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Abstract—The capacity region of several multiuser models in
information theory can be enlarged by utilizing feedback of
the received symbols. This is in contradiction to the discrete
memoryless case, where feedback is known not to change the
capacity. In this paper, we consider two broadcast models with
noisy feedback from both the receivers. The models are derived
from a standard memoryless scalar GBC, where two intermediate
passive nodes are assumed to be observing the transmissions via
separate noisy links corrupted by independent AWGN. In our
first model, the scalar output from each intermediate node is
passed through two additional independent AWGN links, called
feedback and forward links. The output of the feedback link
is observed by the transmitter as feedback, whereas only the
forward link is observed by the corresponding decoder. We derive
conditions that are both necessary and sufficient for feedback to
enlarge the capacity region. In the second model, the two outputs
of a standard GBC are observed by the respective decoders, but
the transmitter observes the sum of the symbols at the receivers
using causal feedback. We show that such a feedback has no
effect on the capacity region.

I. INTRODUCTION

It is well known that the capacity region of a Gaussian
broadcast (GBC) can be enlarged by utilizing causal feedback
from the receivers, except in the physically degraded case.
Such enlargements are also possible with several classes of
noisy feedback models, rate-limited feedback links etc. The
relevant information can be found in [1]–[9]. We consider
passive feedback in this paper, where the received symbols are
as such fed back by the receiver, albeit through feedback links
corrupted by additive white Gaussian noise (AWGN). In this
context, the results of [3] imply that noisy feedback from even
one of the receivers is enough to enlarge the GBC capacity
region, when the receivers have independent and identical
noise processes. However, in the asymmetric situation, where
one user is stronger compared to other, it was shown in
[10] that with noisy feedback only from the strong receiver,
no such enlargement is possible when the feedback noise
variance is above a threshold. A sharp characterization of the
feedback noise threshold for capacity enlargement with one-
sided feedback was presented in [11]. A tight characterization
of the noise variances for which two-sided noisy feedback is
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useful in capacity enlargement is presented in ‘the unpublished
manuscript’ [12].

In the present paper, we consider two feedback models
in the GBC setting, and provide sharp characterizations of
when feedback is useful for capacity enlargement. In our
first model (see Fig. 1), there are two receivers demanding
independent information from a common transmitter. Each
receiver observes the respective signals forwarded by two
intermediate nodes, which we call the repeater nodes (marked
as a and b in Fig. 1). A repeater does not decode the
information, but simply forwards the band-limited received
signal in a different frequency band. The transmissions from
each repeater serve two purposes. Firstly, the corresponding
receiver gets the signal via a noisy link. Secondly, the original
transmitter also gets feedback signals from each repeater.
If the repeaters use different frequency bands, the model
shown in Fig. 1 becomes relevant. Furthermore, the model
generalizes the existing passive feedback models in [10], [11]
and [12], and effectively subsumes the results there. While our
proof techniques build on [12], for both achievability as well
as converse, the generalizations here necessitate additional
steps and different analytical computations, which are more
involved.

Our second model is that of a GBC with additive multiple
access channel (MAC) based feedback. This system has some
resemblance to the feedback model in [4], where it is shown
that active feedback is useful in enlarging the capacity region,
when feedback to the encoder is through a MAC link. On the
contrary, we show that passive MAC feedback has no effect
on the GBC capacity region, a novel converse construction
being the key to this result. From a physical layer perspective,
having a BC in the forward direction, along with MAC based
feedback, is suitable for some downlink-uplink communication
systems.

We will now explain the system model in detail, and present
the main results.

II. SYSTEM MODEL AND MAIN RESULTS

We consider two models of the feedback. The first model is
best explained using a broadcast system with two intermediate
receiving nodes. Let Ỹ1 = X+Z̃1 and Ỹ2 = X+Z̃2 be the re-
spective received symbols at the two intermediate nodes when
X is the transmitted symbol. The actual receiver k ∈ {1, 2}



in our system observes Yk = Ỹk + Ẑk from which a private
message Wk ∈ [1 : 2nRk ] intended to it has to be decoded from
n channel uses. Causal feedback of (Ỹ1 + Zfb1, Ỹ2 + Zfb2)
is available at the transmitter, see Fig. 1. The noise vector
(Z̃1, Ẑ1, Z̃2, Ẑ2, Zfb1, Zfb2) is generated from an i.i.d process
according to N
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Fig. 1. Gaussian BC with (causal) noisy feedback

Using standard information theoretic definitions [13], which
are not repeated here, let us directly define our main objective.
The capacity region of the above GBC with feedback, denoted
as Cnoisy−fb, is the collection of rate-pairs (R1, R2) such
that the decoding error probability for the uniformly chosen
message pair (W1,W2) ∈ {[1 : 2nR1 ] × [1 : 2nR2 ]} at the
respective users can be made vanishingly small, possibly by
taking the blocklength n large enough. Also, let Cwo−fb denote
the capacity region in the absence of feedback. Our first main
result is stated now.
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then the capacity region Cnoisy−fb is same as that without
feedback. Conversely, if the set of noise variances does not
satisfy the above condition, Cnoisy−fb strictly contains the no-
feedback capacity region Cwo−fb.

The following two corollaries respectively address the spe-
cial cases with (σ̂2

1 = σ̂2
2 = 0 and (σ2

fb1, σ
2
fb2) = (0, 0). The

first can be obtained by taking σ̂2
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2 = 0 in Theorem 1,
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Corollary 3. With σ2
fb1 = σ2

fb2 = 0, the capacity region is not
enlarged if and only if
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Notice the mildly surprising aspect that σ̃2
2 does not play

a direct role in Corollary 3. Furthermore, observe that the
condition in (3) is equivalent to σ2

1 ≤ σ̂1σ̂2.
The second model that we consider in this paper is also

derived from a standard GBC having input X and the two
outputs (Y1, Y2) = (X + Z1, X + Z2), with Z1 and Z2

independent of each other. The transmissions should obey an
average power constraint. The signal Y1+Y2 is made available
at the encoder via causal feedback, as depicted in Fig. 2. The

+ Encoder

+

+

Y1

Y2

X
Z1

Z2

Fig. 2. GBC with passive additive MAC feedback

following is our main result for the second model.

Theorem 4. In a Gaussian BC with passive additive MAC
feedback, the capacity region is unchanged by the presence of
feedback.

In the coming sections, we provide the proofs for Theorem 1
and Theorem 4.

III. CONVERSE TO THEOREM 1

Ever since the original converse results for the scalar
broadcast channel [14], [15], the idea of converting a stochastic
degraded model to an equivalent physically degraded system
was used as a key step, in the absence of feedback. This aids
in identifying an auxiliary variable which facilitates the single
letterization of the rate region, or enables the application of
Entropy Power Inequality (EPI) in the Gaussian setting. In
the one-sided feedback setting of [10], while the degradation is
not obvious, one can still find a physically degraded equivalent
model using vector outputs. This strategy as such seems to fail
when there is feedback from both the receivers. Nevertheless,
that we can still find the capacity region of a class of two



sided feedback models is the surprising result in [12]. This is
achieved by introducing careful side information created from
the noise realizations, at the two receivers. We generalize this
technique here to construct an outer-bound to the capacity
region and, as we will show later, this is tight under the
condition in (1). In particular, our converse result equips
each receiver with a careful assortment of the noise-processes,
allowing the analytical construction of a single letter formula,
which turns out to have a form amenable to the application
of EPI. Notice however that we aren’t directly identifying any
equivalent physically degraded BC model.

From Fano’s inequality, after suppressing the o(n) terms,
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Now, by ensuring the condition
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we can also make (Ui, (1−γ1)Z̃i−11 +(1+γ1β)Ẑ
i−1
1 −γZi−1fb1 )

independent of the fed-back noise values Z̃i−11 + Zi−1fb1 .
Using Fano’s inequality at the weak receiver,
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Choosing the parameter γ1 which minimizes f(γ1), we get
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into (8) yields the
condition in (1). Showing the last statement requires some
elementary algebra, the details are omitted here. Now we can
compare both expressions using a modified version of the EPI
[9], which reads
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for some θ ∈ [0, 1]. Applying the EPI in (13) yields
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Using (14)–(15), and the fact that Gaussians maximize entropy
under a variance constraint, we get for some θ ∈ [0, 1],
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The region defined by taking union over 0 ≤ θ ≤ 1 in
(16) is indeed the GBC capacity region under no feedback.
Thus, the capacity region is not enlarged when the condition
in Theorem 1 is met. Some insight to the converse result can
be obtained by observing the conditioning variables of (4) and
(7). Apart from the common term Ui there, the terms Ti and Vi
effectively contain two independent looks of past transmitted
symbols. Crucially, the noise processes in these two looks are
independent of the noise processes in the feedback loops. This



allowed us to couple the noise realizations in (Vi, Ti), without
altering the rate bounds.

Let us now construct achievable schemes which enlarge the
capacity region, when the set of noise variances does not meet
the no-enlargement criterion.

IV. ZERO-FORCING ACHIEVABLE SCHEME FOR
THEOREM 1

Our idea of achievability is to use the simple linear feedback
coding scheme suggested in [11], [12], and show a capacity
enlargement whenever feasible. However, the specific param-
eters of the scheme have to be tuned differently to obtain the
results here.

Given blocklength 2n, assume that the message for re-
ceiver 1 is encoded by a codeword un and the message for
receiver 2 by a codeword vn. Also abbreviate Z̃1 + Zfb1 as
Za and Z̃2 + Zfb2 as Zb. For each i ∈ [1 : n], the transmitter
sends the two consecutive inputs
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]
.
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Receiver 1: In two consecutive instants, the observations are

Y1,2i−1 = ui + vi + Z1,2i−1 (18)
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Receiver 2: Here also we do zero forcing. On observing

Y2,2i−1 = ui + vi + Z2,2i−1
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√
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By random coding arguments and picking the codesymbols ui
and vi zero-mean Gaussian of variances θ′P and (1 − θ′)P ,
respectively, the proposed scheme achieves the rates
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Let us change the variables from (β1, β2, θ
′) to (a1, a2, µ) by
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At P = 0, the LHS of (32) is equal to its right hand
side (RHS), the same holds for (33) as well. Therefore, for
small values of P , we can analyze the desired condition by



considering the derivatives at P = 0. Doing this will result in
the following sufficient conditions.

2µσ2
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Since a1, a2 are free parameters, we choose them as
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as a sufficient condition for the chosen θ ∈ [0, 1]. Now, we can
choose an appropriate θ. In fact, we can choose the θ ∈ [0, 1]
which minimizes the LHS of (37), and this results in(
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as the required condition. The computational details are omit-
ted here. While capacity enlargements were shown here for
small values of P , this can be easily extended to higher
powers, similar to [11].

V. GBC WITH PASSIVE MAC FEEDBACK OF THEOREM 4

Let us now consider the GBC with passive MAC feedback
model, where (Y1, Y2) are the symbols sent by the two
receivers, and the encoder causally observes Y1 + Y2 + Z by
feedback, where Z is an independent AWGN. A similar model
was considered in [4], however with active feedback via the
MAC link. Let the capacity region of the GBC with passive
MAC feedback be Cw−mac. We show that Cw−mac = Cwo−fb,
where the latter is the no-feedback capacity region. Thus the
capacity region is unchanged by the presence of passive MAC
feedback. Notice that this fact remains true even with Z = 0
a.e. By Fano’s inequality
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Choosing β =
σ2
2

σ2
1+σ

2 will make Z1+Z2+Z ⊥⊥ Z2−β(Z1+

Z). We have almost reached a single letter form. In fact, our
choice of α and β ensures that the (Z1−α(Z2+Z)) and (Z2−
β(Z1+Z)) terms occurring at the conditioning of (39) and (41)
can be replaced by independent noise processes, which are also
independent of all the other variables employed there. Now if
Var[Z2−β(Z1+Z)] ≥ Var[Z1−α(Z2+Z)], we can replace
the conditioning in (39) by (Ui, X + Z2 − β(Zi−11 + Zi−1)).
In other words, we require

σ2
1 +

σ4
1σ

2
2

(σ2
2 + σ2)2

≤ σ2
2 +

σ4
2σ

2
1

(σ2
1 + σ2)2

, (42)

which is readily verified since σ2 ≥ σ1. The converse proof
now follows exactly as in the first model, using the EPI version
in [9]. Thus the capacity region remains the same as Cno-fb, the
no-feedback capacity region.

VI. CONCLUSION

We have analyzed two GBC models with passive noisy
feedback, and characterized the necessary and sufficient con-
ditions under which the capacity region is not enlarged.



REFERENCES

[1] Y. Wu and M. Wigger, “Coding schemes with rate-limited feedback that
improve over the no feedback capacity for a large class of broadcast
channels,” IEEE Transactions on Information Theory, vol. 62, no. 4, pp.
2009–2033, 2016.

[2] O. Shayevitz and M. Wigger, “On the capacity of the discrete memory-
less broadcast channel with feedback,” IEEE Transactions on Informa-
tion Theory, vol. 59, no. 3, pp. 1329–1345, 2012.

[3] R. Venkataramanan and S. S. Pradhan, “An achievable rate region for
the broadcast channel with feedback,” IEEE Transactions on Information
Theory, vol. 59, no. 10, pp. 6175–6191, 2013.

[4] A. Ben-Yishai and O. Shayevitz, “The AWGN BC with MAC feedback:
A reduction to noiseless feedback via interaction,” in 2015 IEEE
Information Theory Workshop (ITW), 2015, pp. 1–5.

[5] S. B. Amor, Y. Steinberg, and M. Wigger, “MAC-BC duality with
linear-feedback schemes,” in 2014 IEEE International Symposium on
Information Theory. IEEE, 2014, pp. 1737–1741.

[6] L. Ozarow and S. Leung-Yan-Cheong, “An achievable region and outer
bound for the Gaussian broadcast channel with feedback (corresp.),”
IEEE Transactions on Information Theory, vol. 30, no. 4, pp. 667–671,
1984.

[7] G. Dueck, “Partial feedback for two-way and broadcast channels,”
Information and Control, vol. 46, no. 1, pp. 1–15, 1980.

[8] A. El Gamal, “The feedback capacity of degraded broadcast channels
(corresp.),” IEEE Transactions on Information Theory, vol. 24, no. 3,
pp. 379–381, 1978.

[9] ——, “The capacity of the physically degraded Gaussian broadcast
channel with feedback (corresp.),” IEEE Transactions on Information
Theory, vol. 27, no. 4, pp. 508–511, 1981.

[10] S. R. B. Pillai and V. M. Prabhakaran, “On the noisy feedback capacity
of Gaussian broadcast channels,” in 2015 IEEE Information Theory
Workshop (ITW). IEEE, 2015, pp. 1–5.

[11] A. N. Ravi, S. R. B. Pillai, V. M. Prabhakaran, and M. Wigger, “When
does partial noisy feedback enlarge the capacity of a Gaussian broad-
cast channel?” in 2020 IEEE International Symposium on Information
Theory (ISIT), 2020, pp. 1480–1485.

[12] ——, “On the capacity enlargement of Gaussian broadcast channels with
passive noisy feedback,” Submitted to IEEE Transactions on Information
Theory, http://arxiv.org/abs/2009.08765, 2020.

[13] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge
university press, 2011.

[14] R. G. Gallager, “Capacity and coding for degraded broadcast channels,”
Problems Inform. Transmission, vol. 10, no. 3, pp. 185–193, 1974.

[15] P. Bergmans, “A simple converse for broadcast channels with additive
white Gaussian noise (corresp.),” IEEE Transactions on Information
Theory, vol. 20, no. 2, pp. 279–280, 1974.


