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Multi-Hop Network with Multiple Decision Centers
under Expected-Rate Constraints

Mustapha Hamad, Michèle Wigger, Mireille Sarkiss

Abstract—We consider a multi-hop distributed hypothesis
testing problem with multiple decision centers (DCs) for testing
against independence and where the observations obey some
Markov chain. For this system, we characterize the fundamental
type-II error exponents region, i.e., the type-II error exponents
that the various DCs can achieve simultaneously, under expected
rate-constraints. Our results show that this fundamental expo-
nents region is boosted compared to the region under maximum-
rate constraints, and that it depends on the permissible type-I
error probabilities. When all DCs have equal permissible type-
I error probabilities, the exponents region is rectangular and
all DCs can simultaneously achieve their optimal type-II error
exponents. When the DCs have different permissible type-I error
probabilities, a tradeoff between the type-II error exponents at
the different DCs arises. New achievability and converse proofs
are presented. For the achievability, a new multiplexing and
rate-sharing strategy is proposed. The converse proof is based
on applying different change of measure arguments in parallel
and on proving asymptotic Markov chains. For the special cases
K ∈ {2, 3}, and for arbitrary K ≥ 2 when all permissible
type-I error probabilities at the various DCs are equal, we
provide simplified expressions for the exponents region; a similar
simplification is conjectured for the general case.

Index Terms—Multi-hop, distributed hypothesis testing, error
exponents, expected-rate constraints, variable-length coding.

I. INTRODUCTION

Future wireless systems are driven by the exponential
growth of IoT networks and applications with various require-
ments in terms of rate, reliability, and energy consumption.
In applications such as health monitoring, security alerting
or automotive car control, the sensing and decision systems
aim at accurately detecting hazardous events or anomalies
at the decision centers (DCs) by collecting data about the
measurements at the various sensors. The different events
can be considered as different hypotheses and are assumed
to determine the joint probability distribution underlying the
data observed at all the terminals. Our focus will be on binary
hypothesis testing, i.e., situations with only two possible
events, with one of the two events corresponding to the normal
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de Paris, 91120 Palaiseau, France. He is now with Huawei Mathematical
and Algorithmic Sciences Lab, Paris Research Center, 92100 Boulogne-
Billancourt, France, mustapha.hamad@huawei.com.
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situation, the so called null hypothesis and the other to an
alert situation the so called alternative hypothesis. There are
two types of errors to distinguish here: type-I error and type-II
error. Type-I error corresponds to a false alarm where the deci-
sion center decides on the alternative hypothesis when the true
hypothesis is the null hypothesis. Type-II error corresponds to
a missed detection where the decision center decides on the
null hypothesis when the true one is the alternative hypothesis.
Since our interest is in alert systems where a missed detection
is more critical, we aim at maximizing the exponential decay
of the type-II error probability (called error exponent) while
only requiring the type-I error probability to stay below a given
threshold.

Most of the information theoretic works studied the dis-
tributed binary hypothesis testing problem with a single sensor
that communicates with a single distant DC over a noise-
free link with a constraint on the maximum allowed com-
munication rate [3]–[10]. These results were also extended to
setups with noisy communication links [11]–[13], to setups
with privacy and secrecy constraints [14], [15], and to more
complicated networks with either interactive communication
[16]–[19], multiple sensors [8], [20], [21], multiple decision
centers [22]–[26], or both of them [27]–[29]. The works most
closely related to this paper are [28] and [29] which considered
a multi-hop setup with K sensors and K DCs. Multi-hop
setups are motivated by the stringent energy constraints of IoT
devices requiring short-range communication only between
neighbouring sensors.

Specifically, [28] characterized a set of type-II error expo-
nent tuples that are simultaneously achievable at the various
DCs in a multi-hop network with K sensors and K DCs. For
the special case of testing against independence and when
the type-I error probabilities at all the DCs are required to
vanish asymptotically, this set of exponents coincides with the
fundamental exponents region, which means that in this special
case no other exponent tuples are achievable. Testing against
independence refers to a hypothesis test where under the
alternative hypothesis the observations at the various terminals
follow the product of the marginal distributions that they
experience under the null hypothesis. The result in [28] further
required that the joint distribution of the various observations
under the null hypothesis satisfies certain Markov chains from
one relay to the other. Interestingly, in this case, the set of
exponent tuples that are simultaneously achievable at the K
decision centers is a K-dimensional hypercube, implying that
no tradeoff between the exponents arises and each DC can
achieve the optimal exponent as if it was the only DC in
the system. When K = 2, [29] proved the strong converse
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result that the optimal exponent region does not depend on
the permissible type-I error probabilities. (The work in [29]
presents different expressions for the sets of achievable type-
II error exponents depending on whether the sum of the two
admissible type-I error probabilities exceeds 1 or not. It can
however be shown that the two expressions coincide, as we
argue in Remark 1.)

Above works all focused on maximum rate-constraints
where the length of any message sent over the communication
link is limited. In this paper, we consider expected rate-
constraints as in [10], [30]–[32], where the expected length of
the message sent over the communication link is constrained.
Most closely related are the works in [30], [33] which showed
that under an expected rate-constraint R, the optimal type-II
error exponent for testing against independence in the single-
sensor and single-DC setup coincides with the optimal type-II
error exponent under a maximum-rate constraint R/(1 − ε),
for ε denoting the permissible type-I error constraint. In other
words, the relaxed expected-rate constraint seems to allow to
boost the rate by a factor (1 − ε)−1 compared to the same
setup under a maximum-rate constraint.

We show that the same conclusion holds for the K-hop
network with K decision centers considered in [28] when all
DCs obey the same type-I error constraint ε. In this case, the
fundamental exponents region is a K-dimensional hypercube
where all DCs can simultaneously achieve their optimal type-II
error exponents as if they were the only DC in the system, and
this exponent coincides with the exponent under a maximum-
rate constraint but where the rates of all links in the system
are boosted by a factor (1 − ε)−1. In contrast, when the
various DCs have different type-I error probability thresholds,
a tradeoff arises between the type-II error exponents that are
simultaneously achievable at the different DCs. This tradeoff,
which depends on the type-I error thresholds at the different
DCs, is the first of its kind and we exactly characterize it
for the studied multi-hop setup. We notice hence that under
expected rate-constraints a strong converse does not hold, since
the optimal type-II error exponents depend on the admissible
type-I error probabilities. We show this for arbitrary K ≥ 2
and arbitrary admissible type-I error probabilities ε1, . . . , εK
by fully characterizing the fundamental type-II error exponents
region.

To prove our achievability results under expected-rate con-
straints, we propose a new multiplexing and rate-sharing
strategy that generalizes the degenerate multiplexing scheme
in [30]. Specifically, we multiplex different coding schemes of
different sets of rates on the various links and with different
probabilities, where each multiplexed subscheme is an optimal
coding and testing scheme when the maximum rates are
limited by the chosen rate-tuple. For K = 2 and K = 3,
we explicitly characterize the multiplexing probabilities in
function of the type-I error probability thresholds at the various
DCs and we show that one can restrict to only K + 1
subschemes, instead of 2K . We conjecture that a similar
simplification holds for arbitrary K ≥ 2.

Our converse proofs apply several instances of the change
of measure arguments in [34]–[36] in parallel, where we
also restrict to jointly typical source sequences as in [35]. In

contrast to the related strong converse proofs in [29], [34], no
variational characterizations, or hypercontractivity arguments
[37] are required to prove our desired results. Instead, we rely
on arguments showing that certain Markov chains hold in an
asymptotic regime of infinite blocklengths. Notice that our
method to circumvent variational characterizations, or hyper-
contractivity, or blowing-up arguments [38], seems to extend
also to other converse proofs, see for example the simplified
proof of the well-known strong converses for lossless and lossy
compression with side-information at the decoder [39], [40]
presented in [41].

We summarize our main contributions for the K ≥ 2-hop
network with K DCs that test against independence and when
the observations at the terminals obey a specific Markov chain:

• We provide an exact characterization of the general
fundamental exponents region under expected-rate con-
straints. This result shows rate-boosts on all the links in
the system, and illustrates a tradeoff between the expo-
nents at all DCs with different type-I error thresholds.

• To prove achievability, we propose a new coding scheme
based on multiplexing and rate-sharing strategy.

• Converses are proved by several parallel change of mea-
sure arguments and by showing certain Markov chains in
the asymptotic regime of infinite blocklengths.

• We prove that our results simplify for the special cases
of K = 2 or K = 3 hops or when all K DCs have same
admissible type-I error probabilities ε. For equal type-I
error probabilities, the optimal scheme multiplexes only
two subschemes instead of 2K . For general type-I error
probabilities and when there are only K = 2 or K = 3
hops, then at most K + 1 subschemes need to be multi-
plexed. Multiplexing probabilities in these special cases
can directly be obtained from the permissible type-I error
probabilities at the various DCs. Similar simplifications
are conjectured for arbitrary K ≥ 2 and arbitrary type-I
error probabilities.

Paper organization: The remainder of this paper is divided
into two main parts, one focusing on the two-hop network
(Sections II–VI) and one considering the general K-hop
network (Sections VII–VIII). For the first part, Section II
describes the two-hop system model, and Section III presents
the related previous results under maximum-rate constraints.
Section IV explains and analyses our proposed optimal coding
schemes for the setup under expected-rate constraints. Sec-
tion V contains our main results, discussion, and numerical
analysis for the two-hop network. In Section VI, we provide
our converse proof. For the second part, Section VII introduces
the system model for K hops, presents the related previous
results on maximum-rate constraints. It also describes our new
optimal coding scheme and the fundamental exponents region
under expected-rate constraints, and simplifications on them.
The converse for K-Hops is presented in Section VIII.

Notation: We follow the notation in [30]. In particular, we
use sans serif font for bit-strings: e.g., m for a deterministic
and M for a random bit-string. We let bin(m) denote the
shortest bit-string representation of a positive integer m, and
for any bit-string m we let len(m) and dec(m) denote its length
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and its corresponding positive integer. The set of all bit-strings
is denoted by {0, 1}?.

Random variables are typically written with upper case
symbols, e.g., A, and realizations in lower case, e.g., a. Sets
show in calligraphic symbols, for example A, and An denotes
the n-fold Cartesian product of A, for any positive integer
n. We further abbreviate the random and deterministic n-
tuples (A1, . . . , An) and (a1, . . . , an) by An and an. For
given integer K, we use P(K) to denote the power set of
{1, . . . ,K}, i.e., the set of all possible subsets of {1, . . . ,K}
including the set {1, . . . ,K} itself, but excluding the emptyset
∅. In addition, T (n)

µ (PXY ) denotes the strongly typical set
as defined in [42, Definition 2.8]. That means, for any small
positive number µ a pair (xn, yn) lies in T (n)

µ (PXY ) if, and
only if,∣∣∣∣ |{t : (xt, yt)}|

n
− PXY (a, b)

∣∣∣∣ ≤ µ, ∀(a, b) ∈ X × Y, (1)

and for all pairs (a, b) of 0 probability (xt, yt) 6= (a, b) for all
t ∈ {1, . . . , n}.

Throughout this manuscript, hb(·) denotes the binary en-
tropy function, and D(·‖·) the Kullback-Leibler divergence
between two probability mass functions on the same alpha-
bet. Entropy, conditional entropy, and mutual information of
random variables are denoted by H(·), H(·|·), and I(·; ·).
When the probability mass functions of the involved random
variables are not clear from the context, we add them as a
subscript and write for example HP (·), HP (·|·), and IP (·; ·).
We use the symbols lim and lim to denote the limsup and the
liminf of sequences. 1{·} denotes the indicator function and
for any real value x and we write [x]+ for max{0, x}.

Finally, we abbreviate the terms independent and identically
distributed by i.i.d. and probability mass function by pmf.

II. THE TWO-HOP SYSTEM MODEL

Consider the distributed hypothesis testing problem in Fig-
ure 1 with a transmitter T0, a relay R1 and a receiver R2

observing sequences Y n0 , Y
n
1 and Y n2 respectively, forming the

Markov chain
Y n0 → Y n1 → Y n2 (2)

In the special case of testing against independence, i.e.,
depending on the binary hypothesis H ∈ {0, 1}, the tuple
(Y n0 , Y

n
1 , Y

n
2 ) is distributed as:

under H = 0 : (Y n0 , Y
n
1 , Y

n
2 ) i.i.d. ∼ PY0Y1

· PY2|Y1
; (3a)

under H = 1 : (Y n0 , Y
n
1 , Y

n
2 ) i.i.d. ∼ PY0

· PY1
· PY2

(3b)

for given pmfs PY0Y1
and PY2|Y1

and where PY0
, PY1

, and PY2

denote the marginals of the joint pmf PY0Y1Y2
:= PY0Y1

PY2|Y1
.

In this two-hop setup, the transmitter T0 observes the source
sequence Y n0 and sends its bit-string message M1 = φ

(n)
0 (Y n0 )

to R1, where the encoding function is of the form φ
(n)
0 : Yn0 →

{0, 1}? and satisfies the expected rate constraint

E [len (M1)] ≤ nR1. (4)

The relay R1 observes the source sequence Y n1 and with the
message M1 received from T0, it produces a guess Ĥ1 of the

Fig. 1: Cascaded two-hop setup with two decision centers.

hypothesis H using a decision function g(n)
1 : Yn1 ×{0, 1}? →

{0, 1}:

Ĥ1 = g
(n)
1 (Y n1 ,M1) ∈ {0, 1}. (5)

Relay R1 also computes a bit-string message M2 =

φ
(n)
1 (Y n1 ,M1) using some encoding function φ

(n)
1 : Yn1 ×

{0, 1}? → {0, 1}? that satisfies the expected-rate constraint

E [len (M2)] ≤ nR2. (6)

Then it sends M2 to the receiver R2, which guesses hypothesis
H using its observation Y n2 and the received message M2, i.e.,
using a decision function g

(n)
2 : Yn2 × {0, 1}? → {0, 1}, it

produces the guess:

Ĥ2 = g
(n)
2 (Y n2 ,M2) ∈ {0, 1}. (7)

The goal is to design encoding and decision functions such
that their type-I error probabilities

α1,n , Pr[Ĥ1 = 1|H = 0] (8)

α2,n , Pr[Ĥ2 = 1|H = 0] (9)

stay below given thresholds ε1 > 0 and ε2 > 0 and the type-II
error probabilities

β1,n , Pr[Ĥ1 = 0|H = 1] (10)

β2,n , Pr[Ĥ2 = 0|H = 1] (11)

decay to 0 with largest possible exponential decay.

Definition 1: Fix maximum type-I error probabilities
(ε1, ε2) ∈ [0, 1)2 and nonnegative rates (R1, R2). The ex-
ponent pair (θ1, θ2) is called (R1, R2, ε1, ε2)-achievable if
there exists a sequence of encoding and decision functions
{φ(n)

0 , φ
(n)
1 , g

(n)
1 , g

(n)
2 }n≥1 satisfying ∀i ∈ {1, 2}:

E[len(Mi)] ≤ nRi, (12a)
lim
n→∞

αi,n ≤ εi, (12b)

lim
n→∞

1

n
log

1

βi,n
≥ θi. (12c)

Definition 2: The closure of the set of all (ε1, ε2)-achievable
exponent pairs (θ1, θ2) is called the fundamental (ε1, ε2)-
exponents region and is denoted E∗(R1, R2, ε1, ε2).
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III. PREVIOUS RESULTS ON MAXIMUM-RATE
CONSTRAINTS FOR TWO HOPS

A. The Setup

The multi-hop hypothesis testing setup of Figure 1 and
Equations (3) was also considered in [27] and [29], but under
maximum-rate constraints:

len(Mi) ≤ nRi, i ∈ {1, 2}, (13)

instead of the expected-rate constraints (12a). The fundamen-
tal exponents region E∗max(R1, R2, ε1, ε2) for this maximum-
rate setup is defined analogously to Definition (2), but with
(12a) replaced by (13).

In the following subsection, we report the fundamental
exponents region E∗max(R1, R2, ε1, ε2) derived in [29].

B. The Exponents Region

Define the two functions

η1 (R1) := max
PU1|Y0 :

R1≥I(U1;Y0)

I (U1;Y1) (14)

η2 (R2) := max
PU2|Y1 :

R2≥I(U2;Y1)

I (U2;Y2) , (15)

where the mutual information quantities are calculated with
respect to the joint pmfs PU1Y0Y1 := PU1|Y0

PY0Y1 and
PU2Y1Y2 := PU2|Y1

PY1Y2 , respectively. As stated in [3], in the
above maximization problems it suffices to consider auxiliary
random variables U1 and U2 over alphabets of sizes |Y0|+ 1
and |Y1|+ 1.

Lemma 1: The functions η1 and η2 are continuous, concave
and monotonically non-decreasing on their entire domain R+

0 .
Proof: Appendix A proves the desired properties for η1.

The proof for η2 is analogous and omitted.

The exponents region of the two-hop setup under maximum-
rate constraints was determined in [29] for the case ε1+ε2 6= 1
and in [41] for the case ε1 + ε2 = 1. Achievability was first
established in [27].

Theorem 1 ( [29], [41]): Fix (ε1, ε2) ∈ [0, 1)2. The funda-
mental exponents region under the maximum-rate constraints
(13) is:

E∗max(R1, R2, ε1, ε2)

= {(θ1, θ2) : θ1 ≤ η1 (R1) , θ2 ≤ η1(R1) + η2(R2)}. (16)

We notice that the fundamental exponents region does not de-
pend on the permissible type-I error probabilities ε1 and ε2. We
will therefore abbreviate E∗max(R1, R2, ε1, ε2) by E∗max(R1, R2).

Remark 1: When ε1 +ε2 > 1, the work in [29] characterizes
E∗max(R1, R2) in form of an optimization problem over three
auxiliary random variables U1, U2, V , see [29, Eq. (33)]. It
can however be verified that without loss of optimality this
optimization can be restricted to auxiliaries U1 = U2, in
which case the characterisation in [29, Eq. (33)] reduces to
the expression in (16).

Notice that η1(R1) determines the optimal exponent in a
point-to-point system where R2 is not present, and η2(R2)

determines the optimal exponent in a point-to-point system
where T0 is not present [3]. In the studied two-hop setup, R2

thus accumulates the optimal exponents achieved over the two
links. Since the exponents region is a rectangle, each of the
two decision centers, R1 and R2, can simultaneously achieve
their optimal exponents, no tradeoff occurrs between the two
exponents. We shall see that this is not always the case under
expected-rate constraints.

IV. OPTIMAL TWO-HOP CODING SCHEME UNDER
EXPECTED-RATE CONSTRAINTS

The optimal coding scheme under expected-rate constraints
depends on whether ε1 = ε2, ε1 < ε2, or ε1 > ε2. The general
idea of all the three schemes is that the three terminals T0,
R1, R2 multiplex two or three different subschemes, and the
choice of which subscheme to use depends on the transmitter
T0’s observations yn0 . To inform all terminals about the choice
of the subscheme, T0 adds one or two flag bits to its message,
which the relay R1 forwards to the receiver R2.

The main distinguishing feature of the different subschemes
is the choice of the subset of terminals—no terminal, both
terminals, only R1 or only R2–that exploit the information
in the transmitted messages to produce a guess of hypothesis
H. The other terminals ignore this communication and simply
declare Ĥ = 1. The different subschemes occupy different
communication rates, and as we shall see in the following
Section V, the allocation of the rates has to be chosen in
function of the desired tradeoff between the exponents θ1 and
θ2. In this section, we formulate the subschemes based on
generic hypothesis testing schemes for the two-hop network
and the single-hop network with vanishing type-I error proba-
bilities and respecting given rate constraints. Replacing these
generic schemes by the optimal schemes under maximum-
rate constraints [4], [27] attains the optimal error exponents
presented in Theorem 2 ahead.

A. The case ε1 = ε2 = ε

We combine two subschemes, where in one subscheme both
R1 and R2 attempt to correctly guess the hypothesis H and
in the other subscheme both simply declare Ĥ = 1. To this
end, we partition the set Yn0 into subsets D∅,D{1,2} ⊆ Yn0 so
that under PnY0

the probability of subset D{1,2} is as large as
possible but satisfies

Pr
[
Y n0 ∈ D{1,2}

]
≤ 1− ε. (17)

Notice that as n→∞ the inequality turns into an equality.
Depending on whether Y n0 lies in D∅ or D{1,2}, the three

terminals follow a different subscheme.
If Y n0 ∈ D∅: In this case, none of the terminals attempts to

correctly guess the hypothesis H. Specifically, T0 and R1 both
send

M1 = M2 = [0] (18)

and R1and R2 simply declare

Ĥ1 = Ĥ2 = 1. (19)
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If Y n0 ∈ D{1,2}: In this case, both R1 and R2 attempt to
correctly guess H based on the transmitted messages. Specifi-
cally, T0, R1, R2 all apply the encoding/decision functions of a
given two-hop hypothesis testing scheme with vanishing type-
I error probabilities and respecting maximum-rate constraints
R{1,2},1 and R{1,2},2 on the two links,1 where these rates are
chosen to satisfy

(1− ε)R{1,2},1 ≤ R1 (20a)
(1− ε)R{1,2},2 ≤ R2. (20b)

To inform all the terminals about the event Y0 ∈ D{1,2} and
consequently about the employed scheme, T0 and R1 append
the [1]-flag at the beginning of their messages M1 and M2.

Analysis: By (17) and (20), and because transmission of
single bits hardly changes the communication rate for large
blocklengths, the overall scheme satisfies the expected-rate
constraints R1 and R2 on the two links. Appendix B proves
that when the optimal two-hop hypothesis testing scheme
with vanishing type-I error probability [27] is employed for
Y n0 ∈ D{1,2}, then the overall scheme meets the permissible
type-I error probability ε and achieves the error exponent given
by Equation (31) of Theorem 2.

B. The case ε1 < ε2

We combine three subschemes, where in each subscheme
either no terminal, only R1, or both R1 and R2 attempt
to correctly guess H. To this end, we partition the set Yn0
into three disjoint subsets D∅,D{1},D{1,2} ⊆ Yn0 so that
under PY0 the two sets D{1} and D{1,2} have largest possible
probabilities but limited by

Pr
[
Y n0 ∈ D{1}

]
≤ ε2 − ε1 (21a)

Pr
[
Y n0 ∈ D{1,2}

]
≤ 1− ε2. (21b)

As a consequence,

Pr [Y n0 ∈ D∅] ≥ ε1. (21c)

Notice that as n → ∞, the three inequalities (21) can hold
with equality.

Choose also nonnegative rates R{1},1, R{1,2},1, R{1,2},2
satisfying

(ε2 − ε1)R{1},1 + (1− ε2)R{1,2},1 ≤ R1 (22a)
(1− ε2)R{1,2},2 ≤ R2. (22b)

Depending on whether Y n0 lies in D∅, D{1}, or D{1,2},
the three terminals apply a different subscheme satisfying a
different pair of maximum-rate constraints, where the subscript
I of set DI indicates the set of relays that attempt to correctly
guess H in the event Y n0 ∈ DI . To communicate which of
the three subschemes is used, T0 adds a two-bit flag at the

1As it will become clear in the subsequent analysis, for the overall scheme
to respect rate constraints (4) and (6), it suffices that the two-hop scheme
respects the rate constraints R{1,2},1 and R{1,2},2 on expectation. However,
as a consequence of our main result in Theorem 2, under vanishing type-
I error probabilities, the same type-II error exponents are achievable under
both expected- and maximum-rate constraints. There is thus no benefit in
considering schemes with expected rates R{1,2},1 and R{1,2},2, but possibly
larger maximum rates.

beginning of its message M1 to R1, which forwards this flag
at the beginning of its message M2 to inform R2.

If Y n0 ∈ D∅: T0 and R1 send only the flag-bits

M1 = M2 = [0, 0] (23)

and R1 and R2 decide on

Ĥ1 = Ĥ2 = 1. (24)

If Y n0 ∈ D{1}: T0 and R1 apply a given single-hop hypothe-
sis testing scheme with vanishing type-I error probability and
expected-rate constraint R{1},1 for message M1. Moreover,
message M1 is preceded by flag-bits [1, 0], and the relay R1

forwards these flag-bits to R2:

M2 = [1, 0]. (25)

Upon reception of these flag-bits, R2 declares

Ĥ2 = 1. (26)

We observe that, as indicated by the subscript {1} of set
D{1}, only terminal R1 attempts to correctly guessH. Receiver
R2 produces the trivial guess in (26) because of its higher
admissible type-I error probability ε2 > ε1. Notice also that
no communication rate is required for message M2 in the limit
as n→∞.

If Y n0 ∈ D{1,2}: T0, R1, R2 apply a given two-hop hypothe-
sis testing scheme with vanishing type-I error probabilities and
satisfying the expected-rate constraints R{1,2},1 and R{1,2},2.

Analysis: By (21) and (22), and because transmission of two
bits hardly changes the rate for sufficiently large blocklengths,
the proposed overall scheme respects the expected-rate con-
straints R1 and R2 for large values of n. Appendix C proves
that when the optimal single-hop and two-hop hypothesis
testing schemes under maximum-rate constraints R{1},1 and
(R{1,2},1, R{1,2},2) with vanishing type-I error probability [4],
[27] are used, then the overall scheme satisfies the type-I
error constraints ε1 and ε2 and achieves the error exponents
in Equation (32) of Theorem 2.

C. The case ε1 > ε2

We combine three subschemes, where in each subscheme
either no terminal, only R2, or both R1 and R2 attempt to
correctly guess H. To this end, we partition the set Yn0 into
three disjoint subsets D∅,D{2},D{1,2} ⊆ Yn0 so that under
PY n0 the two sets D{2} and D{1,2} have largest possible
probabilities but limited by

Pr
[
Y n0 ∈ D{2}

]
≤ ε1 − ε2 (27a)

Pr
[
Y n0 ∈ D{1,2}

]
≤ 1− ε1. (27b)

As a consequence,

Pr [Y n0 ∈ D∅] ≥ ε2. (27c)

Notice that as n → ∞, the three inequalities (27) hold with
equality.

Choose also nonnegative rates R{2},1, R{1,2},1, R{2},2, and
R{1,2},2 satisfying

(ε1 − ε2)R{1},1 + (1− ε1)R{1,2},1 ≤ R1 (28)
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(ε1 − ε2)R{2},2 + (1− ε1)R{1,2},2 ≤ R2. (29)

Depending on whether Y n0 lies in D∅, D{2}, or D{1,2}, the
three terminals apply a different subscheme. The subscript I
of set DI again indicates the set of terminals that attempt
to correctly guess H in the event Y n0 ∈ DI , and RI,1, RI,2
indicate the maximum rates of the subscheme employed under
Y n0 ∈ DI . (An exception is the event Y n0 ∈ D∅, where
both rates are 0.) Flag-bits are used at the beginning of the
messages M1 and M2 to inform R1 and R2 about which of
the subschemes is employed.

If Y n0 ∈ D∅: All three terminals, T0, R1, and R2 apply the
degenerate scheme in (23)–(24).

If Y n0 ∈ D{2}: As indicated by the subscript of set D{2},
only R2 makes a serious attempt to correctly guess H, while
R1 always declares

Ĥ1 = 1, (30)

irrespective of the received message and its observations. This
implies that under this subscheme, α1,n = 1 and β1,n = 0.
Besides this decision, T0, R1, and R2 apply a given two-hop
distributed hypothesis testing scheme with vanishing type-I er-
ror probabilities and respecting the maximum-rate constraints
R{2},1 and R{2},2 for messages M1 and M2. Moreover, both
T0 and R1 append the two-bit flag [0,1] at the beginning
of these two messages to inform all the terminals about the
employed scheme.

Notice that in the optimal two-hop hypothesis testing
scheme [27], the relay R1 computes a tentative decision based
on M1 and Y n1 , which influences the message M2 sent to R2

and allows the latter to improve its type-I error probability.
Here we propose that R1 itself ignores its tentative decision,
because the naive decision (30) is sufficient to satisfy the con-
straint ε1 on its type-I error probability and is also the most-
favorable decision to maximize the type-II error exponent.

If Y n0 ∈ D{1,2}: Both decision centers R1 and R2 attempt
to correctly guess H. Specifically, T0, R1, and R2 apply
a given two-hop hypothesis testing scheme with vanishing
type-I error probabilities and respecting the maximum-rate
constraints R{1,2},1 and R{1,2},2 for messages M1 and M2.
Moreover, both T0 and R1 append the two-bit flag [1,1] at the
beginning of these two messages to inform all the terminals
about the employed scheme.

Analysis: Similarly to the case ε1 < ε2, it can be shown that
the described scheme respects the expected-rate constraints (4)
and (6) on both links, and that when the optimal two-hop
scheme [27] is employed, then the described scheme achieves
the error exponents in Equation (33) of Theorem 2.

V. EXPONENTS REGION FOR THE TWO-HOP NETWORK
UNDER EXPECTED-RATE CONSTRAINTS

The fundamental exponents region E∗(R1, R2, ε1, ε2) has a
different form, depending on the three cases ε1 = ε2, ε1 < ε2,
or ε1 > ε2.

Theorem 2: Given ε1, ε2, R1, R2 ≥ 0.
If ε1 = ε2 = ε, then E∗(R1, R2, ε, ε) is the set of all

nonnegative (θ1, θ2) pairs satisfying

θ1 ≤ η1(R1/(1− ε)) (31a)

θ2 ≤ η1(R1/(1− ε)) + η2(R2/(1− ε)). (31b)

If ε1 < ε2, then E∗(R1, R2, ε1, ε2) is the set of all nonneg-
ative (θ1, θ2) pairs satisfying

θ1 ≤ min
{
η1

(
R{1},1

)
, η1

(
R{1,2},1

)}
(32a)

θ2 ≤ η1

(
R{1,2},1

)
+ η2 (R2/(1− ε2)) , (32b)

for some rates R{1},1, R{1,2},1 ≥ 0 so that

R1 ≥ (ε2 − ε1)R{1},1 + (1− ε2)R{1,2},1. (32c)

If ε1 > ε2, then E∗(R1, R2, ε1, ε2) is the set of all nonneg-
ative (θ1, θ2) pairs satisfying

θ1 ≤ η1(R{1,2},1) (33a)
θ2 ≤ min

{
η1(R{1,2},1) + η2

(
R{1,2},2

)
,

η1

(
R{2},1

)
+ η2

(
R{2},2

)}
(33b)

for some rates R{1,2},1, R{2},1, R{1,2},2, R{2},2 ≥ 0, so that

R1 ≥ (ε1 − ε2)R{2},1 + (1− ε1)R{1,2},1 (33c)
R2 ≥ (ε1 − ε2)R{2},2 + (1− ε1)R{1,2},2. (33d)

Proof: Achievability is based on the schemes in Sec-
tion IV, see Appendices B and C for their analyses. The
converse is proved in Section VI.

Remark 2 (Discussion for ε1 = ε2): By above theo-
rem, for ε1 = ε2 = ε, the fundamental exponents region
E∗(R1, R2, ε, ε) is a rectangle. Also, compared to the fun-
damental exponents region under maximum-rate constraints,
here the rates are boosted by a factor (1− ε)−1:

E∗(R1, R2, ε, ε) = E∗max

(
R1

(1− ε)
,

R2

(1− ε)

)
. (34)

In particular, for ε1 = ε2 = 0 the fundamental exponents
regions under maximum- and expected-rates coincide:

E∗(R1, R2, 0, 0) = E∗max(R1, R2). (35)

Remark 3 (Discussion for ε1 < ε2): For ε1 6= ε2, the funda-
mental exponents region E∗(R1, R2, ε1, ε2) is not a rectangle,
as can be verified by the numerical results in Figures 2, 3,
and 4 in the next subsection. In fact, one observes a tradeoff
between the two exponents θ1 and θ2, which is driven by the
choice of the rates RI,1, RI,2 for I ∈ P(2), where P(2) is
the power set of all subsets of {1, 2} excluding the emptyset,
i.e. P(2) = {{1}, {2}, {1, 2}}. More specifically, for ε1 < ε2
the choice

R{1,2},1 = R1/(1− ε2) (36a)
R{1},1 = 0 (36b)

maximizes exponent θ2, which then evaluates to

θ2 = θ2,max := η1 (R1/(1− ε2)) + η2 (R2/(1− ε2)) , (37)

but completely degrades θ1 to θ1 = 0. (Notice that for large
R1/(1 − ε2) above choice (36) might not be the unique
optimizer and other optimizers will still allow to attain a
positive η1.)
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On the other hand, the choice

R{1},1 = R{1,2},1 = R1/(1− ε1) (38)

maximizes exponent θ1, which then evaluates to

θ1 = θ1,max := η1 (R1/(1− ε1)) , (39)

but it degrades θ2 to

θ2 = θ2,deg := η1 (R1/(1− ε1))+η2 (R2/(1− ε2)) < θ2,max.
(40)

Varying the rate R{1,2},1 between the choices in (36) and
(38), (and accordingly varying also rate R{1},1 to meet
(32c)) achieves the entire Pareto-optimal boundary of the
fundamental exponents region E∗(R1, R2, ε1, ε2).

Remark 4 (Discussion for ε1 > ε2): For ε1 > ε2 the choice

R{1,2},1 = R1/(1− ε1) (41a)
R{2},1 = 0 (41b)

maximizes exponent θ1, which then evaluates to

θ1 = θ1,max (42)

and degrades θ2 to

θ2 = θ′2,deg := min
{
η1 (R1/(1− ε1)) + η2(R{1,2},2),

η2(R{2},2)
}
, (43)

for R{2},2 and R{1,2},2 satisfying (33d). (Notice again that for
large values of R1/(1 − ε1) the optimizer in (41) might not
be unique and other optimizers might lead to a larger value of
θ2.)

On the other hand, the choice

R{2},1 = R{1,2},1 = R1/(1− ε2) (44a)
R{2},2 = R{1,2},2 = R2/(1− ε2) (44b)

maximizes exponent θ2, which then evaluates to θ2 = θ2,max,
but it degrades θ1 to

θ1 = θ1,deg := η1 (R1/(1− ε2)) (45)

Varying the rate R{1,2},1 between the choices in (41) and (44)
(and varying the rates R{1},1, R{1,2},2, R{1},2 accordingly),
achieves the entire Pareto-optimal boundary of the fundamen-
tal exponents region E∗(R1, R2, ε1, ε2).

Remark 5 (Rate-boosts when ε1 6= ε2): Notice that in
our two-hop system with expected-rate constraints, exponents
θ1,max and θ2,max defined in (39) and (37), are the largest
possible exponents achievable at the two decision centers,
irrespective of the ordering of ε1 and ε2. By Theorem 3,
they coincide with the optimal exponents under maximum-rate
constraints R1/(1− ε1) and R2/(1− ε1) for the two links in
case of (39), and maximum-rate constraints R1/(1− ε2) and
R2/(1 − ε2) in case of (37). We thus observe that whenever
ε1 6= ε2, the rate-boosts that expected-rate constraints allow to
obtain over maximum-rate constraints depend on the permissi-
ble type-I error probabilities and also on the tradeoff between

the two exponents θ1 and θ2. In this view, notice that when the
focus is on maximizing θ2, then for ε1 < ε2 one has to entirely
sacrifice θ1, whereas for ε1 > ε2 positive θ1-exponents are
possible but the rate-boost experienced by θ1 is reduced from
(1 − ε1)−1, which is the boost experienced for its maximum
θ1,max, to the smaller factor (1− ε2)−1.

A. Numerical Simulations

In this section, we illustrate the benefits of exploiting the
relaxed expected-rate constraints in (4) and (6) compared to the
more stringent maximum-rate constraints (13) at hand of some
examples. We also show for ε1 < ε2 the benefits of “Rate-
sharing” on the first link and the corresponding tradeoff, where
the rate R1 is split into (ε2 − ε1)R{1},1 and (1− ε2)R{1,2},1
as in (32), instead of restricting to a single rate choice for
the communication on the first link R{1,2},1 = R1/(1 − ε1).
For the case ε1 < ε2, “Rate-sharing” on the second link does
not have any added value. However, for the case ε1 > ε2,
we illustrate the benefits of “Rate-sharing” on both links and
the resulting tradeoff from varying the choices of the rates
R{1,2},1, R{2},1, R{1,2},2 and R{2},2 that satisfy (33). This
tradeoff stems from multiplexing three coding subschemes
among which we have two full versions of the basic two-
hop scheme and one degraded subscheme as explained in
Subsection IV-C.

Throughout this section we consider the following example.
Example 1: Let Y0, S, T be independent Bernoulli random

variables of parameters pY0
= 0.4, pS = 0.8, pT = 0.8 and set

Y1 = Y0 ⊕ T and Y2 = Y1 ⊕ S.
We first consider the case ε1 = 0.05 < ε2 = 0.15,

and plot the optimal exponents region E∗(R1, R2, ε1, ε2) in
Figure 2 for symmetric rates R1 = R2 = 0.5. We note a
tradeoff between the type-II error exponents θ1 and θ2, which
is not present neither for the case ε1 = ε2, nor for the same
setup under maximum-rate constraints. (This tradeoff occurs
because both exponents have to be optimized over the same
choices of rates R{1},1, R{1,2},1.) The figure also shows a sub-
optimal version of the exponents region in Theorem 2, where
we set R{1},1 = R{1,2},1 = R1/(1 − ε1) and thus obtain
E∗max(R1/(1−ε1), R2/(1−ε2)). Comparing these two regions,
we observe that using two different rates R{1},1 and R{1,2},1
(i.e., two different versions of the basic two-hop scheme)
allows to obtain a better tradeoff between the two exponents.
For futher comparison, Figure 2 also shows the exponents
region E∗max(R1, R2) under maximum-rate constraints, so as
to illustrate the gain provided by having the relaxed expected-
rate constraints instead of maximum-rate constraints.

We then consider the case ε1 = 0.15 > ε2 = 0.05. Here we
consider three sub-cases for the rates: symmetric rates R1 =
R2 = 0.5 or asymmetric rates R1 = 0.75 > R2 = 0.25 or
R1 = 0.25 > R2 = 0.75.

In Figure 3 we plot the optimal exponents region
E∗(R1, R2, ε1, ε2) in Theorem 2 for the first sub-case R1 =
R2 = 0.5, and we compare it with the exponents region
under maximum-rate constraints E∗max(R1, R2) and with sub-
optimal versions of Theorem 3 where we either set R{1,2},1 =

R{2},1, for which we obtain E∗max

(
R1

(1−ε2) ,
R2

(1−ε2)

)
, or we set
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0 0.05 0.1 0.15
0.3

0.32

0.34

0.36

0.38

θ1

θ 2

E∗(R1, R2, ε1, ε2).

E∗max

(
R1

(1−ε1) ,
R2

(1−ε2)

)
E∗max(R1, R2)

Fig. 2: Exponents regions for Example 1 when ε1 = 0.05 <
ε2 = 0.15 and R1 = R2 = 0.5.

R{1,2},2 = R{2},2, for which we have a tradeoff between
the type-II error exponents due to rate-sharing on the first
link. Comparing all these regions, we see that rate-sharing
on the first link allows to obtain a smooth tradeoff between
the exponents, while rate-sharing on both links (i.e., having
two full versions of the basic two-hop scheme) yields an even
improved tradeoff.

Figure 4 compares the exponents regions under expected
rate-constraints for all three sub-cases. Clearly, θ1 is increasing
in R1, but θ2 is not necessarily increasing in R2, since it also
depends on R1. In fact, exponents region E∗(0.25, 0.75, ε1, ε2)
is completely included in exponents region E∗(0.5, 0.5, ε1, ε2).

To understand these phenomena, notice that the maxi-
mum achievable exponents on each communication link are
η∗1(R1) = I(Y0;Y1) = 0.26766 and η∗2(R2) = I(Y1;Y2) =
0.27433. Recall also that the θ2-error exponent is an ac-
cumulation of the error exponents given by both functions
η1(·) + η2(·). The similar behaviours of the two functions
η1(r) ≈ η2(r) (r ∈ [0, 1]), together with the concavity and
monotonicity of these functions, induce that to obtain the
largest θ2 values in this example, the total rate should be
distributed almost equally between both links. In contrast,
since the θ1-error exponent depends only on rate R1, the
largest value is achieved by putting all available rate to R1.
All of the above explains the superiority of the error exponent
region obtained when R1 = R2 = 0.5 over the one obtained
when R1 = 0.25, R2 = 0.75, and the tradeoff between the
exponents regions for the sub-cases R1 = R2 = 0.5 and
R1 = 0.75, R2 = 0.25.

VI. CONVERSE PROOF TO THEOREM 2

A. Outline of the Converse Proof

The main idea of the proof is to divide the set of strongly
typical sequences T (n)

µn (PY0Y1Y2
) into four subsets according

to the decisions taken at the two DCs, see Figure 5. Parallel
change of measure arguments are then applied to each subset
and different lower bounds on the expected message lengths
and upper bounds on the error exponents are derived. The

0.13 0.14 0.15 0.16 0.17 0.18 0.19
0.1

0.15

0.2

0.25

0.3

0.35

θ1

θ 2

E∗(R1, R2, ε1, ε2)
Rate-sharing on first link only

E∗max

(
R1

(1−ε2) ,
R2

(1−ε2)

)
E∗max(R1, R2)

Fig. 3: Exponents regions under expected- and maximum-rate
constraints for Example 1 when ε1 = 0.15 > ε2 = 0.05 and
R1 = R2 = 0.5.

0 5 · 10−2 0.1 0.15 0.2 0.25

0.1

0.2

0.3

θ1

θ 2

E∗(0.5R, 0.5R, ε1, ε2)

E∗(0.75R, 0.25R, ε1, ε2)

E∗(0.25R, 0.75R, ε1, ε2)

Fig. 4: Exponents regions under symmetric and asymmetric
expected-rate constraints for Example 1 and when ε1 = 0.15 >
ε2 = 0.05 and R = 1.

(implicit) lower bounds on the expected message lengths are
actually lower bounds on the conditional expectations given
each of the four subsets and thus combined by means of
the law of total expectation to obtain a bound on the total
expected message length. The derived upper bounds on the
error exponents are not conditioned on the subsets but hold in
an unconditional sense. The final bound on the type-II error
exponent is then simply obtained by considering the tightest
of the derived bounds, which explains the minimizations in
Theorem 2.

To match the so-obtained bounds on the message lengths
and the type-II error exponents with our achievability result
(see the scheme in Section IV) two final steps are needed: 1)
Show that the introduced auxiliary random variables satisfy
certain Markov chains in the asymptotic regime of infinite
blocklengths;2 and 2) Show that depending on the ordering

2In the weak converse proofs that do not have to apply a change of measure
argument these Markov chains are naturally true for all blocklengths because
of the i.i.d.-ness of the source sequences.
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ε1 = ε2, ε1 < ε2, or ε1 > ε2, there exists an optimal scheme
that under H = 0 assigns asymptotically 0 probability to
specific subsets of the introduced partition. For example, if
ε1 ≤ ε2 the probability under H = 0 that R2 decides on
H = 0 but R1 does not should vanish, and if ε1 ≥ ε2 the
probability that R1 decides on H = 0 but R2 does not should
vanish.

Fig. 5: Sketch of partitioning T (n)
µn (PY0Y1Y2

) and applying
parallel change of measure arguments in the converse proof to
Theorem 2.

Technically, the main part of the proof is contained in the
subsequent Proposition 3, which states the converse bound
before the mentioned simplification depending on the ordering
of ε1 and ε2, which is proved in Appendix D. The proof
of Proposition 3 applies Lemma 2 ahead to each of the
four subsets introduced in Figure 5 to obtain bounds on the
expected message length and the error exponents, and to prove
the desired Markov chains asymptotically.

B. The Converse Proof

Consider a sequence (in n) of encoding and decision func-
tions {(φ(n)

1 , φ
(n)
2 , g

(n)
1 , g

(n)
2 )} satisfying the constraints on the

rates and error probabilities in (12). The converse proof is
based on the following lemma.

Lemma 2: Consider an arbitrary blocklength n and a subset
D ⊆ Yn0 × Yn1 × Yn2 . Let the tuple (M̃1, M̃2, Ỹ

n
0 , Ỹ

n
1 , Ỹ

n
2 )

follow the pmf

PM̃1M̃2Ỹ n0 Ỹ
n
1 Ỹ

n
2

(m1,m2, y
n
0 , y

n
1 , y

n
2 ) ,

PY n0 Y n1 Y n2 (yn0 , y
n
1 , y

n
2 ) · 1{(y

n
0 , y

n
1 , y

n
2 ) ∈ D}

PY n0 Y n1 Y n2 (D)

·1{φ(n)
1 (yn0 ) = m1} · 1{φ(n)

2 (yn1 , φ1(yn0 )) = m2}. (46)

Further, define

U1 , (M̃1, Ỹ
T−1
0 , Ỹ T−1

1 , Ỹ T−1
2 , T ) (47)

U2 , (M̃2, Ỹ
T−1
0 , Ỹ T−1

1 , Ỹ T−1
2 , T ) (48)

Ỹk , Ỹk,T , k ∈ {0, 1, 2}, (49)

where T is uniform over {1, . . . , n} and independent of all
previously defined random variables.

The following (in)equalities hold:

1

n
H(M̃k) ≥ I(Uk; Ỹk−1) +

1

n
logPY n0 Y n1 Y n2 (D),

k ∈ {1, 2}, (50)

I(U1; Ỹ1|Ỹ0) ≤ − 1

n
logPY n0 Y n1 Y n2 (D), (51)

I(U2; Ỹ2|Ỹ1) ≤ − 2

n
logPY n0 Y n1 Y n2 (D) +D(PỸ0Ỹ1Ỹ2

‖PY0Y1Y2
).

(52)

Moreover, if the decision center Rk decides on the null
hypothesis Ĥk = 0 for all tuples (yn0 , y

n
1 , y

n
2 ) ∈ D, then

− 1

n
log βk,n ≤

k∑
`=1

I(U`; Ỹ`)−
k + 1

n
logPY n0 Y n1 Y n2 (D). (53)

Proof: The lemma is essentially a special case of
Lemma 4 ahead, which is proved in Appendix VIII-C. The
slightly stronger statement in (51) can easily be verified at
hand of the proof in Appendix VIII-C.

Remark 6 (Discussion of Lemma 2): Inequalities (50) and
(53) provide bounds on the entropy of a message and on the
error exponent in case the set D is well chosen.

Inequalities (51) and (52) state that when the probability
PY n0 Y n1 Y n2 (D) does not vanish exponentially fast in n and
the set D is a subset of the typical set (in which case the
divergence D(PỸ0Ỹ1Ỹ2

‖PY0Y1Y2) is arbitrarily small), then for
large blocklengths the pmfs PUkỸkỸk−1

are close to the product
pmfs PUk|ỸkPỸk−1Ỹk

indicating indicating the Markov chain
Ỹk−1 → Ỹk → Uk. Equivalent Markov chains show up in
the achievability result and thus have to be recovered for the
converse to be tight.

With this lemma, we can prove the desired general outer
bound on the exponents region.

Proposition 3: Given R1, R2, ε1, ε2,≥ 0, the fundamental
exponents region E∗(R1, R2, ε1, ε2) is included in the set of
all (θ1, θ2) pairs satisfying

θ1 ≤ min{η1(R{1},1), η1(R{1,2},1)}, (54a)
θ2 ≤ min

{
η1(R{1,2},1) + η2(R{1,2},2),

η1(R{2},1) + η2(R{2},2)
}
, (54b)

for rates R{1},1, R{1,2},1, R{1,2},2, R{2},1, R{2},2 ≥ 0 and
numbers σ{1}, σ{2}, σ{1,2} ≥ 0 so that σ{1}+σ{2}+σ{1,2} ≤ 1
and

σ{1} + σ{1,2} ≥ 1− ε1 (54c)
σ{2} + σ{1,2} ≥ 1− ε2 (54d)

σ{1,2} ≥ max{1− ε1 − ε2, 0}, (54e)

and so that the following rate constraints are satisfied:

R1 ≥ σ{1}R{1},1 + σ{1,2}R{1,2},1 + σ{2}R{2},1, (54f)
R2 ≥ σ{1,2}R{1,2},2 + σ{2}R{2},2. (54g)

In Appendix D we show that the fundamental exponents
region presented in this proposition is contained in the simpler
region in Theorem 2, which concludes the proof. (Actually
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the region in Proposition 3 is not only included in the simpler
region of Theorem 2 but coincides with it. The proof of the
reverse direction, i.e., inclusion of the region in Theorem 2
in the region of Proposition 3, is however trivial because
Proposition 3 is a converse result and the region in Theorem 2
is achievable.)

Proof of Proposition 3: Choose µn as a sequence
satisfying

lim
n→∞

µn = 0 (55)

lim
n→∞

µnn
2 =∞ (56)

and define for each blocklenth n the sets

B1,n , {(yn0 , yn1 , yn2 ) ∈ T (n)
µn (PY0Y1Y2

) :

g
(n)
1 (yn1 , φ

(n)
0 (yn0 )) = 0}, (57)

B2,n , {(yn0 , yn1 , yn2 ) ∈ T (n)
µn (PY0Y1Y2

) :

g
(n)
2 (yn2 , φ

(n)
1 (yn1 , φ

(n)
0 (yn0 ))) = 0}, (58)

D{1,2},n , B1,n ∩ B2,n, (59)

D{1},n , B1,n\D{1,2},n, (60)

D{2},n , B2,n\D{1,2},n. (61)

Define also the set

D∅,n = T (n)
µn (PY0Y1Y2

)\(D{1},n ∪ D{2},n ∪ D{1,2},n). (62)

Notice that the sets D∅,n,D{1},n,D{2},n,D{1,2},n partition the
strongly typical set T (n)

µn (PY0Y1Y2
) and in each set DI,n only

the terminals Rk with k ∈ I declare Ĥk = 0, while terminals
Rk with k /∈ I declare Ĥk = 1.

Define the probabilities

∆I,n , PY n0 Y n1 Y n2 (DI,n), I ∈ P(2), (63)

and notice that by the laws of probability

∆{1,2} + ∆{1} = PY n0 Y n1 Y n2 (B1) (64)
∆{1,2} + ∆{2} = PY n0 Y n1 Y n2 (B2) (65)

∆{1,2} ≥ PY n0 Y n1 Y n2 (B1) + PY n0 Y n1 Y n2 (B2)− 1. (66)

Notice further that by the type-I error probability constraints
(12b) and by [42, Remark to Lemma 2.12] and basic laws of
probability:

PY n0 Y n1 Y n2 (Bk) ≥ 1− εk −
|Y0||Y1||Y2|

4µ2
nn

, k ∈ {1, 2}, (67)

so that we conclude that:

lim
n→∞

(∆{1,2},n + ∆{1},n) ≥ 1− ε1 (68a)

lim
n→∞

(∆{1,2},n + ∆{2},n) ≥ 1− ε2 (68b)

lim
n→∞

∆{1,2},n ≥ max{1− ε1 − ε2, 0} (68c)

lim
n→∞

∑
I∈P(2)

∆I,n ≤ 1, (68d)

where (68d) holds (for any blocklength) by the basic laws of
probability because the sets DI,n are disjoint.

To simplify exposition, we assume that for any blocklength
n the probabilities ∆I,n > 0 for all sets I ∈ P(2). (Other-
wise a corresponding subsequence of blocklengths should be
considered if it exists. And if no such subsequence exists,
the corresponding sets should be discarded. Details of the
proofs in these other cases are omitted for brevity.) Applying
Lemma 2 to the four subsets allows to conclude that for
any I ∈ P(2) there exists a pair (UI,1, UI,2) satisfying the
(in)equalities

H(M̃I,1) ≥ nI(UI,1; ỸI,0) + log ∆I,n, (69)

H(M̃I,2) ≥ nI(UI,2; ỸI,1) + log ∆I,n (70)

− 1

n
log ∆I,n ≥ I(UI,1; ỸI,1|ỸI,0), (71)

− 2

n
log ∆I,n +D(PỸ0Ỹ1Ỹ2

‖PY0Y1Y2
)

≥ I(UI,2; ỸI,2|ỸI,1) (72)

and

− 1

n
log β1,n≤ I(UI,1; ỸI,1)− 2

n
log ∆I ,

if I ∈ {{1}, {1, 2}}, (73)

− 1

n
log β2,n≤ I(UI,1; ỸI,1) + I(UI,2; ỸI,2)− 3

n
log ∆I ,

if I ∈ {{2}, {1, 2}}. (74)

Define the following random variables

L̃I,j , len(M̃I,j), j ∈ {1, 2}, I ∈ P(2). (75)

By the rate constraints (4) and (6), and the definition of
the random variables L̃I,j , we obtain by the total law of
expectations:

nR1 ≥ E[L1] (76)

≥
∑
I∈P(2)

E[L̃I,1]∆I,n. (77)

Moreover,

H(M̃I,1) = H(M̃I,1, L̃I,1) (78)

=

∞∑
lI=1

Pr[L̃I,1 = lI ]H(M̃I,1|L̃I,1 = lI)

+ H(L̃I,1) (79)

≤
∞∑
lI=1

Pr[L̃I,1 = lI ]lI +H(L̃I,1) (80)

= E[L̃I,1] +H(L̃I,1), (81)

which combined with (69) and (77) and the nonnegativity of
entropy establishes∑
I∈P(2)

∆I,n

[
I(UI,1; ỸI,0) +

1

n
log ∆I,n

]+

≤
∑
I∈P(2)

(
1

n
∆I,nE[L̃I,1] +

1

n
∆I,nH(L̃I,1)

)
(82)

≤ R1

1 +
∑
I∈P(2)

hb

(
∆I,n
nR1

) , (83)
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where (83) holds by (77) and because the entropy of the
discrete and positive random variable L̃I,1 of mean E[L̃I,1] ≤
nR1

∆I,n
is bounded by H(L̃I,1) ≤ nR1

∆I,n
· hb

(
∆I,n
nR1

)
, which is

easily seen by the following two facts: 1) The KL-divergence
D(P‖Q) between an arbitrary pmf P (x) over the positive inte-
gers of mean s and the geometric distribution of mean s equals
−HP (X) + HQ(X) and is nonnegative; and 2) The entropy
of a geometric distribution of mean s is HQ(X) = s · hb( 1

s ).
In a similar way, we obtain∑

I∈
{{1,2},{2}}

∆I,n

[
I(UI,1; ỸI,0) +

1

n
log ∆I,n

]+

≤ nR2

1 +
∑
I∈

{{1,2},{2}}

hb

(
∆I
R2

) . (84)

The proof then follows from (71)–(74) and from (83)
and (84) and by letting n → ∞. Details are as follows.
By Carathéodory’s theorem, we can replace above auxiliary
random variables {(UI,1, UI,2)}I , which are of increasing
alphabet sizes, by random variables over constant alphabets
UI,1 and UI,2 of sizes

|UI,1| ≤ |Y0| · |Y1|+ 2, I ∈ P(2), (85)
|UI,2| ≤ |UI,1| · |Y0| · |Y1|+ 1, I ∈ {{1, 2}, {2}}, (86)

while still preserving inequalities (71)–(74), (83), and (84).
Let P (n)

ỸI,0ỸI,1ỸI,2UI,1UI,2
denote the pmf of these new tuples

(ỸI,0, ỸI,1, ỸI,2, UI,1, UI,2) at blocklength n, and abbreviate
it as P ∗I . We invoke the Bolzano-Weierstrass theorem and
consider an increasing subsequence of positive blocklengths
{ni}∞i=1 such that for all I ∈ P(2) the subsequences of
probabilities ∆I,ni and pmfs P (ni)

ỸI,0ỸI,1ỸI,2UI,1UI,2
converge.

Define the convergence points as:

σI , lim
i→∞

∆I,ni , I ∈ P(2), (87)

P ∗
ỸI,0ỸI,1ỸI,2UI,1UI,2

, lim
i→∞

P
(n)

ỸI,0ỸI,1ỸI,2UI,1UI,2
. (88)

Notice next that the right-hand sides of (83) and (84) tend
to R1 and R2, respectively as n → ∞. Moreover, the terms
1
n∆I,n log ∆I,n on the left-hand sides of these inequalities
vanish as n → ∞ because t 7→ t log t is bounded over the
interval [0, 1]. Restrict then attention to subsets I ∈ P(2) for
which σI > 0, which implies that

lim
n→∞

1

n
log ∆I,n = 0, (89)

We denote the set of these subsets I satisfying (89) by P ⊆
P(2), and also notice that inequalities (83) and (84) remain
valid if summation is only over sets in P because all terms
are nonnegative. For subsets in P the last terms in (73) and
(74) vanish in the asymptotic regime ni →∞.

By all these considerations, by (68), (71)–(74), (83), and
(84), in the limit i→∞:

R1 ≥
∑
I∈P

σI · IP∗I (UI,1;YI,0) (90a)

R2 ≥
∑

I∈P : 2∈I
σI · IP∗I (UI,2;YI,1) (90b)

θ1 ≤ min
I∈P

{
IP∗I (UI,1;YI,1)

}
(90c)

θ2 ≤ min
I∈P

{
IP∗I (UI,1;YI,1) + IP∗I (UI,2;YI,2)

}
. (90d)

for some nonnegative numbers {σI}I∈P satisfying∑
I∈P

σI ≤ 1 (90e)∑
I∈P : 1∈I

σI ≥ 1− ε1, (90f)

σ{1,2} ≥ max{1− ε1 − ε2, 0}, (90g)∑
I∈P : 2∈I

σI ≥ 1− ε2. (90h)

Notice further that since for any I ∈ P(2) and any
i the triple (Ỹ

(ni)
I,0 , Ỹ

(ni)
I,1 , Ỹ

(ni)
I,2 ) lies in the jointly typi-

cal set T (ni)
µni

(PY0Y1Y2
) we have |PỸI,0ỸI,1ỸI,2(y0, y1, y2) −

PY0Y1Y2
(y0, y1, y2)| ≤ µni and since and µni → 0 as

i → ∞, the limiting pmfs satisfy P ∗YI,0YI,1YI,2 = PY0Y1Y2 .
Finally, by continuity considerations, by (89), and by (71)
the following Markov chains must hold for all I ∈ P under
P ∗YI,0YI,1YI,2UI,1UI,2 :

UI,1 → YI,0 → YI,1, (91)
UI,2 → YI,1 → YI,2. (92)

Notice that at this point and when P ( P(2), one can
trivially add dummy random variables (namely UI,j = YI,j−1

combined with σI = 0 for all I ∈ P(2)\P) to extend
conditions (90) to all subsets I ∈ P(2). The desired result
in Proposition 3 is then obtained by plugging the definitions
of the functions η1(·) and η2(·) into above expressions (90)
and by relaxing some constraints (because any element is no
larger than the maximum)..

VII. A SYSTEM WITH K-HOPS

We generalize our setup and results to K hops, i.e., to K−1
relays.

A. System Model

Consider a system with a transmitter T0 observing the
source sequence Y n0 , K − 1 relays labeled R1, . . . ,RK−1

and observing sequences Y n1 , . . . , Y
n
K−1, respectively, and a

receiver RK observing sequence Y nK .
The source sequences (Y n0 , Y

n
1 , . . . , Y

n
K) are distributed

according to one of two distributions depending on a binary
hypothesis H ∈ {0, 1}:

if H = 0 : (Y n0 , Y
n
1 , . . . , Y

n
K) i.i.d. ∼ PY0Y1

· PY2|Y1
· · ·

PYK |YK−1
; (93a)

if H = 1 : (Y n0 , Y
n
1 , . . . , Y

n
K) i.i.d. ∼ PY0

· PY1
· · ·PYK .

(93b)

Communication takes place over K hops as illustrated
in Figure 6. The transmitter T0 sends a message M1 =

φ
(n)
0 (Y n0 ) to the first relay R1, which sends a message
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Fig. 6: Cascaded K-hop setup with K decision centers.

M2 = φ
(n)
1 (Y n1 ,M1) to the second relay and so on. The

communication is thus described by encoding functions

φ
(n)
0 : Yn0 → {0, 1}? (94)

φ
(n)
k : Ynk × {0, 1}? → {0, 1}?, k ∈ {1, . . . ,K − 1}, (95)

so that the produced message strings

M1 = φ
(n)
0 (Y n0 ) (96)

Mk+1 = φ
(n)
k (Y nk ,Mk), k ∈ {1, . . . ,K − 1}, (97)

satisfy the expected-rate constraints

E [len (Mk)] ≤ nRk, k ∈ {1, . . . ,K}. (98)

Each relay R1, . . . , RK−1 as well as the receiver RK ,
produces a guess of the hypothesis H. These guesses are
described by guessing functions

g
(n)
k : Ynk × {0, 1}? → {0, 1}, k ∈ {1, . . . ,K}, (99)

where we request that the guesses

Ĥk,n = g
(n)
k (Y nk ,Mk), k ∈ {1, . . . ,K}, (100)

have type-I error probabilities

αk,n , Pr[Ĥk = 1|H = 0], k ∈ {1, . . . ,K}, (101)

not exceeding given thresholds ε1, ε2, . . . , εK > 0, and type-II
error probabilities

βk,n , Pr[Ĥk = 0|H = 1], k ∈ {1, . . . ,K}, (102)

decaying to 0 exponentially fast with largest possible expo-
nents.

Definition 3: Given maximum type-I error probabilities
ε1, ε2, . . . , εK ∈ [0, 1) and rates R1, R2, . . . , RK ≥ 0.
The exponent tuple (θ1, θ2, . . . , θK) is called (ε1, ε2, . . . , εK)-
achievable if there exists a sequence of encoding and deci-
sion functions

{
φ

(n)
0 , φ

(n)
1 , . . . , φ

(n)
K−1, g

(n)
1 , g

(n)
2 , · · · g(n)

K

}
n≥1

satisfying for each k ∈ {1, . . . ,K}:

E[len(Mk)] ≤ nRk, (103a)
lim
n→∞

αk,n ≤ εk, (103b)

lim
n→∞

1

n
log

1

βk,n
≥ θk. (103c)

Definition 4: The fundamental exponents region
E∗(R1, R2, . . . , RK , ε1, ε2, . . . , εK) is defined as the closure
of the set of all (ε1, ε2, . . . , εK)-achievable exponent pairs
(θ1, θ2, . . . , θK) for given rates R1, . . . , RK ≥ 0.

B. Previous Results under Maximum-Rate Constraints

The K-hop hypothesis testing setup of Figure 6 and Equa-
tions (93) was also considered in [28], but under maximum-
rate constraints:

len(Mi) ≤ nRi, i ∈ {1, . . . ,K}, (104)

instead of the expected-rate constraints (98). The fundamen-
tal exponents region E∗max(R1, . . . , RK , ε1, . . . , εK) for this
maximum-rate setup is defined analogously to Definition 4,
but with (98) replaced by (104).

Definition 5: For any ` ∈ {1, . . . ,K}, define the function

η` : R+
0 → R+

0 (105)
R 7→ max

PU|Y`−1
:

R≥I(U ;Y`−1)

I (U ;Y`) . (106)

The functions η1, . . . , ηK are concave and monotonically
non-decreasing. The proof is analogous to the proof of
Lemma 1 presented in Appendix A, and omitted for brevity.
Notice further that in the maximization determining η`(R) it
suffices to consider distributions PU |Y`−1

on alphabets of sizes
|Y`−1|+ 1, see [3].

Theorem 4 ( [41]): Given (ε1, . . . , εK) ∈ [0, 1)K , the funda-
mental exponents region under the maximum-rate constraints
(104) and vanishing type-I error constraints satisfies

E∗max(R1, . . . , RK , ε1, . . . , εK)

=

{
(θ1, . . . , θK) : θk ≤

k∑
`=1

η`(R`), k ∈ {1, . . . ,K}

}
(107)

Notice that in this K-hop setup, each decision center accu-
mulates all the error exponents on the various links from the
transmitter to this decision center. The fundamental exponents
region is thus given by a K-dimensional hyperrectangle. That
means, each decision center can simultaneously achieve its
optimal error exponent as if the other decision centers were
not present in the system.

We abbreviate E∗max(R1, . . . , RK , ε1, . . . , εK) by
E∗max(R1, . . . , RK).

C. Optimal Coding Scheme for K Hops under Expected-Rate
Constraints

Similarly to the two-hop scheme, the terminals multiplex
different subschemes depending on the sequence Y n0 observed
at the transmitter T0. To this end, partition the set Yn0 into
disjoint subsets D∅ and {DI}I∈P(K) so that the probabilities

σI := Pr[Y n0 ∈ DI ] (108)

satisfy

1−
∑
k∈S

εk ≤
∑

I∈P(K) :
S⊆I

σI , S ⊆ {1, . . . ,K}, (109a)

∑
I∈P(K)

σI ≤ 1. (109b)

In our multiplexed schemes, the index I of DI indicates that
if T0’s observation Y n0 lies in DI , then all decision centers
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Rk, for k ∈ I, attempt to correctly guess hypothesis H, while
all decision centers Rk, for k /∈ I, simply declare Ĥk = 1.
If Y n0 ∈ D∅, then all decision centers R1, . . . , RK simply
declare Ĥ = 1.

The transmitter T0 adds K flag-bits to its message M1 to
inform R1 about the set DI containing its observation Y n0 ,
and thus about the choice of the employed coding scheme.
These flag-bits are forwarded by all relays R1, . . . , RK−1 at
the beginning of their messages M2, . . . ,MK so as to pass the
information to all terminals in the network.

We describe the different multiplexed coding schemes in
more detail. Let `∗I be the largest index in set I:

`∗I := max
k∈I

k, (110)

and chooses a set of rates

{RI,` : I ∈ P(K), ` ∈ {1, . . . , `∗I}} (111)

satisfying

R` >
∑

I∈P(K) :
`∗I≥`

σI ·RI,`, ` ∈ {1, . . . ,K}. (112)

We will see that the choice of the various rates determines
the tradeoff between the different exponents θ1, . . . , θK . Rates
{RI` : ` ∈ {1, . . . , `∗I}} are used in the subscheme employed
when Y n0 ∈ DI , where under this event only the messages
on the first `∗I links have positive rates, while messages on
the last K − I∗` links are of zero rate. The reason is that
decision center RI∗`+1, . . . , RK simply declare Ĥ = 1 and
thus messages M`∗I+1, . . . ,MK only have to convey the zero-
rate information that Y n0 ∈ DI .
Subscheme for Y n0 ∈ D∅: All terminals T0 and R1, . . . , RK−1

send the length-K all-zero bit string over the respective
communication links:

M1 = · · · = MK = [0, 0, . . . , 0]. (113)

Upon receiving this all-zero flag, relays R1, . . . , RK−1 and
receiver RK all declare

Ĥ1 = · · · = ĤK = 1. (114)

Communication is thus only used to inform the relays and
the receiver about the scheme to employ, or equivalently the
event Y n0 ∈ D∅, without providing any further information
about the correct hypothesis.

Subscheme for Y n0 ∈ DI , for I ∈ P(K): In this case, only
decision centers Rk, for k ∈ I, attempt to correctly guess
hypothesis H; all other decision centers Rk, for k /∈ I, directly
declare Ĥk = 1.

Terminals T0, R1, . . . , R`∗I apply a given `∗I-hop hypothesis
testing scheme with vanishing type-I error probabilities and
respecting the maximum-rate constraints RI,1, . . . , RI,`∗I on
the first `∗I links. To inform all relays and the receiver about
the scheme to use, terminals T0, R1, . . . ,RK−1 append a K-
length flag sequence describing set I at the beginning of their
messages. We propose that this flag sequence shows bit 1 at
all positions k ∈ I and bit 0 at all positions k /∈ I. Notice that
Messages M`∗I+1, . . . ,MK consist of only the flag sequence.

All decision centers Rk with k ∈ I declare the hypoth-
esis indicated by the employed multi-hop hypothesis testing
scheme. The remaining decision centers Rk with k /∈ I simply
declare

Ĥk = 1, k /∈ I. (115)

Analysis: By (108) and (112), and because transmission of
K bits hardly changes the rate for sufficiently large block-
lengths, the proposed overall scheme respects the expected-rate
constraints R1, . . . , RK on the K links for large values of n.
Appendix E proves that when the optimal multi-hop hypothesis
testing schemes with vanishing type-I error probability [28]
are used as the various subschemes, then the overall scheme
satisfies the type-I error constraints ε1, . . . , εK and achieves
the error exponents in the following Theorem 5.

D. Results on the Exponents Region

Theorem 5: The fundamental exponents region
E∗(R1, . . . , RK , ε1, . . . , εK) is equal to the set of all
nonnegative tuples (θ1, . . . , θK) satisfying

θk ≤ min
I∈P(K) :

k∈I

k∑
`=1

η`(RI,`), (116a)

for some nonnegative rates {RI,1, . . . , RI,`∗I}I∈P(K) and
nonnegative numbers {σI}I∈P(K) satisfying

Rk ≥
∑

I∈P(K) :
k≤`∗I

σIRI,k, k ∈ {1, . . . ,K},

(116b)

max

{
0, 1−

∑
k∈S

εk

}
≤

∑
I∈P(K) :
S⊆I

σI , S ⊆ {1, . . . ,K},

(116c)∑
I∈P(K)

σI ≤ 1. (116d)

Proof: Achievability is based on the coding scheme pre-
sented in the previous subsection and analyzed in Appendix E.
The converse is proved in the next Section VIII.

We conjecture that similarly to the case of K = 2 hops,
the optimal exponents region E∗(R1, . . . , RK , ε1, . . . , εK) in
Theorem 5 can be simplified depending on the ordering of
the ε-values. To state our conjecture, we define a permutation
π : {1, . . . ,K} → {1, . . . ,K} that orders the ε-values in
decreasing order:

επ(1) ≥ επ(2) ≥ · · · ≥ επ(K), (117)

and sets επ(0) := 1. We conjecture then that in Theorem 5
without loss of optimality one can set

σ{π(i),···,π(K)} = επ(i−1) − επ(i), i ∈ {1, . . . ,K}, (118)

and all other σ-values to 0. Renaming rates R{π(i),···,π(K)},`
to Ri,` and `∗{π(i),···,π(K)} to `∗i , with the choice in (118)
Theorem 5 evaluates to the following region:
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Conjecture 6: The fundamental exponents region
E∗(R1, . . . , RK , ε1, . . . , εK) is the set of all exponent
tuples (θ1, . . . , , θK) that satisfy

θk ≤ min
i∈{1,...,π(k)}

[
k∑
`=1

η` (Ri,`)

]
, k ∈ {1, . . . ,K}, (119a)

for some nonnegative rates {Ri,`} satisfying

R` ≥
∑

i∈{1,...,K} :
`∗i≥`

(
επ(i−1) − επ(i)

)
Ri,`, ` ∈ {1, . . . ,K},

(119b)

where

`∗i := max
`
{` : ` ∈ {π(i), . . . , π(K)}}. (119c)

The importance of this conjecture lies in proving that the
optimal coding scheme in the previous Subsection VII-C only
has to multiplex K + 1 subschemes, where the choice of the
subschemes depends on the permutation π that orders the ε-
values. Moreover, no optimization over the probabilities of the
various subschemes is required anymore, as the probability of
each subscheme is determined by the ε-values and the ordering
permutation π. More specifically, if the conjecture is correct,
the optimal scheme multiplexes K + 1 schemes, where the
i-th scheme is applied with probability επ(i−1) − επ(i) and
serves only the DCs with (K − i+ 1)-th smallest type-I error
constraints, while all other DCs directly declare H = 1.

While a general proof of the conjecture is still missing, we
can prove it in two special cases.

Proposition 7: Conjecture 6 holds when

K ∈ {2, 3} (120)

or when
ε1 = · · · = εK . (121)

In particular, for ε1 = . . . = εK = ε, the exponents region
E∗(R1, . . . , RK , ε, . . . , ε) is the set of all nonnegative tuples
(θ1, . . . , θK) satisfying

θk ≤
k∑
`=1

η`

(
R`

1− ε

)
, k ∈ {1, . . . ,K}. (122a)

Proof: Achievability of the region in (119) for any value
of K follows by specializing the region in Theorem 5 to the
parameter choice in (118) and setting all other σ-values to 0,
and by renaming rates R{π(i),···,π(K)},` as Ri,`. For K = 2
the result recovers Theorem 2. The converse for K = 3 is
proved in Appendix G. The converse for ε1 = · · · = εK is
proved in Appendix H.

As we discuss next, similar observations apply for the
general case K ≥ 2 as we have presented for K = 2 in
Remarks 2–5.

Remark 7 (Discussion for ε1 = · · · = εK =): For equal
type-I error probabilities ε1 = · · · = εK = ε, there is a rate-
boost on each link of (1− ε)−1 compared to the scenario with
maximum-rate constraints.

Remark 8 (Discussion for the general case): In the general
case, irrespective of the ordering of the permissible type-I error
probabilities, the largest exponent achievable at a decision
center k is given by

θk,max :=

k∑
`=1

η`

(
R`

1− εk

)
, (123)

so that for this exponent all rates are boosted by (1− εk)−1.
In fact, θk = θk,max is achieved by choosing the first k rates
as:3

RI,` =
R`

1− εk
, k ∈ I, ` ∈ {1, . . . , k}. (124)

This choice imposes that σIRI,` = 0 for all I not
containing k and all ` ∈ {1, . . . , k}. As a consequence, the
optimal performance for a decision center Rk′ , for k′ < k, is

θk′ =

k′∑
`=1

η`

(
R`

1− εk

)
, if εk′ > εk (125)

θk′ = 0, if εk′ < εk, (126)

where the performance in (125) is obtained by setting σI =
0 for all I containing an index k′ < k with ε′k > εk and
by setting the corresponding rates to infinity. Notice that σI
cannot be chosen equal to 0 for all sets I containing index
k′ < k when εk′ < εk because Constraint (116c) implies that
at least one of these σ-values is positive, which by σIRI,` = 0
implies that the corresponding rates RI,` = 0, for all ` =
1, . . . , k, causing θk′ to degrade to 0. We conclude that under
(123), for any k′ < k, when ε′k ≥ εk then exponent θk′ is
degraded from its maximum value because all rates are only
boosted by the factor (1− εk)−1 and not by the larger factor
(1 − εk′)−1, and when ε′k < εk the exponent θk′ completely
degrades to 0.

With appropriate choices for the rates on the last (K − k)
links, different tradeoffs between the exponents θk+1, . . . , θK
can be achieved. In particular, it is possible that an expo-
nent θk′ , for k′ > k, experiences its maximum rate-boost
(1 − εk′)−1 on some of these links. On the first k links, any
exponent θk+1, . . . , θK experiences a rate-boost of (1− εk)−1

if the corresponding εk′ > εk, whereas the contributions of
the first k links completely degrade to 0 if εk′ < εk.

The following lemma indicates that in the evaluation of the
fundamental exponents region E∗(R1, . . . , RK , ε1, . . . , εK) in
Theorem 5 one can restrict to sets of parameters {σI} that
satisfy some of the constraints (116c) with equality and
set certain σ-values to 0. It is a first step towards proving
Conjecture 6 in the general case or at least towards simplifying
the evaluation of the exponents region in Theorem 5.

3This choice assumes that the ordering (117) is strict, i.e., no two ε-
values coincide. Moreover, when some of the available rates R1, . . . , Rk are
sufficiently large so as to saturate the functions η`(R`), then other choices
are possible.
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Lemma 3: Consider a set of nonnegative numbers
{RI,1, . . . , RI,`∗I}I∈P(K) and {σI}I∈P(K) satisfying (116)
for exponents (θ1, . . . , θK). Let I ′, I ′′ ∈ P(K) and Γ ∈
[0, σI′′ ] be so that

I ′ ⊆ I ′′ (127)

and

max

{
0, 1−

∑
k∈S

εk

}
+ Γ ≤

∑
I∈P(K) :
S⊆I

σI , S ⊆ I ′′,S * I ′.

(128)
Then, the new nonnegative numbers

σ̃I′ = σI′ + Γ (129)
σ̃I′′ = σI′′ − Γ (130)
σ̃I = σI , I ∈ P(K)\{I ′, I ′′}, (131)

and rates, for ` ∈ {1, . . . ,K},

R̃I′,` =
σI′ ·RI′,` + Γ ·RI′′,`

σ̃I′
, (132)

R̃I,` = RI,`, I ∈ P(K)\{I ′}. (133)

also satisfy (116) for exponents (θ1, . . . , θK).
Proof: Above rate-definitions essentially only shift the

term Γ · RI′′,` from σI′′RI′′,` to σ̃I′RI′,`, and therefore the
rate constraints (116b) remain valid also for the new numbers.
Similarly, constraint (116d) remains valid since the sum of
all σ-values is preserved. Notice further that the σ-values
included in Constraint (116c) for S * I ′′ remain unchanged
by (131) and for S ⊆ I ′ their sum is preserved by (129)
and (130). For S * I ′ but S ⊆ I ′′, Constraint (116c) is
satisfied by Assumption (128). It remains to check the validity
of (116a) for the new rate-values. By (133) the constraint
remains unchanged for all k /∈ I ′. For k ∈ I ′, we notice
that by (127) the minimum in (116a) includes both sets I ′
and I ′′ and this minimum cannot be smaller for the new rates
because:

min

{
k∑
`=1

η` (RI′,`) ,

k∑
`=1

η` (RI′′,`)

}

≤ min

{
k∑
`=1

(
σI′

σ̃I′
η` (RI′,`) +

Γ

σ̃I′
η` (RI′′,`)

)
,

k∑
`=1

η` (RI′′,`)

}
(134)

≤ min

{
k∑
`=1

η`

(
R̃I′,`

)
,

k∑
`=1

η`

(
R̃I′′,`

)}
, (135)

where the first inequality holds because the minimum of
two numbers cannot exceed any convex combination of the
numbers, and the second inequality holds by the concavity
and monotonicity of the functions {η`(·)}`.

VIII. CONVERSE PROOF TO THEOREM 5

A. Proof Outline

The converse proof is similar as for K = 2 users. We
partition the strongly typical set Tµ(PY0···YK ) into 2K subsets

according to the decisions taken at the various DCs. A
change of measure argument is then applied in parallel to
each of these subsets and based on this change of measure,
by applying Lemma 4 ahead, bounds on the conditionally
expected message lengths and on the overall type-II error
exponent are derived, as well as a bound on the proximity of
the new measure with some Markov pmf. The desired converse
proof can then be derived by combining the bounds for the
different subsets (either through the law of total expectation or
simply by considering the most stringent one) and by proving
that there exists a subsequence of blocklengths for which the
changed measure on each set converges to a distribution whose
(Y0, . . . , YK)-marginal equals PY0···YK and satisfies desired
Markov properties with the auxiliary random variables defined
by Lemma 4.

B. Converse Proof

Fix an exponent-tuple (θ1, . . . , θK) in the
exponents region E∗(R1, . . . , RK , ε1, . . . , εK), and a
sequence (in n) of encoding and decision functions
{(φ(n)

0 , φ
(n)
1 , . . . , φ

(n)
K , g

(n)
1 , . . . , g

(n)
K )}n≥1 achieving this

tuple, i.e., satisfying constraints (103).
Our proof relies on the following lemma:

Lemma 4: Fix a blocklength n and a set D ⊆ Yn0 ×
Yn1 × · · · × YnK of positive probability, and let the tuple
(M̃1, M̃2, . . . , M̃K , Ỹ

n
0 , Ỹ

n
1 , . . . , Ỹ

n
K) follow the pmf

PM̃1M̃2···M̃K Ỹ n0 Ỹ n1 ···Ỹ nK
(m1,m2, . . . ,mK , y

n
0 , y

n
1 , . . . , y

n
K) ,

PY n0 Y n1 ···Y nK (yn0 , y
n
1 , . . . , y

n
K) · 1{(y

n
0 , y

n
1 , . . . , y

n
K) ∈ D}

PY n0 Y n1 ...Y nK (D)

·1{φ1(yn0 ) = m1} · 1{φ2(yn1 , φ1(yn0 )) = m2} · · · ·
·1{φK(ynK−1, φK−1(ynK−2, φK−2(· · · , φ1(yn0 ))) = mK}.

(136)

Further, define the auxiliary random variables

Uk , (M̃k, Ỹ
T−1
0 Ỹ T−1

1 , . . . , Ỹ T−1
K , T ),

k ∈ {1, . . . ,K}, (137)
Ỹk , Ỹk,T , k ∈ {0, 1, . . . ,K}, (138)

where T is uniform over {1, . . . , n} and independent of the
tuple (M̃1, M̃2, . . . , M̃K , Ỹ

n
0 , Ỹ

n
1 , . . . , Ỹ

n
K).

For any k ∈ {1, . . . ,K} the following (in)equalities hold:

1

n
H(M̃k) ≥ I(Uk; Ỹk−1) +

1

n
logPY n0 Y n1 ...Y nK (D),

(139)

I(Uk; Ỹk|Ỹk−1) ≤ − 1

n
logPY n0 Y n1 ...Y nK (D)

+D(PỸ0···ỸK‖PY0···YK ). (140)

If further for some k ∈ {1, . . . ,K}, decision center Rk
decides on the null hypothesis for all tuples (yn0 , . . . , y

n
K) ∈

D4,

Ĥk = 0, (141)

4Notice that once we fix the realizations of all observed sequences
Y n
0 , . . . , Y

n
K , the decision Ĥk is either determinstically 0 or 1.
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then

βk,n ≤
k∑
`=1

I(U`; Ỹ`) +
(k + 1)

n
logPY n0 Y n1 ...Y nK (D). (142)

Proof: See Subsection VIII-C at the end of this section.

We continue to prove Theorem 5. Let µn be a sequence
satisfying

lim
n→∞

µn = 0 (143)

lim
n→∞

µnn
2 =∞. (144)

For each blocklength n, define for each index k ∈
{1, . . . ,K} the set

Bk,n , {(yn0 , . . . , ynK) ∈ T (n)
µn (PY0···YK ) : Ĥk = 0} (145)

and for each subset I ∈ P(K) the set

DI,n ,{
(yn0 , . . . , y

n
K) ∈ T (n)

µn (PY0···YK ) :

Ĥk = 0 ∀k ∈ I and Ĥk = 1 ∀k /∈ I}. (146)

Notice that the sets {DI,n}I are disjoint and⋃
I∈P(K) :

k∈I

DI,n = Bk,n. (147)

Moreover, by [42, Remark to Lemma 2.12] and the type-I error
probability constraints in (103b), for any k ∈ {1, . . . ,K}:

PY n0 Y n1 ···Y nK (Bk,n) ≥ 1− εk −
|Y0| · · · |YK |

4µ2
nn

. (148)

Defining
∆I,n := PY n0 Y n1 ···Y nK (DI,n), (149)

we conclude by (147), by standard laws of probability, and the
disjointness of the sets {DI,n}I , that in the limit as n→∞,
for any subset S ⊆ {1, . . . ,K}:

lim
n→∞

∑
I∈P(K) :
S⊆I

∆I,n ≥ max

{
1−

∑
k∈S

εk, 0

}
. (150)

We now assume that for every blocklength n and every
subset I ∈ P(K) we have ∆I,n > 0. (Otherwise we restrict
to an appropriate subsequence of blocklengths or eliminate sets
I ∈ P(K) alltogether.) By Lemma 2 we can then conclude
that for any I: for any k ∈ {1, . . . ,K} the (in)equalities

1

n
H(M̃I,k) ≥ I(UI,k; Ỹk−1) +

1

n
log ∆I,n, (151a)

I(UI,k; ỸI,k|ỸI,k−1) = − 1

n
log ∆I,n

+D(PỸ0···ỸK‖PY0···YK ) (151b)

where {UI,1, . . . , UI,`∗I , M̃I,1, M̃I,2, . . . , M̃I,`∗I , Ỹ nI,0, Ỹ nI,1,
. . . , Ỹ nI,K} are defined in the lemma. Moreover, for indices
k ∈ I:

− 1

n
log βk,n ≤

k∑
`=1

I(UI,`; ỸI,`) +
(k + 1)

n
log ∆I,n. (151c)

We define the following random variables for I ∈ P(K)
and k ∈ {1, . . . , `∗I}:

L̃I,k , len(M̃I,k). (152)

By the rate constraints (98) and the total law of expectations:

nRk ≥
∑

I∈P(K) :
`∗I≥k

E[L̃I,k]∆I,n, (153)

and, similarly to (84), we obtain with (151a) and the nonneg-
ativity of entropy:∑
I∈P(K) :
`∗I≥k

∆I,n

[
I(UI,k; Ỹk−1) +

1

n
log ∆I,n

]+

≤ Rk

1 +
∑

I∈P(K) :
`∗I≥k

hb

(
∆I,n
nRk

) . (154)

The desired converse can then be concluded based on
(151b), (151c), and (154), in a similar as we did for K = 2.
Details are omitted.

C. Proof of Lemma 4

Note first that by (136):

D(PỸ n0 ···Ỹ nK
‖PnY0···YK ) = − log ∆ (155)

PỸ nk
(ynk ) ≤ PY nk (ynk ),

k ∈ {1, . . . ,K}, ynk ∈ Ynk , (156)

where we defined ∆ , PY n0 ···Y nK (D). Further define Ũk,t ,
(M̃k, Ỹ

t−1
0 , . . . , Ỹ t−1

K ) for k ∈ {1, . . . ,K}.
Proof of (139):
Similarly to [34] we introduce the divergence

D(PỸ n0 ···Ỹ nK
‖PnY0···YK ), which is bounded by log ∆ as help in

the single-letterization of H(M̃k). For each i ∈ {1, . . . ,K},
we have:

H(M̃k) ≥ I(M̃k; Ỹ n0 · · · Ỹ nK)

+D(PỸ n0 ···Ỹ nK
‖PnY0···YK ) + log ∆ (157)

= H(Ỹ n0 · · · Ỹ nK) +D(PỸ n0 ···Ỹ nK
‖PnY0···YK )

−H(Ỹ n0 · · · Ỹ nK |M̃k) + log ∆ (158)
≥ n[H(Ỹ0,T · · · ỸK,T )

+D(PỸ0,T ···ỸK,T ‖PY0···YK )]

−
n∑
t=1

H(Ỹ0,t · · · ỸK,t|Ũk,t) + log ∆ (159)

= n[H(Ỹ0,T · · · ỸK,T )

+D(PỸ0,T ···ỸK,T ‖PY0···YK )

−H(Ỹ0,T · · · ỸK,T |Ũk,T , T )] + log ∆ (160)

≥ n[H(Ỹ0,T · · · ỸK,T )

−H(Ỹ0,T · · · ỸK,T |Ũk,T , T )] + log ∆ (161)

= n[I(Ỹ0 · · · ỸK ;Uk)] + log ∆n (162)
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≥ n
[
I(Ỹk−1;Uk) +

1

n
log ∆n

]
. (163)

Here, (157) holds by (155); (159) holds by the super-additivity
property in [34, Proposition 1], by the chain rule, by the
definition of Ũk,t and by defining T uniform over {1, . . . , n}
independent of the previously defined random variables; and
(162) by the definitions of Uk, Ỹk, Ỹk−1 in the lemma. This
proves Inequality (139) in the lemma.

Proof of (140):
We start by noticing the Markov chain M̃1 → Ỹ n0 →

(Ỹ n1 , · · · , Ỹ nK), and thus similar to the analysis in [43, Section
V.C]:

0 = I(M̃k; Ỹ nk · · · Ỹ nK |Ỹ n0 · · · Ỹ nk−1) (164)

≥ H(Ỹ nk · · · Ỹ nK |Ỹ n0 · · · Ỹ nk−1)

−H(Ỹ nk · · · Ỹ nK |Ỹ n0 · · · Ỹ nk−1M̃k)

+D(PỸ n0 ···Ỹ nK
‖PnY0···YK ) + log ∆ (165)

≥ n[H(Ỹk,T · · · ỸK,T |Ỹ0,T · · · Ỹk−1,T )

+D(PỸ0,T ···ỸK,T ‖PY0···YK )] + log ∆

−H(Ỹ nk · · · Ỹ nK |Ỹ n0 · · · Ỹ nk−1M̃k) (166)

≥ n[H(Ỹk,T · · · ỸK,T |Ỹ0,T · · · Ỹk−1,T )

+D(PỸ0,T ···ỸK,T ‖PY0···YK )] + log ∆

−
n∑
t=1

H(Ỹk,t · · · ỸK,t|Ỹ0,t · · · Ỹk−1,t

Ỹ t−1
0 · · · Ỹ t−1

K Ỹ n0,t+1 · · · Ỹ nk−1,t+1M̃k) (167)

≥ nH(Ỹk,T · · · ỸK,T |Ỹ0,T · · · Ỹk−1,T ) + log ∆

−nH(Ỹk,T · · · ỸK,T |Ỹ0,T · · · Ỹk−1,T

Ỹ T−1
0 · · · Ỹ T−1

K Ỹ n0,T+1 · · · Ỹ nk−1,T+1M̃kT )

(168)
≥ nI(Ỹk,T · · · ỸK,T ; Ỹ T−1

0 · · · Ỹ T−1
K M̃kT |Ỹ0,T · · · Ỹk−1,T )

+ log ∆n (169)
= nI(Ỹk · · · ỸK ;Uk|Ỹ0 · · · Ỹk−1) + log ∆ (170)
≥ nI(Ỹk;Uk|Ỹ0 · · · Ỹk−1) + log ∆ (171)
≥ nI(Ỹk;Uk|Ỹk−1)− nI(Ỹk; Ỹ0 · · · Ỹk−2|Ỹk−1)

+ log ∆. (172)

where (166) holds by the super-additivity property in [34,
Proposition 1]; (167) by the chain rule; (168) by the non-
negativity of the Kullback-Leibler divergence.

The desired inequality (140) is then obtained by combining
(172) with the following lower bound:

D(PỸ0···ỸK‖PY0···YK )

≥ D(PỸ0···Ỹk‖PY0···Yk) (173)
= D(PỸ0···Ỹk‖PY0···Yk−1

PYk|Yk−1
) (174)

= D(PỸ0···Ỹk−1
‖PỸ0···Ỹk−1

PỸk|Ỹk−1
)

+EPỸk−1

[
D(PỸk|Ỹk−1

‖PYk|Yk−1
)
]

+D(PỸ0···Ỹk−1
‖PY0···Yk−1

) (175)

≥ D(PỸ0···Ỹk‖PỸ0···Ỹk−1
PỸk|Ỹk−1

) (176)

≥ I(Ỹ0 · · · Ỹk−2; Ỹk|Ỹk−1). (177)

Proof of (142): For each k ∈ {1, . . . ,K}, define Rk’s
acceptance region

Ak , {(mk, y
n
k ) : gk(mk, y

n
k ) = 0}. (178)

Consider an index k satisfying Condition (141), i.e., satisfying
D ⊆ Ak. Obviously,

PM̃kỸ nk
(Ak) = 1. (179)

Define for any k ∈ {1, . . . ,K} the pmfs

QM̃k
(mk)

,
∑

yn0 ,y
n
1 ,...,y

n
k−1

PỸ n0
(yn0 ) · · ·PỸ nk−1

(ynk−1)

·1{mk = φk(φk−1(· · · (φ1(yn0 ) · · · )), ynk−1)}, (180)

and

QMk(mK)

,
∑

yn0 ,y
n
1 ,...,y

n
k−1

PY n0 (yn0 ) · · ·PY nk−1
(ynk−1)

·1{mk = φk(φk−1(· · · (φ1(yn0 ) · · · )), ynk−1)}. (181)

and notice that by the definitions of PM̃kỸ nk
, QM̃k

and by
(156):

QM̃k
PỸ nk

(Ak) ≤ QMkPY nk (Ak) ∆−(k+1). (182)

By (179) and (182) and the definition of βk,n we have:

− 1

n
log βk,n

= − 1

n
logQMk

PnYk(Ak) (183)

= − 1

n
log
(
QM̃k

PỸ nk
(Ak)

)
− (k + 1)

n
log ∆ (184)

=
1

n
D
(
PM̃kỸ nk

(Ak) ‖ QM̃k
PỸ nk

(Ak)
)
− (k + 1)

n
log ∆

(185)

≤ 1

n
D(PM̃kỸ nk

‖QM̃k
PỸ nk

)− (k + 1)

n
log ∆, (186)

where the inequality holds by the data processing inequality
for KL-divergence.

We continue to upper bound the divergence term as

D(PM̃kỸ nk
‖QM̃k

PỸ nk
)

= I(M̃k; Ỹ nk ) +D(PM̃k
‖QM̃k

) (187)

≤ I(M̃k; Ỹ nk ) +D(PỸ nk−1M̃k−1
‖PỸ nk−1

QM̃k−1
) (188)

≤ I(M̃k; Ỹ nk ) + I(M̃k−1; Ỹ nk−1)

+D(PỸ nk−2M̃k−2
‖PỸ nk−2

QM̃k−2
) (189)

...

≤
k∑
i=1

I(M̃i; Ỹ
n
i ) (190)

=

k∑
i=1

n∑
t=1

I(M̃i; Ỹi,t|Ỹ t−1
i ) (191)

≤
k∑
i=1

n∑
t=1

I(M̃iỸ
t−1
0 · · · Ỹ t−1

K ; Ỹi,t) (192)
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=

k∑
i=1

n∑
t=1

I(Ũi,t; Ỹi,t) (193)

=

k∑
i=1

nI(Ũi,T ; Ỹi,T |T ) (194)

≤ n
k∑
i=1

I(Ui; Ỹi). (195)

Here (188) is obtained by the data processing inequality for
KL-divergence; (191) by the chain rule; and (193)–(195) by
the definitions of Ũi,t, Ui, Ỹi and T .

Combined with (183), Inequality (195) establishes Inequal-
ity (142) for k ∈ {1, . . . ,K}.

IX. DISCUSSION AND OUTLOOK

We derived the optimal type-II exponents region under
expected-rate constraints for the K-hop network with K
decision centers (DC) for testing against independence and
when the observations at the sensors respect some Markov
chain. Equivalent simplified expressions were proved for K ∈
{2, 3} and when all DCs have same admissible type-I error
probabilities. Similar simplifications are conjectured to hold
also in the general case. When the various DCs have different
permissible type-I errors, then the derived exponents region
illustrates a tradeoff between the error exponents that are
simultaneously achievable at the various DCs. In general, an
increase in exponents region is observed compared to the
setup with maximum-rate constraints. When all DCs have
equal permissible type-I error probability ε, then the exponents
region degenerates to a K-dimensional hypercube meaning
that all DCs can simultaneously achieve their optimal error
exponents. This optimal exponent coincides with the optimal
exponent under maximum-rate constraint where the rates have
to be boosted by the factor (1− ε)−1.

To achieve the optimal tradeoff, a novel coding and testing
scheme based on multiplexing and rate-sharing is proposed.
The idea is that the transmitter chooses one of 2K subschemes
with appropriate probabilities and applies each subscheme
with a well-chosen rate tuple. Notice that the various rate-
tuples determine the error exponents achieved at the various
DCs, and thus steer the tradeoff between the error exponents
at the different DCs. We multiplex schemes in a way that each
of the subschemes is meant to help only a subset of the DCs
in their decision; all other DCs simply raise an alarm so as not
to compromise their type-II error exponents. The probabilities
of the various subschemes then have to be chosen such that
the probability of each DC raising an alarm does not exceed
its permissible type-I error probability. We conjecture that it
suffices to multiplex only K + 1 subschemes and that they
should be chosen with probabilities determined by the type-
I error probabilities. We managed to prove this conjecture
for K ∈ {2, 3} and when all DCs have same permissible
type-I error probabilities, but proofs for the general case seem
cumbersome.

Notice that the proposed multiplexing and rate-sharing
strategy is also optimal for other multi-terminal hypothesis
testing setups, as we show in [44].

Our converse proof methods rely on applying 2K change
of measure arguments in parallel, and to separately bound
the achievable error exponents and the required rates for
each of them. Moreover, we prove the desired Markov chains
of the auxiliary random variables that arise in the typical
single-letterization steps, in the asymptotic regimes of infinite
blocklengths. The proof technique of using asymptotic Markov
chains in connection with change of measure arguments can
also be used to prove strong converse results of source coding
and channel coding theorems, see [41] for first results.

Interesting future research directions include results for
other types of hypothesis testing, not necessarily testing
against independence or not assuming a Markov chain under
the null hypothesis. Other network structures are also of
practical importance. Intriguing following-up questions exist
also from an optimization perspective. For example, finding
the optimal rate-distribution across the various links so as to
maximize a weighted sum of the exponents.
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APPENDIX A
PROOF OF LEMMA 1: CONCAVITY AND MONOTONICITY OF

THE FUNCTION η1

The function η1(R) is monotonically non-decreasing be-
cause larger values of R imply larger optimization domains.
Continuity follows simply by the continuity of mutual infor-
mation.

The concavity of η1(R) follows by the following arguments.
Consider rates R and R̃, and let U∗ and Ũ∗ be the corre-
sponding solutions to the optimizations in the definition of
η1. Pick any λ ∈ [0, 1], define Q ∼ Bern(λ) independent of
(Y0, Y1, U

∗, Ũ∗), and set

U∗Q =

{
U∗ if Q = 0

Ũ∗ if Q = 1.
(196)

Defining the random variable V := (U∗Q, Q), we obtain

λ · η1(R) + (1− λ) · η1(R̃)

= λI(U∗;Y1) + (1− λ)I(Ũ∗;Y1) (197)
= I(U∗Q;Y1|Q) (198)
= I(U∗Q, Q;Y1) (199)
= I(V ;Y1) (200)
≤ η1(I(V ;Y0)) (201)
≤ η1(λR+ (1− λ)R̃) (202)

where (199) holds because Q is independent of Y1, (201)
holds by the definition of the function η1, and (202) holds
by the monotonicity of the function η1 and the following set
of (in)equalities:

I(V ;Y0) = I(U∗Q, Q;Y0) = I(U∗Q;Y0|Q) (203)

= λI(U∗;Y0) + (1− λ)I(Ũ∗;Y0) (204)
≤ λR+ (1− λ)R̃. (205)

�

APPENDIX B
ANALYSIS OF THE CODING SCHEME IN SUBSECTION IV-A

FOR ε1 = ε2 = ε

Consider the two-hop scheme employed when Y n0 ∈ D{1,2},
and let Ĥ{1,2},1 and Ĥ{1,2},2 denote the guesses produced at
R1 and R2 when employing this scheme for any Y n0 ∈ Yn0 .
Notice that by assumption the type-I error probabilities of this
scheme tend to 0 as n→∞:

lim
n→∞

Pr[Ĥ{1,2},k = 1|H = 0] = 0, k ∈ {1, 2}. (206)
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Noticing that when Y n0 ∈ D∅, then Ĥ1 = Ĥ2 = 1, and
applying the total law of probability, we can write for k ∈
{1, 2}:

αk,n = Pr[Ĥk = 1|H = 0] (207)

= Pr[Ĥk = 1, Y n0 ∈ D∅|H = 0]

+ Pr[Ĥk = 1, Y n0 ∈ D{1,2}|H = 0] (208)
= Pr[Y n0 ∈ D∅|H = 0]

+ Pr[Ĥ{1,2},k = 1, Y n0 ∈ D{1,2}|H = 0] (209)
≤ Pr[Y n0 ∈ D∅|H = 0]

+ Pr[Ĥ{1,2},k = 1|H = 0] (210)

Combining these inequalities with (206), and because in
the limit n → ∞ Inequality (17) turns into an equality, we
conclude that the overall scheme satisfies the type-I error
constraints:

lim
n→∞

αk,n ≤ ε, k ∈ {1, 2}. (211)

For the type-II error probabilities of the overall scheme we
observe for k ∈ {1, 2}:

β1,n = Pr[Ĥk = 0|H = 1] (212)

= Pr[Ĥk = 0, Y n0 ∈ D∅|H = 1]

+ Pr[Ĥk = 0, Y n0 ∈ D{1,2}|H = 1] (213)

= Pr[Ĥk = 0, Y n0 ∈ D{1,2}|H = 1] (214)

= Pr[Ĥ{1,2},k = 0, Y n0 ∈ D{1,2}|H = 1] (215)

≤ Pr[Ĥ{1,2},k = 0|H = 1]. (216)

The type-II error exponents of the overall scheme are thus
given by the error exponents of the two-hop scheme employed
under Y n0 ∈ D{1,2}. By [27] and because the two-hop scheme
has to have vanishing type-I error probabilities and respect the
rate constraints R{1,2},1 and R{1,2},2, the exponents in (31)
are proved achievable.

APPENDIX C
ANALYSIS OF THE CODING SCHEME IN SUBSECTION IV-B

FOR ε2 > ε1

Consider the two-hop scheme employed when Y n0 ∈ D{1,2},
and let Ĥ{1,2},1 and Ĥ{1,2},2 denote the guesses produced at
R1 and R2 when employing this scheme for any yn0 ∈ Yn0 .
Similarly, let Ĥ{1},1 and Ĥ{1},2 denote the guesses produced
at R1 and R2 when employing the scheme for Y n0 ∈ D{1},
where we again extend the scheme to the entire set Y0.

By assumption, the type-I error probabilities of these
schemes tend to 0 as n→∞:

lim
n→∞

Pr[Ĥ{1},k = 1|H = 0] = 0, k ∈ {1, 2} (217a)

lim
n→∞

Pr[Ĥ{1,2},k = 1|H = 0] = 0, k ∈ {1, 2}.(217b)

Notice that for Y n0 ∈ D∅ both R1 and R2 decide on Ĥ1 =
Ĥ2 = 1. Applying the total law of probability, we can write

α1,n = Pr[Ĥ1 = 1|H = 0] (218)

= Pr[Ĥ1 = 1, Y n0 ∈ D∅|H = 0]

+ Pr[Ĥ1 = 1, Y n0 ∈ D{1}|H = 0]

+ Pr[Ĥ1 = 1, Y n0 ∈ D{1,2}|H = 0] (219)
= Pr[Y n0 ∈ D∅|H = 0]

+ Pr[Ĥ{1},1 = 1, Y n0 ∈ D{1}|H = 0]

+ Pr[Ĥ{1,2},1 = 1, Y n0 ∈ D{1,2}|H = 0] (220)
≤ Pr[Y n0 ∈ D∅|H = 0]

+ Pr[Ĥ{1},1 = 1|H = 0]

+ Pr[Ĥ{1,2},1 = 1|H = 0] (221)

Combining this inequality with (217), and because in the limit
n → ∞ Inequality (128) turns into an equality, we conclude
that the overall scheme satisfies the type-I error constraint:

lim
n→∞

α1,n ≤ ε1. (222)

Similarly we have:

α2,n = Pr[Ĥ2 = 1|H = 0] (223)

= Pr[Ĥ2 = 1, Y n0 ∈ (D∅ ∪ D{1})|H = 0]

+ Pr[Ĥ2 = 1, Y n0 ∈ D{1,2}|H = 0] (224)
= Pr[Y n0 ∈ (D∅ ∪ D{1})|H = 0]

+ Pr[Ĥ{1,2},2 = 1, Y n0 ∈ D{1,2}|H = 0] (225)
≤ Pr[Y n0 ∈ (D∅ ∪ D{1})|H = 0] (226)

+ Pr[Ĥ{1,2},2 = 1|H = 0]. (227)

Combining this inequality with (217), and because in the limit
n → ∞ Inequalities (21a) and (128) turn into equalities,
we conclude that the overall scheme satisfies the type-I error
constraint:

lim
n→∞

α2,n ≤ ε2. (228)

For the relay’s type-II error probability in the overall scheme
we observe:

β1,n = Pr[Ĥ1 = 0|H = 1] (229)

= Pr[Ĥ1 = 0, Y n0 ∈ D∅|H = 1]

+ Pr[Ĥ1 = 0, Y n0 ∈ D{1}|H = 1]

+ Pr[Ĥ1 = 0, Y n0 ∈ D{1,2}|H = 1] (230)

= Pr[Ĥ1 = 0, Y n0 ∈ D{1}|H = 1]

+ Pr[Ĥ1 = 0, Y n0 ∈ D{1,2}|H = 1] (231)

= Pr[Ĥ{1},1 = 0, Y n0 ∈ D{1}|H = 1]

+ Pr[Ĥ{1,2},1 = 0, Y n0 ∈ D{1,2}|H = 1] (232)

≤ Pr[Ĥ{1},1 = 0|H = 1]

+ Pr[Ĥ{1,2},1 = 0|H = 1]. (233)

The relay’s type-II error exponent of the overall scheme is thus
given by the minimum of the error exponents of the single-hop
scheme employed under Y n0 ∈ D{1} and of two-hop scheme
employed under Y n0 ∈ D{1,2}. By [4] and [27] and because
these schemes have vanishing type-I error probabilities and
respect the rate constraints R{1},1 and (R{1,2},1, R{1,2},2),
respectively, the exponent θ1 in (32) is proved achievable.

It remains to analyze the receiver’s type-II error exponent:

β2,n = Pr[Ĥ2 = 0|H = 1] (234)

= Pr[Ĥ2 = 0, Y n0 ∈ (D∅ ∪ D{1})|H = 1]
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+ Pr[Ĥ2 = 0, Y n0 ∈ D{1,2}|H = 1] (235)

= Pr[Ĥ2 = 0, Y n0 ∈ D{1,2}|H = 1] (236)

= Pr[Ĥ{1,2},2 = 0, Y n0 ∈ D{1,2}|H = 1] (237)

≤ Pr[Ĥ{1,2},2 = 0|H = 1]. (238)

The receiver’s type-II error exponent of the overall scheme
is thus given by the error exponent of the two-hop scheme
employed under Y n0 ∈ D{1,2}. By [27] and because this
scheme has vanishing type-I error probabilities and respects
the rate constraints (R{1,2},1, R{1,2},2), the exponent θ2 in
(32) is proved achievable.

APPENDIX D
SIMPLIFICATION OF THE OUTER BOUND IN PROPOSITION 3

We proceed to simplify the outer bound in Proposition 3
depending on the cases ε1 = ε2, ε1 < ε2, or ε1 > ε2. To this
end, fix an exponent pair (θ1, θ2) in E?(R1, R2, ε1, ε2), rates
R{1},1, R{1,2},1, R{1,2},2, R{2},1, R{2},2 ≥ 0 and numbers
σ{1}, σ{2}, σ{1,2} ≥ 0 summing to less than 1 and satisfying
constraints (54).

1) The case ε1 = ε2: By (54):

θ1 ≤ min{η1(R{1},1), η1(R{1,2},1)} (239)

≤
σ{1}η1(R{1},1) + σ{1,2}η1(R{1,2},1)

σ{1} + σ{1,2}
(240)

≤ η1

(
σ{1}R{1},1 + σ{1,2}R{1,2},1

σ{1} + σ{1,2}

)
(241)

≤ η1 (R1/(1− ε)) , (242)

where (240) holds because the minimum is never larger than
any linear combination; (241) holds by the concavity of the
function η1(·); and (242) holds by the monotonicity of the
function η1(·) and because by (54) we have σ{1}R{1},1 +
σ{1,2}R{1,2},1 ≤ R1 and σ{1} + σ{1,2} ≥ 1− ε.

Following similar steps, one can prove that

θ2 ≤ min
{
η1

(
R{1,2},1

)
+ η2

(
R{1,2},2

)
,

η1

(
R{2},1

)
+ η2

(
R{2},2

)}
(243)

≤
σ{2}η1

(
R{2},1

)
+ σ{2}η2

(
R{2},2

)
σ{2} + σ{1,2}

+
σ{1,2}η1

(
R{1,2},1

)
+ σ{1,2}η2

(
R{1,2},2

)
σ{2} + σ{1,2}

(244)

≤ η1

(
σ{2}R{2},1 + σ{1,2}R{1,2},1

σ{2} + σ{1,2}

)
+η2

(
σ{2}R{2},2 + σ{1,2}R{1,2},2

σ{2} + σ{1,2}

)
(245)

≤ η1 (R1/(1− ε)) + η2 (R2/(1− ε)) , (246)

where (244) holds again because the minimum is never larger
than any linear combination; (245) holds by the concavity of
the functions η1(·) and η2(·); and (246) holds because by (54)
we have σ{2}R{2},i+σ{1,2}R{1,2},i ≤ Ri, for i ∈ {1, 2}, and
σ{2} + σ{1,2} ≥ 1− ε.

This concludes the converse proof to (31).

2) The case ε1 < ε2: Choose nonnegative numbers
a1, a1,2, b1, b1,2, c1,2 satisfying

a1 + a1,2 ≤ σ{1} (247a)
b1 + b1,2 ≤ σ{1,2} (247b)

c1,2 ≤ σ{2} (247c)
a1,2 + b1,2 = b1,2 + c1,2 = 1− ε2 (247d)

a1 + b1 = ε2 − ε1. (247e)

Notice that this set of (in)equalities is equivalent to the two
equalities a1,2 = c1,2 = 1 − ε2 − b1,2 and a1 = ε2 − ε1 − b1
and the three inequalities:

1− ε1 − b1,2 − b1 ≤ σ{1} (248a)
b1 + b1,2 ≤ σ{1,2} (248b)

1− ε2 − b1,2 ≤ σ{2}. (248c)

Through the Fourier-Motzkin Elimination (FME) Algorithm,
it can be verified that above three inequalities (248) have
a nonnegative solution pair (b1, b1,2), with corresponding
nonnegative values for a1,2, c1,2, a1, whenever

0 ≤ σI , I ∈ P(2), (249a)
1− εi ≤ σ{i} + σ{1,2}, i ∈ {1, 2}, (249b)

0 ≤ ε2 − ε1, (249c)

which hold by assumption, see (54). The existence of the
desired nonnegative numbers a1, a1,2, b1, b1,2, c1,2 satisfying
(247) is thus established.

With the chosen numbers, we form

R̃{1,2},1 := max

{
a1,2R{1},1 + b1,2R{1,2},1

1− ε2
,

b1,2R{1,2},1 + c1,2R{2},1

1− ε2

}
, (250a)

R̃{1,2},2 :=
b1,2R{1,2},2 + c1,2R{2},2

1− ε2
, (250b)

R̃{1},1 :=
a1R{1},1 + b1R{1,2},1

ε2 − ε1
. (250c)

We show that exponents (θ1, θ2) and rates R̃{1},1, R̃{1,2},1
and R̃{1,2},2 satisfy constraints (32). To this end, notice that

θ1 ≤ min{η1(R{1},1), η1(R{1,2},1)} (251)

≤
a1η1(R{1},1) + b1η1(R{1,2},1)

ε2 − ε1
(252)

≤ η1

(
a1R{1},1 + b1R{1,2},1

ε2 − ε1

)
(253)

≤ η1

(
R̃{1},1

)
, (254)

where (252) holds because the minimum is smaller than any
linear combination and because a1 +b1 = ε2−ε1; (253) holds
by the concavity of the function η1(·); and (254) holds by the
definition of rate R{1},1. In a similar way we have:

θ1 ≤ min
{
η1

(
R{1},1

)
, η1

(
R{1,2},1

)}
(255)

≤
a1,2η1

(
R{1},1

)
+ b1,2η1

(
R{1,2},1

)
1− ε2

(256)
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≤ η1

(
a1,2R{1},1 + b1,2R{1,2},1

1− ε2

)
(257)

≤ η1

(
R̃{1,2},1

)
, (258)

where the last step holds by the monotonicity of the
function η1(·) and because by definition R̃{1,2},1 ≥
a1,2R{1},1+b1,2R{1,2},1

1−ε2 . Thus, by (254) and (258):

θ1 ≤ min
{
η1

(
R̃{1},1

)
, η1

(
R̃{1,2},1

)}
. (259)

We continue to notice

θ2 ≤ min
{
η1

(
R{1,2},1

)
+ η2

(
R{1,2},2

)
,

η1

(
R{2},1

)
+ η2

(
R{2},2

)}
(260)

≤
b1,2η1

(
R{1,2},1

)
+ b1,2η2

(
R{1,2},2

)
1− ε2

+
c1,2η1

(
R{2},1

)
+ c1,2η2

(
R{2},2

)
1− ε2

(261)

≤ η1

(
b1,2R{1,2},1 + c1,2R{2},1

1− ε2

)
+η2

(
b1,2R{1,2},2 + c1,2R{2},2

1− ε2

)
(262)

≤ η1

(
R̃{1,2},1

)
+ η2

(
R̃{1,2},2

)
, (263)

where (261) holds because the minimum is smaller than any
linear combination and because b1,2 + c1,2 = 1 − ε2; (262)
holds concavity of the functions η1(·) and η2(·); and (263)
holds by the definitions of rates R{1,2},1 and R{1,2},2 and by
the monotonicity of the function η1(·).

From the rate constraints in (54), we further obtain

R1 ≥ σ{1}R{1},1 + σ{2}R{2},1 + σ{1,2}R{1,2},1 (264)
≥ (a1 + a1,2)R{1},1 + c1,2R{2},1 + (b1 + b1,2)R{1,2},1

(265)

= (ε2 − ε1)

(
a1R{1},1 + b1R{1,2},1

ε2 − ε1

)
+(1− ε2)

(
a1,2R{1},1 + c1,2R{2},1 + b1,2R{1,2},1

1− ε2

)
(266)

≥ (ε2 − ε1)R̃{1},1 + (1− ε2)R̃{1,2},1 (267)

and

R2 ≥ σ{1,2}R{1,2},2 + σ{2}R{2},2 (268)
≥ b1,2R{1,2},2 + c1,2R{2},2 (269)

= (1− ε2)

(
b1,2R{1,2},2 + c1,2R{2},2

1− ε2

)
(270)

= (1− ε2)R̃{1,2},2, (271)

where inequalities (265) and (269) hold because a1 + a1,2 ≤
σ{1}, c1,2 ≤ σ{2}, and b1 +b1,2 ≤ σ{1,2}, see (247); and (267)
and (271) hold by the definitions of rates R̃{1},1, R̃{1,2},1, and
R̃{1,2},2 and because

a1,2R{1},1 + c1,2R{2},1 + b1,2R{1,2},1

≥ max{a1,2R{1},1 + b1,2R{1,2},1;

b1,2R{1,2},1 + c1,2R{2},1}. (272)

The desired converse result to (32) then follows by com-
bining (259), (263), (267), and (271), and by noticing that
by the monotonicity of the function η2(·) there is no loss in
optimality to restrict to rates R̃{1,2},2 = R2/(1− ε2).

3) The case ε1 > ε2: The proof is similar to the case ε1 <
ε2. We present it here for completeness.

Choose nonnegative numbers a1,2, b2, b1,2, c2, c1,2 satisfy-
ing

a1,2 ≤ σ{1} (273a)
b2 + b1,2 ≤ σ{1,2} (273b)
c2 + c1,2 ≤ σ{2} (273c)

a1,2 + b1,2 = b1,2 + c1,2 = 1− ε1 (273d)
b2 + c2 = ε1 − ε2, (273e)

which is equivalent to the three equalities a1,2 = c1,2 = 1 −
ε1 − b1,2 and c2 = ε1 − ε2 − b2 and the three inequalities

1− ε1 − b1,2 ≤ σ{1} (274a)
b2 + b1,2 ≤ σ{1,2} (274b)

1− ε2 − b2 − b1,2 ≤ σ{2}. (274c)

Through FME it can be shown that a nonnegative pair
(b2, b1,2) satisfying (274) exists and the corresponding values
for a1,2, c1,2, c2 are nonnegative whenever

0 ≤ σI , I ∈ P(2), (275a)
1− εi ≤ σ{i} + σ{1,2}, i ∈ {1, 2}, (275b)

0 ≤ ε1 − ε2, (275c)

which hold by assumption, see (54).
Define the new rates

R̃{1,2},1 := max

{
a1,2R{1},1 + b1,2R{1,2},1

1− ε1
,

b1,2R{1,2},1 + c1,2R{2},1

1− ε1

}
, (276)

R̃{1,2},2 :=
b1,2R{1,2},2 + c1,2R{2},2

1− ε1
, (277)

R̃{2},i :=
b2R{1,2},i + c2R{2},i

ε1 − ε2
, i ∈ {1, 2} (278)

We show that the exponents θ1, θ2 and the rates R̃{2},1,R̃{2},2,
R̃{1,2},1 and R̃{1,2},2 satisfy constraints (33). To this end, no-
tice that by similar arguments as in the preceding subsections:

θ1 ≤ min
{
η1

(
R{1},1

)
, η1

(
R{1,2},1

)}
(279)

≤
a1,2η1

(
R{1},1

)
+ b1,2η1

(
R{1,2},1

)
1− ε1

(280)

≤ η1

(
a1,2R{1},1 + b1,2R{1,2},1

1− ε1

)
(281)

≤ η1

(
R̃{1,2},1

)
. (282)

Moreover,

θ2 ≤ min
{
η1

(
R{1,2},1

)
+ η2

(
R{1,2},2

)
,

η1

(
R{2},1) + η2(R{2},2)

}
(283)
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≤
b1,2η1

(
R{1,2},1

)
+ b1,2η2

(
R{1,2},2

)
1− ε1

+
c1,2η1

(
R{2},1

)
+ c1,2η2

(
R{2},2

)
1− ε1

(284)

≤ η1

(
b1,2R{1,2},1 + c1,2R{2},1

1− ε1

)
+η2

(
b1,2R{1,2},2 + c1,2R{2},2

1− ε1

)
(285)

≤ η1

(
R̃{1,2},1

)
+ η2

(
R̃{1,2},2

)
(286)

and

θ2 ≤
b2η1

(
R{1,2},1

)
+ b2η2

(
R{1,2},2

)
ε1 − ε2

+
c2η1

(
R{2},1

)
+ c2η2

(
R{2},2

)
ε1 − ε2

(287)

≤ η1

(
b2R{1,2},1 + c2R{2},1

ε1 − ε2

)
+η2

(
b2R{1,2},2 + c2R{2},2

ε1 − ε2

)
(288)

≤ η1

(
R̃{2},1

)
+ η2

(
R̃{2},2

)
. (289)

Combining (286) and (289) we obtain:

θ2 ≤ min

{
η1

(
R̃{1,2},1

)
+ η1

(
R̃{1,2},2

)
,

η1

(
R̃{2},1

)
+ η1

(
R̃{2},2

)}
. (290)

From the rate constraints in (54), inequalities (273), and
the definitions of the rates R̃{2},1, R̃{2},2, R̃{1,2},1, R̃{1,2},2,
we obtain:

R1 ≥ σ{1}R{1},1 + σ{1,2}R{1,2},1 + σ{2}R{2},1 (291)
≥ a1,2R{1},1 + (c2 + c1,2)R{2},1 + (b2 + b1,2)R{1,2},1

(292)

= (ε1 − ε2)

(
b2R{1,2},1 + c2R{2},1

ε1 − ε2

)
+(1− ε1)

(
a1,2R{1},1 + c1,2R{2},1 + b1,2R{1,2},1

1− ε1

)
(293)

≥ (ε1 − ε2)R̃{2},1 + (1− ε1)R̃{1,2},1 (294)

and

R2 ≥ σ{1,2}R{1,2},2 + σ{2}R{2},2 (295)
≥ (b2 + b1,2)R{1,2},2 + (c2 + c1,2)R{2},2 (296)

= (1− ε1)

(
b1,2R{1,2},2 + c1,2R{2},2

1− ε1

)
+(ε1 − ε2)

(
b2R{1,2},2 + c2R{2},2

1− ε1

)
(297)

= (1− ε1)R̃{1,2},2 + (ε1 − ε2)R̃{2},2. (298)

Combining (282), (290), (294), and (298) establishes the
desired converse result in (33).

APPENDIX E
ANALYSIS OF THE CODING SCHEME IN SECTION VII-C
Consider the `∗I-hop hypothesis testing scheme employed

when Y n0 ∈ DI , for I ∈ P(K). For any I ∈ P(K),
let ĤI,1, . . . , ĤI,`∗I denote the guesses produced at terminals
1, . . . , `∗I when employing this scheme.

By assumption, the type-I error probabilities of these deci-
sions tend to 0 as n→∞ for any I ∈ P(K):

lim
n→∞

Pr[ĤI,k = 1|H = 0, Y n0 ∈ DI ] = 0, k ∈ I.
(299)

Recalling that decision center k declares Ĥk = 1 whenever
Y n0 ∈ D∅ or Y n0 ∈ DI for a set I not containing k, and
applying the total law of probability, we can write

αk,n = Pr[Ĥk = 1|H = 0] (300)

=
∑

I∈(P(K)∪∅)

Pr[Ĥk = 1, Y n0 ∈ DI |H = 0] (301)

= Pr[Y n0 ∈ D∅|H = 0] +
∑

I∈P(K) :
k/∈I

Pr[Y n0 ∈ DI |H = 0]

+
∑

I∈P(K) :
k∈I

Pr[Ĥk = 1, Y n0 ∈ DI |H = 0] (302)

≤ Pr[Y n0 ∈ D∅|H = 0] +
∑

I∈P(K) :
k/∈I

Pr[Y n0 ∈ DI |H = 0]

+
∑

I∈P(K) :
k∈I

Pr[ĤI,k = 1|H = 0, Y n0 ∈ DI ]. (303)

Combining this inequality with (299), and by Inequalities
(109), we conclude that the overall scheme satisfies the type-I
error constraints:

lim
n→∞

αk,n ≤ εk, k ∈ {1, . . . ,K}. (304)

For the type-II error exponent at a decision center k we
observe:

βk,n = Pr[Ĥk = 0|H = 1] (305)

=
∑

I∈(P(K)∪∅)

Pr[Ĥk = 0, Y n0 ∈ DI |H = 1] (306)

=
∑

I∈P(K) :
k∈I

Pr[ĤI,k = 0, Y n0 ∈ DI |H = 1] (307)

≤
∑

I∈P(K) :
k∈I

Pr[ĤI,k = 0|H = 1, Y n0 ∈ DI ]. (308)

Defining

θk,I := lim
n→∞

− 1

n
log Pr[ĤI,k = 0|H = 1, Y n0 ∈ DI ], (309)

we conclude by (308) that the exponent

min
I∈P(K) :

k∈I

θk,I (310)

is achievable at decision center k. This proves in particular
that when applying an instance of the multi-hop scheme in
[28] for each set I ∈ P(K), the exponents θ1, . . . , θK in (5)
are proved achievable.
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APPENDIX F
PROOF OF LEMMA 5

To show sufficiency of (368), start by fixing
any set of nonnegative numbers {σI}I∈P(3), and
{RI,1, . . . , RI,`∗I}I∈P(3) satisfying (116) for K = 3,
(and possibly violating (368)). Choose new nonnegative
numbers σ̃{1,2,3}, σ̃{π(1),π(2)}, σ̃{π(1),π(3)}, σ̃{π(1)} satisfying

σ̃I ≤ σI , ∀I : π(1) ∈ I, (311)
σ̃{1,2,3} + σ̃{π(1),π(2)} ≥ 1− επ(1) − επ(2) (312)
σ̃{1,2,3} + σ̃{π(1),π(3)} ≥ 1− επ(1) − επ(3) (313)

and

σ̃{1,2,3} + σ̃{π(1),π(2)} + σ̃{π(1),π(3)} + σ̃{π(1)} = 1− επ(1).

(314)

The existence of the desired numbers can be checked by
applying the Fourier-Motzkin Elimination algorithm [45] and
by noting Constraints (116). Further choose for any set I
containing π(1) and ` ∈ {1, 2, 3} the rate:

R̃I,` := RI,`, (315)

and for any set I not containing π(1) and ` ∈ {1, 2, 3}:

σ̃I := σI + σIπ(1)
− σ̃Iπ(1)

(316)

R̃I,` :=
σI
σ̃I
RI,` +

σIπ(1)
− σ̃Iπ(1)

σ̃I
RIπ(1),`, (317)

where we defined Iπ(1) := I ∪ {π(1)}.
By Lemma 3, the new set of numbers {σ̃I}I∈P(3),

and {R̃I,1, . . . , R̃I,`∗I}I∈P(3) also satisfies Constraints (116),
which proves that one can restrict to numbers {σI}I∈P(3)

satisfying (368). Since επ(1) ≥ επ(2) and

σ{1,2,3} + σ{π(1),π(2)} + σ{π(2),π(3)} + σ{π(2)} ≥ 1− επ(2),
(318)

this further implies that one can restrict to numbers
{σI}I∈P(3) satisfying

σ{π(2),π(3)} ≥ σ{π(1),π(3)} + σ{π(1)} − σ{π(2)} (319)
≥ σ{π(1),π(3)} − σ{π(2)} − σ{π(1),π(2)}. (320)

We next show that one can further restrict to nonnegative
numbers satisfying also (369). To this end, assume that (369)
is violated and define

a := σ̃{π(1),π(3)} − σ̃{π(2)} − σ̃{π(1),π(2)} > 0. (321)

Define also the new parameters

σ′{1,2,3} := σ̃{1,2,3} + a (322)

σ′{π(3)} := σ̃{π(3)} + a (323)

σ′{π(1),π(3)} := σ̃{π(1),π(3)} − a (324)

σ′{π(2),π(3)} := σ̃{π(2),π(3)} − a (325)

σ′I := σ̃I , π(3) /∈ I, (326)

and the new rates

R′{1,2,3},` =
a
(
λ`R̃{π(1),π(3)},` + (1− λ`)R̃{π(2),π(3)},`

)
σ′{1,2,3}

+
σ̃{1,2,3}R̃{1,2,3},`

σ′{1,2,3}
, ` ∈ {1, 2, 3},

(327a)

R′{π(3)},` =
a
(

(1− λ`)R̃{π(1),π(3)},` + λ`R̃{π(2),π(3)},`

)
σ′{π(3)}

+
σ̃{π(3)}R̃{π(3)},`

σ′{π(3)}
, ` ∈ {1, . . . , π(3)}

(327b)
R′I,` = R̃I,`, I ∈ P(3)\{{1, 2, 3}, {π(3)}}. (327c)

Notice that by the definition of a and by (320), the parameters
{σ′I} are all nonnegative, and it is easily verified that they
continue to satisfy (116) for any choice of λ1, λ2, λ3 ∈ [0, 1].

We next choose the parameters λ1, λ2, λ3 ∈ [0, 1] in
function of the rates {R̃I,`} and the ordering π(·), and show
that for the proposed choice of rates in (327), the exponents
θ1, θ2, θ3 are only increased. We distinguish three cases.

For notational simplicity we assume π(1) < π(2). (The
proof for π(1) > π(2) is analogous.) This implies that

1 = π(1) < π(3) or 1 = π(3) < π(2) = 2 (328)

and

2 = π(2) < π(3) = 3 or π(3) < π(2) = 3. (329)

Case 1: If

η1

(
R̃{π(1),π(3)},1

)
≤ η1

(
R̃{π(2),π(3)},1

)
, (330)

choose

λ` = 0, ` ∈ {1, . . . , π(3)}, (331)

λ` = 1

{
R̃{π(1),π(3)},` ≥ R̃{π(2),π(3)},`

}
,

` ∈ {π(3) + 1, . . . , 3}. (332)

Using the same proof steps as in Lemma 3, it can be shown
that for this choice of the λs the new rates in (327) still satisfy
Constraint (116a) for θπ(3) because λ1 = · · · = λπ(3).

To see that they satisfy (116a) also for θπ(1), notice that:

min


π(1)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
,

π(1)∑
`=1

η`

(
R̃{1,2,3},`

)
≤ min


π(1)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
,

a

σ′{1,2,3}

π(1)∑
`=1

η`

(
R̃{π(1),π(3)},`

)

+
σ̃{1,2,3}

σ′{1,2,3}

π(1)∑
`=1

η`

(
R̃{1,2,3},`

) (333)

≤ min


π(1)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
,

a

σ′{1,2,3}
η1

(
R̃{π(2),π(3)},1

)
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+
a

σ′{1,2,3}
1 {π(1) = 2}

·max
{
η2

(
R̃{π(1),π(3)},2

)
, η2

(
R̃{π(2),π(3)},2

)}
+
σ̃{1,2,3}

σ′{1,2,3}

π(1)∑
`=1

η`

(
R̃{1,2,3},`

)
(334)

≤ min


π(1)∑
`=1

η`

(
R′{π(1),π(3)},`

)
,

π(1)∑
`=1

η`

(
R′{1,2,3},`

) .

(335)

where the second inequality holds by Assumption (330) and
the third inequality holds by the definitions of the rates
{R′{1,2,3},`} and by the concavity and monotonicity of the
functions {η`(·)}.

Similarly, we notice for θπ(2):

min


π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

π(2)∑
`=1

η`

(
R̃{1,2,3},`

)
≤ min


π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

a

σ′{1,2,3}

π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)

+
σ̃{1,2,3}

σ′{1,2,3}

π(2)∑
`=1

η`

(
R̃{1,2,3},`

) (336)

≤ min


π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

a

σ′{1,2,3}

min{π(2),π(3)}∑
`=1

η`

(
R̃{π(2),π(3)},`

)

+
a

σ′{1,2,3}

π(2)∑
`=π(3)+1

max
{
η`

(
R̃{π(1),π(3)},`

)
,

η`

(
R̃{π(2),π(3)},`

)}
+
σ̃{1,2,3}

σ′{1,2,3}

π(2)∑
`=1

η`

(
R̃{1,2,3},`

) (337)

≤ min


π(2)∑
`=1

η`

(
R′{π(2),π(3)},`

)
,

π(2)∑
`=1

η`

(
R′{1,2,3},`

) ,

(338)

where notice that the sum in the second line of (337) is empty
when π(2) ≤ π(3). Here, the last inequality holds by the
definitions of the rates {R′{1,2,3},`} and by the choice of the λs
and the concavity and monotonicity of the functions {η`(·)}`.

Case 2: If
2∑
`=1

η`

(
R̃{π(2),π(3)},`

)
≤

2∑
`=1

η`

(
R̃{π(1),π(3)},`

)
, (339)

choose

λ` = 1, ` ∈ {1, . . . ,max{2, π(3)}}, (340)

λ` = 1

{
R̃{π(1),π(3)},` ≥ R̃{π(2),π(3)},`

}
,

` ∈ {max{2, π(3)}+ 1, . . . , 3}. (341)

Using similar arguments as in the previous case, one can
conclude that the new rates in (327) still satisfy (116a). More
specifically, since λ1 = · · · = λπ(3) = 1 by (340), similar
proof steps as in Lemma 3 can be used to show that (116a)
holds for θπ(3).

To see that (116a) holds for θπ(2), recall that π(2) ≥ 2 and
notice:

min


π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

π(2)∑
`=1

η`

(
R̃{1,2,3},`

)
≤ min


π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

a

σ′{1,2,3}

π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)

+
σ̃{1,2,3}

σ′{1,2,3}

π(2)∑
`=1

η`

(
R̃{1,2,3},`

) (342)

≤ min


π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

a

σ′{1,2,3}

2∑
`=1

η`

(
R̃{π(1),π(3)},`

)
+

a

σ′{1,2,3}
1{π(2) = 3}

·max
{
η3

(
R̃{π(1),π(3)},3

)
, η3

(
R̃{π(2),π(3)},3

)}
+
σ̃{1,2,3}

σ′{1,2,3}

π(1)∑
`=1

η`

(
R̃{1,2,3},`

) (343)

≤ min


π(2)∑
`=1

η`

(
R′{π(2),π(3)},`

)
,

π(2)∑
`=1

η`

(
R′{1,2,3},`

) ,

(344)

where the second inequality holds by our assumption (339)
and since π(2) ≥ 2.

Finally, (116a) holds for θπ(1), because:

min


π(1)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
,

π(1)∑
`=1

η`

(
R̃{1,2,3},`

)
≤ min


π(1)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
,

a

σ′{1,2,3}

π(1)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
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+
σ̃{1,2,3}

σ′{1,2,3}

π(1)∑
`=1

η`

(
R̃{1,2,3},`

) (345)

≤ min


π(1)∑
`=1

η`

(
R′{π(1),π(3)},`

)
,

π(1)∑
`=1

η`

(
R′{1,2,3},`

) .

(346)

where the second inequality holds by the assumption π(1) <
π(2) and thus π(1) ≤ 2.

Case 3: Else, i.e., if

η1

(
R̃{π(1),π(3)},1

)
> η1

(
R̃{π(2),π(3)},1

)
(347)

and
2∑
`=1

η`

(
R̃{π(1),π(3)},`

)
<

2∑
`=1

η`

(
R̃{π(2),π(3)},`

)
. (348)

Choose
λ1 = 1, λ2 = λ, and λ3 = 0, (349)

for a value of λ ∈ [0, 1] so that the auxiliary rates

R̄{π(1),π(3)},2 := λR{π(1),π(3)},2 + (1− λ)R{π(2),π(3)},2 (350)
R̄{π(2),π(3)},2 := (1− λ)R{π(1),π(3)},2 + λR{π(2),π(3)},2 (351)

satisfy

η1

(
R̃{π(1),π(3)},1

)
+ η2

(
R̄{π(1),π(3)},2

)
=

2∑
`=1

η`

(
R̃{π(2),π(3)},`

)
(352)

η1

(
R̃{π(2),π(3)},1

)
+ η2

(
R̄{π(2),π(3)},2

)
≥

2∑
`=1

η`

(
R̃{π(1),π(3)},`

)
. (353)

Existence of the desired choice of λ can be seen as follows.
Notice first that for λ = 0, relation (352) holds with a > sign
because of Assumption (347). For λ = 1, relation (352) holds
with a < sign because of Assumption (348). By the continuity
of the functions {η`(·)} and the intermediate value theorem,
there is thus a value λ ∈ (0, 1) such that (352) holds with
equality. Let λ be this value and notice that by the concavity
of the functions {η`(·)}:

η1

(
R̃{π(1),π(3)},1

)
+ η2

(
R̄{π(1),π(3)},2

)
+η1

(
R̃{π(2),π(3)},1

)
+ η2

(
R̄{π(2),π(3)},2

)
≥

2∑
`=1

η`

(
R̃{π(1),π(3)},`

)
+

2∑
`=1

η`

(
R̃{π(2),π(3)},`

)
, (354)

which combined with (352) implies (353).
Now that we established the existence of the desired value

λ, we continue to show that for the choice in (349), Constraints
(116a) remain valid. For θπ(1) this can be verified through the
following steps, where recall that π(1) ≤ 2:

min


π(1)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
,

π(1)∑
`=1

η`

(
R̃{1,2,3},`

)

≤ min


π(1)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
,

a

σ′{1,2,3}

π(1)∑
`=1

η`

(
R̃{π(1),π(3)},`

)

+
σ̃{1,2,3}

σ′{1,2,3}

π(1)∑
`=1

η`

(
R̃{1,2,3},`

) (355)

= min


π(1)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
,

a

σ′{1,2,3}

(
η1

(
R̃{π(1),π(3)},1

)
+ 1 {π(1) = 2} · η2

(
R̄{π(1),π(3)},2

))
+
σ̃{1,2,3}

σ′{1,2,3}

π(1)∑
`=1

η`

(
R̃{1,2,3},`

) (356)

≤ min


π(1)∑
`=1

η`

(
R′{π(1),π(3)},`

)
,

π(1)∑
`=1

η`

(
R′{1,2,3},`

) ,

(357)

where the second inequality holds since π(1) ≤ 2, and
by (348) and (352), and the last inequality holds by the
definitions of the rates {R′{1,2,3},`}, the choice of the λs, and
the concavity and monotonicity of the functions {η`(·)}.

To verify that Constraint (116a) remains valid for θπ(2),
recall that π(2) ≥ 2 and notice:

min


π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

π(2)∑
`=1

η`

(
R̃{1,2,3},`

)
≤ min


π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

a

σ′{1,2,3}

π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)

+
σ̃{1,2,3}

σ′{1,2,3}

π(2)∑
`=1

η`

(
R̃{1,2,3},`

) (358)

= min


π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

a

σ′{1,2,3}

2∑
`=1

η`

(
R̃{π(2),π(3)},`

)
+

a

σ′{1,2,3}
1 {π(2) = 3} · η3

(
R̃{π(2),π(3)},3

)
+
σ̃{1,2,3}

σ′{1,2,3}

π(2)∑
`=1

η`

(
R̃{1,2,3},`

) (359)

= min


π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,
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a

σ′{1,2,3}

(
η1

(
R̃{π(1),π(3)},1

)
+ η2

(
R̄{π(1),π(3)},2

))
+

a

σ′{1,2,3}
1 {π(2) = 3} · η3

(
R̃{π(2),π(3)},3

)
+
σ̃{1,2,3}

σ′{1,2,3}

π(2)∑
`=1

η`

(
R̃{1,2,3},`

) (360)

≤ min


π(2)∑
`=1

η`

(
R′{π(2),π(3)},`

)
,

π(2)∑
`=1

η`

(
R′{1,2,3},`

) . (361)

Here, the second equality holds by (352).
Finally, to see that Constraint (116a) is also satisfied for

θπ(3), we distinguish two cases. If π(3) = 1, the proof is
similar to the proof of Lemma 3 because λ1 = 1. For the
proof in the case π(3) ≥ 2, notice first:

min


π(3)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

π(3)∑
`=1

η`

(
R̃{1,2,3},`

)
≤ min


π(3)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

a

σ′{1,2,3}

π(3)∑
`=1

η`

(
R̃{π(2),π(3)},`

)

+
σ̃{1,2,3}

σ′{1,2,3}

π(3)∑
`=1

η`

(
R̃{1,2,3},`

) (362)

= min


π(3)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

a

σ′{1,2,3}
η1

(
R̃{π(1),π(3)},1

)
+

a

σ′{1,2,3}
η2

(
R̄{π(1),π(3)},2

)
+

a

σ′{1,2,3}
1{π(3) = 3} . η`

(
R̃{π(2),π(3)},`

)
+
σ̃{1,2,3}

σ′{1,2,3}

π(3)∑
`=1

η`

(
R̃{1,2,3},`

)
(363)

≤ min


π(3)∑
`=1

η`

(
R′{π(2),π(3)},`

)
,

π(3)∑
`=1

η`

(
R′{1,2,3},`

) ,

(364)

where the equality holds by Assumption (352).
Notice further that

min


π(3)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
,

π(3)∑
`=1

η`

(
R̃{π(3)},`

)
≤ min


π(3)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
,

a

σ′{π(3)}

π(3)∑
`=1

η`

(
R̃{π(1),π(3)},`

)

+
σ̃{π(3)}

σ′{π(3)}

π(3)∑
`=1

η`

(
R̃{π(3)},`

) (365)

≤ min


π(3)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
,

a

σ′{π(3)}
η1

(
R̃{π(2),π(3)},1

)
+

a

σ′{π(3)}
η2

(
R̄{π(2),π(3)},2

)
+

a

σ′{π(3)}
1{π(3) = 3} . η3

(
R̃{π(1),π(3)},3

)
+
σ̃{π(3)}

σ′{π(3)}

π(3)∑
`=1

η`

(
R̃{1,2,3},`

) (366)

≤ min


π(3)∑
`=1

η`

(
R′{π(1),π(3)},`

)
,

π(3)∑
`=1

η`

(
R′{π(3)},`

) , (367)

where the second inequality holds by (353).

APPENDIX G
CONVERSE PROVE TO PROPOSITION 7

We start with two auxiliary lemmas.
Lemma 5: Let K = 3. In Theorem 5 it suffices to consider

values {σI}I∈P(3) so that

σ{1,2,3} + σ{π(1),π(2)} + σ{π(1),π(3)} + σ{π(1)} = 1− επ(1)

(368)
σ{π(1),π(2)} + σ{π(2)} ≥ σ{π(1),π(3)}

(369)

Proof: See Appendix F.
We thus continue with nonnegative numbers {σI}I∈P(3),

and {RI,1, . . . , RI,`∗I}I∈P(3) satisfying (116) for K = 3 as
well as (369). The proof of the desired proposition follows
by the next lemma (which holds for any positive integer K)
and by an appropriate choice of parameters {cJ }, see (390)
ahead.

Lemma 6: Let

{cJ : J ∈ P(K)}, (370)
{δI,J : I,J ∈ P(K) and I ∩ J 6= ∅} (371)

be sets of nonnegative integers satisfying∑
J∈P(K) :
I∩J 6=∅

δI,J ≤ σI , I ∈ P(K), (372)

and ∑
I∈P(K) :

k∈I

δI,J ≥ cJ , ∀k ∈ J , J ∈ P(K). (373)
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Then, the rates

R̃J ,k := max
j∈J :
j≥k

∑
I∈P(K) :

j∈I

δI,J
cJ

RI,k,

k ≤ `∗J ,J ∈ P(K). (374)

satisfy the following inequalities:

θk ≤ min
J∈P(K) :

k∈J

k∑
`=1

η`

(
R̃J ,`

)
, k ∈ {1, . . . ,K}, (375)

and

Rk ≥
∑

J∈P(K) :
k≤`∗J

cJ · R̃J ,k, k ∈ {1, . . . ,K}. (376)

Proof: We start by proving (375). By (116a), for any
k ∈ {1, . . . ,K} and any set J ⊆ P(K) containing index k:

θk ≤ min
I∈P(K) :

k∈I

k∑
`=1

η`(RI,`) (377)

≤
∑

I∈P(K) :
k∈I

δI,J∑
I∈P(K) :

k∈I
δI,J

·
k∑
`=1

η`(RI,`) (378)

≤
k∑
`=1

η`

 ∑
I∈P(K) :

k∈I

δI,J∑
I∈P(K) :

k∈I
δI,J

·RI,`

 (379)

≤
k∑
`=1

η`

 ∑
I∈P(K) :

k∈I

δI,J
cJ
·RI,`

 (380)

≤
k∑
`=1

η`

(
R̃J ,`

)
, (381)

where (378) holds because the minimum of a set of numbers
is never larger than any convex combination of these numbers;
(379) holds by the concavity of the functions η1(·), . . . , ηk(·);
(380) holds by assumption (373) and by the monotonicity of
the functions η1(·), . . . , ηk(·); and (381) holds by the definition
of R̃J ,k in (374) because k ≥ ` and k ∈ J thus ` ≤ `∗J .

To prove (376), fix k ∈ {1, . . . ,K} and for each subset
J ⊆ P(K) with `∗J ≥ k pick an index jJ ∈ J so that
jJ ≥ k. Then, by (116b):

Rk ≥
∑

I∈P(K) :
k≤`∗I

σI ·RI,k, (382)

≥
∑

I∈P(K) :
k≤`∗I

∑
J∈P(K) :
I∩J 6=∅

δI,J ·RI,k (383)

=
∑

J∈P(K)

∑
I∈P(K) :
k≤`∗I
I∩J 6=∅

δI,J ·RI,k (384)

≥
∑

J∈P(K) :
k≤`∗J

∑
I∈P(K) :
k≤`∗I
I∩J 6=∅

δI,J ·RI,k (385)

≥
∑

J∈P(K) :
k≤`∗J

∑
I∈P(K) :
k≤`∗I
jJ∈I

δI,JRI,k (386)

=
∑

J∈P(K) :
k≤`∗J

∑
I∈P(K) :
jJ∈I

δI,JRI,k (387)

=
∑

J∈P(K) :
k≤`∗J

cJ ·

∑
I∈P(K) :
jJ∈I

δI,JRI,k

cJ
, (388)

where (383) holds by Assumption (372); inequalities (385)
and (386) hold because we consider less summands and each
summand is nonnegative (recall that jJ ∈ J ); and finally (g)
holds because the two conditions jJ ≥ k and jJ ∈ I imply
that `∗I ≥ k.

The proof of the lemma is concluded by recalling the
definition of rate R̃J ,k in (374) and noting that Inequality
(381) holds for any set J containing k whereas Inequality
(388) holds for any index jJ ∈ J larger than k.

To obtain the desired simplification in Proposition 7 from
Theorem 5, define the subsets

Jk := {π(k), . . . , π(K)}, k ∈ {1, . . . ,K}, (389)

and the values π(0) := 0 and ε0 := 1. Applying above
Lemma 6 to the choice

cJ :=

{
επ(k−1) − επ(k), J = Jk,
0, otherwise,

(390)

establishes the converse to Conjecture 6 for general values of
K, if one renames rates R̃Jk,` as R̃k,`. The proof is concluded
by showing that above parameter choice is permissible, i.e.,
that there exist nonnegative numbers {δI,J } satisfying condi-
tions (372) and (373) for {cJ } in (390). For general values
of K this seems cumbersome.

For K = 3, this can be achieved by means of the Fourier-
Motzkin Elimination algorithm [45], which shows the exis-
tence of nonnegative numbers {δI,J } satisfying conditions
(372) and (373) for {cJ } in (390), whenever (redundant
conditions are omitted)

σ{1,2,3} + σ{π(1),π(2)} + σ{π(1),π(3)} + σ{π(1)} ≥ 1− επ(1)

(391a)
σ{1,2,3} + σ{π(1),π(2)} + σ{π(2),π(3)} + σ{π(2)} ≥ 1− επ(2)

(391b)
σ{1,2,3} + σ{π(1),π(3)} + σ{π(2),π(3)} + σ{π(3)} ≥ 1− επ(3)

(391c)

and

2σ{1,2,3} + 2σ{π(1),π(2)} + σ{π(1),π(3)} + σ{π(2),π(3)}

+σ{π(1)} + σ{π(2)} + σ{π(3)} ≥ 1− επ(1) + 1− επ(3).

(391d)

Since Conditions (391a)–(391c) are satisfied by Assumption
(116c) and Condition (391d) is implied by (391a), (391b), and
(369), this concludes the proof for K = 3 and thus establishes
Proposition 7.
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APPENDIX H
CONVERSE FOR THE CASE ε1 = · · · = εK

Define
φk ,

∑
I∈P(K) :

k∈I

σI (392)

and notice that by (116c):

φk ≥ 1− εk = 1− ε. (393)

By (116a) we have for any k ∈ {1, . . . ,K}:

θk ≤ min
I∈P(K) :

k∈I

k∑
`=1

η`(RI,`), (394)

≤
k∑
`=1

∑
I∈P(K) :

k∈I

σI
φk
η`(RI,`) (395)

≤
k∑
`=1

η`

 ∑
I∈P(K) :

k∈I

σI
φk
RI,`

 (396)

≤
k∑
`=1

η`

(
R`
φk

)
(397)

≤
k∑
`=1

η`

(
R`

1− ε

)
, (398)

where (395) holds because the minimum of a set of numbers
is smaller than any convex combination thereof; (396) holds
by the concavity of the functions η`(·); (397) holds by the
rate constraints (116b); and (398) holds by (393). This estab-
lishes the desired converse. Achievability follows by setting
σ{1,...,K} = 1− ε and all other σI = 0 in (116a).
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