

Py x,Pvy

gdcpled(Ra T) = gdcpled(PU|X7 PV\Y) (61)

where the union is over all pairs of conditional pmfs
(Pyix, Pyy) satisfying

(62)
(63)



for mutual informations that are calculated according to the
joint pmfs Pyx = Py x Px and Pyy = Py |y Py.

Proposition 1 (Simplified Achievable Region Without
Binnning): If (57) and (58) hold, then

5dcpled(R7 T) = gnobin(Ry T)

Proof: See Appendix D. ]

In the above proposition, it suffices to consider auxiliary

random variables U and V' over alphabets &/ and V whose
sizes satisfy: || < |X|+ 1 and |V| < |Y|+ 1.

(64)

Similarly, given two conditional pmfs Py x and Py )y, let
Evindepted (P x, Pv|y) denote the set of all exponent-pairs
(0y,0,) that satisfy

min  D(Pyxy [ Prix@xvy ),
_Puxy:
Pyx=Pux

Pyy=Puy

min  D(Puxy | PoixQxy) + R —1(U; X|Y) },
Pux=Pox
Py =Py
HU|Y)<Hp(UIY)

0, < min{

(65a)
and
min D(PUXYHPU\XQXY)»
_Puxy:
Pyx=Pux
Pyy=Pyy

0, < min{

min
_Puxvy:
Pyx=Pux

D(Pyxy||PyixQxy)

Py:PY
H(U|Y)<Hp(U|Y) +R— I(U;XIY)}»

‘Hmn{ min  Ep, [D(PVZ|Y||PV\YQZ|Y)},
Pvzy:
Pyy=Pyy
Pyz=Pvz
min
Pvzy:
Pyy=Pyy
Pz=Pz
H(\V|Z)<Hp(V|Z)

Ep, [D(PVZ\YHPWYQZW)]

+T - I(V;Y\Z)},
(65b)

where the mutual information and entropy terms, as well as
the marginals Psyx, Psyvy, Psvy, Psvz, and Psz are
calculated with respect to the joint pmf

Psuvxyz = PusixPvivsy Pxvy z- (66)
Further define
Ebindepled (R, T) 1= U Evindepled (Puix, Pyyy)  (67)

Py x,Pv)y

where the union is over all pairs of conditional distributions
for which the rate constraints

R>I(U; X|Y),
T>1V;Y|Z),

(68)
(69)

are satisfied when the mutual informations are calculated

according to the joint pmf in (66).
Proposition 2 (Simplified Achievable

Binnning): If (57) and (58) hold, then

Evindepled (R, T) = Epin (R, T). (70

Proof.' The inclusion 5bin,dcpled(R7T) - gbin(R7 T) fol-
lows by restricting to U and V' to be conditionally independent
given Y and S to be a constant. The proof of inclusion
Evindepled (R, T') D Epin(R, T') is sketched in Appendix E. MW

Region  With

Remark 2: For both Propositions 1 and 2, the exponent
at the receiver equals the sum of two exponents: the first
is the exponent at the relay (i.e., the exponent attained over
the transmitter-relay link), and the second is the exponent on
the isolated relay-receiver link, but with )y z replaced by
PyQzy.

B. Optimality Results

In the following, we prove optimality of the achievable
region in Proposition 2 for some cases of “testing against
conditional independence” under the Markov conditions (57)
and (58). In the following examples, if the random variables
Yc and Z¢ are constants, then the setups reduce to “testing
against independence”. For “testing against independence”,
achievability can also be established using the simpler Propo-
sition 1. In other words, the optimal exponents can also be
achieved without binning.

1) Special Case 1: Assume that the relay’s and the re-
ceiver’s observations decompose as

(71)
(72)

Y = (YC; YH)
Z = (Ye, Zc, Zn)
and
under H =0: (X", Y, Yif, 28, Z4) iid.
~ Pxvevi - Pyevuzezy, (73)
under H =1: (X", Y, Y{{, Z¢, Z4) iid.
~ PX|YC ’ PYH\YCZC : PYCZCZH'
(74)

The following corollary shows that in this case, the receiver’s
optimal error exponent equals the sum of the optimal error
exponent at the relay and the optimal error exponent achieved
over the isolated relay-receiver link.

Corollary 1: If (71)—(74) hold, the exponent-rate region
E*(R,T) is the set of all nonnegative pairs (6, 6,) that satisfy

0y, < I(U;Y|Yc), (75)
0. < I(U;Y|Yc) + I(V; Z|Zc, Yc), (76)
for some auxiliary random variables (U, V') satisfying the
Markov chains U —- X — Y and V — Y — Z and the
rate constraints
R > I(U; X|Yc),
T Z I(V, Y|Yc, Zc),

(77)
(78)



and where ¥ = (Yo, Yu), Z2 =
(X, Ye, Yu, Zc, Zu) ~ Px|vevy - Pyevuze zu
Proof: Achievability follows by simplifying Proposi-
tion 2. For this special case, since R > I(U;X|Yc) and
T > I(V;Y|Yc, Zc), exponents 0§2),6§3),9£4) become inac-
tive in view of 99). The converse is proved in Appendix F.
|
In the above theorem it suffices to consider auxiliary random
variables U and V over alphabets &/ and V whose sizes satisfy:
U] < || +2 and V] < V] + 1.
Remark 3: If we set Yc and Z¢ to constants, then this special
case reduces to one where

(Zc, ZH), and

(79)
(80)

Pxyz = Pxy - Pzy
Qxyz = Px - Py - Pz.

The exponent-region then becomes the set of all nonnegative
pairs (6,,06,) that satisfy

0, < I(U;Y),

0. <I(U;Y)+1(V; Z),

(8D
(82)
for a pair of auxiliary random variables U and V' satisfying
the Markov chains U - X — Y and V — Y — Z and the
rate constraints
R>I(U; X)
T>1(V;Y).

(83)
(84)

Furthermore, the exponent-rate region can be obtained using
Proposition 1.

2) Special Case 2: Assume that the receiver’s observation
decomposes as

Z = (Zc, Zn) (85)
and
under H =0: (X", Y™, Z& Z}{) iid. ~ Pxyzcz.
(86)
under H =1: (X", Y" Z¢, Z}) iid. ~ Pxyz. - Pz z.
(87)

In this case, the relay cannot obtain a positive exponent since
(X™,Y"™) ~ Pxy under both hypotheses. Moreover, as the
following corollary shows, the relay can completely ignore the
message from the transmitter and act as if it was the transmitter
of a simple point-to-point setup [2].

Corollary 2: Assume (85)—(87). The exponent-rate region
E*(R,T) is the set of all nonnegative pairs (6,,6,) that satisfy

6, =0
0. < I(V; Zu|Zc)

(88)
(89)

for an auxiliary random variable V' satisfying the Markov

chain V — Y — Z and the rate constraint
T>1(V;Y|Zc), (90)

where Z = (Zc, Zn), and (X,Y, Zc, Zn) ~ Pxyzez,- (No
constraint involves the rate R.)

Proof: Achievability follows by specializing Proposi-
tion 2 to U = 0 (deterministically) and then simplifying the
expressions. In particular, notice that, since 7' > I(V;Y|Zc),
exponents 99), 0,(23), 924) become inactive in view of 021). The
converse is standard; details can be found in Appendix G. ®

Remark 4: If we set Zc to a constant, then the problem
reduces to one where

oD
92)

Pxyz = Pxy - Pzy
Qxvz = Pxy - Pz.
The exponent-rate region then becomes the set of all nonneg-
ative pairs (6,,0,) that satisfy
0, =0,
0. <I1(V;Z),

93)
(94)

for an auxiliary random variable V' satisfying the Markov

chain V — Y — Z and the rate constraint
T>I(V;Y). (95)

The region is again achievable using Proposition 1.

3) Special Case 3: Assume that the relay’s observation
decomposes as

Y = (YC7 YH)a (96)

and
under H =0: (X", YO, Y], Z2") iid. ~ Pxyevuz, 97)
under H = 1: (Xn,YCn, YI?? Zn) iLid. ~ PX\YC . Pycsz.

(98)

As the following corollary shows, in this case the optimal
strategy is to let the relay decide on the hypothesis, and let
the receiver simply follow this decision. It thus suffices that
the relay forwards its decision to the receiver. No quantization
information is needed at the receiver.

Corollary 3: Assume (96)—-(98) hold. The exponent-rate
region £*(R,T) is the set of all nonnegative pairs (6,,6.)
that satisfy

0y < I(U; Yu|Yc)
0. < I(U; Yu|Yo),

99
(100)

for an auxiliary random variable U satisfying the Markov chain
U— X — (Y, Z) and the rate constraint

R > I(U; X|Ye), (101)

where Y = (Yc,YH) and (X, Yc,YH,Zc,ZH) ~ PXYCYHZ'
(No constraint involves the rate 7'.)

Proof: Achievability follows by specializing Proposi-
tion 2 to V being a constant and simplifying the expressions.
The converse is similar to the proof of the converse to
Corollary 2. [ |

Remark 5: If we set Y¢ to a constant, then the problem
becomes one where

Pxyz =Px|y - Pyvz (102)



Qxvz =Px - Pyz. (103)

The exponent-rate region then becomes the set of all nonneg-
ative pairs (6,,0,) that satisfy
6, < I(U:Y)
0. <I(U;Y),

(104)
(105)

for an auxiliary random variable U satisfying the Markov chain
U— X — (Y, Z) and the rate constraint

R>I(U; X). (106)

The region is achievable using Proposition 1.

VI. THE SPECIAL CASE “X"™ — Z™ — Y™ UNDER BOTH
HYPOTHESES”

We consider a setup where X" — Z" — Y™ forms a
Markov chain under both hypotheses. This setting models a
situation where the receiver lies in between the transmitter
and the relay, and thus the signals at the sensor and the
relay are conditionally independent given the signal at the
receiver (decision center). The two-hop network can still be an
adequate communication model if all the communication from
the transmitter to the receiver needs to be directed through the
relay. This is for example the case in cellular systems where
the relay is associated with a base station.

We treat two special cases: 1) same Py z under both hy-
potheses, and 2) same Py 7 under both hypotheses. Combined
with the Markov chain X — Z — Y, these assumptions
seem to suggest that the receiver cannot improve its error
exponent by learning information about the observations at the
relay (for case 1) or about the observations at the transmitter
(for case 2). As we shall see, this holds only if the rates of
communication are sufficiently high. Otherwise, information
about observations at both the transmitter and the relay can
be combined to reduce the required rate of communication
and thus also improve the performance of the system. In this
section we shall not employ binning, i.e., all achievability
results below follow from Theorem 1.

A. Special Case 1: Same Py z under both Hypotheses
Consider first the setup where the pmfs Pxyz and Qxyz

decompose as

107)

(108)

Pxyz = Px|z - Pyz,
Qxvz=Px Pyz.

Since the pair of sequences (Y",Z") has the same joint
distribution under both hypotheses, no positive error exponent
6. is possible when the message B sent from the relay to the
receiver is only a function of Y™ but not of the incoming
message M. The structure of (107) and (108) might even
suggest that Y™ was not useful at the receiver and that the relay
should simply forward a function of its incoming message M.
Proposition 3 shows that this strategy is optimal when T' > R,
i.e., when the relay can forward the entire message to the

receiver. On the other hand, Example 1 shows that it can be
suboptimal when 7' < R.

Proposition 3: Assume conditions (107) and (108) and
T > R. (109)

Then the exponent-rate region E(R,T) is the set of all
nonnegative pairs (6,6 ) that satisfy
0, < I(S;Y)
0. < I(S;Z)

(110)
(111)

for some auxiliary random variable S satisfying the Markov
chain S — X — (Y, Z) and the rate constraint

R>1(S;X),

where (X,Y,Z) ~ Px|z - Pyz.
Proof: For achievability, specialize Theorem 1 to S =
U = V. The converse is proved in Appendix H. [ ]

(112)

We next consider an example that satisfies assump-
tions (107) and (108), but not (109). We assume R > H(X),
so the transmitter can reliably describe the sequence X" to the
relay. When T' > R, by Proposition 3, the optimal strategy at
the relay is to forward the incoming message B = M, i.e.,
to describe the entire X™ to the receiver. In this example, to
achieve the same exponent, it suffices that the relay describes
only part of X", the choice of which depends on the relay’s
own observations Y. Thus, the relay only requires a rate T’
that is smaller than R.

Example 1: Let under both hypotheses 2 = 0 and H = 1:
X ~B(1/2) and Y ~ B(1/2)

be independent of each other. Also, let N ~ B(1/2) be
independent of the pair (X,Y’), and

X ifY=0and H=0

Z=(ZY) where 7' = .
N  otherwise.

Let Pxyz denote the joint pmf under H = 0 and Q xy 2z the
joint pmf under H = 1.

Notice that the triple (X, Y, Z) satisfies conditions (107) and
(108). Moreover, since Pxy = Qxy, the error exponent 6,
cannot be larger than zero, and we focus on the error exponent
6. achievable at the receiver. Notice that the conditional pmf

Pxziy—1 = Qxzy=1- (113)

The idea of our scheme is thus that the relay describes only
the symbols

(X te{l,...,n},Y, =0} (114)

to the receiver. All other symbols are useless for distinguishing
the two hypotheses. Specifically, we specialize the scheme in
Subsection III-A to the choice of random variables

S a constant (115a)

U=X (115b)

v — U ifY :.0 (115¢)
U’ otherwise,



where U’ ~ B(1/2) is independent of all other random
variables. Evaluating Theorem 1 for this choice proves achiev-
ability of the following error exponent at the receiver:

min  D(Pvxvyz||[Pvixy@xyz)

_ Pvxvaz:

Py xy=Pvxy
Pyz=Pyz

(a)
> D(Pvz||Qvz)

(116)
= D(Pyyz|Qvyz) (117)
© Ep, [D(Py 7y |Qv z/v)] (118)
© Py (0) - D(Py z/|y=ol|Qvz/jy=o0) (119)
— Py(0)- I(Z'; V]V = 0) (120)
— Py(0) - I(X; V|]Y = 0) (121)
—1/2H(X) = 1/2, (122)

where the pme Py xy, Pvz, Pyyz and the pme sz,
Qvyz are obtained from the definitions in (115) and the
pmfs Pxyz and Q) xy z, respectively, and mutual informations
are calculated according to the joint pmf Py xyz defined
through (115) and Pxyz. In the above, (a) holds by the
data-processing inequality, and by the second condition in the
minimization; (b) holds by the chain rule of KL-divergence
and because Py = Qy; and (c) holds because Qv z/|y—o =
Pyy—o - Pz/jy—o whereas Qv z/y—1 = Pyz/y—1.
The scheme requires rates
R=HX)=1

and
(d)

T = 1(V;Y,U) € I(V:X|Y) < Py (0)1(V; X|Y = 0) = 1/2,

where (d) holds because V' is independent of Y and (e) holds
because V' is also independent of X unless Y = 0.

The error exponent in (116) coincides with the largest
exponent D(Pxyz||Qxyz) that is possible even in a fully
centralized setup. We argue in the following that, provided
R =1 and T < 1, this error exponent cannot be achieved
when the relay simply sends a function of the message M
to the receiver. Notice that the setup incorporating only the
transmitter and the receiver is a standard “testing against
independence” two-terminal setup [1] with largest possible
exponent equal to:

max I1(S;2)
Psx: T>1(S;X)
D max I(S; Z'|Y)
Pgs|x: T>I(S;X)
= 1- min H(Z'|Y,S)
Pgx: T>I1(S;X)
1 i L H(x)8) - L
= - min = - =
Pg)x: H(X|8)>1-T 2 2
1
< §T, (123)

where (f) holds because Z = (Z',Y) and because (X, S) are
independent of Y. This shows that the optimal exponent 1/2
cannot be achieved if the relay simply sends a function of the
incoming message whenever 7' < 1.

B. Special Case 2: Same Px z under both Hypotheses

Consider next a setup where

(124)
(125)

Pxyz = Pxz - Py|z,
Qxvz = Pxz - Py.

Notice that the pair of sequences (X™,Z™) has the same
joint pmf under both hypotheses. Thus, when the relay simply
forwards the incoming message M without conveying addi-
tional information about its observation Y™ to the receiver, no
positive error exponent @, is possible. On the contrary, as the
following proposition shows, if

T > H(Y), (126)

then forwarding message M to the receiver is useless, and
it suffices that the message B sent from the relay to the
receiver describes Y. In other words, under constraint (126),
the optimal error exponent 6, coincides with the optimal error
exponent of a point-to-point system that consists only of the
relay and the receiver. The three-terminal multi-hop setup with
a transmitter observing X" can however achieve larger error
exponent 0, than the point-to-point system when (126) does
not hold. This is shown through Example 2 ahead.

Proposition 4: Assume (124)—(126). Under these assump-
tions, the exponent-rate region £*(R,T) is the set of all
nonnegative pairs (6,6 ) that satisfy
b0y < I(U;Y),
0. <I1(Y;Z),

(127)
(128)

for some auxiliary random variable U satisfying the Markov
chain U — X — (Y, Z) and the rate constraint

R>I(U; X), (129)

where (X,Y,Z) ~ Pxz - Py|z.

Proof: Achievability follows by specializing Theorem 1
to S=U and V =Y. The converse for (127) is the same as
in the point-to-point setting (without receiver). The converse
for (128) follows by Stein’s lemma (without communication
constraints) [29]. |

We next consider an example where assumptions (124) and
(125) hold, but not (126).

Example 2: Let under both hypotheses H = 0 and H = 1:
X ~B(1/2) and Y ~ B(1/2)
be independent of each other. Also, let N ~ B(1/2) be
independent of the pair (X,Y’), and

Y ifX=0andH=0

Z=(7'",X) where 7' = )
N otherwise.

The described triple (X,Y, Z) satisfies conditions (124) and
(125). Moreover, since the pmf of the sequences (X™,Y™) is
the same under both hypotheses, the best error exponent 8,
is zero, so we focus on the receiver’s error exponent 6,. By



Proposition 4, the largest error exponent 6, that is achievable
is

0 = I(Y;2Z) = I(Y; Z'|X) = 1/2. (130)

As we show in the following, 0% is achievable with T' = 1/2.
To see this, notice that

Py zx-1 = Qyzix=1- (131)

It thus suffices that the relay conveys the values of its obser-
vations {Y;: ¢ € {1,...,n},X; = 0} to the receiver. This
is achieved by specializing the coding and testing scheme of
Subsection III-A to the choice of S being a constant and

U 0 if X :' 0
1 otherwise
v — Y ifU=0

Y’ otherwise,

where Y’ ~ B(1/2) is independent of (X,Y, Z). By Theorem
1, the scheme requires rates

R=IU;X)=H({U)=1
and
T=IV;Y,U)=Py(0)- I(V;Y|U =0) =1/2.
It achieves the optimal error exponent 6} in (130):
_ min
Puvxyz:
Pux=Pux

Pyvy=Pyvy
Pyz=Pvz

(a)
> D(Pyz||Qvz)

D(Pyvxyz|Puix PrivyQxyz)

(132)
= Epy [D(Pyzx Qv zx)]

b

© Px (0)D(Py z/|x=ol| Py x=0Pz/|x=0)

— Py(0)I(V; Z'|X = 0)

— 1), (133)

where (a) holds by the data-processing inequality for KL-
divergences and by defining Qyvz to be the marginal
of the joint pmf Py xPyiuyQxyz; and (b) holds be-
cause Qv z/x=0 = Py|x=0Pz/|x=0 Whereas Qyz/|x=1 =
Py zix=1.

Using similar arguments as in Example 1, it can be shown
that the optimal error exponent 6% in (130) cannot be achieved
without the transmitter’s help when 7" < 1.

VII. CONCLUDING REMARKS

The paper presents coding and testing schemes for a two-
hop relay network, and the corresponding exponent-rate re-
gion. The schemes combine cascade source coding with a
unanimous decision-forwarding strategy where the receiver
decides on the null hypothesis only if both the transmitter and
relay have decided on it. The schemes are shown to attain the
entire exponent-rate region for some cases of testing against in-
dependence or testing against conditional independence when
the Markov chain X™ — Y™ — Z™ holds. In these cases,

the source coding part of our coding schemes simplifies
to independent source codes for the transmitter-to-relay link
and for the relay-to-receiver link. The proposed schemes are
also shown to be optimal in some special cases when the
Markov chain X"” — Z™ — Y™ holds. For large enough
communication rates and when testing against independence,
it is again optimal to employ independent source codes for the
two links. But, when the rate on the relay-to-receiver link is
small, this simplification can be suboptimal.

One of our coding schemes employs binning to decrease
the required rates of communication. Binning makes the
characterization of the achievable exponent region much more
involved. For the proposed scheme we have two competing
exponents for the error exponent at the relay and four com-
peting exponents for the error exponent at the receiver. Notice
that, in our scheme, we only bin the satellite codebooks but not
the cloud-center codebooks. Further performance improvement
might be obtained by binning also the cloud center; this would
however lead to an expression with ten competing exponents
at the receiver.
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APPENDIX A
PROOF OF THEOREM 1

We bound the probabilities of error of the scheme averaged
over the random code construction C. The analysis of the error
probabilities at the relay is standard. We therefore focus on the
error probabilities at the receiver.

If M #0and B # 0, let I, J, K be the random indices
sent over the bit pipes and define the following events:

gRelay : {(SW(I)aUn(‘”I)?Yn) ¢ J;Q(PSUY)}7

Ere s (™), U™JI),V(K|I), Z") ¢ T (Psuvz)}-

The type-I error probability at the receiver averaged over the
random code construction can be bounded, for large enough
n, as follows

Ec [azyn] < Pr[M =0or B = 0 or Erelay OF Erx|H = 0]

< Pr[M = 0|H = 0]
—I—PI‘[B =0or gRelay|M 75 0,H= 0]

+Pr[&rs|M # 0, B # 0,H = 0] (134)

(a)
< €/32 + Pr[reiay| M # 0,H = 0]
+Pr[B = 0[M # 0, Egelays H = 0] + ¢/32

(135)
b

¢ €/32+¢/32+€/32 + ¢/32 (136)
= /s, (137)

where (a) holds by the covering lemma and the rate constraint
(16), and both (a) and (b) hold by the Markov lemma [28].

We now bound the probability of type-II error at the
receiver. Let P™ be the set of all types over the product
alphabets 8™ x U™ x V" x X" x Y™ x Z™. Also, let 732‘
be the subset of types msyvxyz € P™ that simultaneously
satisfy the following three conditions:

|Tsux — Psux| < p/4, (138)
|Tsuvy — Psuvy| < p/2, (139)
|Tsvz — Psvz| < . (140)

Now, consider the type-Il error probability averaged
over the random code construction. For all (i,j,k) €
{1, 278 |y x {1, .., | 278 ) x {1, ..., |27 |}, define
the events:

Ery(i ) = {(8(0), U" (j10). X") € Tyju(Psux) }

(141)
Erei(i, 5, k) =
{8, U G0), V7" (R1i), Y™) € Tjo(Psuvy) }
(142)
Er(i, k) = {(S"(1), V"' (Ki), Z") € Ty (Psvz)} . (143)

We have
Ec[B.n] = Pr [’H - O‘H - 1}

<Pr [Ui,j,k (Erx(i, k) N Erer(iy J, k) N E(i, 7)) ’ H= 1} :
(144)

(The inequality in (144) comes from the fact that the
transmitter chooses the pair of indices (i,j) uniformly
at random over all pairs for which event Er(3,J)
holds. There can thus exist a triple (i/,j',k") satisfying
(Erx(@', k") N Era(', 5", k') NE(i',5")) but the receiver
still decides on H, = 1 because the transmitter chose a pair
(,7) for which (Erei(i,4,k) N Erx(i, 7)) is violated for all
values of k.)
We continue by applying the union bound:

Pr |:Ui,j,k (ng(i, k) N gRel(i7j7 k) N ng(i,j)) ’ H= 1}
<Y pr [E,'Rx(i, k) N Eralisj, k) N Em(i,g) ‘ H= 1]
i,7,k
= " Pr|(S"(i), V"(kli), Z") € T (Psv z),
N

(S™(@), U™ (i), V"™ (k2), Y™) € T (Psuvy ),

(8"(@), U"(jli), X™) € Tyya(Psux)| H =1



=Y Y Pr{p(S"), U (), V" (kli), X", Y™, Z")
1,5,k 7TSUV)7(1YZ

€P,

= WSUVXYZ‘H = 11

< URARARY | (4 1) SHULVHXDLZ]

9—n(D(rsuvxyz HPSUPV\SQXYZ)—N)7 (145)

max
TUusvxyz€P]}
where the last inequality holds by Sanov’s theorem

[29]. Indeed, by the code construction, the three code-
words (S™(7),U™(jli), V™(k|i)) are drawn i.i.d. accord-
ing to PsyPy|s. Furthermore, they are independent of
(X™, Y™, Z™), which, under H = 1, are drawn i.i.d. according
to Q xyz. Therefore,

max
TUusvxyzEP]

Ec[B..n] <(n + 1)ISHUMHXEDIZ]
[2n(Rs+Ru+Rv—D(nSUVXYZHPSUPV‘SQXYZ)W) .
(146)

Plugging the rate expressions (16)—(18) into (146) results in
the following upper bound:

Ec[B.n] < (n+ DISHUEVEXLVEZL 9=nban - (147)
where
0.,:=  min [D(rsuvxyz||PsuPvisQ@xyz)

Tusvxyz€P]}
—I(X;8,U) = I(Y,U; V|S) — p].
(148)

Now, by simplifying terms and employing the continuity of
KL-divergence, we conclude that

Ec[B.,n] < 27000 (w), (149)

for some function d,, () that tends to 0 as n — oo and p — 0,
and

0.:= _ min D(Psyvxyz||PsuPyvisQxyz)
Psvuvxyz:

Psux=Psux
Psvuy=Psvuy
Psvz=Psvz

—I(X;5,U) = I(Y,U; V|S)

2.

S,U,V,T,Y,2

= min
Psuvxyz:
Psux=Psux
Psvuy=Psvuy
Psvz=Psvz

PSUVXYZ(S»%UJ%?J’ Z)X

log PSUVXYZ('S&U,U’I'ava)
PSU<57 U)PV|S(U‘S)QXYZ($7 Y, Z)

Psy|x (s, ulz)

—Psyx(s,u,z)log

PSU(S,U)
Py suy (vls, u, y)
—Psyvy (s,u,v,y) log
( Pys(v]s)
(é) N min Z PSUVXYZ(Sauvvaxvyvz)X
Psuvxvyz:

5,U,V,T,Y,2
Psux=Psux

Psyvuy=Psvuy
Psyz=Psvz

o pSUVXYZ(Svua'Uaxayaz)
Psyx (s, ulz) Pyisuy (s, u, y)Qxyz (2, y, 2)

lo

= min
Psvvxyz:
Psux=Psux
Psvuy=Psvuy
Psvz=Psvz

D (ISSUVXYZ||PSU\XPV|SUYQXYZ) ;

(150)

where (c) follows from the first and second constraints on the
minimization and by re-arranging terms.

To summarize, we showed that on average (over the random
codebook constructions C) and for sufficiently large n:

Ecla.n] < g (151)
Ec[B:,n] < 27700000, (152)
Similar arguments can be employed to show that also
Ecoyq] < 3 (153)
Ec[By.n] < 2—71(9?,—5»1(#))’ (154)

for some function &, (y) that tends to 0 as n — oo and as
w — 0, and for

0y := _min (155)
_ Psuxvy:
Psux=Psux

Psuy=Psuy

D (pSUXYHPSU\XQXY) .

We now argue that for all sufficiently large blocklengths n
there must exist at least one deterministic code construction
C: and a function 4, () that tends to 0 as n — oo and as
w — 0, such that for this code:

g < € (156a)
Qo < € (156b)
By < 2" (0s=50() (1560)
Bom < 27 (0==0n () (156d)

To this end, we start by eliminating a set of code constructions
that yield largest v, ,,. The size of the set is chosen such that
its total probability is at least 1/2 and at most 3/4. (Instead
of 3/4, one can choose a value that is arbitrarily close to
1/2. Such a choice is always feasible for sufficiently large
blocklengths n, because the maximum probability of a single
code construction tends to 0 as n — oo unless all random
variables are constants, but this latter case is not interesting.)
Each of the code constructions in the remaining set C; then
has probability of type-I error

e 4 €

n< - == 157

QGn =137 3 (157

and on average these code constructions have probability of
type-I error and type-II errors

€ 1 €
Ee,[ozn] < 5 - =— (158)
! 8§ 1-3 2
Ec, [B2n] < 270 =0n(0) . —3 (159)
4
1
Ee, [Bym] < 2770 0n(n) — (160)
4



In the same way we continue to eliminate a subset of C;
containing the code constructions with largest c , such that
the probability of this subset is at least 1/2 and at most 3/4 the
probability of C;. Call the remaining set Co. From Cy, we then
eliminate code constructions that yield largest 3, ,, such that
all the eliminated code constructions (in this step) constitute
at least 1/2 and at most 3/4 the probability of Co. Finally,
from the code constructions that survive all eliminations, we
pick the one with the smallest 3, ,,. This finally selected code
C* then satisfies

Qyn < % (161)
e 4 2
anS 5 g =3 162
Aan =537 3¢ (162)
2
1 4 64
< 9Oy =6 () . B e A O
Pun < 1-3) '3 3
(163)
3
ﬁz " < 271’7,(9275'”(”)) . < ]- 3) _ 2711(0!,75”(}1,)) . 64
n < 3
4
(164)

If we set 8, (1) = max{d, (1), on
(156) are satisfied.

(1)} 3

then all inequalities

APPENDIX B
PROOF OF THEOREM 2

It only remains to prove (39). We analyze the probabilities
of error of the coding and testing scheme described in Subsec-
tion IV-A1l averaged over the random code construction. By
standard arguments (successively eliminating the worst half
of the codebooks as described at the end of Appendix A)
the desired result can be proved for a set of deterministic
codebooks.

Fix an arbitrary ¢ > 0 and the scheme’s parameter p >
0. For a fixed blocklength n, let P, .. be the subset of
types over the product alphabet S™ x S" X Y™ that satisfy the
following conditions for all (s,s’,y) € S X S x V:

|7TSY(Say) _PSY(Svy)| S M,y (165)
|Ts/(s") — Ps(s)| < p, (166)
Hry (S'Y) < Heg, (SIY). (167)

Notice that, when we let n — oo and then p — 0, each

element in P} ... ; will approach an element of

PypeI = {PSS’Y Psy = PSY and PS' PS and

Hp, (S'Y) < Hp, (S[Y)}. (168)

We first analyze the type-I error probability v, ,,. For the case
of M # 0, let L be the index chosen at the transmitter. Define
events

&Y = {(8™(m, 0), X™) ¢ To(Psx), ¥(m,0)},  (169)
&) = {(S"(M,L),Y") ¢ T, (Psy)}, (170)

&0 ={30' #L: S"(M,{') € T,*(Ps) and

Heyp(sn(m,1),v7) (S|Y) = Hyp(sn(ar,ery,yn) (S]Y) }.
(171)

For all sufficiently large n, the average type-I error probability
can be bounded as:

y = ’H_O]

clay.n] = Pr [
{STE()) U 51;1( U 5Rx
prler)

g

172)
(173)

I /\

H = 0}
H=0] +Pr[el)

e 1 =)

+Pr (&) |el, el 1 = 0] (174)
(a)
< ¢/6+Pr [59 g0 3y = o}
+Pr (&) |el, el 1 = 0] (175)
(d)
< €/6+¢€/6 + Pr [Slgi gibe ele 4y = 0]
(176)
()
< €/6+¢€/6+¢€/6 (177)
= ¢/2, (178)

where inequality (a) follows from the code construction;
(b) follows from the Markov lemma [28]; and (c) is justi-
fied in what follows. Notice first that by the symmetry of
the codebook construction, when bounding the probability
Pr {Elgi)‘flgi)c,gg)c,ﬂ = O}, we can specify M = L =1
and proceed as:

Pr (el |el) e M =L = 1,1 = 0] (179)
LZW,R/J
< > Pr[SU(L0) € TH(Ps),
=2
Hiypsn 1.1y (SIY) > Hypsn (.. (S|Y)
(5™(1,1),Y") € T/ (Psy),
(5"(1,1), X™) € T5(Psx),
M=L=1, H=0 (180)
27"
< ) Pr |:Htp(S"/(1,1)7Y")(S|Y) > Hyp(sn(1,e),ym) (S]Y) |
/=2

(8™(1,1),Y") € T (Psy),

(5™(1,1),X") € T)5(Psx),

S"(1,0) € TT(Ps)), M=L=1, H = 0}
(181)

|27

D

=2

-z

TS
eP

,type-l

by

S’n S/’n y’n
n _in n

tp(s™,s"",y™)
=Tss'y

Pr [S”(l 1)=s",9"(1,0)=s"Y" =y" |
(5™(1,1),Y") € T (Psy),
(5™(1,1), X") € T (Psx),
S"(1,0) € T(Ps)), M =L=1, Hzo}
(182)



2"

D VDYDY

ﬂ57§/y =2 Sn75/n 'l/n
EP L yper tp(s™,s"",y™)
=Tss'y
Pr [S”(l 1) =s"Y"=y" |

(S™(1,1),Y") € T, (Psy),

(S™(1,1), X™) € T2 (Psx),

S"(1,¢) € TM(Ps)), M =L =1, Hzo}
(183)

Pr [S"(l,é’) ="

(S™(1,1),Y™) € T (Psy),

(5™(1,1),X") € T)5(Psx),

S"(1,0) € T(Ps)), M =L =1, H = 0}
(184)

2nR/

22

Tsg'y €EPI

<t 1)s

>

n n m,
1 stype-T s )S

tp(s™, s y”)—”ss’y

2—nHW(S,Y) . 2_71H7r(s) (185)
(f) 2 2
S AED DD

7Tss’YEPH type-I =2

gnHx(8,5'.Y)  g=nHx(SY)  9=nHx(S') (1g6)

= (n+ 1)|5\2'D1| Z on(R'—1:(5";Y,8)) (187)
Ts5'y P ypet

< (n+ 1)V Z on(R' =1 (8';Y)) (188)
M55y EPL ypet

2 (n+1D)ISEPE L pax (B SIS0 00) - (189)

- Ts5'y €PY iyper

(h)

< ¢/6, (190)

where §,,(11) tends to 0 as n — oo and then p — 0. The steps
are justified as follows:

e (d) holds because conditioned on the events
(S"(L,1),Y") € TMPsy),  (S"(1,1),X") €
7:7/2(135)()7 Sn(l,fl) S 7;”(135)7 M=L=1 H=

0, the codeword S™(1,¢') is independent of the pair
(5™(1,1),Y");

e (e) holds because even conditioned on the events
(S™(1,1),Y") € T (Psy), (S™(1,1),X™) €
Thy(Psx),  S"(LY) € T(Ps), M = L =

1, H = 0, all pairs (s™,y™) of same joint type

have the same probability and all sequences s'™ of same

type have the same probability, and because there are at
least 2" Hrsy (8Y) sequences of joint type

. 27LH7\-S,(S/)

1 p
CESDICIREIN sy

mgy [30, Lemma 2.3] and at least

1
o (n+1)ISI
sequences of joint type mg:;

o (f) because there are at most 2"H~(5:5"Y) different n-
length sequences of same joint type TSS'Y';
. ( ) holds because [P ;| < (n+ 1)I51*1¥1 because
H.(S'|Y)< H, (S|Y) because each element of Pl type
must approach an element of Py . ; when n — oo and
@ — 0, and by the continuity of the entropy function;
and
o (h) holds for all sufficiently large n and small ;1 because

R < I(S;Y)and ,(u) — 0asn — oo and then 1 — 0.

We now bound the probability of type-II error at the
receiver (averaged over the random code construction). For
all m e {1,...,|2"%|} and £,¢ € {1,...,[2"F"|}, define
the following events:

Erx(m, £) == {(5™(m, £), X") € T})5(Psx)},
Era(m, ) := {(sn(m,z'),w) € T (Psy),

Htp(S"(nL,Z’),Y")(S/|Y) = mein Htp(sn(mj),yn)(ﬂy)}

(192)

(191)

Define

By :={3 (m,£): Erx(m, £) and Erx(m, £)}, (193)
BZ = {El (m7€7 E/)ae 7£ gl: ng(ma‘g) and ng(m,ﬂl)},
(194)

Then we have:
2

EclByn] <> Pr(Bi|H =1].

i=1

(195)
We bound each of the probabilities on the right-hand side of

(195). We introduce the following type classes:

|Tsy — Psy| < p},
(196)

Py = {msxy: [msx — Psx| < 11/2,

Pupo = {WSS'XYI |Tsx — Psx| < 1/2,
Imsry — Psy| < p,  Hi(S'|Y) < H,T(S|Y)}. (197)
Consider B; as follows:

Pr(BiH =11<Y_ Pr[€r(m,f) N Exx(m,0)|H = 1]

< Z Pr [(S”(m, 0),X
m,l
(" (m,0),Y") € T;"(Psy)|H =1]

>

TSXY:
[msx —Psx|<p/2,
|Tsy —Psy |[<p

Pr [tp (S™(m,0), X", Y™) = 7Tsxy|7'[ =1]

") € T.yo(Psx),

< (R (4 1)ISIIXY)

max 9—n(D(rsxy|[PsQxy)—n)
TIXY: ’
|[rsx— Psx\<u/2

|tsy —Psy |<p

(198)



where the last inequality follows from Sanov’s theorem and
the i.i.d. codebook construction. Define now:

- ) ,
0= Jnin D(msxy||PsQxy) — R—R — p,
|71'sx—Psx‘<}t/27

|Tsy —Psy |<p

(199)

and notice that

~ Eq. (35)
Oun = Jnin - D(rsxy|[PsQxy) = 1(5;X) = 2p
|[Tsx —Psx|<p/2,

|Tsy —Psy |<p

>

ERCRT

log WSXY(S,%?/)
Ps(s)Qxvy (x,y)

PS’|X(57I)‘| o 2u

= min
Tsxy €Ppu1

[WSXY(S7 Z, y)
—P 1
SX(Sa I) 0g PS(S)

log ﬂ_SXY(Saxay)
Ps(s)Qxy (x,y)

.P5|X(S7 1’)
Ps(s)

—~

7) .
= min
Tsxy €Pu1

>

5,Z,Y

[WSXY(Sa z, y)

—msx (s, x)log

] — 01 ()

Texvy (8, 2,y)
x(8]7)Qxv (7, y)

(k) min Z msxy (s, x,y)log Py
S
T,y

WSXYGP,,L,IS
—01(p)

= min  D(rsxy||[Psx@xy) — 01(u)
Tsxy €Pu
= 0,1 —01(p), (200)
for a function 07 (u) that goes to zero as p — 0 and
Op1:= min  D(msxy||PsxQxy).  (201)
Tsxy €Pu,1

Here, (j) holds because |rsx — Psx| < p/2 and by the
continuity of the KL-divergence; (k) follows by re-arranging
terms. Considering (198) and (200) yields the following:

Pr(BiH =1 < (n+ 1)\3\-\X\~|y\ c 97 nOua=01(1) - (202)

Next, consider By as follows:
Pr [62‘/}'[ = 1}
<Y > Prléndm,0) N Ere(m, )| H = 1]

mo A

=2 D

mo A

Pr |(S™(m, €), X™) € T (Psx),

(Sn(m7£/)7 Yn) € nn(PSY)v
Htp(S"(m,f’),Y")(S/|Y)
= mgin Htp(s"(m,é),yn)(SW)‘H = 11

2.

TSs/XY*
|Tsx —Psx|<p/2,
Imgry —Psy|<m
Ha(S'[Y)<H(S]Y)

Pr [tp (S™(m, €), S™(m, £'), X", Y") = wsgxy |[H = 1]

=2 D

m Al

< Qn(BF2RY) (4 q)ISPIXT1Y

max 2P (mssxvlPsPsQxy)=1) (203)
Tss/xv* ’
|msx —Psx|<p/2,
|Tgry —Psy |<p
H(S'|Y)<HR(S|Y)

where the last inequality follows from Sanov’s theorem. Now,
define:

Op2:= . D(mssixv||PsPsQxy) — R—2R' — p.
SS'Xy*

[msx —Psx|<p/2,
|7TS/Y—P5y|<;L

H (S'|Y)<H(S]Y)

(204)

Consider the following chain of inequalities:
min

. . D(mss'xy||PsPsQxy)
SS/XY"
|[Tsx —Psx|<p/2,
[msry —Psy |<p
H(S'|Y)<H(S|Y)

5 Eq.(3%)
9#2 =

—2I(S; X)+ R —3u

D(nssxy||PsPsQxy)
—2I(S; X)+ R — 3

= min .
Tss'xy €PL 2

) .
= min
n
Tss'xy €EP) 2

[D(WSXYHPSQXY)

+Ersxy [D(7ssxy | Ps)] }
“9I(S; X) + R — 34

VE

min
n
Tss'xy €P) 2

[D(WSXYHPSQXY)

+Er, [D(msv]|Ps)] |
—2I(S;X)+ R —3p

o min _ D(msxy|[PsQxy)
Tss'xy €P 2

+I1(S;Y) —2I(S; X) + R —d5(p)

= min_ D(msxy||[PsxQxvy)
WSS’XYEPM,Z

+I(S:Y) = I(S; X) + R — d2()
= 0;4,2 — 02 (N’)a (205)
for functions 5 (1), d2(p) that go to zero as p — 0 and
min_ D(msxy||PsxQxv)
Tss'xy €P, 2
+I(S;Y)—I(S;X)+ R. (206)

Here, (1) follows from the chain rule for KL-divergence; (m)
follows from the convexity of the KL-divergence and Jensen’s
inequality; (n) follows because |ms'y — Psy| < g and by
the continuity of KL-divergence; (o) follows by re-arranging
terms and employing similar steps leading to (200). Combining
(203) and (205) yields the following:

eu,g =

PrBoH =1 < (n+ 1)|3\2-\X|~D’\ 9 lu2=52() - (207)

Combining (195), (202), and (207) proves that for large
blocklengths n:

Ec [Byn] < (n+ 1)ISHALE. 9=n(0u1=01(k)



+(n+ 1)|5\2~\X\‘|y\ c 2 n0u2=02(1) - (208)

Letting n — oo and then ¢ — 0, we get that 6, ; — ¢, and
0,2 — 0>, where we define:

0 : D(Psxy||PsjxQxv),

= min
_Psxvy:
Psx=Psx
Psy=Psy

Pmin D(ﬁ’sxyHPS\XQXY) +R—-I(S;X)+1I(S;Y),
SXY:
ﬁslxi;;SX
Py

(209a)

92:

Py =
H(S|Y)<Hp,  (S|Y)

Psy
(209b)

where Pgy in the minimization constraint is the marginal
pmf of Psxy = Ps|x Pxy and the conditional entropy term
H(S]Y) is calculated according to this marginal.

The theorem then follows immediately by (209) and
I(S; X)—1(S;Y) = I(S; X|Y) (which holds by the Markov
chain § — X —Y), and from the fact that Pg|x can be chosen
arbitrary.

APPENDIX C
PROOF OF THEOREM 3

We analyze the probabilities of error of the coding and
testing scheme described in Subsection IV-B averaged over
the random code constructions. By successively eliminating
the worst half of the codebooks, as sketched for example at
the end of Appendix A), the desired result can be proved for
a set of deterministic codebooks.

Fix an arbitrary ¢ > 0 and the parameter of the scheme p
sufficiently close to 0 as will become clear in the sequel. Fix
also a blocklength n. If M # 0, let I, J be the indices sent
from the transmitter to the relay. If both B # 0 and M # 0, let
K denote the second index sent from the relay to the receiver.

We first analyze the type-I error probability at the receiver.
Define events:

ARE {Hf/ # It Hysnny,vn(k,p1),27) (V]S Z)
= it Hygsn v e, i,z (VIS 2) 1
(210)
&t {(X"(I) VMK FID). 2" ¢ TN (Psvz)} . Q1D
The type-I error probability can then be bounded as follows:

Ecla. n] < Pr [M =0UB=0UE&Y U éﬁ}
< Pr[M = 0]+ Pr[B = 0|M # 0]
+Pr 5}§§>1M7A0,B7é0]

+Pr [0 M £ 0,5 40,60

(@
< ¢/16+ Pr[B = 0|M # 0]
+Pr |0 |M #0,B £ 0]

+ Pr

S0 [M £ 0,8 40,60

(b) .
< ¢/16+¢/16.+ Pr [£0)|M #0,B # 0|

+ P [£0)[M £ 0,8 40,60

(c)
< €/16+¢/16+¢/16
+ P [£0)[M 0,8 40,60

(d)
< /4. (212)

where (a) holds by the covering lemma and the rate-
constraints in (41); (b) and (d) can be proved following similar
lines as the type-I error analysis in Appendix B; and (c) holds
by the Markov lemma.

We now bound the probability of type-II error at the
receiver. Define the following events:

Erslin,e) = {(S"(0),U" (G eli), X") € T (Psux) } 213)
Eralisj, ek, f) =
{(8"0),U" (. 1), V" (K, f10),Y") € Ty (Psuvy),
Hyp(sn (i), um ey, ym (U]S, Y) =
min Ho(sn .0 élo.v) (U15.Y) }.
(214)
Eraliy K, f1) =
{(8"0), V" (k. 1'10). 2") € T (Psv2),
Hyp(sm(iyvr k. gr1i.zm (VIS Z) =
m}}n Hyp(sm(iy,vn e, fliy,zm) V1S, Z)}-
(215)
We then have:
B [2,0] = Pr [#. = O’H 1]
<Pr[B#0, Uik Enslisk, f’)’H 1]

(216)

17)
<Pr [ Uik Enlisdie)
and Ere(i,7, €', k, f)
and Ery(i, k, )| H = 1}
(218)

We can further upper bound this last probability with the union
bound to obtain:

4
Ec [B.n] <Y Pr[Bi|H =1], (219)

=1

where the four events By, Bs, B3, B4 are defined as:
B {3Gi.g.e.k f): Enlij.e) and

gRel(iajveak7f) and gRX(i’k5f)}5
(220)
By: {3 (i,j,e,€¢' k. f): e# e’ and Ers(4,j,e) and

gRel(ivj, elv ka f) and ng(ia ka f)},



(221)
Ba: {3 (irjiek, f.f): f# ' and Eni,jie) and

gRel(iajveakvf) and ng(i,k,f/)},
(222)

By: {H(i,j7e,e’,k,f,f’): e4¢ and f# f and

ng(iajve) and gRel(iajael,kvf) and ng(ivkafl)}-
(223)

The summands in (219) can be analyzed by now standard
arguments as used in Appendices A and B.
For each ¢ = 1,2, 3,4, this yields an exponential bound of
the form
Pr[B;] < 27 "0itd:(m) (224)
where 81 (), d2(p), 83(1), d4(p) are functions that tend to 0
as u — 0 and where

01 := min
TSUVXYZ:
Tsux=Psux

Tsuvy=Psuvy
msvz=Psvz

D(rsvvxyzl|Pusix PvisuyQxyz),

(225)

min
TSUU'VXYZ':
mTsux=Psux
H(U|S,Y)<H,(U|S,Y)
Tsu'vy=FPsurvy
msvz=Psvz

D(rsvvvxyzl|Psuix PorsPvisury Qxy z)
+ R, — I(U; X|S), (226)
min
TSUVV/XYZ*
Tsux=Psux
TSUVY=LSUVY
H(V|S,Z)<Hr(V|S,Z)
Tsviz=Psviz
D(rsuvvxyz||Psuix Pvisuy Py s@xyz)

04 := min
TSUU/'VV/XYZ*
TSUX=1sSux
H(U|S,Y)<H(U|S,Y)
Tsu'vy =Psuivy
H(V|S8,2)<H(V|S,Z)
msviz=Psviz
D(rsvuvvixy zl|Psuix PursPvisury Py isQxyz)

+ Ry + R, — I(U; X|S) — I(V;U,Y|S). (228)

Plugging the exponential bounds (224) into (219), extracting
the term I(U’;Y|S) = I(U;Y|S) from (226) and (228) and
the term I(V'; Z|S) = I(V; Z|S) from (227) and (228), and
bounding R, and R, by R — I(S;X) and T — I(S; X), we
obtain the result in the theorem.

APPENDIX D
PROOF OF PROPOSITION 1

The inclusion

gdcpled(Ra T) g gnobin(Ra T)> (229)

is straightforward. It suffices to note that restricting the union
in (29) to choices of the conditional pmfs Psyyx and Py spyy
where S is a constant and V is conditionally independent of
U given Y, results in Eeplea(R, T).

We now prove the reverse inclusion

gdcpled(Ra T) 2 gnobin(Ry T) (230)
Fix an arbitrary pair Psy|x and Py syy satisfying the rate-
constraints (30)—(31). Then, notice the following sequence of

equalities:

_ min
Psuvxyz:
_Psux=Psux
Psuvy=Psuvy
Psvz=Psvz

D(Psuvxy z|Psuix Pvisuy@xyQz)y)

= min
_ Psuxv:
Psux=Psux
Psuy=Psuy

[D(PSUXYHPSUlXQXY)

+EPSUXY{ _ min D<]3VZ|SUXY||PV|SUYQZY>H

Pygzisuxy:
Pyisuy=Pv|suy
Pzisyv=Pz|sv

@ |:D(pSUXY||PSUXQXY)

= min
_ Psuxvy:
Psux=Psux
Psuy=Psuy
+EP5UY[ _ min D(PVZ|SUY||PVSUYQZY)H
b Py zisuy:
Py suy=Pv|suy
Pz isv=Pz|sv

b -
u [D(PSUXY|PSU|XQXY)

=  min
_ Psuxvy:
Psux=Psux
Psuy=Psuy

‘HEPsuvy[ _ min
Pzisuvy:

D(PrsvvyQay)]]

Pzisv=Pz|sv

© |:D(158UXY||PSUXQXY)

=  min
_ Psuxvy:
Psux=Psux
Psuy=Psvuy

+Epg,, [ _min
Pzisvy:

D(ﬁzwvylley)H,

Pzisv=Pz|sv

(231)

where the steps are justified as follows:

(a) follows because, by the convexity of the KL-divergence,
the LHS is larger than or equal to the RHS; the reverse
direction holds because the minimization on the LHS
can only increase if one restricts pmfs to be of the form
Pyvzisuxy = Pvzsuys

(b) holds because Py|syy = Py|syy: and

(c) follows because, by the convexity of the KL-divergence,
the LHS is larger than or equal to the RHS; the reverse
direction holds because the minimization on the LHS
can only increase if one restricts pmfs to be of the form

Pyisuvy = Pzisvy-



Defining now U := (U, S) and V := (V, S), we conclude that
min  D(Psuxy||PsuixQxv)
_ Psuxvy:
Psux=Psux
Psuy=Psuy

= min D(PUXYHPU\XQXY) (232)
_Poxy:
Py x=Pgx
Pgy=Pgy
and
_ min D(Psuvxyz|Psuix Pvisuy @xyQzy)
Psuvxyz:

_Psux=Psux

Psuvy=Psuvy
Psvz=Psvz
= min  D(Pyxy|Pyx@xvy)
N Py xy:

IfUX:Pz?X

Pgy=Pgy

+Ep, | min D(PVZ|Y||PV|YQZ|Y)]

VZ|Y*

(233)
I?VY:PVY
Py z=Pyy

Notice further the Markov chains U— X —=YadV —
Y — Z and that the choice (U, V) satisfies the rate constraints

I(U;X)=I1(S,U;X)<R (234)
and
I(V;Y)=1(S;Y)+I(V;Y]9)
<I(S;X)+ I(V;Y,U|S)
<T. (235)
From all these steps, we conclude that the choice Py x =
Pysix and Pyy = Psyy satisfies the following three
conditions:
IU;X)<R (236)
I(V;Y)<T (237)

Eacpred (P x> Pyjy) 2 Enobin(Psv|x, Pvisuy). (238)

This proves inclusion (230).

APPENDIX E
PROOF OF INCLUSION Epin depled (R, T') 2 Epin (R, T')

Fix a pair of conditional pmfs Psy x and Py syy and
define U := (U, S) and V := (V,S). Notice first that, since
Psy = Pgy and Psy; = Psy, the following hold:

o Condition H(U|S,Y) < Hp(U|S,Y) is equivalent to
H(U,S|Y) < Hg(U,S|Y') and hence also equivalent to
H(U|Y) < Hp(U|Y);

« Condition H(V|S,Z) < Hp(V|S,Z) is equivalent to
H(V,S|Z) < Hp(V,S|Z) and hence also equivalent to
H(V|Z) < Hp(V|2).

Using these equivalences and following similar steps as in the

proof of Proposition 1 in Appendix D, it can be shown that
min D(pUXY”PU\XQXY)

_Poxy:

Pgx=Pux

Pgy=Pgy

20

+ min Ep, [D(PVZ|Y||PV|YQZ|Y)}
RAZIE
Pgy=Pyy
Py z=Py 5
> _min  D(Psuvxyz||Psuix Pvisuy®@xyz);
Psvvxyz:
Psux=Psux
Psuvy=Psuvy
Psvz=Psvz

(239)

min  D(Pyxy||Pyx@xy)
5 Pgxy:
PQX:P(JX
Py =Py
H(U|Y)<Hp(O|Y)

+ min Ep, [D(IB\_/Z|Y||P\7|YQZ|Y)}
~P\7Z\Y:
F:\?Y:P\?Y
Pyz=Pyz
> min  D(Psuvxyz||PsvixPvisyQxyz);

‘?SUU’VXYZ:
Psux=Psux
Psvy=Psvy

Psvz=Psvz
H(UIS,Y)<Hp(U|S)Y)
(240)

min

5 Pgxy:
Pox=Ppx
_ PY:PY _
H(U|Y)<Hp(OY)

D(Pyxy ||PoxQxy)

+  min  Ep, [D(Pygy | PriyQay)]
Py zy:
P\ZY=P\7Y
Pz=Pz
H(V|2)<Hp(V]2)
> _ min D(Psuvxyz||Psuix Pvisuy@xyz);
Psuvxvyz:
Psux=Psux
Psyvy=Psuvy
Psz=Psz
H(V|S,Z)<HA(V|S,2)

(241)

min
5 Pgxy:
PQX:PUX

D(Pgxy ||PoxQxv)

_ Py=Py _
HU|Y)<Hp(U|Y)

+ min  Ep, D(PVZ\Y”PV\YQZ\Y)]
Py z1v:
P\ZY:PVY
Pz=Pz
H(V|Z)<Hp(V|Z)
> _ min D(Psuvxyz||Psuix PvisyQxyz)-
Psuvxyz:
Psux=Psux
Psyy=Psvy
Psz=Psz
H(U|S,Y)<Hp(U|S)Y)
H(V|S,2)<Hp(V|5,2)

(242)



Since moreover

—I(U; X|Y) —I(S,U; X|Y)
—I(S,U; X))+ I(S,U;Y)
>—I(S,U; X))+ I(U;Y|9) (243)
~I(V;Y|2)=—I(S,V;Y)+I(S,V;2)
>-—I(S;Y) - I(V;Y|S)+ I[(V; Z]S)
> —I(S:X) — I(ViU,Y|S) + I(V; ZIS),
(244)
we can conclude that
Evindepted (P x s Prrjy) 2 Ein(Psu|x, Pvisuy).  (245)

This establishes the desired proof.

APPENDIX F
PROOF OF CONVERSE TO COROLLARY 1

Fix a sequence of encoding and decoding functions
{o(™), gb ,gz”)} so that the inequalities of Definition
1 hold for sufﬁmently large blocklengths n. Fix also such a
sufficiently large n and define for each ¢t € {1,...,n}:

Up:=(M, X" VY8 L)
Vit :(B’eri 1aZ(tj 17ZC,t+1’YCtileC7ft+1)'

Define further U := (Up,T); V := (Vp,T); X = Xp;
Y =Y, W:=Wp; and Z := Zp; for T ~ U{L,...,n}
independent of the tuples (U™, V™, X™, Y™ Z™). Notice the
Markov chains U - X — Y and V — Y — Z. Let
d(e) : =Hp(e)/(n - (1 — €)) where Hy(e) denotes the entropy
of the binary random variable with parameter e.

First, consider the rate R:

(246)

1
R=-HM
—H(M)
1
> —I(M; X"|Ye)
n

1 n
== ZI(MXAX*%Y&)
n

) 1
@ EZ I(M, XNV YE, L Xl Yoy

fZI Us; Xi|Ye )
t=1

=I(U; X|Yc), (247)

where (a) follows from the memoryless property of the
sources. Similarly,

1
T=—-H(B

—H(B)

1
—I(B;Y"|Y¢', Z¢)
n

v

1 n
= I(BYY'YE, 28
n

t=1

1 n B B . B .
=Y B YT 2 2 YE Y s Vil Yo Ze)
t=1

21

1 n
- ZI(Vt;YHYC,t, Zc,t)

t=1
= I(V;Y|Yc, Zc). (248)
The type-II error probability at the relay can be bounded as
1
- E log /By,n
1
< m‘D(PMYH"YC"IH=O||PMYH”YC”|7-L:1) + ()
(b) 1
= T gn PPy Prpve P Pr) +9(€)
1 n n
- WI(M;YH YE') +d(e)
(1_7621 (M; Y| Y, YE) + 6(e)
t=1
1 & o
WZI(M VL Y Y8 Vi Yer) + 6(e)
t=1
© 1 - t—1 t—1
S 0—on DT XEYET Y s Vi Ye,) + 0(e)
t=1
1 n
“O—on D I(U ViYoo) + 6(€)
t=1
1

where (b) holds by the assumption on the distributions
PXYCYHZCZH and QXYCYHZCZH in (73)—(74) and the fact that
M is a function of X™; and (c) holds by the Markov chain
Vit — (M, X*"1,Y®) — Y. Finally, consider the type-II
error probability at the receiver:

1
- IOg ﬁz,n
n

1
< WD(PBZ;ILZ&LYC"\HZOHPBZ{{’ZEI’YC"IH:I) + 5(6)

(4) 1
= mﬁzg&fcﬂ [D(Ppzg z2ve m=0lPezg 2o ve 1=1)]

+d(e)

1
WEZZ}'YC" [D(Pp|z2 v 1=0ll PB 22 v 74=1)]

1=

+ mEBZgYC” [D(Pzpazpve m=0llPzp 1 Bzove 3=1)]

+6(e)

() 1
S WEZ(?YC” [D(PMYHn |ZE Y H=0 ||PMYH”‘Z(T:LYCW’7H=1)]

1
+ WEBZCHYC" [D(Pzy 1822 ve n=0lPzy| z2ve m=1)]

+4(e)
@ 1 g D(P P
~—on voveze [D(Puyayip zz w=ollPa v vip zo 1=1)]
1 n n n
+WI(B§ZH|ZC7Yc)+5(€)
m 1

Eypye [D(Puiveyy s=oll Pajyevie 7=1)]

(1—e)n



1 n n n
+ WI(R Zy|Zg, YE) +6(e)
L ronvpyey e —1
(1—e)n PTHIEC (1—e)n

+d(e)

—~
|I=
=

I(B; Zg| Z¢, Y¢E')

) 1 n B B .
1-on I(M, Y Y, Y& i1 YaelYe )
=1

—~
S

22

= m Z I(B, Yt_la Zg,t+1; Zut| Zeyt)
t=1
+0(e),

where (a) holds because Z® has the same distribution under
both hypotheses; (b) holds because, conditional on Z¢, the
two random variables B and Zj; have the same marginals
under both hypothesis, while being dependent under H = 0

+I(B, Z{ 25 28 YE Y8 15 Zugl Zey, Yeu) | and independent under H = 1; (c) holds by the Markov chain

+d(e)
(k) 1 n
< .
~ (I—en ; [0 YualYes)
1 n
T —on I(Vi; Zu | Zets Yer) + 6(€)

t=1
1 1
= 10 Y Yo) + 1V Z|Ze, Ye) + 0(e), (250)

where (d) holds because the pair (Y, ZZ) has the same
distribution under both hypotheses; (e) holds by the chain
rule for KL-divergence; (f) holds by the data-processing
inequality and the fact that B is a function of (M, Y}y, Y),
and because under # = 1 and given (Y, Z), the message B
is independent of the observation Zf}; (g) holds because the
two triples (Y7, Y2, Z¢) and (Y, Zf;, Z¢) have the same dis-
tribution under both hypotheses; (k) holds because under both
hypotheses M is independent of Zj} given the pair (Yi},Y");
(¢) holds because the triple (M, Y, YZ*) has same distribution
under both hypotheses; (j) holds by the memoryless property
of the sources; and (k) holds by the definitions of U; and V;
and the Markov chain Z ' — (B, Y™, Z2,Y®) — Zu..

APPENDIX G
PROOF OF THE CONVERSE TO COROLLARY 2

Fix sequences of encoding and decoding functions
{6 6\ i g™}, and notice that there exists a function
d(e) which tends to zero when ¢ — 0 such that, for any € > 0
and sufficiently large n:

1 1
——1 n < ————D(Pyrynim—ol| Parynim= )

- 0g By.n < (I—on (Paryn =0 || Parynp=1) + 0(€)

=J(e)

Zyy — (B, Y1, Z&,) — (ZL 1, Z{ ). Moreover,

1 1
T=—-H(B)>-I(B;Y"|Z¢
H(B) = 1(B:Y"|2)

1 n B B .
EZI(B’Yt 1’Z(tj 17ZC,t+1;)/t|ZC,t)
t=1

1 n
@E Y IBY'"L 28 15V Zey), (251
t=1

where (d) holds by the Markov chain Y, —
(B, Z¢,, Y*=1) — ZE~ 1. The proof is finalized by introducing

auxiliary random variables V; = (B,Y'"',Z¢,.,),
t € {1,...,n}, relabeling the random variables, and taking
e — 0.

APPENDIX H

PROOF OF PROPOSITION 3

We fix a sufficiently large n and a sequence of encoding
and decoding functions such that the properties of Definition 1
hold. Also, define S; : =(M, X'~1, Z!=1). Notice the Markov
chain S; — X; — (Y3, Z;). First, consider the rate R:

nR = H(M)
>I(M; X", Z")

I(M; Xy, Zy| X1, 207
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+0(e) where (a) holds by the memoryless property of the sources.
(a) 1 Now, consider the error exponent at the relay. We have:
= mD(PBZ;{\Zg,H:OHPBZ;HZEL,H:l) ) )
+ (5(6) _E log By,n § WD(PMY"‘HZOHP]\/IY"”'L:l) + 6(6)
® 1 ® 1
= ——I(B; Z4|Z8) + 6 = I(M;Y™)+6
(1—6)71 ( ’ H| C)+ (E) (1—6) ( ) )—|— (e)
1 ~ 1 -
=— ) I(B,ZIY Zu|Z8) + 6 = IM; Y)Y +6
(176)71; ( yE4H H’t| C)+ (6) (176) ; ( ’ tl )+ (6)
= ;i:I(B,Zf_l_l,Zé_l,thH;ZH,t|ZC7t) ©__1 iJ(M, YL ¥) + 6(e)
(I—en = ' (1 —en =
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I(M, Xt_l, Yt_l, Zt_l; 5/"1)

3

= 7T N I(M7Xt71aztil;n)+5(€)

“U—om ZI(SﬁY;&) +4(¢)

where (b) holds because under hypothesis H = 1, the message
M and the observation Y™ are independent; (c) holds by the
memoryless property of the sources; and (d) by the Markov
chain (Yt=1 Zt=1) — (M, X*=1) — Y;. Next, consider the
error exponent at the receiver:

1 1
- log 8. < WD(PBZ"\H:O”PBZ"\H:l) +4(e)
(e) 1
< mD(PMY"Z"YH:O”PMY"Z"\Hzl)
+d(e)
o 1 n o
©) 1 . on
1 - _
= i=on D I(M; 24|27 + 6(e)
t=1
1 n
= ——— > I(M, 2" Z) + d(e)
(I—en =
<

IR 1 e
WZI(M,Xt L2 Z) 4 6(e)
=1

= ﬁ > I(Si; Zi) + 6(e)

where (e) holds by the data processing inequality and because
B is a function of M and Y™; (f) holds because M and
(Y™, Z™) are independent under hypothesis H = 1 with same
marginals as under %4 = 0; and (g) holds by the Markov
chain M — X" — Z"™ — Y. The proof of the converse is
finally concluded by defining a time-sharing random variable
Q~U{l,...n}and S:=(5S0,Q), X : =Xg, Y : =Yg and
Z : =Zg and letting ¢ — 0 and n — oo.
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