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Abstract

We consider a full-duplex wireless Distributed Computing (DC) system under the MapReduce framework. New upper and
lower bounds on the optimal tradeoff between Normalized Delivery Time (NDT) and computation load are presented. The upper
bound strictly improves over the previous reported upper bounds and is based on two novel interference alignment (IA) schemes
tailored to the interference cancellation capabilities of the nodes. Our second IA scheme additionally applies a zero-forcing strategy
that allows to accumulate all interference at any of the nodes on the same (small) subspace, leaving the remaining space for useful
signals. The lower bound is proved through information-theoretic converse arguments based on carefully chosen multi-access
channel (MAC) type arguments and by finding solutions to the optimization problems resulting from these arguments. The lower
bound matches an existing upper bound based on zero-forcing and interference cancelation (but no IA) in the regime where each
node can store at least half of the files. While optimal in this regime, zero-forcing and interference cancelation are not sufficient to
obtain the optimal NDT in scenarios where each node cannot store half of the files. This follows from the previously established
optimal NDT under zero-forcing and interference cancelation and our new IA-schemes.

Index Terms

Wireless distributed computing, MapReduce, coded computing, interference alignment.

I. INTRODUCTION

Distributed Computing (DC) systems are computer networks that through task-parallelization reduce execution times of
complex computing tasks such as data mining or computer vision. MapReduce is a popular such framework and runs in three
phases [1], [2]. In the first map phase, nodes calculate intermediate values (IVA) from their associated input files. In the
following shuffle phase, nodes exchange these IVAs in a way that each node obtains all IVAs required to compute its assigned
output function in the final reduce phase. MapReduce is primarily applied to wired systems where it has been noticed that a
significant part of the MapReduce execution time stems from the IVA delivery time during the shuffle phase [2], [3]. Various
coding schemes [3]–[8] were proposed to reduce this IVA delivery time, and consequently speed up execution time compared
to naive approaches.

In recent years, MapReduce systems became increasingly popular also for wireless scenarios, such as vehicular networks
[9] or distributed e-health applications [10], thus creating a need for coding schemes that perform well over wireless networks
in the context of MapReduce systems. Similarly to the wired case [4]–[6], delivery time in wireless MapReduce systems can
be decreased by sending appropriate linear combinations of the IVAs, from which the receiving nodes can extract their desired
IVAs by bootstrapping the IVAs that they can compute from their locally stored input files. Further improvements are however
possible by exploiting the superposition nature of wireless networks, e.g., by cooperatively encoding messages, zero-forcing
transmissions at specific sets of nodes, or aligning interferences at nodes.

The focus of this paper is on the high Signal-to-Noise Ratio (SNR) regime, and on the following two key metrics of wireless
MapReduce systems:

• Computation load r: This describes the average number of nodes to which each file is assigned. In other words, it is the
ratio of the total number of assigned input files (including replications) normalized by the total number of files.

• Normalized Delivery Time (NDT) ∆: This is the wireless shuffle duration normalized by the number of reduce functions
and input files and by the transmission time of one IVA over a point-to-point channel in the high SNR regime.

We are interested in the minimal NDT under a fixed computation load, which we define as the NDT-computation tradeoff.
Several works have analyzed NDT-computation tradeoffs for different wireless networks. For example, [11], [12] studied the

NDT-computation tradeoff of wireless cellular networks, and proposed schemes to reduce the NDT by sending appropriate linear
combinations of the IVAs and applying simple interference cancellation (bootstrapping of known IVAs) at the receiving nodes.
(The energy-efficiency latency tradeoff in such wireless cellular systems has been studied in [13].) Interference networks were
studied in [14]–[17]. More specifically, [14] considered a half-duplex interference network and proposed a scheme that converts
the network into a fully-connected X-channel and applies the IA-scheme in [18] for this X-channel. The NDT-computation
tradeoff of full-duplex interference networks was considered in [15], [16]. The work [15] proposed a coding scheme based
on one-shot beamforming and zero-forcing, and showed that this scheme is optimal for this class of strategies. The works in
[14]–[16] all assumed perfect channel state information at the transmitters. For scenarios with imperfect (delayed) channel-state
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information a better NDT is achievable by combing zero-forcing and interference cancellation with superposition coding, see
[17].

The benefits of interference alignment (IA) [19] for DC systems were first proved in [16] for full-duplex wireless networks.
Specifically, [16] proposed to divide the nodes into groups and to use a combination of IA and zero-forcing so that signals
intended for a given node do not interfere the signals received at the other nodes in the same group.

In this paper, we further improve the NDT-computation tradeoff of MapReduce over full-duplex wireless interference channels
with two novel IA schemes. Our first scheme is inspired by the IA scheme in [18], where multi-cast messages are sent over
a fully-connected interference network. We however adapt this scheme to our DC setup, where nodes simultaneously act as a
transmitter and a receiver, allowing to achieve improved performances. In fact, the equivalence of transmitting and receiving
terminals implies only a partial connectivity in the corresponding interference network, which we can exploit through an
improved reutilization of IA precoding matrices compared to [18]. More in detail, the IA scheme in [18] utilizes a different
IA precoding matrix for all transmissions to a given set of r receivers. In our scheme we can omit the precoding matrices that
correspond to a receive set containing index 1. As a consequence, nodes 2, . . . ,K suffer from fewer interference spaces, thus
leaving a larger part of their receive dimensions as signal space and resulting in a improved performance. In the special case
of r = 1, i.e., when each file is stored only at a single node, this idea was already proposed by the authors in [16], and in fact
in this special case r = 1, our first scheme coincides with the scheme in [16].

We present a second IA-DC scheme for systems with an odd number of users K and computation load r = K−1
2K , i.e., when

each node can store almost half of the input files. In this second scheme each node only sees interference pertaining to one
of the K utilized IA-precoding matrices, while all other transmissions at this node are zero-forced. Each set of r nodes that
cooperatively transmits an IVA to a given receiver zero-forces this transmission to all other receivers except for the intended
receiver and the receiver that corresponds to the utilized IA-precoding matrix. We point out that zero-forcing influences the
construction of the precoding matrices. Under these new constructions it is more complicated to prove that at any receiver
all signals corresponding to a given precoding matrix either align or vanish due to zero-forcing. We facilitate this proof by a
careful assignment of the precoding matrices to the transmitted IVAs.

The upper bound on the NDT implied by our two new IA-schemes improves over the previously proposed bounds in [15],
[16] whenever the computation load 1 < r < K

2 , i.e., when each file can be stored at more than one node, but each node
cannot store half of the total number of files. As already mentioned, for r = 1 our upper bound recovers the NDT-bound in
[16], which for this value improves over the NDT upper bound in [15]. Since [15] proved that its proposed scheme achieves
the optimal NDT when one restricts to zero-forcing and interference cancellation, our results show that these techniques are
strictly suboptimal for all computation loads 1 ≤ r ≤ K

2 , i.e., whenever nodes cannot store half of the number of input files.
On the contrary, in this manuscript we show that for r ≥ K

2 the zero-forcing and interference cancellation scheme in [15] is
optimal also without any restriction on the utilized coding scheme.

In fact, we also present an information-theoretic lower bound on the NDT-computation tradeoff based on a multi-access
channel (MAC) type argument that is applied in parallel to a set of well-selected sub-systems and by solving a resulting linear
programme. For computation load r < K

2 the lower bound on the NDT is close to the proposed upper bound, but they do not
match. As mentioned, for r ≥ K

2 the lower bound matches the upper bound in [15] thus establishing the exact NDT of wireless
MapReduce over full-duplex networks.

To summarize, the main contributions of this paper are:
• Improved coding schemes based on IA for wireless MapReduce over full-duplex interference networks. (Sections IV–VI

and Theorem 1 and Corollary 2)
• A lower bound (converse) on the NDT of wireless MapReduce systems. (Theorem 1)
• The exact NDT of wireless MapReduce for computation loads r ≥

⌈
K
2

⌉
. (Corollary 1)

• Proof that zero-forcing and interference cancellation cannot achieve the NDT tradeoff for all computation loads 1 < r <⌈
K
2

⌉
. (Remark 2)

Organization: We terminate this section with notation. The following Section II describes the detailed system model, while
Section III presents and discusses our bounds on the NDT tradeoff. Sections V and VI explain our two novel IA schemes, where
in Section IV, we first describe our first novel IA scheme using some simple examples. Section VII proofs our NDT-lower
bound.

Notations: We use sans serif font for constants or matrices, bold for vectors, and calligraphic font for most sets. The
sets of complex numbers and positive integers are denoted C and Z+. For a finite set A, let |A| denote its cardinality. For
any n ∈ Z+, define [n] ≜ {1, 2, . . . , n} and define [A]n as the collection of all the subsets of A with cardinality n, i.e.
[A]t ≜ {T : T ⊂ A, |T | = t}. In particular, [[n]]t denotes the set of all size-t subsets of [n]. For vectors v we use |v|, and
we denote its i-th element by vi. The transpose of a vector v is denoted vT . By writing [vi : i ∈ A] or [vi]i∈A we mean the
matrix consisting of the columns {vi}i∈A. We denote the transpose of a matrix A by AT and We abbreviate independent
and identically distributed by i.i.d., and for any function f we denote by lowc (f(ℓ)) the convex lower enveloppe of the curve
{(ℓ, f(ℓ))}ℓ.
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II. WIRELESS MAPREDUCE FRAMEWORK

Consider a distributed computing (DC) system with a fixed number of K nodes labelled 1, . . . ,K; a large number N of input
files W1, . . . ,WN; and K output functions ϕ1, . . . , ϕK mapping the input files to the desired computations. We assume that the
output function ϕk is assigned to node k, for k ∈ [K].

A MapReduce System decomposes the output functions as:

ϕq(W1, . . . ,WN) = vq(aq,1, . . . , aq,N), q ∈ [K], (1)

where vq is an appropriate reduce function and aq,p is an intermediate value (IVA) calculated from input file Wp through an
appropriate map function:

aq,p = uq,p(Wp), p ∈ [N]. (2)

For simplicity, all IVAs are assumed independent and consisting of A i.i.d. bits.
The MapReduce framework has 3 phases:
Map phase: A subset of all input files Mk ⊆ [N] is assigned to each node k ∈ [K]. Node k computes all IVAs {aq,p : p ∈

Mk, q ∈ [K]} associated with these input files. Notice that the set {Mk}k∈[K] is a design factor.
Shuffle phase: Computation of the k-th output function is assigned to the k-th node.
The K nodes in the system communicate over T uses of a wireless network in a full-duplex mode, where T is a design

parameter. During this communication, nodes communicate IVAs that they calculated in the Map phase to nodes that are
missing these IVAs for the computations of their assigned output functions. So, node k ∈ [K] produces complex channel inputs
of the form

Xk ≜ (Xk(1), . . . , Xk(T))
T = f

(T)
k ({a1,p, . . . , aK,p}p∈Mk

) , (3)

by means of an encoding function f
(T)
k on appropriate domains and so that the inputs satisfy the block-power constraint

1

T

T∑
t=1

E
[
|Xk(t)|2

]
≤ P, k ∈ [K]. (4)

Given the full-duplex nature of the network, Node k also observes the complex channel outputs

Yk(t) =
∑

k′∈[K]\{k}

Hk,k′(t)Xk′(t) + Zk(t), t ∈ [T], (5)

where the sequences of complex-valued channel coefficients {Hk,k′(t)} and standard circularly symmetric Gaussian noises
{Zk(t)} are both i.i.d. and independent of each other and of all other channel coefficients and noises.

Based on its outputs Yk ≜ (Yk(1), . . . , Yk(T))
T and the IVAs {aq,p : p ∈ Mk, q ∈ [K]} it computed during the Map phase,

Node k decodes the missing IVAs {ak,p : p /∈ Mk} required to compute its assigned output functions ϕk as:

âk,p = g
(T)
k,p ({a1,i, . . . , aK,i}i∈Mk

,Yk) , p /∈ Mk. (6)

Reduce phase: Each node applies the reduce functions to the appropriate IVAs calculated during the Map phase or decoded
in the Shuffle phase.

The performance of the distributed computing system is measured in terms of its computation load

r ≜
∑
k∈[K]

|Mk|
N

, (7)

and the normalized delivery time (NDT)

∆ ≜ lim
P→∞

lim
A→∞

T

A · K · N
· logP. (8)

We focus on the fundamental NDT-computation tradeoff ∆∗(r), which is defined as the infimum over all values of ∆

satisfying (8) for some choice of file assignments {Mk} and sequence (in T) of encoding and decoding functions {f (T)
k } and

{g(T)k,p} in (3) and (6), all depending on A so that the probability of IVA decoding error

Pr
[ ⋃
k∈[K]

⋃
p/∈Mk

âk,p ̸= ak,p

]
→ 0 as A → ∞. (9)

We terminate this section with some remarks. Notice first the trivial extreme point ∆∗(K) = 0, because for r = K all files
can be stored at all nodes and the nodes can thus calculate their desired output functions locally without communicating with
the other nodes.
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A. Sufficiency of Symmetric File Assignments

Our model exhibits a perfect symmetry between the various nodes in the network in the sense that the channels from any
Tx-node to any Rx-node has same statistical behaviour and the various channels are independent of each other. The optimal
NDT-computation tradeoff is therefore achieved by a symmetric file assignment where any subset of nodes T ⊆ [K] of size i is
assigned the same number of files to be stored at all nodes in T . In fact, any non-symmetric file assignment can be symmetrized
without decreasing the NDT-computation tradeoff. It suffices to time-share K! instances of the original scheme for a IVA size
that is also multiplied by K!, where in each instance the K nodes are relabeled according to a different permutation. The
resulting scheme has a symmetric file assignment and achieves the same NDT-computation tradeoff as the original scheme
because both T and A are multiplied by K! while the other parameters remain unchanged and because the new scheme still
satisfies (9).

By the optimality of symmetric file assignments, the optimization problem over the optimal file assignment reduces to
finding the optimal fraction of files that should be assigned to exactly i nodes, for any i ∈ [K]. It is well-known that when
communication is over noiseless broadcast links, then it suffices to assign some of the files to ⌊r⌋ nodes and the remaining
files to ⌈r⌉ nodes. We apply the same strategy in this paper. For r <

⌈
K
2

⌉
however we cannot prove optimality of these file

assignments.

B. Relation to the Network’s Sum-DoF with r-fold Cooperation

A well-studied property of wireless networks is the Sum Degrees of Freedom (sum-DoF), which characterizes the maximum
throughput of a network. In this work we are specifically interested in the sum-DoF that one can achieve over the wireless
network described by (5), when the inputs are subject to the average power constraints (4) and any set of r nodes T ∈ [K]r

has a message M j
T that it wishes to convey to Node j, for any j ∈ [K]\T . Each message M j

T is uniformly distributed over
a set {1, . . . , 2nR

j
T } and a rate-tuple (Rj

T : T ∈ [K]r, j ∈ [K]\T ) is called achievable if there exists a sequence of encoding
and decoding functions such that the probabilities of error tend to 0 in the asymptotic regime of infinite blocklengths. The
sum-DoF is then defined as

Sum-DoF(r) ≜ sup lim
P→∞

∑
T ∈[K]r, j∈[K]\T Rj

T (P)
1
2 logP

, (10)

where the supremum is over all sequences of rate tuples {(Rj
T (P) : T ∈ [K]r, j ∈ [K]\T )}P>0 so that for each P > 0 each

tuple (Rj
T (P) : T ∈ [K]r, j ∈ [K]\T ) is achievable under power P.

We have the following lemma, which we use in this paper:

Lemma 1. For any r ∈ [K]:

∆(r) ≥
(
1− r

K

) 1

Sum-DoF(r)
. (11)

Proof: We show how to construct a distributed computing scheme achieving the NDT upper bound in (11). We shall
assume a sequence (in P > 0) of rates (Rj

T : T ∈ [K]r, j ∈ [K]\T ) that achieves the sum-DoF Sum-DoF(r) and is completely
symmetric with respect to indices j and sets T . By the same time-sharing and relabeling arguments as described in Subsection II
such a sequence must exist.

In the Map Phase we choose a regular file assignment. Partition the input files {W1, . . . ,WN} into
(
K
r

)
disjoint bundles and

assign each bundle to a size-r subset T ∈ [[K]]r. The bundle associated to subset T is denoted WT ⊆ {W1, . . . ,WN}. Notice
that the proposed assignment satisfies the constraint on the computation load, because the number of files stored at Node k is:(

K− 1

r − 1

)
N(
K
r

) =
r

K
N. (12)

Each node computes all IVAs associated to its stored files.
During the Wireless Shuffle Phase, each transmit set T communicates to any receive node j /∈ T all IVAs that can be

calculated from bundle WT . To this end, all nodes use the encoding and decoding functions achieving Sum-DoF(r).
Each transmit group T has to send N

(Kr)
IVAs to each Node j /∈ T and in total there are

(
K
r

)
(K− r) rates in the symmetric

rate vector (Rj
T : T ∈ [K]r, j ∈ [K]\T ). By definition, the probability of error in reconstructing all missing IVAs tends to 0

as T → ∞ if
lim

P→∞
lim

A→∞

A · N
T ·

(
K
r

)
· logP

<
Sum-DoF(r)(

K
r

)
(K− r)

. (13)

We thus conclude that
∆⋆(r) ≤ lim

P→∞
lim

A→∞

T

A · K · N
· logP =

K− r

K

1

Sum-DoF(r)
, (14)

which proves the desired achievability result.
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III. MAIN RESULTS

The main results of this paper are new upper and lower bounds on the NDT-computation tradeoff of the wireless DC system
described in Section II.

For fixed K, define for each r ∈ {1, ⌈K/2⌉ − 1}:

∆Ub,1(r) ≜
(
1− r

K

)
· r(K− 1) + K− r − 1

r(K− 1)2 + r(K− 2)
. (15)

Further, for K = 5 and r = 2, define

∆Ub,2(r) ≜
(
1− r

K

)(
1 +

1

6

)
(16)

and for all odd values K ≥ 7 and r = (K− 1)/2 set:

∆Ub,2(r) ≜
1

K

(
1− r

K

)(
1 +

1

(K− r − 1)(K− 1)

)
. (17)

For all other values of r and K set ∆Ub,2(r) = ∞.1

Define for any integer value r ∈ [K]:

∆Ub(r) ≜

{
mini∈{1,2} ∆Ub,i(r) if r < K/2

1
K

(
1− r

K

)
if r ≥ K/2

. (18)

Also, let

∆Lb(r) ≜



1

K

(
2− 3

K

)
if r = 1,

1

K

(
1− r

K
+ max

t∈[⌊K/2⌋]
lowc (Ct(r))

)
if r ∈ (1, 2),

1

K

(
1− r

K
+ lowc

(
C⌊K/2⌋(r)

))
if r ∈ [2,K],

(19)

where for any t ∈ [⌊K/2⌋]:

Ct(i) =


(K−i
t−i)
(Kt)·t

· (K− t− i), if i ∈ [t],

0, if i ∈ [K]\[t]
(20)

and recall that for any function f we denote by lowc (f(ℓ)) the lower convex enveloppe of the curve {(ℓ, f(ℓ))}.

Theorem 1. The NDT-computation tradeoff ∆∗(r) is upper- and lower-bounded as:

∆Lb(r) ≤ ∆∗(r) ≤ lowc (∆Ub(r)) . (21)

Proof: For integers r ≥ K/2 achievability of the upper bound ∆Ub(r) is proved in [15]. For integers r < K/2 achievability
of the two upper bounds ∆Ub,1(r) and ∆Ub,2(r) follows by Lemma 1 and the coding schemes described in Sections V and VI.
(Section IV illustrates simple special cases of the scheme in Section V.) Achievability of the lower convex enveloppe follows
by selecting the best strategy for each value of r and by simple time- and memory-sharing strategies. The lower bound is
proved in Section VII.

Remark 1. The upper bound is convex and piece-wise constant. The lower bound is piecewise constant with segments spanning
the intervals [i, i+1], for i = 2, . . . ,K− 1. On the interval [1, 2), the lower bound is constant over smaller sub-intervals only
but not over the entire segment.

For all r ≥ ⌈K/2⌉ the lower bound (18) and the upper bound (19) match.

Corollary 1. For all r ≥ ⌈K/2⌉:

∆∗(r) =
(
1− r

K

)
· 1
K
. (22)

Proof: For r ≥ ⌈K/2⌉ the upper bound lowc (∆Ub(r)) is equal to the lower bound ∆Lb(r) because C⌊K/2⌋(i) = 0 for all
i ≥ ⌈K/2⌉.

1This second upper bound is interesting and nontrivial only when K = 2r + 1 and r = 2, 3, . . ..
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Remark 2. The NDT-computation tradeoff in (22), is achieved with linear zero-forcing and side-information cancellation, see
[15]. These simple strategies are thus sufficient to achieve the optimal NDT-computation tradeoff in the regime r ≥ ⌈K/2⌉. This
statement however does not apply for smaller values of r where more sophisticated strategies such as interference alignment
(IA) strategies are necessary to achieve the optimal NDT-computation tradeoff. This follows from the converse result in [15]
and our achievability part in Theorem 1, see Corollary 2 ahead.

A. Comparison to Previous Upper Bounds

We compare the bounds in Theorem 1 to the upper bound in [15] and [16]. The upper bound in [15] is given as follows:

∆∗(r) ≤ ∆UB-BF(r) ≜ lowc
{(

r,
1− r/K

min(K, 2r)

)
: r ∈ [K]

}
, (23)

and is tight when restricting to zero-forcing, one-shot beamforming, and side-information cancellation. The upper bound in
[16] has the form:

∆∗(r) ≤ ∆Ub-Groups(r) ≜ lowc
(
(K, 0) ∪

{(
r,

1− r/K

Sum-DoFLb(r)

)
: 1 ≤ r < K, r|K

})
, (24)

where

Sum-DoFLb(r) ≜

{
2r if K/r ∈ {2, 3},
K(K−r)−r2

2K−3r if K/r ≥ 4,
(25)

and coincides with the upper bound in Theorem 1 for r = 1, i.e., ∆Ub(1) = ∆Ub-Groups(1).
Notice that the sequences {∆UB-BF(r) : r = 1, . . . ,

⌈
K
2

⌉
} and {∆UB-Groups(r) : r = 1, . . . ,

⌈
K
2

⌉
} are strictly convex and the

lower convex-envelope of these points, i.e., ∆UB-BF(r) and ∆UB-Groups(r) are thus piece-wise linear.

Corollary 2. For all 1 < r <
⌈
K
2

⌉
:

∆∗(r) ≤ lowc (∆Ub(r)) < ∆Ub-Groups(r), (26)

and for all 1 ≤ r <
⌈
K
2

⌉
:

∆∗(r) ≤ lowc (∆Ub(r)) < ∆Ub-ZF(r). (27)

Figures 1 and 2 show the bounds in Theorem 1 and compare them to the previous upper bounds ∆Ub-Groups(r) and ∆Ub-ZF(r).
Proof of the Corollary: For r <

⌈
K
2

⌉
, our upper bound in Theorem 1 is strictly better than the bounds in [15] and [16],

as we argue in the following. We start by noticing that for r =
⌈
K
2

⌉
all three upper bounds coincide:

∆Ub

(⌈
K

2

⌉)
= ∆Ub-Groups

(⌈
K

2

⌉)
= ∆Ub-ZF

(⌈
K

2

⌉)
. (28)

Consider now r <
⌈
K
2

⌉
. For any integer computation load

r ≤ (K− 2)/2 (29)

the upper bound in (15) is lower than the upper bound in (23) because under (29)

(K− 1)(K− 2r − 2) > −1 (30)

which is equivalent to

r(K− 1) + K− r − 1

r(K− 1)2 + r(K− 2)
<

1

2r
. (31)

We thus conclude that for K even and integer-valued r ≥ K
2 − 1 as well as for K odd and integer-valued r ≥ K−3

2 the upper
bound in Theorem 1 is strictly lower than the previous upper bound ∆Ub-ZF(r). We continue to prove that for K odd and
r = K−1

2 the upper bound in (16) (for K = 5) or in (17) (for K ≥ 7) is strictly lower than the upper bound in (23). Combined
with (28) and the piece-wise linearity of the bounds, this proves (26).

Notice that for K ≥ 5 : (
(K− 1)2 + 2

(K− 1)K

)
=

K2 − 2K+ 3

K2 − K
< 1, (32)

and thus for r = K−1
2 :

1

K

(
1 +

1

(K− r − 1)(K− 1)

)
<

1

2r
=

1

K− 1
, (33)
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establishing that the bound in (17) is lower than (23). For K = 5 and r = 2 it is easily verified that bound (23) evaluates to(
1− r

K

)
· 1
4 and is thus strictly higher than bound (16).

We continue to prove (26). For integers r satisfying 1 < r <
⌈
K
2

⌉
we have

(r − 1)(K− 2r − 1) ≥ 0, (34)

which is equivalent to
r(2K− 3r) ≤ r(K− 1) + K− r − 1. (35)

Moreover, for all integers r > 1:
(K− 1)2 + (K− 2) > K(K− r)− r2, (36)

which combined with (35) establishes that

r(K− 1) + K− r − 1

r(K− 1)2 + r(K− 2)
<

2K− 3r

K(K− r)− r2
. (37)

This implies (27) except for values of K where lowc (∆Ub(r)) and ∆Ub-Groups(r) are both given by the straight line between
∆Ub-Groups(1) and ∆Ub-Groups

(⌈
K
2

⌉)
. While this is the case for ∆Ub-Groups(r) when K = 2K′ and K′ is a prime number, it is

never true for ∆Ub(r) because the sequence {∆Ub(r) : r = 1, . . . ,
⌈
K
2

⌉
} is strictly convex.

2 4 6 8 10
0

5 · 10−2

0.1

0.15

0.2

0.25

Computation Load (r)

N
D

T
∆

∗ (
r)

One-shot scheme of [15]
Grouped IA scheme of [16]

Novel IA schemes
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Fig. 1. Bounds on ∆∗(r) from Theorem 1 compared to the optimal zero-forcing and interference cancelation scheme in [15] and to the upper bound obtained
by the grouped IA scheme in [16] for K = 11.

IV. EXAMPLES OF OUR IA SCHEME WITHOUT ZERO-FORCING

In the next-following two sections we describe our first coding scheme based on IA but without zero-forcing, and we evaluate
the lower bound on Sum-DoF(r) that it achieves. In this section we only present some simple examples and attempt to build
up intuition. The scheme and its corresponding upper bound on the sum-DoF are described and analyzed in detail in the
next-following Section V.

A. Example 1: K ≥ 3, r = 1

Consider first the simple case with computation load r = 1, i.e., when each IVA can be stored only at a single node.
In our scheme we transmit the K(K− 1)− 1 Messages (or IVAs)

{M j
k : j, k ∈ [K], j ̸= k, (j, k) ̸= (1,K)}. (38)

That means, each Node k transmits a message M j
k to each other node j ̸= k, except for node K that only transmits messages

to nodes 2, . . . ,K− 1 but not to Node 1.
All messages {M j

k}k intended for Node j, for j = 2, . . . ,K, are precoded by the precoding matrix Uj , whose construction
we shall present shortly. In contrast to the standard IA-scheme in [19], here Node 1 does not have a dedicated IA precoding
matrix. Instead, each Node k precodes the message b1k that it sends to Node 1 with its own dedicated precoding matrix Uk.

Table I depicts the precoding matrices used to transmit information from a given Node k to another Node j. The entry “x”
indicates that nodes do not transmit messages to themselves. The entry “o” indicates that a given Node k chooses not to send

7
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Fig. 2. Bounds on ∆∗(r) from Theorem 1 compared to the optimal NDT achieved by the optimal zero-forcing and interference cancelation scheme in [15]
and to the upper bound obtained by the grouped IA scheme in [16] for K = 20.

TABLE I
TABLE SHOWING THE PRECODING MATRIX USED TO SEND EACH MESSAGE Mj

k .

k\j 1 2 3 4 5 6 7

1 x U2 U3 U4 U5 U6 U7

2 U2 x U3 U4 U5 U6 U7

3 U3 U2 x U4 U5 U6 U7

4 U4 U2 U3 x U5 U6 U7

5 U5 U2 U3 U4 x U6 U7

6 U6 U2 U3 U4 U5 x U7

7 o U2 U3 U4 x U6 x

a message to a given Node j. The motivation for our precoding assignment is to have no duplications in a given row (because
otherwise the corresponding receive nodes won’t be able to distinguish their intended signals from interference) and to use as
few precoding matrices as possible so as to keep the nodes’ interference spaces small (this will become more clear shortly).

Node 1 thus transmits the signal

X1 =
∑

j∈[K]\{1}

Ujb
j
1, (39)

Nodes 2, . . . ,K− 1 transmit the signals

Xk = Ukb
1
k +

∑
j∈[K]\{1,k}

Ujb
j
k, k ∈ [K− 1]\{1}, (40)

and Node K transmits the signal

XK =
∑

j∈[K−1]\{1}

Ujb
j
k, (41)

where bj
k is a Gaussian codeword encoding Message M j

k .
Node 1 observes the receive signal

Y1 =
∑

k∈[K−1]\{1}

H1,kUkb
1
k︸ ︷︷ ︸

desired signal

+
∑

k,ℓ∈[K]\{1}
k ̸=ℓ

H1,kUℓb
ℓ
k

︸ ︷︷ ︸
interference

+Z1, (42)

and Nodes 2, . . . ,K the receive signals

Yj =
∑

k∈[K]\{j}

Hj,kUjb
j
k︸ ︷︷ ︸

desired signal

+
∑

ℓ,k∈[K]\{j}
ℓ ̸=k,ℓ ̸=1

Hj,kUℓb
ℓ
k +

∑
k∈[K−1]\{1,j}

Hj,kUkb
1
k

︸ ︷︷ ︸
interference

+Zj , (43)

8



where Hj,k denotes the diagonal T-by-T channel matrix consisting of the entries {Hj,k(t)}Tt=1.

Remark 3. The K − 1 desired signals at any Node j ∈ [K]\{1} are precoded by the same precoding matrix Uj , while its
interference signals are precoded by the remaining K − 2 precoding matrices U2, . . . ,Uj−1,Uj+1, . . . ,UK. In contrast, for
Node 1, matrices U2, . . . ,UK−1 precode both desired and interference signals while matrix UK only precodes interference.

We choose the precoding matrices U1, . . . ,UK according to the IA principle [19]. That means, we construct each column
of matrix Uj using all channel matrices that pre-multiply Uj in the interference terms of the receive signals Y1, . . . ,YK and
exponentiate these the channel matrices with a different set of exponents for each column. More formally, we choose2

Uℓ ≜

[ ∏
H∈Hℓ

Hαℓ,H ·Ξℓ : ∀αℓ ∈ [η]Γ

]
, (44)

where each column of the matrix is constructed using a different exponent-vector αℓ = (αℓ,H : H ∈ Hℓ) ∈ [η]Γ; η is a large
number depending on the blocklength T that tends to ∞ with T; {Ξℓ}ℓ∈[K]\{1} are i.i.d. random vectors independent of all
channel matrices, noises, and messages; and

Hℓ = {Hj,k : j ∈ [K]\{1, ℓ}, k ∈ [K]\{ℓ}, j ̸= k}
∪{H1,k : k ∈ [K]\{1, ℓ}}, (45)

and Γ ≜ |Hℓ| does not depend on ℓ.
With the proposed construction, for any j ∈ [K] and ℓ ∈ [K]\{1, j}, the signals that are precoded by matrix Uℓ and interfere

at Node j lie in the column space of the matrix

Wℓ ≜

[ ∏
H∈Hℓ

Hαℓ,H ·Ξℓ : ∀αℓ ∈ [η + 1]Γ

]
. (46)

The signals that are desired at Node j ∈ {2, . . . ,K} correspond to the columns of the matrix

Dj ≜
[
Hj,kUj

]
k∈[K]\{j}

, j ∈ {2, . . . ,K}. (47)

The signals desired at Node 1 correspond to the column space of the matrix

D1 ≜
[
H1,kUk

]
k∈[K−1]\{1}

. (48)

As is proved in [16] and follows from our analysis in Section V, with probability 1 the matrices

Λj = [Dj W2 · · ·Wj−1Wj+1 · · ·WK], j ∈ [K]\{1}, (49)

and
Λ1 = [D1 W2 · · ·WK] (50)

have full column-rank.
Since the matrices have full column-rank, a simple zero-forcing strategy at the receiving nodes allows to achieve DoF

#columns(Dj)

#columns(Λj)
(51)

to each Node j. I.e., in the limit as η → ∞ (and thus η
η+1 → 1) a DoF K−1

2K−3 at Nodes 2, . . . ,K and DoF K−2
2K−3 at Node 1 is

achievable, yielding a sum-DoF of

Sum-DoFLB =
(K− 1)2 + K− 2

2K− 3
. (52)

B. Example 2: K = 4, r = 2

Consider now a computation load of r = 2 and only K = 4 nodes. In this case our scheme transmits 18 different messages
depicted in (53). Here, Message M j

k,T is a message that is known by the set of nodes T and intended to Node j /∈ T . Though
known to the entire set T , Message M j

k,T is only transmitted by a single Node k ∈ T . The remaining nodes in T \{k}
do not participate in the transmission. They however exploit their knowledge of M j

k,T to remove cancel the corresponding
transmission from their receive signal.

Notice that for certain sets T and receive nodes j /∈ T our scheme sends two messages to the same node j: M j
k1,T and

M j
k2,T for different indices k1, k2 ∈ T . (In (53) the two messages M2

1,{1,4} and M2
4,{1,4} for example have this form.) These

2By the memorylessness of the channel the matrices Hj,k are diagonal and their multiplications and exponentiations are effectively multiplications and
exponentiations of the corresponding diagonal elements.
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messages M j
k1,T and M j

k2,T actually represent two independent submessages of Message M j
T as we defined it in Section II-B.

For the sets T and Nodes j /∈ T for which there exists only a single Message M j
k,T , this message is really the message M j

T
as we defined it in Section II-B. As we will only analyze the sum-DoF of our scheme, this distinction between submessages
and messages is not important and we shall simply omit it in the following.

We send the following messages in our scheme. To Node 1, we send messages

M1
2,{2,3}, M1

3,{2,3}, M1
2,{2,4}, M1

3,{3,4}; (53a)

to Node 2 we send messages

M2
1,{1,3}, M2

3,{1,3}, M2
1,{1,4}, M2

4,{1,4}

M2
3,{3,4} M2

4,{3,4}; (53b)

to Node 3 we send messages

M3
1,{1,2}, M3

2,{1,2}, M3
1,{1,4}, M3

4,{1,4},

M3
2,{2,4}, M3

4,{2,4}; (53c)

and to Node 4 we send messages

M4
1,{1,2}, M4

2,{1,2}, M4
1,{1,3}, M4

3,{1,3},

M4
2,{2,3}, M4

3,{2,3}. (53d)

We observe that each Node j obtains two messages from each subset of nodes T of size 2 not containing j, where each node in
T sends one of the two messages. An exception are messages M1

4,{2,4} and M1
4,{3,4} which are not transmitted because in our

scheme the last Node K = 4 does not send any message to the first Node 1. (As we will see, this omission allows to reuse some
of the precoding matrices, similarly to the scheme for r = 1, and thus achieve an improved Sum-DoF.) Prior to transmission,
each message M j

k,T is encoded into a Gaussian codeword bj
k,T . We use the interference-alignment (IA) technique with three

precoding matrices U{2,3},U{2,4}, and U{3,4}. Precoding matrix U{2,3} is used to send codewords

b2
1,{1,3}, b3

1,{1,2}, b2
4,{3,4}, b3

4,{2,4}, (54)

b1
2,{2,3}, b1

3,{2,3}, b2
3,{1,3}, b3

2,{1,2}, (55)

precoding matrix U{2,4} is used to send codewords

b2
1,{1,4}, b4

1,{1,2}, b2
3,{3,4}, b4

3,{2,3}, (56)

b1
2,{2,4}, b4

2,{1,2}, b2
4,{1,4}, (57)

and precoding matrix U{3,4} is used to send codewords

b3
1,{1,4}, b4

1,{1,3}, b3
2,{2,4}, b4

2,{2,3}, (58)

b1
3,{3,4}, b3

4,{1,4}, b4
3,{1,3}. (59)

Remark 4. The choice of precoding matrices is inspired by [18] where Message M j
k,T is precoded by the matrix UR for

R = T \{j} ∪ {k}. The idea behind the choice of precoding matrices in [18] is that any node in R is either interested in
learning Message M j

k,T or it can compute it itself and remove the interference from its receive signal. A given node j thus
only experiences interference from precoding matrices UR for which j /∈ R.

In contrast to [18], in our IA scheme we de not use precoding matrices UR′ for sets R′ containing index 1, but reuse
precoding matrices UR for sets R not containing 1. Specifically, we use the precoding matrix UR also to send the codewords
(if they exist)

b1
k,R, bj

k,R∪{1}\{j}, ∀j, k ∈ R, j ̸= k. (60)

One can verify that the codewords in lines (55), (57), (59) are of the form in (60).

We illustrate our assignment of the precoding matrices also using the following table. The entries in column 1 or in rows
{1, 2}, {1, 3}, {1, 4} correspond to two submessages M j

k1,T and M j
k2,T , where k1 and k2 denote the two entries in T . For all

other entries in Table II not equal to “x”, we have only one message per precoding matrix, see (54), (56), and (58).
During the shuffling phase, Nodes 1–4 send the following signals. Node 1 sends:

X1 = U{2,3}

(
b2
1,{1,3} + b3

1,{1,2}

)
+U{2,4}

(
b2
1,{1,4} + b4

1,{1,2}

)
+U{3,4}

(
b3
1,{1,4} + b4

1,{1,3}

)
. (61)

10



TABLE II
MESSAGES Mj

k,T PRECODED BY THE THREE PRECODING MATRICES U{2,3} , U{2,4} , AND U{3,4} .

T \ j 1 2 3 4

{1, 2} x x U{2,3} U{2,4}
{1, 3} x U{2,3} x U{3,4}
{1, 4} x U{2,4} U{3,4} x
{2, 3} U{2,3} x x U{2,4},U{3,4}
{2, 4} U{2,4} x U{2,3}, U{3,4} x
{3, 4} U{3,4} U{2,3}, U{2,4} x x

Node 2 sends:

X2 = U{2,3}

(
b1
2,{2,3} + b3

2,{1,2}

)
+U{2,4}

(
b1
2,{2,4} + b4

2,{1,2}

)
+U{3,4}

(
b3
2,{2,4} + b4

2,{2,3}

)
. (62)

Node 3 sends:

X3 = U{2,3}

(
b1
3,{2,3} + b2

3,{1,3}

)
+U{2,4}

(
b2
3,{3,4} + b4

3,{2,3}

)
+U{3,4}

(
b1
3,{3,4} + b4

3,{1,3}

)
. (63)

Node 4 sends:

X4 = U{2,3}

(
b2
4,{3,4} + b3

4,{2,4}

)
+U{2,4}b

2
4,{1,4} +U{3,4}b

3
4,{1,4}. (64)

As mentioned, each receiving node can subtract all the interference of the signals that it can compute itself. We can rewrite
the four receive signals after this interference elimination step as follows. Node 1 can construct:

Y′
1 = H1,2U{2,3}b

1
2,{2,3} +H1,3U{2,3}b

1
3,{2,3}︸ ︷︷ ︸

desired signal

+H1,2U{2,4}b
1
2,{2,4} +H1,3U{3,4}b

1
3,{3,4}︸ ︷︷ ︸

desired signal

+H1,2U{3,4}

(
b3
2,{2,4} + b4

2,{2,3}

)
+H1,3U{2,4}

(
b2
3,{3,4} + b4

3,{2,3}

)
+H1,4U{2,3}

(
b2
4,{3,4} + b3

4,{2,4}

)
+ Z1, (65)

Node 2 can construct:

Y′
2 = H2,1U{2,3}b

2
1,{1,3} +H2,1U{2,4}b

2
1,{1,4}︸ ︷︷ ︸

desired signal

+H2,3U{2,3}b
2
3,{1,3} +H2,3U{2,4}b

2
3,{3,4}︸ ︷︷ ︸

desired signal

+H2,4U{2,3}b
2
4,{3,4} +H2,4U{2,4}b

2
4,{1,4}︸ ︷︷ ︸

desired signal

+H2,1U{3,4}

(
b3
1,{1,4} + b4

1,{1,3}

)
+H2,3U{3,4}

(
b1
3,{3,4} + b4

3,{1,3}

)
+H2,4U{3,4}b

3
4,{2,4} + Z2, (66)
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Node 3 can construct:

Y′
3 = H3,1U{2,3}b

3
1,{1,2} +H3,1U{3,4}b

3
1,{1,4}︸ ︷︷ ︸

desired signal

+H3,2U{2,3}b
3
2,{1,2} +H3,2U{3,4}b

3
2,{2,4}︸ ︷︷ ︸

desired signal

+H3,4U{2,3}b
3
4,{3,4} +H3,2U{3,4}b

3
4,{1,4}︸ ︷︷ ︸

desired signal

+H3,1U{2,4}

(
b2
1,{1,4} + b4

1,{1,2}

)
+H3,2U{2,4}

(
b1
2,{2,4} + b4

2,{1,2}

)
+H3,4U{2,4}b

2
4,{1,4} + Z3, (67)

Node 4 can construct:

Y′
4 = H4,1U{2,4}b

4
1,{1,2} +H4,1U{2,4}b

4
1,{1,3}︸ ︷︷ ︸

desired signal

+H4,2U{2,4}b
4
2,{1,2} +H4,2U{3,4}b

4
2,{2,3}︸ ︷︷ ︸

desired signal

+H4,3U{2,4}b
4
3,{2,3} +H4,3U{3,4}b

4
3,{1,3}︸ ︷︷ ︸

desired signal

+H4,1U{2,3}

(
b2
1,{1,3} + b3

1,{1,2}

)
+H4,2U{2,3}

(
b1
2,{2,3} + b3

2,{1,2}

)
+H4,3U{2,3}

(
b1
3,{2,3} + b2

3,{1,3}

)
+ Z4. (68)

Remark 5. We remark that Node 2’s desired signals are all precoded by precoding matrices U{2,3} and U{2,4} while all
interference signals are precoded by matrix U{3,4}. Similar observations hold for Nodes 3 and 4. Node 1 instead observes
desired and interference signals precoded by all three precoding matrices.

In more general terms, each node j ∈ [K]\{1}, observes desired signals multiplied by the precoding matrices {UR}j∈R
and interference signals multiplied by the precoding matrices {UR}j /∈R. For Node 1, both desired and interference signals
are multiplied by all possible precoding matrices.

The IA matrices U{2,3}, U{2,4}, and U{3,4} are constructed based on the interference alignment idea in [19] taking into
account the channel matrices that premultiply the IA matrices in the interference signals of (65)–(68). Specifically, we choose

UR ≜

[ ∏
H∈HR

HαR,H ·ΞR : ∀αR ∈ [η]4

]
, (69)

where each column of the matrix is constructed using a different exponent-vector αR = (αR,H : H ∈ HR) ∈ [η]4; η is a
large number depending on the blocklength T that tends to ∞ with T; ΞR are i.i.d. random vectors drawn according to a
continuous distribution,

H{2,3} ≜
{
H1,4, H4,1, H4,2, H4,3

}
, (70)

H{2,4} ≜
{
H1,3, H3,1, H3,2, H3,4

}
, (71)

H{3,4} ≜
{
H1,2, H2,1, H2,3, H2,4

}
. (72)

By this choice of the precoding matrices, all interference signals at a Node 2 will lie in the columnspace of the matrix

W{3,4} ≜

 ∏
H∈H{3,4}

HαR,H ·Ξ{3,4} : ∀αR ∈ [η + 1]4

 ,

(73)

while the desired signals will be separable from each other and from this interference space. The DoF achieved to this Node 2
is thus

6

7
. (74)
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Similar observations hold for Nodes 3 and 4. Node 1 has a larger interference space and smaller desired signal space and only
achieves a DoF of 4/7. The SumDoF achieved by the scheme is thus

Sum-DoF = 22/7. (75)

V. THE GENERAL IA-SCHEME WITHOUT ZF

We fix a large parameter η ∈ Z+ (which we shall let tend to ∞) and let

Γ ≜ K · (K− r − 1) (76)

T ≜ (K− 2) ·
(
K− 2

r − 1

)
· ηΓ +

(
K− 1

r

)
· (η + 1)Γ. (77)

In our scheme, we send the following messages to any Node j ∈ [K]\{1}:{
M j

k,T : T ∈ [[K]\{j}]r, k ∈ T
}

(78)

and to Node 1 we send messages {
M1

k,T : T ∈ [[K]\{1}]r, k ∈ T \{K}
}
. (79)

Thus, as in the examples of the previous section, the last node K does not send any message to the first node 1.
For each message, construct a Gaussian codebook of power P/

(
K−1
r

)
and length ηΓ to encode each Message M j

k,T into a
codeword bj

k,T . As in the previous sections, we shall use a linear precoding scheme, and thus Node i ∈ [K] can mitigate the
interference caused by the codewords {

bj
k,T

}
∀T : i∈T . (80)

As a consequence, for each set R ∈ [[K]]r, without causing non-desired interference to nodes in R, we can use the same
precoding matrix UR (whose choice we describe later) for all the codewords:{

bj
k,R∪{k}\{j}

}
k∈[K]\R

j∈R
. (81)

This idea was already used in the related works [14], [18]. In contrast to these previous works, here we do not introduce the
precoding matrices UR for sets R containing 1. Instead, for any R not containing 1 and any k ∈ R, we use the matrix UR
also to precode the set of codewords{

bj
k,R∪{1}\{j}

}
j,k∈R,j ̸=k

∪
{
bj
1,R∪{1}\{j}

}
j∈R

, (82)

and
{b1

k,R}k∈R\{K}. (83)

All non-intended nodes in R can subtract these interferences from their receive signals because they know the codewords.
This trick allows us to reduce the dimension of the interference space and thus improve performance.

In Table III we illustrate which codewords bj
k,T are premultiplied by the precoding matrix U{2,3} when r = 2 and K > 3.

The entry ”o” indicates that a given Node k chooses not to send a message to a given Node j or the message is premultiplied
by other matrices. According to (81) the entry in column-3 and row-{k, 2}, for each k ∈ {1, 4, . . . ,K}, corresponds to the
codeword b3

k,{k,2}, and the entry in column-2 and row-{k, 3}, for each k ∈ {1, 4, . . . ,K}, corresponds to codeword b2
k,{k,3}.

According to (82), the entries in rows T containing index 1 correspond to the r codewords {bj
k,T }k∈T . And finally, according

to (83), the entry in column-1 and row-{2, 3} corresponds to the two codewords b1
2,{2,3} and b1

3,{2,3}. We thus conclude that
all entries of the table in rows T containing index 1 and in row {2, 3} correspond to r = 2 different codewords, while all other
entries correspond to only a single codeword. Similar tables can be drawn for all pairs (k1, k2) ∈ [K], where recall however
that node K does not send any information to node 1.

Similarly, Table IV illustrates which codesymbols bj
k,T are premultiplied by the precoding matrix U{2,3,4}, when r = 3 and

K ≥ 5. The entries in rows T containing index 1 correspond to r = 3 different codewords bj
k,T , one for each k ∈ T , see (82).

Similarly, the entry in column-1 and row {2, 3, 4} corresponds to the r codewords b1
k,{2,3,4}, for each k ∈ {2, 3, 4}. Any other

entry of the table showing U{2,3,4} corresponds to a single codeword bj
k,T , where k is the single element in T \{2, 3, 4}.

We now describe encodings and decodings.
Encoding: Define the T-length vector of channel inputs Xk ≜ (Xk(1), . . . , Xk(T))

T for each Node k. Nodes 1, . . . ,K form
the channel inputs as:

X1 =
∑

R∈[[K]\{1}]r

∑
j∈R

URbj
1,R∪{1}\{j}, (84)
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TABLE III
LET r = 2. THE TABLE ILLUSTRATES THE CODESYMBOLS bj

k,T THAT ARE PREMULTIPLIED BY THE PRECODING MATRIX U{2,3} . ENTRIES FOR SETS T
EITHER EQUAL TO {2, 3} OR CONTAINING 1, CORRESPOND TO r TRANSMITTED CODEWORDS, ONE FROM EACH NODE IN T . ALL OTHER ENTRIES

CORRESPOND ONLY TO A SINGLE CODEWORD FROM THE NODE NOT IN {2, 3}.

T \ j 1 2 3

{1, 2} x x U{2,3}
{1, 3} x U{2,3} x
{2, 3} U{2,3} x x
{2, 4} o x U{2,3}
{2, 5} o x U{2,3}

...
...

...
...

{2,K} o x U{2,3}
{3, 4} o U{2,3} x
{3, 5} o U{2,3} x

... o
... x

{3,K} o U{2,3} x
{4, 5} o o o

... o
... o

{K− 1,K} o o o

TABLE IV
LET r = 3. THE TABLE ILLUSTRATES THE CODESYMBOLS bj

k,T THAT ARE PREMULTIPLIED BY THE PRECODING MATRIX U{2,3,4} . ENTRIES FOR SETS T
EITHER EQUAL TO {2, 3, 4} OR CONTAINING 1, CORRESPOND TO r TRANSMITTED CODEWORDS, ONE FROM EACH NODE IN T . ALL OTHER ENTRIES

CORRESPOND ONLY TO A SINGLE CODEWORD FROM THE NODE NOT IN {2, 3, 4}.

T \ j 1 2 3 4

{1, 2, 3} x x x U{2,3,4}
{1, 2, 4} x x U{2,3,4} x
{1, 3, 4} x U{2,3,4} x x
{2, 3, 4} U{2,3,4} x x x
{2, 3, 5} o x x U{2,3,4}

...
...

...
...

...
{2, 3,K} o x x U{2,3,4}
{2, 3, 5} o x U{2,3,4} x

...
...

...
...

...
{2, 3,K} o x U{2,3,4} x
{3, 4, 5} o U{2,3,4} x x

...
...

...
...

...
{3, 4,K} o U{2,3,4} x x

Xk =
∑

R∈[[K]\{1,k}]r

∑
j∈R

URbj
k,R∪{k}\{j}

+
∑

R∈[[K]\{k}]r :
1∈R

∑
j∈R

UR∪{k}\{1}b
j
k,R∪{k}\{j},

k ∈ [K− 1]\{1}, (85)

XK =
∑

R∈[[K−1]\{1}]r

∑
j∈R

URbj
K,R∪{K}\{j}

+
∑

R∈[[K−1]]r :
1∈R

∑
j∈R\{1}

UR∪{K}\{1}b
j
K,R∪{K}\{j}, (86)

where the precoding matrices {UR}R∈[[K]\{1}]r are described shortly.
Decoding: After receiving the respective sequence of T channel outputs Yj ≜ (Yj,1, . . . , Yj,T), for j ∈ [K], each node

removes the influence of the codewords corresponding to the messages that it can compute itself. The nodes’ “cleaned” signals
can then be written as:

Y′
1 =

∑
R∈[[K]]r :

1∈R

∑
k∈[K−1]\R

H1,kUR∪{k}\{1}b
1
k,R∪{k}\{1}

︸ ︷︷ ︸
desired signal
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+
∑

R∈[[K]\{1}]r

∑
k∈[K]\R

H1,kURvR,k + Z1, (87a)

Y′
j =

∑
R∈[[K]\{1}]r :

j∈R

∑
k∈[K]\R

Hj,kURbj
k,R∪{k}\{j}

︸ ︷︷ ︸
desired signal

+
∑

R∈[[K]]r :
1,j∈R

∑
k∈[K]\R

Hj,kUR∪{k}\{1}b
j
k,R

︸ ︷︷ ︸
desired signal

+
∑

R∈[[K]\{1}]r :
j /∈R

∑
k∈[K]\R :

k ̸=j

Hj,kURvR,k

+
∑

R∈[[K]]r :
1∈R,j /∈R

∑
k∈[K]\R

Hj,kUR∪{k}\{1}vR,k + Zj ,

j ∈ [K]\{1}, (87b)

where for ease of notation we defined for Nodes k ∈ [K− 1]:

vR,k ≜
∑
j∈R

bj
k,R∪{k}\{j}, ∀R ∈ [[K]\{k}]r, (88)

and for the last Node K, since its signal to Node 1 is absent:

vR,K ≜
∑

j∈R\{1}

bj
k,R∪{k}\{j}, ∀R ∈ [[K− 1]]r. (89)

Each Node j zero-forces the non-desired interference terms of its “cleaned” signal and decodes its intended messages
{M j

k,T }.

Choice of IA Matrices {UR} and Analysis of Signal and Interference Spaces: Inspired by the IA scheme in [19], we choose
each T × ηΓ precoding matrix UR so that its column-span includes all power products (with powers from 1 to η) of the
channel matrices Hj,k that premultiply UR in (87) in the non-desired interference terms. Thus, for R ∈ [[K]\{1}]r:

UR ≜

[ ∏
H∈HR

HαR,H ·ΞR : ∀αR ∈ [η]Γ

]
, (90)

where {ΞR}R∈[[K]\{1}]r are i.i.d. random vectors independent of all channel matrices, noises, and messages,

HR ≜
{
Hj,k : j ∈ [K]\R, k ∈ [K]\{j}

}
\
{
H1,k : k ∈ R

}
,

(91)

and αR ≜ (αR,H : H ∈ HR). Notice that |HR| = Γ for any R ∈ [[K]\{1}]r.
Since the column-span of UR contains all power products of powers 1 to η of the channel matrices H ∈ HR, we have

span(H ·UR) ⊆ span(WR), H ∈ HR, (92)

where we defined the T× ηΓ-matrix

WR =

[ ∏
H∈HR

HαR,H ·ΞR : ∀αR ∈ [η + 1]Γ

]
,

for R ∈ [[K]\{1}]r . (93)

As a consequence, and by the choice of T in (77), the signal and interference space at Rx 1 is represented by the T×T-matrix:

Λ1 =
[

D1︸︷︷︸
signal space

, [WR]R∈[[K]\{1}]r︸ ︷︷ ︸
interference space

]
, (94)

where the signal subspace is given by a collection of T×
(
(K− 2) ·

(
K−2
r−1

)
· ηΓ

)
-matrices

D1 ≜
[
H1,kUR

]
k∈[K−1]\{1},
R∈[[K]\{1}]r :

k∈R

. (95)
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The signal space at Rx j ∈ [K]\{1} is represented by the T× T̃ matrix:

Λj ≜
[

Dj︸︷︷︸
signal space

, [WR]R∈[[K]\{1}]r : j /∈R︸ ︷︷ ︸
interference space

]
. (96)

where the signal subspace Dj is given by the collection of T×
(
r ·

(
K−1
r

)
· ηΓ

)
-matrices

Dj ≜ [Hj,kUR]R∈[[K]\{1}]r :
j∈R,

k∈[K]\{j}

(97)

and

T̃ ≜ r ·
(
K− 1

r

)
· ηΓ +

(
K− 2

r

)
· (η + 1)Γ. (98)

According to Lemmas 2 and 3 below, {Λj} is full column-rank if each column has different exponent vector α, which
follows by the way we constructed the matrices UR and WR. Indeed:

• For each R ∈ [[K]\{1}]r, matrices UR and WR are constructed using a dedicated i.i.d. vector ΞR that is independent
of all other random variables in the system and thus the vectors ΞR can play the roles of the vectors Ξi in Lemma 3.

• For each term HUR in (95) and (97), we have H /∈ HR. Thus H is not used in the construction of neither UR nor
WR and induces a unique exponent on the corresponding columns in the signal space which is 0 in all columns of the
interference space WR.

This proves that based on the “cleaned” signal (87), each receiving node j can separate the various desired signals from each
other as well as from the non-desired interfering signals. Since each codeword bj

k,T occupies ηΓ dimensions out of the T
dimensions, we obtain that whenever

|bj
k,T |
T

≤ ηΓ

T
logP+ o(logP), (99)

for an appropriate function o(logP) that grows slowlier than logP, each codeword bj
k,T can be decoded with arbitrary small

probability of error as η → ∞.
Since (K− 2) ·

(
K−2
r−1

)
codewords are sent to Node 1, and r

(
K−1
r

)
codewords to any other Node j = 2, . . . ,K, and since

lim
η→∞

ηΓ

T
=

1

(K− 2)
(
K−2
r−1

)
+

(
K−1
r

) , (100)

we conclude that a sum-DoF of

Sum-DoF =
(K− 2) ·

(
K−2
r−1

)
+ (K− 1)r

(
K−1
r

)
(K− 2)

(
K−2
r−1

)
+

(
K−1
r

)
=

r(K− 1)2 + r(K− 2)

r(K− 2) + K− 1
(101)

is achievable over the system. This establishes achievability of (15).

Lemma 2. Let s1, s2, ..., sm be independent random vectors with i.i.d. entries drawn according to continuous distributions.
for any L ≤ m and L different exponent vectors

αj = (αj,1, . . . , αj,m) ∈ Zm
+ , j ∈ [L],

the m× L matrix M with row-i and column-j entry

Mi,j =

m∏
k=1

(si,)
αj,k , i ∈ [m], j ∈ [L], (102)

is full rank almost surely.

Lemma 3. Consider numbers {n1, n2, · · · , nK̃} ∈ ZK̃
+ so that their sum C ≜

∑K̃
i=1 ni ≤ T. Assume that for each i ∈ [K̃] and

k ∈ [ni], Bi,k ∈ CT×T is a diagonal matrix so that all square sub-matrices of the following matrices {Bi}i∈K̃ are full rank:

Bi ≜
[
Bi,1 · 1T,Bi,2 · 1T, · · · ,Bi,ni

· 1T

]
, i ∈ [K̃], (103)

where 1T denotes a T-dimensional all-one column vector.
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Let further {Ξi}i∈K̃ be independent T-vectors with entries drawn i.i.d. from continuous distributions and define the T×ni-
matrices

Ai ≜ [Bi,1 ·Ξi,Bi,2 ·Ξi, · · · ,Bi,ni ·Ξi] , i ∈ [K̃]. (104)

Then, the T× C-matrix
Λ ≜

[
A1,A2, · · · ,AK̃

]
(105)

has full column rank almost surely.

Proof: We assume that the matrix Λ is a square matrix i.e. C = T. If T > C, we take a square submatrix of Λ and
perform the same proof steps on the submatrix.

Define
F
(
Ξ1, . . . ,ΞK̃

)
≜ det(Λ) (106)

which is a polynomial of Ξ1,Ξ2, · · · ,ΞK̃ as the determinant is a polynomial of the entries of Λ.
For the vectors

di = [ 0, · · · 0,︸ ︷︷ ︸
(n1+···+ni−1) 0s

1, · · · 1,︸ ︷︷ ︸
ni 1s

0, · · · 0︸ ︷︷ ︸
(ni+1+···+nK̃) 0s

]T , i ∈ K̃, (107)

the polynomial evaluates to

F
(
d1, . . . ,dK̃

)
= det


B′

1 0 · · · 0
0 B′

2 · · · 0
...

...
. . .

...
0 0 · · · B′

K̃

 (108)

=

K̃∏
i=1

det(B′
i) ̸= 0 (109)

where B′
i is the ni × ni square sub-matrix of Bi consisting of its rows (n1 + · · ·+ ni−1 + 1) to (n1 + · · ·+ ni−1 + ni). The

inequality holds by our assumption that all square sub-matrices of Bi are full rank.
We conclude that F is a non-zero polynomial and thus F

(
Ξ1, . . . ,ΞK̃

)
equals 0 with probability 0 because the entries of

Ξ1,Ξ2, · · · ,ΞK̃ are drawn independently from continuous distributions.

VI. A SCHEME WITH IA AND ZF FOR K ODD AND r = (K− 1)/2

Our second scheme has a similar precoding structure as the first scheme. However, now each signal sent from a set T to a
node j ∈ [K]\T is zero-forced at a group of r − 1 nodes in [K]\{T ∪ {j}} and thus effectively causes interference only at a
single remaining node. This necessitates that the r nodes storing a single message cooperate in their transmission.

We choose to precode all Messages that cause interference at a given Node ℓ by the same precoding matrix Uℓ, for ℓ ∈ [K],
and construct this precoding matrix so that all interferences at this Node ℓ align, thus leaving the remaining space for signaling
dimensions. In other words, if we use precoding matrix Uℓ for the transmission of a message from group T to Node j, then
we zero-force this signal at all nodes in [K]\{T ∪ {j, ℓ}}.

Table V indicates the precoding matrix used to transmit each Message M j
T , when K = 5 and r = 2. We observe that in

this case our scheme transmits a message for each set T ∈ [[K]]r and j ∈ [K]\T . The table implicitly also indicates how
to zero-force the transmit codewords. For example, Message M3

{1,2} is precoded by matrix U5 and its transmission is thus
zero-forced at node 4.

For K = 7 and r = 3, Table VI indicates the messages precoded by the matrix U7 and thus causing interference to Node
7. The general rule for K ≥ 7 with K odd, is that we use precoding matrix Uℓ exactly K− r− 1 = r times in each column j,
namely for the sets

T ∈ {{j − r + 1, . . . , j − 1, t} : t ∈ [K]\{j − r + 1, . . . , j, ℓ}, (110)

where the indices in (110) need to be understood with omission of the index ℓ and then taken modulo K− 1. For example, as
depicted in Table VI, for K = 7, r = 3, and j = 2 the follwing sets T send a message to Node 2 using precoding matrix U7:

T ∈ {{1, 3, 6}, {1, 4, 6}, {1, 5, 6}}, (111)

where here we associated the index 1 with j − 1, the index 6 as j − 2, and t runs over the set remaining set [7]\{1, 2, 6}.
Notice that in each column there

Using above rule, for large values of K there are transmit sets T ∈ [[K]]r and receiving Nodes j so that two different
precoding matrices Uℓ and Uℓ′ , for ℓ, ℓ′ ∈ [K]\(T ∪ {j}) and ℓ ̸= ℓ′, are assigned to the row-T and column-j entry of the
table. We capture this phenomena in the set Lj

T , which for each T ∈ [[K]]r and j ∈ [K]\T contains all indices ℓ so that
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the row-T and column-j entry contains matrix Uℓ. We can then rephrase above observation as the remark that |Lj
T | can be

larger than 1. If this is the case, in our scheme Message M j
T needs to be split into two submessages, which are then precoded

by the matrices Uℓ and Uℓ′ , respectively. We shall therefore introduce the general notation M j,ℓ
T to denote the message that

a transmit set T sends to the receiving Node j using precoding matrix Uℓ. Obviously, the messages M j,ℓ
T either denotes a

submessage of M j
T or a submessage thereof. We further introduce for each

We make the following observations:

Remark 6. 1) For a given j, consider all rows T1, . . . , Tr showing precoding matrix Uℓ in column j. Each set Ti contains
a unique index (namely t in (110)) that is not present in the other sets Tk, for k ∈ [r]\{i}.

2) For each set T there is a unique column-index j with entry Uℓ in the table.
3) For each ℓ ∈ [K], each node in [K]\{ℓ} receives K− r − 1 = r different codewords that are precoded with matrix Uℓ.
Items 1) and 2) apply also to the precoding matrix assignment in Table V for K = 5 and r = 2.

To see item 2) in above remark, notice that for r ≥ 3 the tuple of r − 1 consecutive (omitting index ℓ and modulo K− 1)
numbers (j − r + 1, . . . , j − 1) can only be present in a set T that we use in column j but not in other columns.

TABLE V
CHOICE OF PRECODING MATRICES IN OUR SCHEME FOR K = 5 AND r = 2. EACH SIGNAL THAT IS PRECODED WITH MATRIX Uℓ IS ZERO-FORCED AT

THE UNIQUE NODE i ̸= ℓ THAT IS NEITHER THE INTENDED NODE j NOR PART OF THE TRANSMITTING SET T .

T \ j 1 2 3 4 5

{1, 2} x x U5 U3 U4

{1, 3} x U5 x U2 U4

{1, 4} x U5 U2 x U3

{1, 5} x U4 U2 U3 x
{2, 3} U4 x x U5 U1

{2, 4} U5 x U1 x U3

{2, 5} U3 x U4 U1 x
{3, 4} U5 U1 x x U2

{3, 5} U4 U1 x U2 x
{4, 5} U2 U3 U1 x x

We now describe the encoding and decodings and analyze the signal and interference spaces.
We fix a large parameter η ∈ Z+ (which we shall let tend to ∞) and define

Γ ≜ r(K− 1) (112)
T ≜ r(K− 1) · ηΓ + (η + 1)Γ. (113)

For each message M j,ℓ
T , construct a Gaussian codebook of power P and length ηΓ to encode each Message M j,ℓ

T into a
codeword bj,ℓ

T .
1) Encoding: Tx q ∈ [K] forms its inputs as:

Xq =
∑

T ⊆[[K]]r :
q∈T

∑
j∈[K]\T

∑
ℓ∈Lj

T

Vq
[K]\{j,ℓ},T Uℓ b

j,ℓ
T , (114)

where U1, . . . ,UK denote the precoding-matrices that we will construct shortly and VR,T denotes the node-q component of
a matrix that zero-forces the signals emitted by the set of nodes T at the receiving nodes R\T but not at the other nodes. This
precoding matrix is also scaled in a way to satisfy the block-power constraint for all channel input signals. (Implicitly here
we assume that T and R\T are of sizes r and r− 1, respectively, so that the desired precoding matrix exists with probability
1.) For any set T = {q1, . . . , qr} and R, define

VR,T ≜

Vq1
R,T
...

Vqr
R,T

 . (115)

With the proposed precoding matrices, and after each receive Node p removes the signals it can produce itself (i.e., the
signals stemming from sets T containing p), we can rewrite Node p’s equivalent receive signal as:

Y′
p =

∑
T ⊆[[K]]r :

p/∈T

Hp,T
∑
ℓ∈Lp

T

V[K]\{p,ℓ},T Sp
T Uℓ b

p,ℓ
T

+
∑

j∈[K]\p

∑
T ⊆[[K]\{j,p}]r :

p∈Lj
T

Hp,T V[K]\{j,p},T Sj
T︸ ︷︷ ︸

≜Gj,p
T

Upb
j,p
T + Zp. (116)
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TABLE VI
CODEWORDS PRECODED BY MATRIX U7 WHEN K = 7 AND r = 3. EACH CODEWORD IS ZERO-FORCED AT THE TWO NODES NOT BELONGING TO THE

TRANSMIT T AND NOT EQUAL TO THE RECEIVE NODE j OR TO 7.

T \ j 1 2 3 4 5 6 7

{1, 2, 3} x x x U7 o o o
{1, 2, 4} x x U7 x o o o
{1, 2, 5} x x U7 o x o o
{1, 2, 6} x x U7 o o x o
{1, 2, 7} x x o o o o x
{1, 3, 4} x o x x U7 o o
{1, 3, 5} x o x o x o o
{1, 3, 6} x U7 x o o x o
{1, 3, 7} x o x o o o x
{1, 4, 5} x o o x x U7 o
{1, 4, 6} x U7 o x o x o
{1, 4, 7} x o o x o o x
{1, 5, 6} x U7 o o x x o
{1, 5, 7} x o o o x o x
{1, 6, 7} x o o o o x x
{2, 3, 4} o x x x U7 o o
{2, 3, 5} o x x U7 x o o
{2, 3, 6} o x x U7 o x o
{2, 3, 7} o x x o o o x
{2, 4, 5} o x o x x U7 o
{2, 4, 6} o x o x o x o
{2, 4, 7} o x o x o o x
{2, 5, 6} U7 x o o x x o
{2, 5, 7} o x o o x o x
{2, 6, 7} o x o o o x x
{3, 4, 5} o o x x x U7 o
{3, 4, 6} o o x x U7 x o
{3, 4, 7} o o x x o o x
{3, 5, 6} U7 x o x x o o
{3, 5, 7} o o x o x o x
{3, 6, 7} o o x o o x x
{4, 5, 6} U7 o o x x x o
{4, 5, 7} o o o x x o x
{4, 6, 7} o o o x o x x
{5, 6, 7} o o o o x x x

Remark 7. Notice that all interfering signals at receiving Node p are precoded by the same matrix Up.

2) IA Matrices {Up}: Inspired by the IA schemes in [19], [20], we choose each T × ηΓ precoding matrix Uℓ so that its
column-span includes all power products (with powers from 1 to η) of the “generalized” channel matrices Gj,ℓ

T that premultiply
Uℓ in (116):

Gℓ ≜
{
Gj,ℓ

T : ∀j ∈ [K]\{ℓ}, ∀T s.t. ℓ ∈ Lj
T

}
. (117)

Since the network is memoryless, the “generalized” channel matrices Gj,ℓ
T are diagonal T-by-T matrices. Then, for each

k ∈ [K] construct the T-by-ηΓ matrix Uℓ by selecting each of its columns as a product of the elements in Gℓ multiplied with
an independent i.i.d. random vector Ξℓ:

Uℓ =

[ ∏
G∈Gℓ

Gαℓ,G ·Ξℓ : ∀αℓ ∈ [η]Γ

]
, (118)

where αℓ ≜ (αℓ,G : G ∈ Gℓ) are exponent vectors of length Γ.
3) Decoding at Rx p: The way we constructed our precoding matrices, we have:

span(G ·Up) ⊆ span(Wp), G ∈ Gp, (119)

where we defined the T× (η + 1)Γ-matrix

Wp =

 ∏
G∈Gp

Gαp,G ·Ξp : ∀αp ∈ [η + 1]Γ

 . (120)

The signal subspace at Rx p is given by:

Dp ≜
[
Hp,T V[K]\{p,ℓ},T Sp

T Uℓ

]
T ∈[K]r : p/∈T

ℓ∈Lp
T

(121)
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and its interference subspace is included in Wp.
For each column of the signal space Dp, Rx p projects its receive signal Y′

p onto a vector that is orthogonal to all columns in
the interference space Wp and also to all other columns of Dp. It can then decode the desired Messages in an interference-free
manner based on the various projections.

4) Analysis of Signal and Interference Subspaces: If the columns of the matrix Dp are linearly independent of each other
and of the columns of Wp, the following DoF is achievable to each Node p when we let η → ∞:{

6/7, K = 5
r(K−1)

r(K−1)+1 , K ≥ 7
. (122)

Remark 8. Notice the difference in our expressions (122) for K = 5 and K ≥ 7. In fact, for K = 5, we fill all
(
K−1
r

)
rows of

each column with one of the precoding matrices. For K ≥ 7 however we use each precoding matrix only K − r − 1 times in
each column, and since in each row we can use (K− 1) precoding matrices and (K− r− 1)(K− 1) ≤

(
K−1
r

)
for K ≥ 7, some

of the entries in the table remain empty.

Accordingly, the Sum-DoF of the entire system is given by

Sum-DoF =

{
30/7, K = 5
Kr(K−1)
r(K−1)+1 , K ≥ 7

. (123)

The way we constructed the precoding matrices and by Lemma 3 at the end of the previous Section V, it suffices to show
that for each ℓ ̸= p the matrix

Λp,ℓ =

Ḡp,ℓ
T

∏
i∈[K]\{ℓ}

T̃ ∈[[K]\{i,ℓ}]r :
ℓ∈LT̃ i

(
Gi,ℓ

T̃

)αℓ,i,T̃
1T : ∀αℓ ∈ [η]Γ


T ∈[[K]\{ℓ,p}]r

ℓ∈Lp
T

(124)

has only full-rank square submatrices, where

Ḡp,ℓ
T ≜ Hp,T V[K]\{p,ℓ},T Sp

T (125)

is a diagonal T-by-T matrix.
By construction and the diagonal structure of the “generalized” channel coefficients, any square sub-matrix of the matrix

Λp,ℓ, for ℓ ̸= p, has the same form as matrix M in Lemma 4 ahead, Equation (126), when one considers the diagonal entries
of the “generalized” channel matrices

{
Ḡp,ℓ

T
}
T : ℓ∈Lp

T
and

{
Gi,ℓ

T }i∈[K]\{ℓ}
T : ℓ∈Li

T

as the outcomes of the functions f1, . . . , fL. The

inputs of these functions are the random channel coefficients {Hp′,q(t)} and the entries of the diagonal matrices {Sj
T } which

in Lemma 4 can thus play the role of the i.i.d. random variables in the vector xt. By Lemma 4 it thus suffices to show
that the “generalized” channel matrices

{
Ḡp,ℓ

T
}
ℓ∈Lp

T
and

{
Gi,ℓ

T }ℓ∈Li
T

are algebraically independent functions of the channel

coefficients {Hp′,q(t)} and the entries of {Sj
T }.

Notice that
{
Ḡp,ℓ

T
}
ℓ∈Lp

T
and

{
Gi,ℓ

T }ℓ∈Li
T

are all diagonal matrices with the t-th elements only depending on the time-t

channel coefficients {Hp′,q(t)} and the t-th components of the diagonal matrices {Sj
T }. We restrict to a single time-instance

t ∈ {1, . . . ,T} and drop this time-index for convenience. Henceforth, the random variables
{
Ḡp,ℓ

T
}
ℓ∈Lp

T
and

{
Gi,ℓ

T }ℓ∈Li
T

,

and {Sj
T } refer to the t-th diagonal elements of the corresponding matrices and {Hp′,q} to the corresponding time-t channel

coefficients.
Recall that p and ℓ are fixed and notice the following:
• Since each transmitted codeword interferes only at a single node, each element Gi,ℓ

T , with T and i so that ℓ ∈ Li
T , depends

on a different auxiliary random variable Si
T . The functions {Gi,ℓ

T }ℓ∈Li
T

are thus algebraically independent because the
factors in front of these auxiliary random variables Hℓ,T V[K]\{i,ℓ},T are non-zero with probability 1.

• Each function Ḡp,ℓ
T only depends on Sp

T but not on the other S-random variables.
• Each set T for which ℓ ∈ Lp

T has a distinct element t (see (110) and Item 1) of Remark 6). For a given such set T
for which ℓ ∈ Lp

T , the two functions Ḡp,ℓ
T and Gp,ℓ

T thus each depends on a different channel coefficient Hp,t and Hℓ,t,
respectively, that does not influence any of the other functions Ḡp,ℓ

T̃ and Gp,ℓ

,T̃ for sets T̃ ̸= T satisfying ℓ ∈ Lp,T̃ . Again,
with probability 1 the factors in front of the distinct channel coefficients Hp,t and Hℓ,t are non-zero, which establishes
algebraic independence of our functions.

All these considerations can be combined to conclude that the functions
{
Ḡp,ℓ

T
}
ℓ∈Lp

T
and

{
Gi,ℓ

T }i∈[K]\{ℓ}
ℓ∈Li

T

are algebraically

independent.
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Lemma 4 (Lemmas 3 and 4 in [20]). Let f = (f1f2, ..., fm) ∈ Cm be a vector of rational functions and let x1,x2, ...,xτ be
i.i.d. random vectors with i.i.d. entries drawn according to continuous distributions. Define

si ≜ f(xi), i ∈ [τ ].

For any L ≤ τ and L different exponent vectors

αj = (αj,1, . . . , αj,m) ∈ Zm
+ , j ∈ [L],

the T × L matrix M with row-i and column-j entry

Mi,j =

m∏
k=1

(si,k)
αj,k, i ∈ [τ ], j ∈ [L], (126)

is full rank almost surely, if and only if the functions f are algebraically independent, i.e., if and only if the Jacobian [∂fn∂xi
](i,n)

is of rank m.

VII. PROOF OF THE NDT LOWER BOUND IN THEOREM 1

Consider a fixed file assignment (map phase), and for any positive power P a sequence (in T) of wireless distributed
computing systems satisfying (9) for the given file assignment. (Since for finite N there are only a finite number of different
file assignments irrespective of P and T, we can fix the assignment.) The following limiting behaviour must hold.

Lemma 5. Consider two disjoint sets T and R of same size

|T | = |R|, (127)

and define F ≜ [K]\(R∪T ). Let M ⊆ [N] be the set of files known only to nodes T but not to any other node and partition
the set of all IVAs A it into the following disjoint subsets:

Wr ≜ {aj,m} j∈R
m∈[N]\Mj

, (128)

Wt ≜ {aj,m} j∈(T ∪F)
m∈M\Mj

. (129)

For any sequence of distributed computing systems:

d ≜ lim
P→∞

lim
T→∞

A

T logP
≤ |T |

|Wt|+ |Wr|
(130)

(Notice that Wr denotes the set of all IVAs intended to nodes in R and Wt the set of IVAs deduced from files in M and
intended for nodes not in R.)

Proof. Denote by H the set of all channel coefficients to all nodes in the system and define Wc ≜ A\(Wr∪Wt. Since channel
coefficients and IVAs are independent, we have

H(Wt,Wr) = H(Wt,Wr|Wc,H) (131)
= I(Wt,Wr;YR|Wc,H) +H(Wt,Wr|Wc,YR,H) (132)
= h(YR|Wc,H)− h(ZR)

+H(Wr|Wc,YR,H) +H(Wt|Wr,Wc,YR,H) (133)
≤ h(YR|Wc,H)− h(ZR)

+TϵT +H(Wt|Wr,Wc,YR,H), (134)

where we defined YA ≜ [Yj ]j∈A for a set A ⊆ [K] and ϵT is a vanishing sequence as T → ∞. Here the inequality holds by
Fano’s inequality, because Wr is decoded from YR and Wc, and because we impose vanishing probability of error (9).

Again by Fano’s inequality and by (9), there exists a vanishing sequence ϵ′T such that

H(Wt|Wr,Wc,YR,H) ≤ I(Wt;Y(F∪T )|Wr,Wc,YR,H) + Tϵ′T (135)
= h(Y(F∪T )|Wr,Wc,YR,H) (136)

−h(Y(F∪T )|Wr,Wt,Wc,YR,H) + Tϵ′T (137)
≤ h(Ȳ(F∪T )|ȲR,H)− h(Z(F∪T )) + Tϵ′T, (138)

where ȲA ≜ [Ȳj ]j∈A and Ȳj denotes Node j’s “cleaned” signal without the inputs that do not depend on files in M but
only on IVAs Wr ∪Wc:

Ȳj ≜ Hj,T XT + Zj , j ∈ T ∪ F .
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Here, HA,B denotes the channel matrix from set B to set A.
To bound the first term in (138), we introduce a random variable E indicating whether the matrix HR,T is invertible (E = 1)

or not (E = 0). If this matrix is invertible and E = 1, then the input vector XT can be computed from ȲR up to noise terms.
Based on this observation and defining the residual noise terms

Z̄j ≜ Zj −Hj,T H
−1
R,T ZR, if E = 1, (139)

we obtain:

h(Ȳ(F∪T )|ȲR,H) ≤ P(E = 1) · h
(
Z̄(F∪T )|ȲR,H, E = 1

)
+P(E = 0) · h

(
Ȳ(F∪T )|ȲR,H, E = 0

)
(140)

≤ h
(
Z̄(F∪T )

)
+ P(E = 0)h

(
Ȳ(F∪T )|ȲR,H, E = 0

)
. (141)

Since the channel coefficients follow continuous distribution, HR,T is invertible almost surely, implying P(E = 0) = 0. By
the boundedness of the entropy term h

(
Ȳ(F∪T )|ȲR,H, E = 0

)
(since power P and channel coefficients are bounded), this

implies

h(Ȳ(F∪T )|ȲR,H) ≤ h(Z̄(F∪T )),

which combined with (134) and (138) yields:

H(Wt,Wr) ≤ h(YR|H)− h(ZR) + h(Z̄(F∪T ))

−h(Z(F∪T )) + T(ϵT + ϵ′T)

≤ T|R| log(P) + TCT,H, (142)

where CT,H is a function that is uniformly bounded over all realizations of channel matrices and powers P. Noticing

H(Wt,Wr) = A(|Wt|+ |Wr|), (143)

dividing (142) by T log(P), and letting P → ∞, establishes the lemma because |R| = |T | and TCT,H is bounded.

For each subset T ⊆ [K], let Bj
T denote the set of IVAs that are computed exclusively at nodes in set T and intended for

reduce function j. Define bT = |Bj
T |, which does not depend on the index of the reduce function j ∈ [K]\T .

Choose two disjoint subsets T and R of same size |T | = |R|. By Lemma 5, and rewriting the sets Wt and Wr in the
lemma in terms of the sets {Bj

T }, we obtain:

|T |
d

≥
∑

T ⊆[K]

∑
j∈R\T

|Bj
T |+

∑
G⊆T

∑
j∈[K]\(R∪G)

|Bj
G | (144)

=
∑

T ⊆[K]

|R\T | · bT +
∑
G⊆T

(K− |R| − |G|) · bG . (145)

Summing up Equality (145) over all sets T and R of constant size t ≤ K/2, we obtain:(
K

t

)
·
(
K− t

t

)
· t
d
≥

∑
T ∈[[K]]t

∑
R∈[[K]\T ]t

∑
T ⊆[K]

|R\T | · bT

+
∑

T ∈[[K]]t

∑
R∈[[K]\T ]t

∑
G⊆T

(K− t− |G|) · bG (146)

=
∑

T ⊆[K]

(
K

t

)
·
(
K− t

t

)
· (K− |T |) t

K
bT

+
∑

G⊆[K] :
|G|≤t

(
K− |G|
t− |G|

)
·
(
K− t

t

)
· (K− t− |G|)bG (147)

=

(
K

t

)
·
(
K− t

t

)
· t

(
N− rN

K

)
+

∑
G⊆[K] :
|G|≤t

(
K− |G|
t− |G|

)
·
(
K− t

t

)
· (K− t− |G|)bG , (148)
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where we define
(
a
0

)
= 1 for any positive integer a. The first equality holds because for a given set T , each element of [K]\T

is present in a fraction of t/K pairs of the admissible sets (R, T ) and the last equality holds because∑
T ⊆[K]

bT = N,
∑

T ⊆[K]

|T | · bT ≤ r · N. (149)

Dividing both sides of (148) by
(
K
t

)(
K−t
t

)
t, and defining bi ≜

∑
T ∈[[K]]i

bT , for any t ∈ [⌊K/2⌋] we obtain:

1

d
≥ N− r · N

K
+ min

b1,...,bK∈Z+ :∑K
i=1 bi=N∑K

i=1 ibi≤rN

t∑
i=1

Ct(i)bi, t ∈ [⌊K/2⌋], (150)

where Ct(i) is defined in (20).
For any t ∈ [⌊K/2⌋], the sequence of coefficients Ct(1), Ct(2), . . . , Ct(t) is convex and non-increasing, see Appendix A.

Based on this convexity, it can be shown (see Appendix B) that for any r < t+ 1 there exists a solution to the minimization
problem in (150) putting only positive masses on b∗⌊r⌋ and b∗⌈r⌉ in the unique way satisfying

b∗⌊r⌋ + b∗⌈r⌉ = N (151)
⌊r⌋b∗⌊r⌋ + ⌈r⌉b∗⌈r⌉ = rN. (152)

For r ≥ t+ 1 an optimal solution consists of setting b∗⌊r⌋ = N, in which case the minimization in (150) evaluates to 0.
For r ≥ 2, the lower bound on the NDT in the theorem is then obtained by plugging these optimum values into bound (150)

for the choice t = ⌊K/2⌋. For r = 1 we choose t = 1, and for r ∈ (1, 2) we maximize over the value of t.
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APPENDIX A
PROOF OF MONOTONICITY AND CONVEXITY OF VALUES C

(t)
i

We shall prove monotonicity and convexity of the values

D
(t)
i ≜

K!

t!
t · C(t)

i (153)

=
(K− i)!

(t− i)!
(K− t− i), i ∈ [t]. (154)

Notice that

D
(t)
i−1 = D

(t)
i

K− i+ 1

t− i+ 1
· K− t− i+ 1

K− t− i
(155)

D
(t)
i+1 = D

(t)
i

t− i

K− i
· K− t− i− 1

K− t− i
, (156)

and the monotonicity
D

(t)
i−1 > D

(t)
i (157)

simply follows because K > t implies

K− i+ 1 > t− i+ 1 and K− t− i+ 1 > K− t− i. (158)

To prove convexity, we shall prove that

D
(t)
i+1 +D

(t)
i−1 ≥ 2D

(t)
i , (159)

or equivalently

t− i

K− i
· K− t− i− 1

K− t− i
+

K− i+ 1

t− i+ 1
· K− t− i+ 1

K− t− i
≥ 2. (160)

Multiplying both sides with the denominators, we see that this condition is equivalent to

(t− i)(K− t− i− 1)(t− i+ 1)

+(K− i+ 1)(K− t− i+ 1)(K− i)
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≥ 2(K− i)(t− i+ 1)(K− t− i). (161)

and after rearranging the terms:

(K− t)(K− i)(K− t− i) + (K− i)(K− i+ 1)

≥ (K− t)(t− i+ 1)(K− t− i) + (t− i)(t− i+ 1). (162)

This last inequality is easily verified by noting that K ≥ t+ 1.

APPENDIX B
PROOF OF STRUCTURE OF MINIMIZER

Start with any feasible vector b1, . . . , bK and consider two indices i < j with non-zero masses, bi > 0 and bj > 0. Updating
this vector as

b′i = bi −∆, and b′i+1 = bi+1 +∆, (163)
b′j−1 = bj−1 +∆, and b′j = bj −∆, (164)

for any ∆ ∈ [0,min{bi, bj}], results again in a feasible solution vector, which has smaller objective function due to the
convexity of the coefficients {C(t)

i }.
Applying this argument iteratively, one can conclude that there must exist an optimal solution vector where all entries are

zero except for two masses bk > 0 and bk+1 ≥ 0. Since
∑K

i=1 ibi ≤ rN, the index k cannot exceed r. By the decreasing
monotonicity of the coefficients C(t)

i , the optimal solution must then be to choose b⌊r⌋ > 0 and b⌊r⌋+1 ≥ 0 and all other masses
equal to 0. Since there is a unique such choice satisfying

∑K
i=1 ibi ≤ rN and

∑K
i=1 bi = N, this concludes the proof.
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