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Example: Distributed Control-System for Smart Cars

Smart cars measuring speed, distance, road conditions

Fixed road-side sensors measuring same parameters

Intact car system: measurements highly correlated

e Erroneous car system: measurements independent

Task of Distributed Control-System

Decide on joint distribution underlying the observations



Outline of the Talk

e Simple single-sensor system
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e Infinitely many communication bits

e Single communication bit
e nR communication bits

e Multihop System
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e Restriction only on expected communication rate

e Simple single-sensor system
e Multi-hop system



Distributed Hypothesis Testing
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e “Normal situation” % = 0: (X", Y") ~ i.i.d. Pxy

e “Hazardous event” H# = 1: (X", Y") ~ i.i.d. Qxy

e Constraints on type-l and type-II error probabilities:
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Rate-Exponent Tradeoff 0 (R)
Given R > 0, largest exponent ¢ that is e-achievable.

e Ahlswede & Csiszar'86: 6*(R) does not depend on € € [0,1/2] 4



Centralized Hypothesis Testing —
The Ideal Case



Centralized Hypothesis Testing
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e Rate R is so large that sensor can send all X" to decision center

e Optimal decision: raise alarm unless statistics tp (X", Y") ~ Pxy

e Intuition: If system perfectly fits % = 0, decide on H = 0,
otherwise decide on # = 1



Example of Doubly-Symmetric Binary Sources

PXY(Xa}/):{::;z i;i and Qxy(X,y):

1
2

N =

e Ex. 1:if observations
X" = (0,1,1,0,1,0,1,0,1,1,0,1,0,0,1,1,0,0)
Y" = (0,0,1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0)
tp (X", Y") = Pxy — decision center decides on H = 0



Example of Doubly-Symmetric Binary Sources

PXY(Xa}/):{::;z i;i and Qxy(X,y):

1
2

N =

e Ex. 1:if observations
X" = (0,1,1,0,1,0,1,0,1,1,0,1,0,0,1,1,0,0)
Y" = (0,0,1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0)
tp (X", Y") = Pxy — decision center decides on H = 0

e Ex. 2: if observations
X" = (0,1,0,1,1,1,0,1,0,1,1,0,1,0,0,1,1,0,0)
Yy" = (1,0,0,1,0,1,0,0,0,1,0,1,1,1,1,1,0,1,0)
tp (X", Y") far from Pxy — decision center decides on H = 1



Analysis of Proposed Centralized Scheme

e Type-I error probability (by the weak law of large numbers)

=1 =P =0[H=0] =1~ P (tp(X", Y") ~ Pxy)

—0 as n— o



Analysis of Proposed Centralized Scheme

e Type-I error probability (by the weak law of large numbers)
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e Probability of miss detection:

8, = Qf?g(tp(x", Y”)zPXy)



Mathematical Preliminaries: Sanov’s Theorem

e sequences X = (X1,...,Xp) andy = (y1, ..., ¥n) Of type myy

Q?{J(X7y) = H O)(y(th,-) = H (Oxy(x’y))”'ﬂ'xy(xv,")

i=1 (x,y)exxy

Theorem (Sanov’s theorem)

Q%7 (1 (X", Y") = ) ~ exp(— n- D(x]|Qxv))
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Use Sanov’s Theorem to Finalize the Analysis

e Type-l error probability (by the weak law of large numbers)

an=1-Pg (X", Y") ~ Pxy) -0 as n- o
o Type-ll error probability
B = O (IP(X"Y") ~ Pxy)
> (e (X", Y =)

2 Pxy

exp( — n- D(Pxy||Qxy))

Q

e N.B. The number of types 7 is polynomial in n
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Optimal Exponent for Centralized Hypothesis Testing

T’n }I’ﬂ
oo bit .
Sensor oo bits Decision A e 01}
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e Rate R is so large that sensor can send all X" to decision center

Theorem (Stein’s exponent)

Largest achievable error exponent is:

P Y(va)

6*(R = 00) = D(Pxy|Qxy) = Y Pxy(x, y)log =222
(R =) = D(PrrlQxr) =3, Prr(x.)og g 6
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Distributed Hypothesis Testing with
Zero Communication Rate R =0
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Distributed Hypothesis Testing with R =0 (Han’s7)

1 1
Sensor M Decision 1 ¢ (0,1}
Center

e Send message M, where number of bits representing M is
sublinear in n

Theorem (Han’87)

Largest achievable error exponent is:

0"(R=0) = min D(mxy||Qxy)

mx=Px

13



Scheme for R = 0 (Han’87)

Xn Y’n
Sensor M Decision | | #H e {0,1}
Center

M e {0,1} (1 bit) suffices

Sensor sends its own local decision:
Iftp (X") ~ Px — send M =0, otherwise send M =1

Decision center:

1. Local decision: L=0iftp (Y") ~ Py and L = 1 else
2. Final decision: # =0if M=L=0,and H = 1 else.

14



Example of Doubly-Symmetric Binary Sources

1/6 x=y 1 1

Pxy(x,y) = and Qxy(x,¥) =55

(x,y) 13 x4y (x,¥) 5%
Ex.: X" = (0,1,0,1,1,1,0,1,0,1,1,0,1,0,0,1,1,0,0)
y" = (1,0,0,1,0,1,0,0,0,1,0,1,1,1,1,1,0,1,0)

tp (X") =Py and tp (Y") =Py — decision center decides # = 0

For centralized setting (R = co), decision center decides H = 1!
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Analysis of 1-bit Communication Scheme

e Type-| error probability (by the weak law of large numbers)

an:1_P§§’(tp(X”)mPX and tp(Y”)zPy)—>O as n—oo

e Type-Il error probability:
B = O(t(X")~Px and tp(Y")~ Py)

> A (xn v =)

Ty : TxPx
Ty~ Py

exp( —-n- ( TerZrnTran:PX D(TerHQxy)))
Wy:Py

Q

16



Many-Sensors and One Detector

Decision
center

Sensor nodes

e “Normal situation” H = 0: (X7,..., Xg, Y") ~ ii.d. Px..x.v

e “Hazardous event” H = 1: (X7,..., X2, Y") ~ iid. Qx,...xcv

17



Many-Sensors and One Detector

Decision
center

Sensor nodes

e Each sensor k produces local decision

Unanimous decision forwarding: sensor sends My = 0 only if all
incoming messages 0 and local decision # =0

Decision center: raises alarm unless all incoming messages 0
and local decision H =0

Optimal exponent (independent of ¢)
. .
0; = ‘ffxwm-!avi D(TFX1"'XKY||OX1“'XKY)
ﬂ'Xk:PXk’ vk
my=Py 17



When is a single-bit transmission optimal for R = 0?

e Single-bit transmission (unanimous decision forward) optimal if

e Two hypotheses H =0and H = 1
e All decision centers interested in same exponent
e Interactive communication allowed

[Katz-Piantanida-Debbah-2016]

e Sending a single bit is not sufficient if

e Exponents under both decisions need to be maximized
o Different decision centers interested in different exponents

e More than K > 2 hypotheses

18



Distributed Hypothesis Testing under
Positive Rates R > 0
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Distributed Hypothesis Testing with R > 0 (Han’s7)

D¢ l yn
Sensor quantiz. index j | Decision % e 0,1}
or 0 Center

e Random codebook Cs = {S"(1),...,S"(2"F — 1)}

Quantization: Send M = j if tp (S"(j), X") ~ Psx; else M =0

e Alarm 7l =1unless M>1 and tp(S"(M),Y") ~ Psy

If R > I(S; X) quantization succeeds and o, — 0 as n — oo

Achievable type-Il error exponent

* > .

0:(R) = e ﬂfpx'yg D(7sxy||PsjxQxy)
) Tex=

R21(S:X) Trz);:Pg 20



Testing Against Independence  (Csiszar-Ahlswede ’86)

e H=0: (X", Y") ~ iid. Pxy

o H=1: (X" Y") ~ iid. PxPy

Optimal Rate-Exponent Tradeoff (does not depend on ¢)
0:(R)= fnax I(S;Y) = nxy(R)

¢ SIX:
R>1(S;X)

21



Testing Against Independence over Two Hops

Xﬂ

|

Sensor

Y" z"
y nRy _ y nRyz >
My € {0.1,.... 2" 1} Relay Mye{ol,.. 2" —1} Receiver Hz,
Vi,

Two decision centers (relay and receiver)

Markov chain X — Y — Z under both hypotheses

e H=0:(X",Y"Z")iid. ~ Px:Pyx-Pzy

o H=1:(X"Y"Z"iid. ~ Px-Py-Ps

22



Definition of Exponents Region

e Error Constraints at the Relay

e ay, 2P[Hy =1H=0]<ey

o By 2P[Hy=0H=1] <27
e Error Constraints at the Receiver

° azméP['?:Lz:”'H:O] <ez

o Bzn2P[Hz=0H=1<2" "

Definition
&, ,(Ry, Rz) is the closure of the set of all (cy, ¢z)-achievable
exponent pairs (0y, 07)

23



Optimal Scheme and Exponents Region

1 i i

Han scheme Hy + Han scheme
5 Relay Y
Sensor I — ~yw Y for Y™, 2"

Receiver—=—

Vi,
¢ Independent Han-scheme over each link
e Unanimous Decision-Forwarding

e Hz =0onlyif #y = 0 and Han scheme for (Y, Z") indicates
H=0

Theorem (Salehkalaibar, W’, Wang 2017, Cao, Zhu, Tan’2019)
Eey.e,(Ry, Rz) is the set of all pairs (0y, 07) satisfying

Oy < nxy(Ry), 0z < nxy(Ry) + nyz(Rz).
24



Testing under Expected Rate
Constraints

25



Point-to-Point Testing under Constraints

Xn Yn

} )

Me {0,1}* | Decision

Center

Sensor — 7 c {0,1}

e Message M is a variable-length bit-string
e Rate constraint E[len(M)] < nR

Theorem (Salehkalaibar and Wigger’2020)

The largest e-achievable exponent is

03..(R) =nxy(R/(1—¢))  (depends on e)

26



Optimal Point-to-Point Variable-Length Scheme

o =0

X" Han’s scheme ' e ()
with [1]-flag —) “B/S 9—nnxy
R =R/(1—¢)
@
S, W o =1
f |::> ‘3” =0
H -1 R" ~0

e Set S, has probability e
e Average performances
ap <€
Bn<(1— E)Q—H-WXV(H/U—G))
and total rateis (1 —¢)R' = R

— Achievability of 0 = nxy(R/(1 — ¢€))

27



Two-Hop Testing under Constraints

Sensor My € {O’ i Relay M2 € {U’ 1 Receiver HZ,

e Messages My and My are variable-length bit-strings

¢ Rate constraints E[len(My)] < nRy and E[len(Mz)] < nR;
Definition

Exponents region &y, ., .., (Ry, Rz) is the set of all (ey, ez)-achievable
exponent pairs (fy, 87) under expected rate constraints

28



Achievability with Expected Rate Constraints for ey = ¢y £ ¢

ay,aly =0
dé/ < 2*""/xv(Rly>
P ‘3,2 < o—n(nxy (Ry)+nyz(Ry))
Two-Hop Scheme —) Ry = Ry /(1 —¢)
@ with [1]-flag R, =Rz/(1—¢)
D B R
Yy =1z = ,%ﬂ:ﬂg:o
Rl =Rl =0

Theorem (Hamad, Sarkiss, W’2021)
E. (Ry, Rz) is the set of all pairs (0y,07) satisfying

Oy < nxy(Ry/(1 —¢)), 0z < nxy(Ry/(1 —€))+nvz(Rz/(1 —¢€)).

29



Scheme for Expected Rate Constraints with ¢y < ¢,

aly,aly — 0
By < 9—nnxy (Ry)
B/Z < 2*"(’7IXY(R/\/)Jr?IYZ(R/z))

Two-Hop Scheme — Rl Ry, =Ryz/(1—ez)
pe with [1]-flag v

a// — a// — 1
@ My =Mz = [0] ) «55’,/7/3'2/270

HY :szl g’ //_ //_
Ry =R, =0

Han scheme on first link "
My = [0, Hy=1 ) oyl =0

ﬁgﬁ/ < 2—77,7];(\/(3&7)

ol =1, BY =0

RY.RY =0
e Average type-| error prob. ay — ey and ay — ez as n — o

e Average type-ll error prob. at Relay:
By < (1 —ez)2 (B 4 (7 — ey)2-mer(AY)

e Average rate of first link (1 — ez) Ry + (ez — ey)RY %



Optimal Exponents Region for ¢y < ¢,

Theorem (Hamad, W’, Sarkiss ’2021)

ElLey.c,(Ry, Rz) setof (By,0z) pairs satisfying

Oy < min{nxy(RY), nxv(RY)}
0z < nxy(Ry) + nvz(Rz/(1 — €z)),

for some Ry, Ry > 0 satisfying Ry > (1 — ez)R} + (ez — ey)RY'.

07
*
02,2 < _ _ SLey.e By, Rz)
/ S~
O*Z,Ey
e*Z SCL €y €y (RY,R2>
waz(]?y.] )
- g{"IJ.(J,U(R"" RZ)
— Oy

* *
GY GY,EY 31



Scheme for Expected Rate Constraints with ¢y > ¢,

ay,aly, =0
Bl < o (BY)
By < o—nlnxy (By)+ny z(Ry))

Two-Hop Scheme R, R

pn with [1,0]-flag _ v
My = My = [0] af = =1
(@) ﬂy:ﬂz:1 =) 8l =p,=0
o Ry =Rj=0

Two-Hop Scheme
i o =1, B =0

with [1,1]-flag
1, 1] flag ) )0

except Hy =1 " /11
phtY By < 9=nlmey (R s ()
/1" /1!
R RY

e Average type-l error prob. ay — ey and ay =+ ezasn—

e Average type-lIl error prob. at Receiver:
By < (1 —ey)2"mxv(R)+nvz2(R2) 1 (¢y — ez)2Nlmxy(Ry')+mvz(RZ"))

e Average rate of first link (1 — ey) Ry + (ey — ez)RY
32



Optimal Exponents Region for ¢y > ¢,

Theorem (Hamad, W’, Sarkiss ’2021)

ElLey.c,(Ry, Rz) setof (By,0z) pairs satisfying

Oy < nxy(RYy)
0z < min{nxy(RY) + nvz(RZ), nxv(RY) + nvz(RZ)}

for some Ry, Ry, RS, RY" > 0 satisfying
Hy > (1 — Ez)R/Y + (EZ — Gy)R/YN and Fi’z > (1 — EZ)R/Z + (EZ — Ey)Rg/

33



Two-Hop Setup with ¢y > ¢z: Numerical Results

e Binary example

e X ~ Bernoulli(0.5) 0.5F x

e Y = X @ Bernoulli(0.9) E .

D 04F . .

e Z =Y @ Bernoulli(0.8) : :

- g\jL‘Ey.EZ :

e 03 === g\jL,ry;ry :

e Type-l error probabilites 77| ... gk :
0.

€y = 0.1 and €z = 0.05 0.28 0.3. :‘32 0.34

e Rates Ry = R =10.5

34



Idea of Converse Proof for Single-Sensor System

Original acceptance region:

n A" n
Y T . @ Y A=Un{m} x An
xn /
] A,
~m3/ mj’\/\
[ \
[ 1
‘\ \ mZ-L/L New problem:
\ N / yr @ X" lives on A"
] New acceptance region:
— A=Unim} x An

e Restrict to subset X" — change of measure
e Slightly-enlarge the acceptance region — blowing-up lemma

New problem has a, ~ 0 and E[len(M)] < Bl gng

—Llog B~ —1log Bn

35



Converse Proof: Bound on Rate

o Pick set D, := {x" e T (Px): P[H = O/ = 0,X" = x"] > n}
for small parameters 7, ¢ > 0 that will tend to 0

o Since P[H =0H=0,X"=x"|>1—¢ — P[D]> 135"

e Change of measure:

H Px(x ]l{)I(P’[; ?n} H Pyix(yilxi)1{m = enc(x")}

e R> 1E[len(M)] > 1P[D,] - E[len(N)]

E[len(M)] > H(M|len(M)) = (H(M) — H(len(M))) ~ H(M)
> (M X™) = S0 1M X1 XT)
=301 (M, X1 XG) + log(P[Dn]) = 74 I(Us; X;) + log(P[Dy])

36



Converse Proof: Marton’s Blowing Up Lemma

Lemma (Marton’s blowing up lemma)

Let Sy, Sy,... beiid. ~ Psand{e,} | 0.
There exist sequences {¢,} and {(,} both | 0 s.t. for any set B,

If PE"(B,) > exp(—nen), then PE"(BY™) > 1 — ¢,.

e Blow-up acceptance regions
./Zlm = {yﬂ: Elj}n St dH(yn7yn) S Zn, _l}.‘/n € Am}
e By the blowing-up lemma and the definition of D,
P[(M, Y") € A|H =0] > 1~ ¢,

e Since the blowup is very small

Q

1 IogIP’[( ) € AH =1] —% log P[(M, Y") e A|H = 1]

%

—%IogIP’[(M, Y") € A|H =1]
37



Converse Proof: Bound on Exponent

~ 1-¢ D(P(M Y")|H70||P(I\7I,V")\H:1)
1 1 &
M; Y™ = I(M; Y| Y=
1 n
~ IM, Y=, Y,
1_Cn§ ( /)
1 & 1 <
i—1. v\ _
> 1_CHZ/(M,M ,Y,)—1_<n§j/(u, ¥)
i=1

e We related the exponent to the rate via the same variables U;

e Remaining steps by introducing a uniform random variable T for
the time index and taking n — oo, ¢, | 0
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e Distributed hypothesis testing under zero-rate constraints —
Local type-based decisions and unanimous decision-forwarding

e Distributed hypothesis testing under maximum rate-constraints
— Quantization and unanimous-decision forwarding

e Distributed hypothesis testing under expected rate-constraints:

e Combine different degenerate versions of optimal fixed-length
schemes
e Rate-boost on all rates

o Tradeoff between different decisions

39



