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On Hypothesis Testing Against Conditional
Independence With Multiple Decision Centers

Sadaf Salehkalaibar , Member, IEEE, Michèle Wigger, Senior Member, IEEE, and Roy Timo

Abstract— A distributed binary hypothesis testing problem is
studied with one observer and two decision centers. Achievable
type-II error exponents are derived for testing against conditional
independence when the observer communicates with the two deci-
sion centers over one common and two individual noise-free bit
pipes and when it communicates with them over a noisy broadcast
channel. The results are based on a coding and testing scheme
that splits the observations into subblocks, so that transmitter
and receivers can independently apply to each subblock either
Gray-Wyner coordination coding with side-information or hybrid
joint source-channel coding with side-information, followed by a
Neyman-Pearson test over the subblocks at the receivers. This
approach allows to avoid introducing further error exponents
that one would expect from the receivers’ decoding operations
related to binning or the noisy transmission channel. The derived
exponents are shown to be optimal in some special cases when
communication is over noise-free links. The results reveal a
tradeoff between the type-II error exponents at the two decision
centers.

Index Terms— Distributed hypothesis testing, broadcast chan-
nel, testing against conditional independence, Gray-Wyner net-
work.

I. INTRODUCTION

CONSIDER the distributed hypothesis testing problem
where a transmitter communicates with two receivers

that each wishes to decide on the joint probability distribution
underlying the observations at the three terminals in Fig. 1. In
the scenario we consider, communication from the transmitter
to the receivers either takes place over one common and two
individual noise-free bit pipes or over a discrete memoryless
broadcast channel (BC). For simplicity, we restrict attention
to a binary hypothesis where either H = 0 or H = 1.
The focus of this paper is on the asymptotic regime where
the length of the observed sequences n tends to infinity and
where both the type-I error probabilities (i.e., the probabil-
ities of deciding on hypothesis 1 when H = 0) and the
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Fig. 1. Multi-terminal hypothesis testing with side information.

type-II error probabilities (i.e., the probabilities of deciding
on hypothesis 0 when H = 1) vanish. We follow the approach
in [1] and [2], and aim to quantify the fastest possible expo-
nential decrease of the type-II error probabilities, while we
allow the type-I error probabilities to vanish arbitrarily slowly.
Ahlswede and Csiszar [1] and Han [2] studied the problem
with only a single receiver and where communication takes
place over a noise-free link. They presented general upper and
lower bounds on the maximum type-II error exponents, and
these bounds match when under H = 1 the joint distribution
of the observations Xn at the transmitter and Y n at the receiver
equals the product of the marginal distributions under H = 0.
This problem formulation is widely known as testing against
independence. Rahman and Wagner [4] extended this result to
a setup called testing against conditional independence where
the receiver observes two sequences (Y n, Zn): under both
hypotheses, sequence Zn has the same joint distribution with
the transmitter’s observation Xn and the same joint distribution
with Y n; and under H = 1, observation Y n is conditionally
independent of Xn given Zn . Similar results were also found
for scenarios with multiple transmitters [2], [4], interactive
transmitters, interactive multi-round communications between
nodes, successive refinement and privacy setups [5]–[8].

When testing against conditional independence, in contrast
to the simpler testing against independence, a code construc-
tion with binning [3], [4] has to be used to send information
from the transmitter to the receiver. The roles of the two
receiver observations Zn and Y n decouple: Zn plays the
role of side-information for the source-coding scheme and
thus reduces the required communication rate by means of
binning; Y n is solely used for hypothesis testing but not
for recovering the correct codeword. Generally, the decoding
operation at the receiver introduced by binning causes a second
competing error exponent compared to the standard scheme
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where the codeword index is directly sent over the channel [3].
In the special case of testing against conditional independence,
the second error exponent is however inactive. Rahman and
Wagner [4] proposed a multi-letter extension of the binning
scheme and an analysis of this scheme that directly proves the
final result with the single error exponent.

A similar technique was recently applied also by Sreekuma
and Gündüz [9] to derive the optimal error exponent for testing
against conditional independence over a discrete memoryless
channel (DMC). Their result shows that in this special case,
the same error exponent can be achieved as when communica-
tion is over a noise-free link of rate equal to the capacity of the
DMC. Surprisingly, there is thus no competing error exponent
caused by the noisy communication channel. The work in [9]
also extends some of the results to a scenario with multiple
transmitters.

In contrast to these previous works, here we consider a
single transmitter and multiple receivers with different local
observations. The goal is to understand the tension on the
communication channel caused by the receivers being inter-
ested in learning different informations from the transmitter.

Multiple receivers with different observations can be used
to model a variety of situations:

• Multiple Decision Centers Deciding on Different
Hypotheses: Multiple decision centers wish to decide
on the same binary hypothesis but they have different
local informations. This work treats the scenario where
communication to the decision centers takes place over a
common network.
Example 1: Consider a road-side sensor which measures
road conditions (e.g., wetness) and vehicles parameters
(e.g., speed or inter-car distances). Suppose that there are
two autonomous cars which measure the same parameters
using the on-board sensors. Each of them verifies the
accuracy of its own measurements by comparing its data
to the data collected at the road-side sensors: if the sets
of data are independent, then the car decides that its own
data is faulty and raises an alarm (or goes to a predefined
mode).

• Single Decision Center with Uncertain Local Observa-
tion: There is only a single decision center, and the prob-
ability distribution of the decision center’s observation
under each of the two hypotheses is unknown to the
transmitter. In this case, the transmitter has to code for
both options simultaneously, and our results determine
the exponent pairs that are simultaneously achievable for
the two options.
Example 2: Consider an earthquake alert system with
a remote sensor and a single local decision center that
also senses ground vibrations. At unknown times of the
day, there is heavy traffic close to the decision center and
thus the sensed vibrations follow a different distribution.
In this scenario, the information communicated from
the sensor to the decision center needs to be useful
under both traffic conditions. Testing against (conditional)
independence can be used to distinguish vibrations that
are independent at the sensor and the decision center from
larger-scale seismic activities.

• Single Decision Center Performing Two Simultaneous
Tests: Assume there is a single decision center with two
sets of observations (Y n

1 , Zn
1 ) and (Y n

2 , Zn
2 ) that wishes

to decide on two hypotheses and it suffices to take each
decision only based on one of the two sets of observa-
tions. For example, because (Y n

2 , Zn
2 ) is irrelevant for the

first hypothesis test given (Y n
1 , Zn

1 ) and the opposite holds
for the second hypothesis test.
Example 3: Consider a remote combined temperature and
humidity sensor and a local weather station that also
senses these two phenomena but can well separate the
two measurements. For simplicity, the local station might
then choose to decide on the temperature to forecast based
only on its temperature measurement and to predict the
humidity only based on the humidity measurement.

A main feature of the scenario that we consider is that the
observer is interested in extracting and transmitting informa-
tion about its observation Xn that is useful to both receivers.
There is thus an inherent tradeoff in the problem, in that some
information might be more beneficial for Receiver 1 than
for Receiver 2 and vice versa. The goal of this paper is to
shed light on this tradeoff when testing against conditional
independence. As will be explained shortly, we consider
communications of positive rates. Interestingly, for zero-rate
communication, such a tradeoff never exists. That means, there
is a single strategy at the transmitter that is optimal for both
decision centers. This optimal strategy is simply the strategy
from [2] and [3] where the transmitter sends a single bit
indicating whether its observation is typical with respect to
the distribution under H = 0, irrespective of the distribution
of the receiver observation.

One of the main contributions of this paper is to propose and
analyze a coding and testing scheme for testing against con-
ditional independence with two receivers either over a source
coding network with a common and two individual noise-free
bit-pipes or over a discrete memoryless BC. In both scenarios,
there is a single type-II error exponent as in the scenario with
a single receiver. Moreover, the decoding operations at the
receivers only limit the rate of communication and the bin
sizes that one is allowed to choose, but do not introduce
a second competing error exponent. In our scheme, each
terminal splits its observation into many subblocks and then
applies either a Gray-Wyner coordination coding scheme with
side-information [10], [11] or a hybrid source-channel coding
scheme [14] to each subblock, and each receiver performs a
Neyman-Pearson test over all these subblocks to decide on
the underlying hypothesis. The idea of using block coding
followed by a Neyman-Pearson test is inspired by [4] and [9].
However, here we use different block codings compared to
the works in [4] and [9], as these latter only consider a
single decision center. Moreover, we perform the Neyman-
Pearson test over the reconstructed codeword sequences and
not directly over the transmitted messages or channel outputs.
This approach allows to simplify the analysis compared to an
analysis that closely follows the steps proposed in [4] for the
single-decision center scenario.

The second main contribution of the paper is to show
that the proposed schemes achieve the optimal type-II error
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Fig. 2. Hypothesis testing over a Gray-Wyner network with side information.

exponents when: testing against independence over a common
and two individual noise-free bit-pipes and when testing
against conditional independence only over a common pipe
under some less-noisy assumptions on the side-informations.
For this latter result, a Gaussian example is presented that
clearly illustrates the tradeoff on the communication channel
stemming from the presence of two decision centers.

A. Notation

Random variables are denoted by capital letters, e.g., X , Y ,
and their realizations by lower case letters, e.g., x , y. Script
symbols such as X and Y stand for alphabets of random
variables and realizations, and X n and Yn for the correspond-
ing n-fold Cartesian products. Sequences of random variables
(Xi , . . . , X j ) and realizations (xi , . . . , x j ) are abbreviated by
X j

i and x j
i . When i = 1, then we also use the notations X j

and x j instead of X j
1 and x j

1 .
The probability mass function (pmf) of a finite random

variable X is written as PX ; the conditional pmf of X given Y
is written as PX |Y . Entropy, conditional entropy, and mutual
information of random variables X and Y are denoted by
H (X), H (X |Y ), and I (X; Y ). Differential entropy and condi-
tional differential entropy of continuous random variables X
and Y are indicated by h(X) and h(X |Y ). All entropies and
mutual informations in this paper are meant with respect to
the distribution under hypothesis H = 0. The term D(P||Q)
stands for the Kullback-Leibler divergence between two pmfs
P and Q over the same alphabet.

For a given PX and a constant μ > 0, let T n
μ (PX ) = {xn :

|#{i : xi = x}/n − PX (x)| ≤ μPX (x),∀x ∈ X } be the set of
μ-typical sequences in X n [16]. Similarly, T n

μ (PX,Y ) stands
for the set of jointly μ-typical sequences.

The expectation operator is written as E[.]. A Gaussian dis-
tribution with mean a and variance σ 2 is written as N (a, σ 2).
We abbreviate independent and identically distributed by
i.i.d.. Finally, the log(.)-function is taken with respect to
base 2.

II. HYPOTHESIS TESTING OVER A GRAY-WYNER

NETWROK WITH SIDE INFORMATION

Consider the distributed hypothesis testing problem with
one transmitter and two receivers in Fig. 2. The transmitter

observes the sequence Xn , and Receivers 1 and 2 observe
Y n

1 and Y n
2 , respectively. In this model, for i ∈ {1, 2},

Receiver i additionally also observes a side information Zn
i

whose pairwise distribution with Xn and with Y n
i does not

depend on the hypothesis H. In fact, under the null hypothesis

H = 0 : (Xn, Y n
1 , Y n

2 , Zn
1 , Zn

2 ) ∼ i.i.d. PXY1Y2 Z1 Z2, (1)

and under the alternative hypothesis,

H = 1 : (Xn, Y n
1 , Y n

2 , Zn
1 , Zn

2 ) ∼ i.i.d. PX Z1 Z2 PY1|Z1 PY2|Z2 .

(2)

Here PXY1Y2 Z1 Z2 is a given joint distribution over a finite
product alphabet X ×Y1 ×Y2 ×Z1 ×Z2, and PX Z1 Z2 , PY1|Z1

and PY2|Z2 denote its conditional marginals, i.e.,

PX Z1 Z2(x, z1, z2)

=
∑

y1∈Y1,y2∈Y2

PX Z1 Z2Y1Y2(x, z1, z2, y1, y2),

(x, z1, z2) ∈ X × Z1 × Z2,

PY1|Z1(y1|z1)

=
∑

x∈X ,y2∈Y2,z2∈Z2

PXY1Y2 Z2|Z1(x, y1, y2, z2|z1),

(y1, z1) ∈ Y1 × Z1,

PY2|Z2(y2|z2)

=
∑

x∈X ,y1∈Y1,z1∈Z1

PXY1Y2 Z1|Z2(x, y1, y2, z1|z2),

(y2, z2) ∈ Y2 × Z2.

The test here is “against conditional independence” because
Zi has the same joint distribution with the source X under
both hypotheses and because under H = 1, Yi is conditionally
independent of X given Zi .

The transmitter communicates with the two receivers
over 1 common and 2 individual noise-free bit pipes. Specifi-
cally, it computes messages (M0, M1, M2) = τ(n)(Xn), using
a possibly stochastic encoding function τ(n) of the form
τ(n) : X n → {0, . . . , 2nR0} × {0, . . . , 2nR1} × {0, . . . , 2nR2},
and sends message M0 over the common pipe and messages
M1 and M2 over the two individual pipes. For i ∈ {1, 2},
Receiver i observes messages M0 and Mi and decides on
the hypothesis H ∈ {0, 1} by means of a decoding function
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g(n)
i : Yn

i × Zn
i × {0, . . . , 2nR0} × {0, . . . , 2nRi } → {0, 1}.

It produces Ĥi = g(n)
i (Y n

i , Zn
i , M0, Mi ).

Definition 1: For each � ∈ (0, 1), an exponents-rates tuple
(θ1, θ2, R0, R1, R2) is called �-achievable over the Gray-
Wyner network with side information if there exists a sequence
of encoding and decoding functions {(τ(n), g(n)

1 , g(n)
2 )}∞n=1

such that for i ∈ {1, 2} and all positive integers n, the cor-
responding sequences of type-I error probabilities

αi,n
�= Pr[Ĥi = 1|H = 0], (3)

and type-II error probabilities

βi,n
�= Pr[Ĥi = 0|H = 1], (4)

satisfy

αi,n ≤ �,

and

− lim
n→∞

1

n
log βi,n ≥ θi .

Definition 2: Given nonnegative rates (R0, R1, R2), define
the exponents region ESI

GW(R0, R1, R2) as the closure
of all non-negative exponent pairs (θ1, θ2) for which
(θ1, θ2, R0, R1, R2) is �-achievable over the Gray-Wyner net-
work with side information for every � ∈ (0, 1).

Remark 1: The exponents region ESI
GW(R0, R1, R2) only

depends on the marginal distributions PX Z1 Z2 , PXY1|Z1 and
PXY2|Z2 under both hypotheses.

A. Coding and Testing Scheme

We propose to split the block of n transmissions into B
subblocks of k consecutive transmissions each such that n =
k B . So, for each b ∈ {1, . . . , B}, let

Xk
b := (X(b−1)k+1, . . . , Xbk), (5)

Y k
i,b := (Yi,(b−1)k+1, . . . , Yi,bk ), i ∈ {1, 2}, (6)

Zk
i,b := (Zi,(b−1)k+1, . . . , Zi,bk ), i ∈ {1, 2}. (7)

For each of the subblocks, we propose to apply an independent
instance of the coordination code for the Gray-Wyner network
with side-information in [10], where the receivers only account
for side-informations Zn

1 and Zn
2 but not for Y n

1 and Y n
2 . More

specifically, choose a small real number μ > 0, as well as
auxiliary alphabets U0, U1, and U2, and a conditional joint
probability distribution PU0 U1 U2|X over U0 ×U1 ×U2 so that

R0 + R1 ≥ I (U0, U1; X |Z1) + μ, (8)

R0 + R2 ≥ I (U0, U2; X |Z2) + μ, (9)

R0 + R1 + R2 ≥ max
i∈{1,2} I (U0; X |Zi) + I (U1; X |U0, Z1)

+ I (U2; X |U0, Z2) + μ. (10)

Construct for each block a coordination code as described
in [10, Sec. V-B1)] for suitably chosen auxiliary rates
R0,0, R0,1, R0,2, R1,0, R1,1, R2,0, R2,2, R	

0, R	
1, R	

2 > 0 sat-
isfying R	

0 > max{R1,0, R2,0} and Constraints (50) in
[10, Appendix B].

Codebook Generation: Let PU0 , PU1|U0 and PU2|U0 be the
marginal and conditional marginal pmfs of PX · PU0U1U2|X .

For each block b ∈ {1, . . . , B}, generate three codebooks
C0,b, C1,b(.), C2,b(.) independently of each other in the fol-
lowing way. Codebook C0,b consists of 2k R0,0 superbins, each
containing 2k R	

0 length-k codewords whose entries are ran-
domly and independently generated according to the law PU0 .

We make two partitions of the codewords in each superbin.
In the first partition, the codewords of each superbin are
assigned to 2k R1,0 subbins, each containing 2k(R	

0−R1,0) code-
words; in the second partition they are assigned to 2k R2,0

subbins, each containing 2k(R	
0−R2,0) codewords. There are thus

two different ways to refer to a specific codeword in C0,b.
When we consider the first partition, we denote the codewords
in the m1,0,b ∈ {1, . . . , 2k R1,0 }-th subbin of superbin m0,0,b ∈
{1, . . . , 2k R0,0 } by

{uk
0,b(1; m0,0,b, m1,0,b, 	1,0,b)}2k(R	

0−R1,0 )

	1,0,b=1 ;
when we consider the second partition, we denote the code-
words in the m2,0,b ∈ {1, . . . , 2k R2,0 }-th subbin of superbin
m0,0,b ∈ {1, . . . , 2k R0,0 } by

{uk
0,b(2; m0,0,b, m2,0,b, 	2,0,b)}2k(R	

0−R2,0 )

	2,0,b=1 .

Thus, here the first index indicates whether the last two indices
refer to the first or the second partition of the superbins.

For i ∈ {1, 2}, Codebook Ci,b(.) consists of 2k R0,i

superbins each containing 2k Ri,i subbins with 2k R	
i codewords

of length k, where all entries of all codewords are randomly
and independently drawn according to PUi . For mi,i,b ∈
{1, . . . , 2k Ri,i }, we denote the codewords in the mi,i,b -th subbin
of superbin m0,i,b ∈ 2k R0,i by

{uk
i,b(m0,i,b, mi,i,b , 	i,b)}2kR	

i
	i,b=1.

All codebooks are revealed to the sender, and codebooks
{C0,b, Ci,b(.)} are revealed to Receiver i ∈ {1, 2}.

Transmitter: The transmitter first decomposes the observed
source sequence Xn = xn into B blocks, each consisting
of k consecutive symbols, xk

1 , . . . , xk
B . For each block

b ∈ {1, . . . , B}, it then forms a list of all the tuples of
indices (m0,0,b, m1,0,b, 	1,0,b, m0,1,b, m1,1,b, 	1,b, m0,2,b,
m2,2,b, 	2,b) so that the triplet of codewords
uk

0,b(1; m0,0,b, m1,0,b, 	1,0) ∈ C0,b, uk
1,b(m0,1,b, m1,1,b,

	1,b) ∈ C1,b(.), uk
2,b(m0,2,b, m2,2,b, 	2,b) ∈ C2,b(.) satisfies

(xk
b , uk

0,b(1; m0,0,b, m1,0,b, 	1,0,b),

uk
i,b(m0,i,b, mi,i,b , 	i,b)) ∈ T k

μ/2(PXU0Ui ), ∈ {1, 2}. (11)

If for some block b this list is empty, the transmitter sends
the messages m0 = 0, m1 = 0 and m2 = 0 over the
bit pipes. Otherwise, it chooses for each block b the tuple
(m


0,0,b, m

1,0,b, 	



1,0,b, m


0,1,b, m

1,1,b, 	



1,b, m


0,2,b, m

2,2,b, 	



2,b)

uniformly at random over the generated list, and sends the
following messages over the bit pipes

m0 = (m

0,0,1, . . . , m


0,0,B, m

0,1,1, . . . , m


0,1,B,

m

0,2,1, . . . , m


0,2,B), (12)

m1 = (m

1,0,1, . . . , m


1,0,B, m

1,1,1, . . . , m


1,1,B), (13)

m2 = (m

2,0,1, . . . , m


2,0,B, m

2,2,1, . . . , m


2,2,B), (14)
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where for each b ∈ {1, . . . , B}, the pair (m

2,0,b, 	



2,0,b) is

chosen so that uk
0,b(1; m


1,0,b, 	


1,0,b) is the same codeword as

uk
0,b(2; m


2,0,b, 	


2,0,b).

Receiver i : Assume that Receiver i observes messages
M0 = m0 and Mi = mi and source sequences Y n

i = yn
i

and Zn
i = zn

i . If m0 = mi = 0, Receiver i declares Ĥi = 1.
Otherwise, it decomposes its observations into B blocks

{(
m0,b, mi,b, yk

i,b, zk
i,b

)}B
b=1. (15)

It further parses the common message m0,b as
(m0,0,b, m0,1,b, m0,2,b) and its private message mi,b

as mi,b = (mi,0,b, mi,i,b). Then, it seeks a codeword
uk

0,b(i ; m0,0,b, mi,0,b, 	i,0,b) in codebook C0,b and a codeword
uk

i,b(m0,i,b, mi,i,b , 	i,b) in codebook Ci,b(.) such that

(
uk

0,b(i ; m0,0,b, mi,0,b, 	i,0,b), uk
i,b(m0,i,b, mi,i,b , 	i,b), zk

i,b

)

∈ T k
μ (PU0Ui Zi ). (16)

If exactly one such pair of codewords exists,
Receiver i produces the coordination sequence
ûk

i,b = uk
i,b(m0,i,b, mi,i,b , 	i,b). Otherwise, it randomly

chooses a triplet (m∗
0,i,b, m∗

i,i,b , 	∗
i,b) and produces the

coordination sequence ûk
i,b = uk

i,b(m∗
0,i,b, m∗

i,i,b , 	∗
i,b). Finally,

it applies a Neyman-Pearson test to decide on hypothesis H
based on the i.i.d. sequence of tuples

{(
ûk

i,b, yk
i,b, zk

i,b

)}B
b=1, (17)

in a way that the type-I error probability does not exceed �.

B. Result on Exponents Region

The scheme described in the previous section gives the
following achievable exponents region.

Let ESI,in
GW (R0, R1, R2) be given by the following:

ESI,in
GW (R0, R1, R2)

:=
⋃

(U0,U1,U2) :
(U0,U1,U2)→X
→(Y1,Y2,Z1,Z2)

R0+R1+R2≥maxi∈{1,2}
I (U0;X |Zi )+I (U1;X |U0,Z1)+I (U2;X |U0,Z2)

R0+R1≥I (U1,U0;X |Z1)
R0+R2≥I (U0,U2;X |Z2)

⎧
⎨

⎩

(θ1, θ2) : θ1 ≥0, θ2 ≥0,
θ1 ≤ I (U1; Y1|Z1)
θ2 ≤ I (U2; Y2|Z2)

⎫
⎬

⎭ .

Notice that, to evaluate ESI,in
GW (R0, R1, R2) it suffices to con-

sider auxiliary random variables U0, U1, U2 over alphabets U0,
U1, and U2 whose sizes satisfy the following three conditions:
|U0| ≤ |X |+3, |U1| ≤ |X | · |U0|+1, and |U2| ≤ |X | · |U0|+1.

Theorem 1: The set ESI,in
GW (R0, R1, R2) is achievable, i.e.,

ESI,in
GW (R0, R1, R2) ⊆ ESI

GW(R0, R1, R2). (18)

Proof: See Appendix A.
The two next-following results show that the exponents

region ESI,in
GW coincides with the optimal exponents region ESI

GW
in some special cases.

Let

EGW(R0, R1, R2)

:=
⋃

(U0,U1,U2) :
(U0,U1,U2)→X→(Y1,Y2)

R0≥I (U0;X)

R1≥I (U1;X |U0)

R2≥I (U2;X |U0)

⎧
⎨

⎩

(θ1, θ2) : θ1 ≥ 0, θ2 ≥ 0,
θ1 ≤ I (U1; Y1)
θ2 ≤ I (U2; Y2)

⎫
⎬

⎭ .

(19)

Theorem 2: When there is no side-information, i.e.,
Z1 and Z2 are constants,

then

ESI
GW(R0, R1, R2) = ESI,in

GW (R0, R1, R2)

= EGW(R0, R1, R2). (20)

Proof: Achievability follows by specializing Theorem 1
to Z1 and Z2 constant. The converse can be obtained from the
converse in [17] where one has to include U0 into U1.

In the above Theorem 2 it suffices to consider auxiliary
random variables U0, U1, and U2 over alphabets U0, U1, and
U2 whose sizes satisfy:

|U0| ≤ |X | + 2, (21)

|U j | ≤ |X | · |U0| + 1, j ∈ {1, 2}. (22)

This follows by simple applications of Caratheodory’s theo-
rem.

Theorem 3: Let Z2 be a constant and Z1 less noisy than Y2,
i.e., let for all auxiliary random variables U satisfying
the Markov chain U → X → (Y1, Y2, Z1) the following
inequality hold:

I (U ; Z1) ≥ I (U ; Y2). (23)

Then:

ESI
GW(R0, R1 = 0, R2 = 0)

= ESI,in
GW (R0, R1 = 0, R2 = 0). (24)

Proof: Achievability follows by Theorem 1. The converse
is proved in Appendix B.

C. An Example

Theorem 3 was stated for discrete memoryless sources.
It can be shown that it remains valid also when sources are
memoryless and jointly Gaussian [16, Ch. 3].

Consider the following scenario. Under both hypotheses,
X ∼ N (0, 1) and Z1 = X + Nz , where Nz ∼ N (0, σ 2

z ) is
independent of X . Moreover, under hypothesis

H = 0 : Y1 = X + Z1 + N1, (25)

Y2 = Z1 + N2, (26)

where N1 ∼ N (0, σ 2
1 ) and N2 ∼ N (0, σ 2

2 ) are independent
of each other and of (X, Z1), and under hypothesis

H = 1 : Y1 = X 	 + 2 + σ 2
z

1 + σ 2
z

· Z1 + N1, (27)

Y2 = Z 	
1 + N2, (28)
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Fig. 3. Exponents region for σ 2
z = 0.7, σ 2

1 = 0.2 and σ 2
2 = 0.3.

where X 	 ∼ N (0,
σ 2

z
1+σ 2

z
) and Z 	

1 ∼ N (0, 1 + σ 2
z ) are

independent of each other and of the tuple (X, Z1, N1, N2).
The described scenario satisfies the less noisy condition

in (23). By Theorem 3, when restricting to R1 = R2 = 0, for
this example, the region ESI

GW equals ESI,in
GW . As is proved in

Appendix IV, the exponents region ESI
GW(R0, R1 = 0, R2 = 0)

evaluates to the set of all nonnegative exponent pairs (θ1, θ2)
that satisfy

θ1 ≤ 1

2
log

(
σ 2

z + σ 2
1 (1 + σ 2

z )

22α̃σ 2
z + σ 2

1 (1 + σ 2
z )

)
, (29a)

θ2 ≤ 1

2
log

(
1 + σ 2

z + σ 2
2

2−2(α̃+R0)(1 + σ 2
z ) + σ 2

2

)
, (29b)

for some α̃ ∈ [−R0, 0].
The boundary of the exponents region ESI

GW(R0,
R1 = 0, R2 = 0) is illustrated in Fig. 3 for different
values of the rate R0. Generally, on this boundary θ1 > θ2,
because Receiver 1 has the additional side-information
Z1. One observes a trade-off between the two exponents
θ1 and θ2, which is captured by the parameter α̃ in (29).
In other words, having a larger exponent θ1 comes at the
expense of a smaller exponent θ2, and vice versa.

III. HYPOTHESIS TESTING OVER NOISY CHANNELS

This section considers hypothesis testing over a discrete
memoryless BC (W,V1,V2, PV1V2|W ), where W denotes the
finite channel input alphabet, V1 and V2 the finite channel
output alphabets at Receivers 1 and 2, and PV1V2|W the
BC transition pmf. The setup is illustrated in Fig. 4. The
transmitter observes a sequence Xn and produces its channel
inputs W n := (W1, . . . , Wn) as W n = �(n)(Xn) by means
of a possibly stochastic encoding function �(n) : X n → Wn .
Receivers 1 and 2 observe the corresponding channel outputs
V n

1 := (V1,1, . . . , V1,n) and V n
2 := (V2,1, . . . , V2,n), as well

as the source sequences (Y n
1 , Zn

1 ) and (Y n
2 , Zn

2 ) defined in
the previous section. For i ∈ {1, 2}, Receiver i decides
on the hypothesis H ∈ {0, 1} by means of a decoding
function g(n)

i : Yn
i × Zn

i × Vn
i → {0, 1}. It produces Ĥi =

g(n)
i (Y n

i , Zn
i , V n

i ).

As in the previous section, assume that under hypothesis

H = 0 : (Xn, Y n
1 , Y n

2 , Zn
1 , Zn

2 ) ∼ i.i.d. PXY1Y2 Z1 Z2 , (30)

and under hypothesis

H = 1 : (Xn, Y n
1 , Y n

2 , Zn
1 , Zn

2 ) ∼ i.i.d.

PX Z1 Z2 PY1|Z1 PY2|Z2 . (31)

Definition 3: For each � ∈ (0, 1), an exponent pair (θ1, θ2)
is called �-achievable over a BC with side information if
there exists a sequence of encoding and decoding functions
{(�(n), g(n)

1 , g(n)
2 )}∞n=1 such that for i ∈ {1, 2} and all positive

integers n, the corresponding sequences of type-I and type-II
error probabilities satisfy

αi,n ≤ �,

and

− lim
n→∞

1

n
log βi,n ≥ θi ,

where αi,n and βi,n are defined in (3) and (4).
Definition 4: Define the exponents region ESI

BC as the clo-
sure of all non-negative exponent pairs (θ1, θ2) for which
(θ1, θ2) is �-achievable over the BC with side information for
every � ∈ (0, 1).

A. Coding and Testing Scheme

Fix μ > 0, sufficiently large positive integers k and B , and
a joint conditional distribution PU0U1U2|X over finite auxiliary
alphabets U0, U1 and U2. Consider also nonnegative rates
R0, R1, R2 that satisfy

R0 + R1 ≤ I (U1, U0; V1, Z1), (32)

R0 + R2 ≤ I (U2, U0; V2, Z2), (33)

R1 ≤ I (U1; V1, Z1|U0), (34)

R2 ≤ I (U2; V2, Z2|U0), (35)

R0 > I (U0; X), (36)

R1 > I (U1; X |U0), (37)

R2 > I (U2; X |U0), (38)

R1 + R2 > I (U1, U2; X |U0) + I (U1; U2|U0). (39)

Finally, fix a function f : U0 × U1 × U2 × X → W .
Code Construction: For each block b ∈ {1, . . . , B},

randomly generate a codebook C0,b = {Uk
0,b(m0,b) : m0,b ∈

{1, . . . , 2k R0 }} by drawing each entry of the n-length codeword
Uk

0,b(m0,b) i.i.d. according to the pmf PU0 . Moreover, for each
index m0,b and i ∈ {1, 2}, randomly generate a codebook
Ci,b(m0,b) := {Uk

i,b(mi,b|m0,b) : mi,b ∈ {1, . . . , 2k Ri }} by
drawing each entry of the k-length codeword Uk

i,b(mi,b |m0,b)
i.i.d. according to the conditional pmf PUi |U0(.|U0,b, j (m0,b)),
where U0,b, j (m0,b) denotes the j -th symbol of Uk

0,b(m0,b).
Reveal the realizations {C0,b}, {C1,b(·)} and {C2,b(·)} of the
randomly generated codebooks to all terminals.

Transmitter: It observes a source sequence xn and splits
it into B subblocks xn = (xk

1 , . . . , xk
B) as in (5). For each
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Fig. 4. Hypothesis testing over a BC.

block b, it looks for a triple of indices (m0,b, m1,b, m2,b) ∈
{1, . . . , 2k R0} × {1, . . . , 2k R1} × {1, . . . , 2k R2 } such that

(xk
b , uk

0,b(m0,b), uk
1,b(m1,b|m0,b), uk

2,b(m2,b|m0,b))

∈ T k
μ/2(PXU0U1U2), (40)

where uk
0,b(m0,b), uk

1,b(m1,b|m0,b) and uk
2,b(m2,b|m0,b) are

codewords from the chosen codebooks C0,b, {C1,b(·)} and
{C2,b(·)}. If the typicality test is successful, the transmitter
picks one of the triples satisfying the test at random. Other-
wise, it picks a triple (m0,b, m1,b, m2,b) uniformly at random
over {1, . . . , 2k R0 } × {1, . . . , 2k R1} × {1, . . . , 2k R2 }. It finally
sends the k inputs

w(b−1)k+ j = f (u0,b, j (m0,b), u1,b, j (m1,b|m0,b),

u2,b, j (m2,b|m0,b), x(b−1)k+ j ),

j ∈ {1, . . . , k}, (41)

over the channel.
Receiver i ∈ {1, 2}: Assume that it observes the sequence

of channel outputs vn
i,b and the source sequences yn

i,b and zn
i,b .

It looks for a pair of indices (m̂0,b, m̂i,b) such that

(uk
i,b(m̂i,b|m̂0,b), v

k
i,b, zk

i,b) ∈ T k
μ (PUi Vi Zi ), (42)

and picks one of these pairs at random. If no such pair can
be found, pick (m̂0,b, m̂i,b) uniformly over {1, . . . , 2k R0 } ×
{1, . . . , 2k R1}. For the chosen (m̂0,b, m̂i,b), set

ûk
i,b := uk

i,b(m̂0,b, m̂i,b). (43)

Receiver i then decomposes its observations (yk
i,b, zk

i,b) as
in (6) and (7) and performs a Neyman-Pearson test on the
B i.i.d. blocks,

{(
ûk

i,b, vk
i,b, yk

i,b, zk
i,b})}B

b=1,

in a way that the type-I error probability does not exceed �.

B. Exponents Region

Let Ehyb
BC be given by the following:

Ehyb
BC =

⋃

(U0,U1,U2)

⎧
⎨

⎩

(θ1, θ2) : θ1 ≥ 0, θ2 ≥ 0,
θ1 ≤ I (U1; Y1|Z1)
θ2 ≤ I (U2; Y2|Z2)

⎫
⎬

⎭ ,

where the union is taken over all pmfs PU0U1U2W |X that satisfy
the following Markov chains

(U0, U1, U2) → X → (Y1, Y2, Z1, Z2), (44)

(Y1, Y2, Z1, Z2) → (U0, U1, U2, X) → W → (V1, V2), (45)

and the mutual information constraints

I (U1, U0; X |Z1) ≤ I (U1, U0; V1|Z1), (46a)

I (U2, U0; X |Z2) ≤ I (U2, U0; V2|Z2), (46b)

I (U1; X |Z1, U0) ≤ I (U1; V1|Z1, U0), (46c)

I (U2; X |Z2, U0) ≤ I (U2; V2|Z2, U0), (46d)

I (U0, U1; X |Z1) + I (U2; X |Z2, U0) + I (U1; U2|U0)

≤ I (U0, U1; V1|Z1) + I (U2; V2|Z2, U0),

(46e)

I (U0, U2; X |Z2) + I (U1; X |Z1, U0) + I (U1; U2|U0)

≤ I (U1; V1|Z1, U0) + I (U0, U2; V2|Z2),

(46f)

I (U1; X |Z1, U0) + I (U2; X |Z2, U0) + I (U1; U2|U0)

≤ I (U1; V1|Z1, U0) + I (U2; V2|Z2, U0),

(46g)

I (U1, U0; X |Z1) + I (U2, U0; X |Z2) + I (U1; U2|U0)

≤ I (U1, U0; V1|Z1) + I (U2, U0; V2|Z2),

(46h)

for some function f : U0 × U1 × U2 × X → W where
W = f (U0, U1, U2, X).

Theorem 4: The exponents region Ehyb
BC is achievable, i.e.,

Ehyb
BC ⊆ ESI

BC .

Proof: The region is achieved by the coding and testing
scheme described in the previous subsection. This is proved
in Appendix D.

To evaluate the region Ehyb
BC , it suffices to consider auxiliaries

whose alphabets satisfy the following two conditions: |U0| ≤
|X | + 8, |U1| ≤ |X | · |U0| + 3 and |U2| ≤ |X | · |U0| + 3.

The exponents region Ehyb
BC is achieved by means of hybrid

joint source-channel coding with side-information. The con-
straints in (44) ensure that the receivers can decode their
intended hybrid coding codewords; a U0-codeword is decoded
at both receivers and a Ui -codeword at Receiver i only.
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These codewords are then used at the receivers for testing
against conditional independence, see the exponents expres-
sion in (44). Notice that hybrid joint source-channel coding
also includes separate source-channel coding as a special
case [14]. In fact, the separate scheme’s exponents region
can be derived by considering U0 = (W0, Ũ0) and Ui =
(Wi , Ũi ), for i ∈ {1, 2}, where (Ũ0, Ũ1, Ũ2, W0, W1, W2) are
auxiliary random variables which satisfy the Markov chains
(Ũ0, Ũ1, Ũ2) → X → (Z1, Z2) and (W0, W1, W2) →
W → (V1, V2) and the tuple (W0, W1, W2) is independent
of (Ũ0, Ũ1, Ũ1, X, Y1, Z1, Y2, Z2).

This theorem recovers the optimal error exponent for
hypothesis testing over a point-to-point channel found in [9].
It can be verified that the optimal error exponent of [9]
for the discrete memoryless channel from W to V1 can be
recovered by specializing Theorem 4 to U0, U2 constants and
U1 = (Ũ , W ) with W independent of (Ũ , X, Y1, Z1).

C. An Example

We investigate the achievable exponent region of Theorem 4
by means of an example. Reconsider the first example in
Section II-C, but where now communication takes place over a
Gaussian BC. Since the exponents region depends on the BC
transition law only through the conditional marginals PV1|W
and PV2|W , we assume that the Gaussian BC is degraded and
described as follows:

V1 = W + T1, (47)

V2 = V1 + T2, (48)

where T1 and T2 are independent Gaussian random variables
of variances r2

1 and r2
2 − r2

1 (r2
2 ≥ r2

1 ). The input W is subject
to an expected power constraint E[|W |2] ≤ 1.

Likewise to the first example, we choose the auxiliaries
U0 and U1 jointly Gaussian with X so that X = U1 + Q1
and U1 = U0 + Q0, and we choose U2 = U0. Due to the
degradedness of the channel, for such a choice of auxiliaries
(i.e., when U2 = U0) constraints (46) simplify to the two
constraints

I (U0; X) ≤ I (U0; V2), (49)

I (U1; X |Z1, U0) ≤ I (U1; V1|Z1, U0). (50)

Let Q0, Q1, U0 be independent zero-mean Gaussian random
variables of variances σ 2

q0
, σ 2

q1
, and 1 − σ 2

q0
− σ 2

q1
so that X =

Q0 + Q1 +U0 and U1 = U0 + Q0. Then, set the channel input
to W = αU0 + βU1 for some parameters α, β ≥ 0 satisfying

(α + β)2(1 − σ 2
q0

− σ 2
q1

) + β2σ 2
q0

= 1. (51)

Specializing the achievable exponents region Ehyb
BC to the

proposed choices, proves achievability of all nonnegative pairs
(θ1, θ2) that satisfy

θ1 ≤ 1

2
log

((
σ 2

1 + σ 2
z

1 + σ 2
z

)
·
(

σ 2
q1

+ σ 2
z

σ 2
q1

(σ 2
1 + σ 2

z ) + σ 2
1 σ 2

z

))
,

(52)

θ2 ≤ 1

2
log

(
1 + σ 2

z + σ 2
2

σ 2
q0

+ σ 2
q1

+ σ 2
z + σ 2

2

)
, (53)

Fig. 5. Achievable exponents regions for σ 2
z = 0.7, σ 2

1 = 0.2, σ 2
2 = 0.3,

r2
1 = 0.1, r2

2 = 0.3.

for some σ 2
q0

, σ 2
q1

∈ [0, 1], β > 0 so that

σ 2
q0

+ σ 2
q1

≤ 1, (54)

and

1

σ 2
q0

+ σ 2
q1

≤ 1 + r2
2

β2σ 2
q0

+ r2
2

, (55)

1 + σ 2
z

σ 2
q1

1 + σ 2
z

σ 2
q0

+σ 2
q1

≤ 1 + σ 2
q0

σ 2
q1

+ σ 2
z

+ β2σ 2
q0

r2
1

. (56)

The boundary of the achievable exponents region Ehyb
BC is

illustrated in Fig. 5 for a setup parametrized by σ 2
z = 0.7,

σ 2
1 = 0.2, σ 2

2 = 0.3, r2
1 = 0.1 and r2

2 = 0.3. One observes
a trade-off between the two exponents θ1 and θ2. Comparing
this exponents region with the region shown in Figure 3 for
the noiseless channel, we observe that the asymmetric channel
(different noise variances at the different receivers) changes the
nature of this tradeoff. The second line shown in Fig. 5 depicts
the boundary of the exponents region that is achieved by
a separation based scheme that combines the Gray-Wyner
coordination coding with side-information from the previous
section with a superposition code for the Gaussian broadcast
channel. As it can be seen, the exponents region achieved by
this separate coding and testing scheme is strictly smaller than
the exponents region of our joint coding and testing scheme.

IV. CONCLUSION AND DISCUSSION

This paper considers a distributed binary hypothesis testing
problem in a one-observer, two-decision center setup. Achiev-
able error exponents are presented for testing against condi-
tional independence when communication from the observer
to the centers is over one common and two individual noise-
free bit-pipes and when communication is over a BC. To this
end, we presented coding and testing schemes where:

• all terminals split their observations into many subblocks;
• transmitter and receivers apply a Gray-Wyner coordi-

nation code with side-information [10] or hybrid joint
source-channel coding with side-information for a BC;
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• the receivers apply a Neyman-Pearson test to the i.i.d.
subblocks of side-information and reconstructed source
sequences.

Similarly to [4] and [9], in the above approach, the “multi-
letter” decision over subblocks avoids introducing a competing
error exponent due to the binning or the channel decoding
procedure.

The derived type-II error exponents are optimal when testing
against independence over a common and two individual
noise-free bit pipes, and when testing against conditional
independence over a single noise-free bit pipe if some of
the receiver side-informations are less noisy. An explicit
characterization of this latter optimal error exponent is given
for a Gaussian example. This characterization clearly reveals
a tradeoff between the error exponents achieved at the two
decision centers.

APPENDIX A
PROOF OF THEOREM 1

The proof is based on the scheme in Section II-A which we
analyze in the following.

Analysis: From the way we constructed the Neyman-
Pearson tests, it immediately follows that the type-I error
probabilities at the two receivers cannot exceed �. We turn
our attention to the type-II error probabilities. Notice that the
analysis in [10, Th. 2] is easily modified to show that for each
b ∈ {1, . . . , B} and i ∈ {1, 2}:

Pr[(Xk
b, Û k

i,b, Zk
i,b) ∈ T k

μ (PU |X PX Z )] > 1 − μ, (57)

for sufficiently large k. In fact, it suffices to add the sequence
Zk

i,b into the typicality test defining event E3,i in [10, Appen-
dix B]. Thus, by the conditional typicality lemma [16], under
the null-hypothesis H = 0, also

Pr[(Xk
b, Û k

i,b, Zk
i,b, Y k

i,b) ∈ T k
μ (PU |X PXY Z )] > 1 − μ. (58)

Now, recall that each Receiver i only declares Ĥi = 0 if
the applied Neyman-Pearson test produces 0. Since for each
i ∈ {1, 2}:

under H = 0 :{
Û k

i,b, Y k
i,b , Zk

i,b

}B
b=1 is i.i.d. ∼ PÛ k

i Y k
i Zk

i
, (59a)

and

under H = 1 :{
Û k

i,b, Y k
i,b, Zk

i,b

}B
b=1 is i.i.d. ∼ PÛ k

i Zk
i

PY k
i |Zk

i
, (59b)

the Chernoff-Stein Lemma [22] can be applied to bound the
probabilities of type-II error. Thus, for sufficiently large k:

− 1

n
log βi,n ≥ 1

k
D

(
PÛ k

i Y k
i Zk

i |H=0

∥∥ PÛ k
i Y k

i Zk
i |H=1

) − μ

(a)= 1

k
I
(
Û k

i ; Y k
i

∣∣Zk
i

) − μ

= H
(
Yi

∣∣Zi ) − 1

k
H

(
Y k

i

∣∣Û k
i , Zk

i

) − μ, (60)

where mutual informations and entropies have to be computed
according to the joint pmf PÛ k

i Y k
i Zk

i
under H = 0, and Equality

(a) holds by (59). We continue by defining the event

EV ,i
�= {(Û k

i , Y k
i , Zk

i ) ∈ T k
μ (PUi Yi Zi )},

and let �V be the indicator function of EV ,i .
The second term on the RHS of (60) can then be upper

bounded as:

H (Y k
i |Zk

i , Û k
i )

= H (Y k
i ,�V |Zk

i , Û k
i )

= H (Y k
i |Zk

i , Û k
i ,�V ) + H (�V |Zk

i , Û k
i )

(a)≤ H (Y k
i |Zk

i , Û k
i ,�V ) + 1

(b)≤ H (Y k
i |Zk

i , Û k
i ,�V = 1) + k log |Yi | · μ + 1

=
∑

(uk
i ,z

k
i )

∈T k
μ (PUi Zi )

[
Pr[Zk

i = zk
i , Û k

i = uk
i |�V = 1]

·H (Y k
i |Zk

i = zk
i , Û k

i = uk
i ,�V = 1)

]

+ k log |Yi | · μ + 1
(c)≤

∑

(uk
i ,z

k
i )

∈T k
μ (PUi Zi )

[
Pr[Zk

i = zk
i , Û k

i = uk
i |�V = 1]

· log(|T k
μ (Y k

i |uk
i , zk

i )|)
]

+ k log |Yi | · μ + 1
(d)≤

∑

(uk
i ,z

k
i )

∈T k
μ k(PUi Zi )

[
Pr[Zk

i = zk
i , Û k

i = uk
i |�V = 1]

·(k H (Yi |Zi , Ui ) + kδ(μ))
]

+ k log |Yi | · μ + 1

= k H (Yi |Zi , Ui ) + kδ(μ) + k log |Yi | · μ + 1. (61)

The steps leading to (61) are justified as follows:
• (a) follows from the fact that H (�V |Zk

1, Û k
1 ) ≤ 1 because

�V is a binary random variable;
• (b) follows by (58), because Pr[�V = 1] ≤ 1, and

because H (Y k
1 |Zk

1, Û k
1 ,�V = 0) ≤ k log |Y1|;

• (c) follows because entropy is maximized by a uniform
distribution,

• (d) follows by bounding the size of the typical set [16]
where δ(μ) is a function that goes to 0 as μ → 0.

We combine (60) with (61) to obtain that for any choice of
μ > 0 and sufficiently large k, B:

− 1

n
log βi,n ≥ I (Ui ; Yi |Zi ) − δ	(μ), i ∈ {1, 2}, (62)

where δ	(μ) is a function that tends to 0 as μ → 0. Taking
μ → 0 proves Theorem 1.

APPENDIX B
CONVERSE PROOF TO THEOREM 3

Fix a sequence of encoding and decoding functions
{τ(n), g(n)

1 , g(n)
2 } so that the inequalities in Definition 1 hold
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for sufficiently large blocklengths n. Fix also such a suffi-

ciently large n. Then, define U0,t
�= (M0, Zt−1

1 ) and U1,t
�=

(Xt−1, Zn
1,t+1). Following similar steps as in [23], it can be

shown that

D(PM0Y n
1 Zn

1 |H=0||PM0Y n
1 Zn

1 |H=1) ≥ −(1 − �) log β1,n.

Therefore, the type-II error probability at Receiver 1 can be
upper bounded as

− 1

n
log β1,n

≤ 1

n(1 − �)
D(PM0Y n

1 Zn
1 |H=0||PM0Y n

1 Zn
1 |H=1)

(a)= 1

n(1 − �)
I (M0; Y n

1 |Zn
1 )

= 1

n(1 − �)

n∑

t=1

I (M0; Y1,t |Y t−1
1 , Zn

1 )

(b)≤ 1

n(1 − �)

n∑

t=1

I (M0, Y t−1
1 , Zt−1

1 , Zn
1,t+1; Y1,t |Z1,t)

(c)≤ 1

n(1 − �)

n∑

t=1

I (M0, Xt−1, Zt−1
1 , Zn

1,t+1; Y1,t |Z1,t)

= 1

n(1 − �)

n∑

t=1

I (U0,t , U1,t ; Y1,t |Z1,t),

where (a) follows because under hypothesis H = 1 and
given Zn

1 , the sequence Y n
1 and message M0 are inde-

pendent; (b) follows from the memoryless property of the
sources; (c) follows from the Markov chain (Y1,t , Z1,t ) →
(M0, Xt−1, Zt−1

1 , Zn
1,t+1) → Y t−1

1 . For the type-II error prob-
ability at Receiver 2, one obtains:

− 1

n
log β2,n ≤ 1

n(1 − �)
D(PM0Y n

2 |H=0||PM0Y n
2 |H=1)

= 1

n(1 − �)
I (M0; Y n

2 )

= 1

n(1 − �)

n∑

t=1

I (M0; Y2,t |Y n
2,t+1)

= 1

n(1 − �)

n∑

t=1

[
I (M0, Zt−1

1 ; Y2,t |Y n
2,t+1)

−I (Zt−1
1 ; Y2,t |M0, Y n

2,t+1)
]

(b)= 1

n(1 − �)

n∑

t=1

[
I (M0, Zt−1

1 , Y n
2,t+1; Y2,t)

−I (Zt−1
1 ; Y2,t |M0, Y n

2,t+1)
]

(c)= 1

n(1 − �)

n∑

t=1

[
I (M0, Zt−1

1 , Y n
2,t+1; Y2,t)

−I (Y n
2,t+1; Z1,t |M0, Zt−1

1 )
]

(d)≤ 1

n(1 − �)

n∑

t=1

[
I (M0, Zt−1

1 , Y n
2,t+1; Y2,t)

−I (Y n
2,t+1; Y2,t |M0, Zt−1

1 )
]

= 1

n(1 − �)

n∑

t=1

I (M0, Zt−1
1 ; Y2,t )

= 1

n(1 − �)

n∑

t=1

I (U0,t ; Y2,t ),

where (b) follows from the memoryless property of the
sources; (c) follows from Csiszar and Körner’s sum iden-
tity [16]; and (d) follows from the less noisy assump-
tion and the Markov chain (M0, Y n

2,t+1, Zt−1
1 ) → Xt →

(Y1,t , Y2,t , Z1,t ) which holds by the memoryless property of
the sources and because M0 is a function of Xn . For the rate
R0, one finds:

n R0 ≥ H (M0) ≥ I (M0; Xn, Zn
1 )

= I (M0; Xn|Zn
1 ) + I (Zn

1 ; M0)

=
n∑

t=1

[I (M0; Xt |Xt−1, Zn
1 ) + I (M0; Z1,t |Zt−1

1 )]

=
n∑

t=1

[
I (M0, Xt−1, Zt−1

1 , Zn
1,t+1; Xt |Z1,t)

+I (M0, Zt−1
1 ; Z1,t)

]

=
n∑

t=1

[
I (Xt−1, Zn

1,t+1; Xt |M0, Z1,t , Zt−1
1 )

+I (M0, Zt−1
1 ; Xt |Z1,t) + I (M0, Zt−1

1 ; Z1,t)
]

=
n∑

t=1

[
I (Xt−1, Zn

1,t+1; Xt |M0, Z1,t , Zt−1
1 )

+I (M0, Zt−1
1 ; Z1,t , Xt )

]

≥
n∑

t=1

[
I (Xt−1, Zn

1,t+1; Xt |M0, Z1,t , Zt−1
1 )

+I (M0, Zt−1
1 ; Xt )

]

=
n∑

t=1

[I (U1,t ; Xt |Z1,t , U0,t ) + I (U0,t ; Xt )].

Notice that by the memoryless property of the sources
and because M0 is a function of Xn , the Markov chain
(M0, Zn

1,t+1, Zt−1
1 , Xt−1) → Xt → (Y1,t , Y2,t , Zt ) holds,

and thus (U0,t , U1,t ) → Xt → (Y1,t , Y2,t , Zt ). The proof is
then concluded by combining these observations with stan-
dard time-sharing arguments which require introducing the

auxiliary random variables T ∈ {1, . . . , n}, U0
�= (U0,T , T ),

U1
�= U1,T , X

�= XT , Y1
�= Y1,T , Y2

�= Y2,T , and Z1
�= Z1,T .

APPENDIX C
EVALUATION OF ESI

GW(R0, R1 = 0, R2 = 0) FOR

THE EXAMPLE IN SECTION II-C

That the exponent pairs in (29) lie in ESI
GW(R0, R1 = 0,

R2 = 0) can be seen by evaluating (19) for auxiliaries



SALEHKALAIBAR et al.: ON HYPOTHESIS TESTING AGAINST CONDITIONAL INDEPENDENCE 2419

U0 and U1 that are jointly Gaussian with X and so that
X = U1 + W1 and U1 = U0 + W0 for independent zero-mean

Gaussians W1, W0 and U0 that are of variances
σ 2

z

(σ 2
z +1)2−2α̃−1

,

(σ 2
z + 1)2−2(α̃+R0) − σ 2

z (1 + 1
(σ 2

z +1)2−2α̃−1
) and (1 + σ 2

z )(1 −
2−2(α̃+R0)), respectively.

That ESI
GW(R0, R1 = 0, R2 = 0) is no larger than the region

in (29) is proved as follows. By the EPI:

h(Y2|U0) ≥ 1

2
log

(
22h(Z1|U0) + 22h(N2)

)
,

h(Y1|U0, U1, Z1) ≥ 1

2
log

(
22h(X |U0,U1,Z1) + 22h(N1)

)
. (63)

Moreover, rate-constraint on R0 is equivalent to

R0 ≥ I (U0; X) + I (U1; X |U0, Z1)

= h(X) − h(X |U0) + h(X |U0, Z1)

− h(X |U0, U1, Z1)

= h(X) − I (X; Z1|U0) − h(X |U0, U1, Z1)

= h(X) − h(Z1|U0) + h(Z1|X, U0)

−h(X |U0, U1, Z1)

= h(X, Z1) − h(Z1|U0) − h(X |U0, U1, Z1), (64)

where the last equality follows from the Markov chain
U0 → X → Z1.

Defining now

α := h(X |U0, U1, Z1) and β := h(Z1|U0), (65)

above inequalities show that ESI
GW(R0, R1 = 0, R2 = 0) is

included in the set of all pairs (θ1, θ2) that satisfy

θ1 ≤ h(Y1|Z1) − 1

2
log

(
22α + 22h(N1)

)
, (66)

θ2 ≤ h(Y2) − 1

2
log

(
22β + 22h(N2)

)
, (67)

for some choice of parameters α ≤ h(X |Z1) and β ≤ h(Z1)
so that

(α − h(X |Z1)) + (β − h(Z1)) ≥ −R0. (68)

Now, since the right-hand sides of (66) and (67) are decreasing
in the parameters α and β, these parameters should be chosen
so that the rate-constraint (68) is satisfied with equality.
In other words, for fixed α, the optimal β is obtained by
solving (68) under the equality constraint. Defining α̃ := (α−
h(X |Z1)) ≤ 0 and expressing the optimal β in terms of α̃ then
establishes the desired inclusion of ESI

GW(R0, R1 = 0, R2 = 0)
in the set of pairs (θ1, θ2) given in (29).

APPENDIX D
PROOF OF THEOREM 4

We analyze the probability of error of the scheme in
Section III-A. It immediately follows that the type-I error
probabilities at the two receivers cannot exceed � from the way
the Neyman-Pearson test is designed. Now, we consider the

type-II error probabilities. They can be upper bounded using
the Chernoff-Stein lemma. Thus, for sufficiently large k:

− 1

n
log βi,n ≥ 1

k
D

(
PÛ k

i Y k
i Zk

i |H=0

∥∥ PÛ k
i Y k

i Zk
i |H=1

) − μ

(a)= 1

k
I
(
Û k

i ; Y k
i

∣∣Zk
i

) − μ

≥ H
(
Yi

∣∣Zi
) − 1

k
H

(
Y k

i

∣∣Zk
i , Û k

i

) − μ,

where mutual informations and entropies have to be computed
according to the joint pmf PÛ k

i Y k
i Zk

i
under H = 0, and

Equality (a) follows because under H = 1, the joint distribu-
tion of the variables decomposes as PÛ k

i Zk
i

PY k
i |Zk

i
. As shown

in detail in [14], for sufficiently large values of k, the rate
constraints in (32)–(39) ensure that

Pr
[
(Û k

i,b, Y k
i,b , Zk

i,b) ∈ T k
μ (PUi Yi Zi )

]
> 1 − μ. (69)

Following similar steps as the ones leading to (61), one
obtains:

H
(
Y k

i

∣∣Û k
i , Zk

i

) ≤ H (Yi |Zi , Ui ) + log |Yi | · μ + 1

k
+ δ(μ),

(70)

for a function δ(μ) that tends to 0 as μ → 0. Thus, we get

− 1

n
log βi,n ≥ I (Ui ; Yi |Zi ) − log |Yi | · μ − 1

k
− δ(μ). (71)

Taking μ → 0 and k → ∞ proves the theorem.

ACKNOWLEDGEMENT

M. Wigger wishes to thank O. Shayevitz for helpful
discussions.

REFERENCES

[1] R. Ahlswede and I. Csiszar, “Hypothesis testing with communication
constraints,” IEEE Trans. Inf. Theory, vol. 32, no. 4, pp. 533–542,
Jul. 1986.

[2] T. Han, “Hypothesis testing with multiterminal data compression,” IEEE
Trans. Inf. Theory, vol. 33, no. 6, pp. 759–772, Nov. 1987.

[3] H. Shimokawa, T. Han, and S. I. Amari, “Error bound of hypothesis
testing with data compression,” in Proc. IEEE Int. Symp. Inf. Theory,
Jul. 1994, p. 114.

[4] M. S. Rahman and A. B. Wagner, “On the optimality of binning for
distributed hypothesis testing,” IEEE Trans. Inf. Theory, vol. 58, no. 10,
pp. 6282–6303, Oct. 2012.

[5] W. Zhao and L. Lai, “Distributed testing against independence with
conferencing encoders,” in Proc. IEEE Inf. Theory Workshop (ITW),
Jeju, South Korea, Oct. 2015, pp. 19–23.

[6] Y. Xiang and Y.-H. Kim, “Interactive hypothesis testing against indepen-
dence,” in Proc. IEEE Int. Symp. Inf. Theory, Istanbul, Turkey, Jun. 2013,
pp. 2840–2844.

[7] G. Katz, P. Piantanida, and M. Debbah. (Apr. 2016). “Collabora-
tive distributed hypothesis testing.” [Online]. Available: https://arxiv.
org/abs/1604.01292

[8] J. Liao, L. Sankar, F. P. Calmon, and V. Y. F. Tan, “Hypothesis testing
under maximal leakage privacy constraints,” in Proc. IEEE Int. Symp.
Inf. Theory, Aachen, Germany, Jun. 2017, pp. 779–783.

[9] S. Sreekuma and D. Gunduz. (2017). “Distributed hypothesis test-
ing over noisy channels.” [Online]. Available: https://arxiv.org/abs/
1704.01535

[10] O. Shayevitz and M. Wigger, “On the capacity of the discrete memory-
less broadcast channel with feedback,” IEEE Trans. Inf. Theory, vol. 59,
no. 3, pp. 1329–1345, Mar. 2013.

[11] R. M. Gray and A. D. Wyner, “Source coding for a simple network,”
Bell Syst. Tech. J., vol. 48, pp. 1681–1721, Nov. 1974.



2420 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 6, JUNE 2018

[12] A. Kaspi and T. Berger, “Rate-distortion for correlated sources with
partially separated encoders,” IEEE Trans. Inf. Theory, vol. 28, no. 6,
pp. 828–840, Nov. 1982.

[13] C. Heegard and T. Berger, “Rate distortion when side information may
be absent,” IEEE Trans. Inf. Theory, vol. 31, no. 6, pp. 727–734,
Nov. 1985.

[14] P. Minero, S. H. Lim, and Y.-H. Kim, “A unified approach to hybrid
coding,” IEEE Trans. Inf. Theory, vol. 61, no. 4, pp. 1509–1523,
Apr. 2015.

[15] P. W. Cuff, H. H. Permuter, and T. M. Cover, “Coordination capacity,”
IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4181–4206, Sep. 2010.

[16] A. El Gamal and Y. H. Kim, Network Information Theory. Cambridge,
U.K.: Cambridge Univ. Press, 2011.

[17] M. Wigger and R. Timo, “Testing against independence with multiple
decision centers,” (Invited Paper), in Proc. SPCOM, Bangalore, India,
Jun. 2016, pp. 1–5.

[18] I. Csiszár, “Linear codes for sources and source networks: Error
exponents, universal coding,” IEEE Trans. Inf. Theory, vol. 28, no. 4,
pp. 585–592, Jul. 1982.

[19] B. G. Kelly and A. B. Wagner, “Improved source coding exponents
via Witsenhausen’s rate,” IEEE Trans. Inf. Theory, vol. 57, no. 9,
pp. 5615–5633, Sep. 2011.

[20] I. Csiszár and J. Körner, “Graph decomposition: A new key to coding
theorems,” IEEE Trans. Inf. Theory, vol. 27, no. 1, pp. 5–12, Jan. 1981.

[21] E. Tuncel, “Slepian-Wolf coding over broadcast channels,” IEEE Trans.
Inf. Theory, vol. 52, no. 4, pp. 1469–1482, Apr. 2006.

[22] T. M. Cover and J. A. Thomas, Elements of Information Theory.
Hoboken, NJ, USA: Wiley, 1991.

[23] S. Salehkalaibar, M. Wigger, and L. Wang. (2017). “Hypothesis test-
ing in multi-hop networks.” [Online]. Available: https://arxiv.org/abs/
1708.05198

Sadaf Salehkalaibar (M’14) received the B.Sc.,
M.Sc., and Ph.D. degrees in electrical engineering
from the Sharif University of Technology, Tehran,
Iran, in 2008, 2010, and 2014, respectively. She
was a Post-Doctoral Fellow with Telecom Paris-
Tech, Paris, France, in 2015 and 2017, respectively.
She is currently an Assistant Professor with the
Electrical and Computer Engineering Department
of, University of Tehran. Her research interests
include network information theory and fundamental
limits of secure communication with emphasis on

information-theoretic security.

Michèle Wigger (S’05–M’09–SM’14) received the
M.Sc. degree (Hons.) in electrical engineering and
the Ph.D. degree in electrical engineering from ETH
Zurich in 2003 and 2008, respectively. In 2009, she
was a Post-Doctoral Fellow with the University of
California, San Diego, CA, USA. She then joined
Telecom Paris Tech, Paris, France, where she is
currently an Associate Professor. She has held visit-
ing professor appointments with the Technion–Israel
Institute of Technology and ETH Zurich. She has
served as an Associate Editor of the IEEE COM-

MUNICATION LETTERS and is currently an Associate Editor for Shannon
Theory of the IEEE TRANSACTIONS ON INFORMATION THEORY. She is
currently serving on the Board of Governors of the IEEE Information Theory
Society. Her research interests include multi-terminal information theory,
in particular in distributed source coding and in capacities of networks with
states, feedback, user cooperation, or caching.

Roy Timo received the B.E. and Ph.D. degrees
from The Australian National University in 2005 and
2009, respectively. He was an Alexander von Hum-
boldt Research Fellow with the Institute for Com-
munications Engineering, Technische Universitat
Munchen from 2014 to 2016, a Research Fellow
with the Institute for Telecommunications Research,
University of South Australia, from 2008 to 2013,
and a Post-Doctoral Researcher with the Depart-
ment of Communications and Electronics, Telecom
ParisTech, from 2013 to 2014. He is currently an

Experienced Researcher with Ericsson Research, Stockholm, Sweden.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


