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Abstract—Wyner’s soft-handoff network with mixed delay con-
straints on source messages is considered in which neighbouring
receivers are able to cooperate over rate-limited conferencing
links. Each source message is a combination of independent “fast”
and “slow” bits where the former are subject to a stringent
decoding delay. Inner and outer bounds on the capacity region
are derived and the per-user multiplexing gain is obtained for
only transmitter or only receiver conferencing as a function of
the capacity of the conferencing links and the maximum allowed
decoding delay of “slow” bits.

I. INTRODUCTION

Wireless communication networks have to accommodate
different types of data traffics with different latency con-
straints. In particular, delay-sensitive video-applications rep-
resent an increasing portion of the data traffic. On the other
hand, modern networks can increase data rates by means of
cooperation between terminals or with helper relays. However,
cooperation typically introduces additional communication de-
lays, and is thus not applicable to delay-sensitive applications.
In this paper, we analyze the rates of communication that
can be attained over an interference network with either
transmitter- or receiver- cooperation, and where parts of the
messages cannot profit from this cooperation because they are
subject to stringent delay constraints. Mixed delay constraints
in wireless networks’ have previously been studied in [1]–
[3]. In particular, [1] proposes a broadcasting approach over
a single-antenna fading channel to communicate a stream
of “fast” messages, which have to be sent over a single
coherence block, and a stream of “slow” messages, which can
be sent over multiple blocks. A similar approach was taken
in [3] but for a broadcast scenario with K users. Instead
of superposing “slow” on “fast” messages, this latter work
proposes a scheduling approach to give preference to the
communication of “fast” messages.

For simplicity, in this paper, we focus on Wyner’s soft-
handoff model [4]–[6] with K interfering transmitter and
receiver pairs that are aligned on a line. Each transmitter sends
a pair of independent source messages called “fast” and “slow”
messages. Each receiver decodes the fast message immediately
and only based on its own channel outputs. Before decoding
its fast message, it can communicate with its immediate
neighbours over conferencing links during a given maximum
number of rounds [7] and subject to a rate-constraint. It then

decodes the “slow” message based on its own channel outputs
and the cooperation messages received from its neighbours.
In the case of only transmitter-conferencing, receivers decode
both messages based only on their own channel outputs,
but transmitters can hold a conferencing communication that
depends only on the “slow” messages but not on the “fast”
messages. The “fast” messages here again model data that has
to be sent to the receivers without additional delay.

We propose inner and outer bounds on the capacity re-
gion of the soft-hand network with receiver-conferencing. We
also characterize the per-user multiplexing gain region of
the setup with only transmitter-conferencing or only receiver
conferencing for given conferencing prelogs and a given
maximum decoding delay (number of conferencing rounds)
of “slow” messages. The per-user multiplexing gain regions of
the two scenarios coincide, and thus show a duality between
transmitter- and receiver-conferencing in the high signal-to-
noise ratio regime.

Our results also indicate that the sum-rate of “fast” and
“slow” messages is approximately constant when “fast” mes-
sages are sent at small rate. In this regime, the stringent
decoding delay of part of the messages does not cause a loss in
overall performance. When “fast” messages have large rates,
this is not the case. In this regime, increasing the rate of “fast”
messages by ∆, requires that the rate of “slow” messages be
reduced by approximately 2 ·∆.

II. PROBLEM SETUP

Consider a wireless communication system as in Fig. 1 with
K interfering transmitter (Tx) and receiver (Rx) pairs 1, . . . ,K
that are aligned on a line. Transmitters and receivers are each
equipped with a single antenna, and channel inputs and outputs
are real valued. Interference is short-range so that the signal
sent by Tx k is observed only by Rx k and Rx k + 1. As a
result, the time-t channel output at Rx k is

Yk,t = Xk,t + αXk−1,t + Zk,t, (1)

where Xk,t and Xk−1,t are the symbols sent by Transmitter k
and k − 1 at time t, respectively; {Zk,t} are independent and
identically distributed (i.i.d.) standard Gaussians for all k and
t; α 6= 0 is a fixed real number smaller than 1; and X0,t = 0
for all t.
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Fig. 1. System model

Each Tx k wishes to send a pair of independent source
messages M (F )

k and M
(S)
k to Rx k. The “fast” source mes-

sage M
(F )
k is uniformly distributed over the set M(F )

k :=

{1, . . . , b2nR
(F )
k c} and needs to be decoded subject to a

stringent delay constraint, as we explain shortly. The “slow”
source message M (S)

k is uniformly distributed over M(S)
k :=

{1, . . . , b2nR
(S)
k c} and is subject to a less stringent decoding

delay constraint. Here, n denotes the blocklength of transmis-
sion and R(F )

k and R(S)
k are the rates of transmissions of the

“fast” and the “slow” messages. All source messages are
independent of each other and of all channel noises.

Tx k computes its channel inputs Xn
k := (Xk,1, . . . , Xk,n)

as a function of the pair (M
(F )
k ,M

(S)
k ):

Xn
k = f

(n)
k

(
M

(F )
k ,M

(S)
k

)
, (2)

for some function f
(n)
k on appropriate domains that satisfies

the average block-power constraint

1

n

n∑
t=1

X2
k,t ≤ P, a.s., ∀ k ∈ {1, . . . ,K}. (3)

Receivers decode in two phases. During the first fast-
decoding phase, each Rx k has access only to its own sequence
of channel outputs Y nk := (Yk,1, . . . , Yk,n), and it is required
to decode the “fast” source message M (F )

k . That means, Rx k
produces the guess

M̂
(F )
k = g

(n)
k

(
Y nk
)

(4)

by means of a decoding function g(n)k on appropriate domains.
In the subsequent slow-decoding phase, the receivers first

communicate to each other over orthogonal conferencing links,
and then they decode their intended “slow” messages based on
their own channel outputs and the conferencing messages re-
ceived from their neighbours. Only neighbouring receivers can
exchange conferencing messages, and conferencing is limited
to a maximum number of Dmax rounds and to rate-constraint
π Specifically, in conferencing round j ∈ {1, 2, . . . ,Dmax},
Rx k sends the conferencing message Q

(j)
k→k−1 to its left

neighbour, Rx k−1, and the conferencing message Q(j)
k→k+1 to

its right neighbour, Rx k+1. These conferencing messages are

computed based on the outputs Y nk and on the conferencing
messages Rx k received in the previous j − 1 rounds. So, for
k̃ ∈ {k − 1, k + 1}:

Q
(j)

k→k̃ := ψ
(n)

k,k̃

(
Y nk , Q

(1)
k−1→k, Q

(1)
k+1→k, . . . ,

Q
(j−1)
k−1→k, Q

(j−1)
k+1→k

)
, (5)

for an encoding function ψ
(n)

k,k̃
on appropriate domains. The

Dmax messages sent over a conferencing link in each direction
are subject to a rate constraint π. So, for all k ∈ {1, . . . ,K}
and k̃ ∈ {k, k + 1}:

Dmax∑
j=1

H(Q
(j)

k→k̃) ≤ π · n. (6)

After the last conferencing round Dmax, each Rx k decodes
its desired “slow” message as

M̂
(S)
k := b

(n)
k

(
Y nk , Q

(1)
k−1→k, Q

(1)
k+1→k,

. . . , Q
(Dmax)
k−1→k, Q

(Dmax)
k+1→k

)
(7)

by means of a decoding function b(n)k on appropriate domains.
The main interest in this paper is in the achievable sum-

rates of “fast” and “slow” messages. Given a maximum
conferencing rate π and a maximum allowed power P , the pair
of (average) rates (R(F ), R(S)) is called achievable, if there
exists a sequence (in n) of encoding and decoding functions
so that

1

K

K∑
k=1

R
(F )
k = R(F ) and

1

K

K∑
k=1

R
(S)
k = R(S), (8)

and the probability of decoding error

P (n)
e := Pr

[ ⋃
k∈{1,...,K}

{
M̂

(F )
k 6= M

(F )
k or M̂ (S)

k 6= M
(S)
k

}]
(9)

tends to 0 as n→∞.
Definition 1: Given power constraint P > 0 and maximum

conferencing rate π, the capacity region C(P, π) is the closure
of the set of all rate pairs (R(F ), R(S)) that are achievable.

We will particularly be interested in the high signal-to-noise
ratio (SNR) behaviour of the capacity-region. Our focus is
on the set of achievable per-user multiplexing gains when
the conferencing capacity also scales logarithmically in the
SNR. Given a conferencing prelog µ ≥ 0, the pair of per-user
multiplexing gains (S(F ),S(S)) is called achievable, if for each
K there exists a sequence of rates {R(F )

K (P ), R
(S)
K (P )}P>0

so that

S(F ) := lim
K→∞

lim
P→∞

R
(F )
K

1
2 log(1 + P )

, (10)

S(S) := lim
K→∞

lim
P→∞

R
(S)
K

1
2 log(1 + P )

, (11)



and for each K and P > 0 the pair (R
(F )
K (P ), R

(S)
K (P )) is

achievable with conferencing rate at most π = µ · 12 logP .
Definition 2: Given a conferencing-prelog µ, the closure

of the set of all achievable per-user multiplexing gains
(S(F ),S(S)) is called multiplexing gain region and denoted
S?(µ).

III. MAIN RESULTS

Our first result is an inner bound on the capacity region.
It is based on two schemes, the first for the case π < R(F )

and the second for the case π > R(F ). In the first scheme
only parts of “fast” source messages are exchanged over the
conferencing links. In the second scheme also parts of “slow”
source messages are exchanged.

Theorem 1 (Capacity Inner Bound): The capacity region
C(P, π) includes all rate-pairs (R(F ), R(S)) that satisfy

R(F ) ≤ min
{
I(U2;Y ), I(U2;Y |U1) + π

}
(12a)

and

R(F ) +R(S) ≤ 1

K

K∑
k=1

[
I(X;Y, U ′1|U1)

+ min
{
I(U2;Y ), I(U2;Y |U1) + π

}]
,

(12b)

where triples (U1, U2, X) and (U ′1, U
′
2, X

′) are i.i.d. accord-
ing to some probability distribution PU1U2X that satisfying
the Markov chain U1 → U2 → X , and where Y =
X + αX ′ + Z with Z standard Gaussian independent of
(U1, U2, X, U

′
1, U

′
2, X

′).
The capacity region C(P, π) also includes all rate-pairs

(R(F ), R(S)) that satisfy

R(F ) ≤ I(U ;Y ) (13a)

R(F ) +R(S) ≤ I(U ;Y ) + I(V1;Y, U ′|U)

+

Dmax−1∑
d=2

I(Vd;Y, V
′
d−1|Vd−1)

+ I(X;Y,X ′|VDmax−1), (13b)

where the tuples (U, V1, . . . , VDmax−1, X) and
(U ′, V ′1 , . . . , V

′
Dmax−1, X

′) are i.i.d. according to some
probability distribution PUV1...VDmax−1X satisfying the
Markov chain U → V1 → V2 → . . . → VDmax−1 → X and
the rate constraint

I(U ;Y ) + I(V1;Y,U ′|U) +

Dmax−1∑
d=2

I(Vd;Y, V
′
d−1|Vd−1) ≤ π,

(14)
and where Y = X + αX ′ + Z with Z independent standard
Gaussian.

Proof: See Section V.
Theorem 2 (Capacity Outer Bound): Any achievable rate

pair (R(F ), R(S)) satisfies the following two conditions:

R(F ) +R(S) ≤
(⌈
K−1
2

⌉
+ 1
)

K
· 1

2
log
(
1 + (1 + α2)P

)

R(F)
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Fig. 2. Capacity outer bound in Theorem 2 and inner bound in Theorem 1
for α = 0.2.

+

⌊
K−1
2

⌋
K

·max{− log |α|, 0}

+

⌊
K
2

⌋
K
· 1

2
log(1 + α2) +

K − 1

K
· π, (15)

2R(F ) +R(S) ≤ K − 1

2K

(
1

2
log
(
(1 + (1 + α2)P )(1 + α2)

)
+2 max{− log |α|, 0}

)
+

1

K
log(1 + P ). (16)

Proof: See Section VI.
Figs. 2 illustrates the outer bound on the capacity-region in

Theorem 2 and the inner bound in Theorem 1 when this latter
is evaluated for jointly Gaussian distributions on the inputs
and the auxiliaries.

Theorem 3 (Per-User Multiplexing Gain): Given
conferencing-prelog µ ≥ 0, the multiplexing gain region
S?(µ) is the set of all nonnegative pairs (S(F ),S(S)) satisfying

2S(F ) + S(S) ≤ 1 (17)

S(F ) + S(S) ≤ min

{
1

2
+ µ,

2Dmax + 1

2Dmax + 2

}
. (18)

Remark 1: An analogous result can be obtained for the
slightly modified setup where each receiver can send con-
ferencing messages only to its left-neighbour or only to its
right-neighbour. The same proof techniques apply, and it
can be shown that the per-user multiplexing gain region is
characterized by (17) and by

S(F ) + S(S) ≤ min

{
1

2
+
µ

2
,

Dmax + 1

Dmax + 2

}
. (19)
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Fig. 3. Multiplexing gain region S?(µ) for Dmax = 10 and µ = 0.3.

Notice that despite the asymmetry of the network, the result
is the same for conferencing to left-neighbours and to right-
neighbours.

IV. TRANSMITTER-CONFERENCING

We consider a related setup where the transmitter can
send conferencing messages but not the receivers. Transmitter
conferencing is limited to Dmax rounds and the exchanged
messages can only depend on the “slow” messages but not on
the fast messages. This models a setup where the transmitters
learn the “slow” messages in advance before they communi-
cate to the receivers, whereas “fast” messages arrive at the
transmitters just shortly before this communication.

Specifically, in each round j ∈ {1, . . . ,Dmax}, Tx k pro-
duces the two conferencing messages T (j)

k→k−1 and T
(j)
k→k+1,

where

T
(j)

k→k̃ = ξ
(n)

k→k̃

(
M

(S)
k , T

(1)
k−1→k, . . . , T

(j−1)
k−1→k,

T
(1)
k+1→k, . . . , T

(j−1)
k+1→k

)
(20)

for some function ξ(n)
k→k̃ on appropriate domains. It sends these

messages over the conferencing links to its left and right
neighbours. As before, the conferencing links are rate-limited
to rate π. So, for all k ∈ {1, . . . ,K} and k̃ ∈ {k − 1, k + 1}:

Dmax∑
j=1

H(T
(j)

k→k̃) ≤ π · n. (21)

Each Tx k then computes its channel inputs as

Xn
k = f̃

(n)
k

(
M

(F )
k ,M

(S)
k , T

(1)
k−1→k, . . . , T

Dmax

k−1→k,

T
(1)
k+1→k, . . . , T

Dmax

k+1→k
)

(22)

subject to the power constraint in (3).
Each Rx k decodes the two messages M (F )

k ,M
(S)
k only

based on its channel outputs Y nk :(
M̂

(F )
k , M̂

(S)
k

)
= g̃

(n)
k

(
Y nk
)
. (23)

Capacity region and per-user multiplexing gain region S̃?(µ)
are defined analogously as before.

Theorem 4 (Only Transmitter-Conferencing): Given µ ≥ 0,
the per-user multiplexing gain region S̃?(µ) is the set of all
nonnegative pairs (S(F ),S(S)) that satisfy

2S(F ) + S(S) ≤ 1 (24)

S(F ) + S(S) ≤ min

{
1

2
+ µ,

2Dmax + 1

2Dmax + 2

}
. (25)

Proof: Similar to the proof of Theorem 3. See Section ??.

Remark 2: Our results exhibit a duality between transmitter-
and receiver-conferencing. They yield the same per-user mul-
tiplexing gain region.

V. PROOF OF ACHIEVABILITY OF THEOREM 1

We present two coding schemes. Our first scheme achieves
the rate-pairs in (12), and receivers conference only parts
of decoded “fast” messages. A single-round of conferencing
suffices, and thus also “slow” message are decoded with only
two units of delay. The second scheme achieves the rate-
pairs in (13), and receivers conference also parts of “slow”
messages. In general, here, Dmax conferencing rounds are
employed and “slow” messages are decoded with maximum
allowed delay Dmax.

A. Scheme 1: Conferencing only parts of “fast”-messages

Fix a small number ε > 0 and a joint distribution PU1U2X

that satisfies the Markov chain U1 → U2 → X . Let
(U ′1, U

′
2, X

′) be an independent copy of (U1, U2, X) and
define

Y = X + αX ′ + Z, (26)

where Z is standard Gaussian independent of all other defined
random variables.

Split each source message into two parts, M
(F )
k =(

M
(F1)
k ,M

(F2)
k

)
, of rates

(
R

(F1)
k , R

(F2)
k

)
that sum up to

R
(F )
k = R

(F1)
k +R

(F2)
k and so that

R
(F1)
k < π. (27)

Codebook construction: For each k ∈ {1, . . . ,K}, generate
codebooks C1,k, {C2,k(i)}, and {Cx,k(i, j)} randomly. Code-
book

C1,k :=
{
un1,k(i) : i = 1, . . . ,

⌊
2nR

(F1)

k

⌋}
(28)

is generated by picking all entries i.i.d. according to PU1
. For

each i ∈
{

1, . . . ,
⌊
2nR

(F1)

k

⌋}
, codebook

C2,k(i) :=
{
un2,k(j|i) : j = 1, . . . ,

⌊
2nR

(F2)

k

⌋}
(29)

is generated by picking the t-th entry of codeword un2,k(j|i)
independently of all other entries and codewords according
to the distribution PU2|U1

(·|u1,k,t(i)). Here, u1,k,t(i) denotes
the t-th entry of codeword un1,k(i). For each pair (i, j) in{

1, . . . ,
⌊
2nR

(F1)

k

⌋}
×
{

1, . . . ,
⌊
2nR

(F2)

k

⌋}
, codebook

Cx,k(i, j) :=
{
xnk (`|i, j) : ` = 1, . . . ,

⌊
2nR

(S)
k

⌋}
(30)



is generated by picking the t-th entry of codeword xnk (`|i, j)
independently of all other entries according to the distribution
PX|U2

(·|u2,k,t(j|i)). Here, u2,k,t(j|i) denotes the t-th entry of
codeword un2,k(j|i).

Reveal all codebooks to all terminals.
Encoding: Tx k sends codeword xnk

(
M

(S)
k

∣∣M (F1)
k ,M

(F2)
k

)
over the channel.

Decoding: Each Rx k performs the following steps. Given
that it observes Y nk = ynk , it first looks for a unique pair (̂i, ĵ)
such that

(un1,k (̂i), un2,k(ĵ |̂i), ynk ) ∈ T (n)
ε (PU1U2Y ). (31)

If none or more than one such pair (̂i, ĵ) exists, Rx k declares
an error. Otherwise, it declares M̂ (F )

k = (̂i, ĵ), and it sends

Q
(1)
k→k+1 = î. (32)

to its right neighbour, Rx k + 1.
With the message Q

(1)
k−1→k, Rx k obtains from its left-

neighbour, it decodes also its intended “slow” message. To
this end, it looks for an index ˆ̀ such that(
un1,k (̂i), un2,k(ĵ |̂i), xnk (ˆ̀|̂i, ĵ),

unk−1(Q
(1)
k−1→k), ynk

)
∈ T (n)

ε (PU1U2XU ′1Y
),

(33)

If none or multiple such indices ˆ̀ exist, an error is declared.
Otherwise, Rx k declares M̂ (S)

k = ˆ̀.
Analysis: Decoding in (31) is successful with probability

tending to 1 as n→∞, if

R
(F1)
k +R

(F2)
k < I(U2;Y ) (34)

R
(F2)
k < I(U2;Y |U1). (35)

Decoding in (33) is successful with probability tending to
1 as n→∞, if

R
(S)
k < I(X;Y,U ′1|U1). (36)

The conferencing constraint is satisfied by (27). Apply then
Fourier-Motzkin elimination to (27), (34) and (35). Achievabil-
ity of the pairs (12) follows then by a rate-transfer argument
noting that parts of the “slow” messages can also be sent as
“fast” messages.

B. Scheme 2: Conferencing also parts of “slow”-messages

to do

VI. PROOF OF THEOREM 2

For convenience of notation, define for any k ∈ {1, . . . ,K}:

Mk := (M
(F )
k ,M

(S)
k ). (37)

We first prove Inequality (15). By Fano’s Inequality and
the independence of the messages, we have for any k ∈
{1, . . . ,K − 1}:

R
(F )
k +R

(S)
k +R

(F )
k+1

=
1

n

[
H(M

(F )
k ) +H(M

(S)
k ) +H(M

(F )
k+1)

]
=

1

n

[
H(M

(F )
k |Mk−1)

+H(M
(S)
k |M1, . . . ,Mk−1,M

(F )
k ,Mk+1, . . . ,MK)

+H(M
(F )
k+1|Mk−1,M

(S)
k+1)

]
≤ 1

n

[
I(M

(F )
k ;Y nk |Mk−1)

+I(M
(S)
k ;Y n1 , . . . , Y

n
K |M1, . . . ,Mk−1,M

(F )
k

,Mk+1, . . . ,MK)

+I(M
(F )
k+1;Y nk+1|Mk−1,M

(S)
k+1)

]
+
εn
n

(a)
=

1

n

[
I(M

(F )
k ;Y nk |Mk−1)

+I(M
(S)
k ;Y nk , Y

n
k+1|Mk−1,M

(F )
k ,Mk+1)

+I(M
(F )
k+1;Y nk+1|Mk−1,M

(S)
k+1)

]
+
εn
n

(b)
=

1

n

[
I(M

(F )
k ,M

(S)
k ;Y nk |Mk−1)

+I(M
(S)
k ;Y nk+1|Y nk ,M

(F )
k ,Mk−1,Mk+1)

+I(M
(F )
k+1;Y nk+1|Mk−1,M

(S)
k+1)

]
+
εn
n

≤ 1

n

[
h(Xn

k + Znk )− h(Znk ) + h(αXn
k + Znk+1|Xn

k + Znk )

−h(Znk+1) + h(Y nk+1|M
(S)
k+1)− h(αXn

k + Znk+1)
]

+
εn
n

(c)

≤ 1

2
log(1 + (1 + |α|2)P ) +

1

2
log(1 + α2)

+ max{− log |α|, log(α2 − 1)}+
εn
n
. (38)

Here, (a) follows because given source messages Mk−1 and
Mk+1, the triple (Mk, Y

n
k , Y

n
k+1) is independent of the rest of

the outputs Y n1 , . . . , Y
n
k−1, Y

n
k+2, . . . , Y

n
K and source messages

M1, . . . ,Mk−2,Mk+2, . . . ,MK ; (b) follows by the chain rule
of mutual information and because Mk+1 is independent of
the tuple (Mk−1,Mk, Y

n
k ); (c) is obtained by rearranging

terms, and the following bounds (39)–(42). In fact, because
conditioning can only reduce entropy, and by the entropy-
maximizing property of the Gaussian distribution,

h(Y nk+1|M
(S)
k+1) ≤ h(Y nk+1)

≤ 1

2
log((2πe)(1 + (1 + |α|2)P )). (39)

Moreover,

h(αXn
k + Znk+1|Xn

k + Znk ) = h(Znk+1 − αZnk |Xn
k + Znk )

≤ h(Znk+1 − αZnk )

=
1

2
log((2πe)(1 + α2)). (40)

For the next bound, define Tnk i.i.d. zero-mean Gaussian
independent of all other random variables and with a variance
that depends on α. If α < 1, the variance is 1

α2−1. In this case,



1
αZ

n
k+1 has the same joint distribution with all other random

variables as Znk + Tnk and

h(Xn
k + Znk )− h(αXn

k + Znk+1)

= h(Xn
k + Znk )− h(Xn

k +
1

α
Znk+1)− log |α|

= h(Xn
k + Znk )− h(Xn

k + Znk + Tnk )− log |α|
≤ − log |α|. (41)

If α ≥ 1, then each symbol of Tnk has variance 1− 1
α2 . In this

case, Znk has the same joint distribution with all other random
variables as 1

αZ
n
k+1 + Tnk . Thus, similarly to before:

h(Xn
k + Znk )− h(αXn

k + Znk+1)

= h(Xn
k +

1

α
Znk+1 + Tnk )− h(αXn

k + Znk+1)

= h(Xn
k +

1

α
Znk+1 + Tnk )− h(Xn

k +
1

α
Znk+1|Tnk )− log |α|

≤ I(Xn
k +

1

α
Znk+1 + Tnk ;Tnk )− log |α|

≤ I(
1

α
Znk+1 + Tnk ;Tnk )− log |α|

=
1

2
log
( 1

1/α2

)
− log |α| = 0. (42)

Following similar steps, one can also prove that

R
(F )
K +R

(S)
K ≤ 1

n
I(M

(F )
k ,M

(S)
k ;Y nk |Mk−1) +

εn
n

≤ 1

2
log(1 + P ) +

εn
n
. (43)

We sum up the bound in (38) for all values of k ∈
{1, . . . ,K − 1}, and combine it with (43). Taking n→∞, it
follows that whenever the probability of error P (n)

e vanishes
as n→∞ (and thus εn

n → 0 as n→∞):

K∑
k=1

(
2R

(F )
k +R

(S)
k

)
= R

(F )
1 +

K−1∑
k=1

(
R

(F )
k +R

(S)
k +R

(F )
k+1

)
+R

(F )
K +R

(S)
K

≤ (K − 1)
1

2
log(1 + (1 + α2)P ) + log(1 + P )

+
K − 1

2
log(1 + α2) + (K − 1) max{− log |α|, 0}, (44)

We now prove bound (16). We assume K is even. For K
odd the bound can be proved in a similar way. Define (recall
that Xn

0 = 0)

Modd := {Mk : k odd}
Meven := {Mk : k even}
Xn

odd := {Xn
k : k odd}

Xn
even := {Xn

k : k odd}
Yn

odd := {Y nk : k odd}
Yn

even := {Y nk : k even}
Znodd := {Znk : k odd}
Zneven := {Znk : k even}

and

Qodd :=
{
Q

(1)

k→k̃, . . . , Q
(Dmax)

k→k̃ : k odd , k̃ ∈ {k − 1, k + 1}
}

Qeven :=
{
Q

(1)

k→k̃, . . . , Q
(Dmax)

k→k̃ : k even, k̃ ∈ {k − 1, k + 1}
}
.

By Fano’s inequality, there must exist a sequence {εn}∞n=1 so
that εn

n → 0 as n→∞ and

K∑
k=1

(
R

(F )
k +R

(S)
k

)
=

1

n

[
H(Modd) +H(Meven)

]
≤ 1

n

[
I(Modd;Yodd,Qodd) + I(Meven;Yeven,Qeven|Modd)

]
+
εn
n

=
1

n

[
I(Modd;Yodd) + I(Meven;Yeven|Modd)

+I(Modd;Qodd|Yodd) + I(Meven;Qeven|Modd,Yeven)
]

+
εn
n

≤ 1

n

[
h(Yodd)− h(Yodd|Modd) + h(Yeven|Modd)− h(Zeven)

]
+H(Qodd) + I(Meven;Qeven|Modd,Yeven)

]
+
εn
n

≤ 1

n

[
h(Yodd)− h(Yodd|Modd)

+h(Yeven|Modd)− h(Zeven) +H(Qodd)

+I(Meven;Qeven|Modd,Yeven,Zeven − α−1Zodd)

+I(Meven;Zeven − α−1Zodd|Modd,Yeven)
]

+
εn
n

(a)

≤
(K

2
+ 1
)
· 1

2
log(1 + (1 + α2)P )

+
K − 2

2
·max{− log |α|, 0}

+πK +
K

2

1

2
log(1 + α2) +

εn
n
,

(45)

where we where (a) holds because:
• By the entropy maximizing property of the Gaussian

distribution:

h(Yodd)−h(Zeven) ≤ nK
2
· 1
2

log(1 + (1 +α2)P ); (46)

• By (41) and (42):

h(Yodd|Modd)− h(Yeven|Modd)

= h(Y nK |Mk−1)− h(Y n1 |M1)

+

K/2−1∑
i=1

[
h(Xn

2i + Zn2i)− h(αXn
2i + Zn2i+1)

]
≤ n1

2
log(1 + (1 + α2)P )

+n

(
K

2
− 1

)
max{− log |α|, 0}; (47)



• By the rate-limitation of the conferencing links:

H(Qodd) ≤ nπK; (48)

• From the tuple (Modd,Yeven,Zeven − α−1Zodd) it is pos-
sible to compute also Yodd and thus Qeven:

I(Meven;Qeven|Modd,Yeven,Zeven−α−1Zodd) = 0; (49)

• By the fact that conditioning reduces entropy:

I(Meven;Zeven − α−1Zodd|Modd,Yeven)

≤ h(Zeven − α−1Zodd)− h(Zeven − α−1Zodd|Zeven)

= n
K

2
· 1

2
log(1 + α2) (50)

Taking n→∞ establishes the proof.

VII. PROOF OF THEOREM 3

The converse follows directly from Theorem 2. Achievabil-
ity is proved in the following.

When transmitting only “fast” messages or only “slow”
messages, the setup in this paper coincides with the setup in
[7] with 0 tranmitter conferencing rounds and either 0 or Dmax

receiver-conferencing rounds. Thus, by [7], the multiplexing
gain pairs (

S(F ) =
1

2
, S(S) = 0

)
(51)

and(
S(F ) = 0, S(S) = min

{
1

2
+ µ,

2Dmax + 1

2Dmax + 2

})
(52)

are achievable.
Recall that in the case of only receiver-conferencing, the

coding scheme in [7] periodically silences every 2Dmax +2nd
transmitter. This splits the network into smaller subnets of
2Dmax + 1 active transmitters and 2Dmax + 2 receivers,
where each active transmitter can send a message at prelog
1. A close inspection of the coding scheme in [7] reveals
that the decoding of the source messages sent at the left-
most transmitter of each subnetwork does not rely on the
conferencing messages. We can thus easily adopt the coding
scheme in [7] to our setup with “fast” and “slow” messages by
letting the left-most transmitter of any subnetwork only send
a “fast” message, and letting all other active transmitters only
send “slow” messages. With conferencing prelog

µmax =
Dmax

2Dmax + 2
(53)

this scheme achieves the pair(
S(F ) =

1

2Dmax + 2
, S(S) =

2Dmax

2Dmax + 2

)
. (54)

For a given conferencing prelog µ ≤ µmax, we timeshare
this scheme with the scheme achieving (51). Choosing the
timesharing parameter

β :=
µ

µmax
= µ

2Dmax + 2

Dmax
(55)

ensures that the conferencing prelog constraint (21) is satisfied.
We obtain that for all µ ≤ µmax, the following pair of
multiplexing gains is achievable:

S(F ) := β · 1

2Dmax + 2
+ (1− β) · 1

2

=
1

2
− β · Dmax

2Dmax + 2
=

1

2
− µ (56a)

S(S) := β · 2Dmax

2Dmax + 2
+ (1− β) · 0 = 2µ. (56b)

Timesharing finally the schemes achieving the pairs in (51),
(52), (54) establishes the direct part of the theorem.
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