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∗LTCI, Telecom ParisTech, Université Paris-Saclay, 75013 Paris, France
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§ETIS—Université Paris Seine, Université de Cergy-Pontoise, ENSEA, CNRS, Cergy-Pontoise, France

Abstract—The capacity of the multiple-input single-output
(MISO) free-space optical channel with a per-antenna peak-
power constraint and a sum (over all antennas) average-power
constraint is studied. The asymptotic low-signal-to-noise-ratio
(low-SNR) capacity is determined exactly and close upper and
lower bounds are presented in the low- and moderate-SNR
regimes. The asymptotic low-SNR limit is achieved by having
each transmit antenna signal either with zero or with the
maximally allowed peak power, and the latter only if all stronger
antennas also send at maximum peak power. In particular, for
almost all channel gains, the input to achieve the asymptotic
low-SNR capacity is such that its projection on the channel-gain
vector has only two or three positive probability point masses,
one of them being at zero. The lower bounds at finite SNR
are numerical and are obtained using input distributions whose
projection on the channel-gain vector has either two, three, or
four positive probability masses. Finally, the paper presents two
analytic upper bounds on the capacity of the MISO channel: the
first one closely follows the proposed numerical lower bounds in
the low-SNR regime, and the second one can improve on previous
bounds in the moderate-SNR regime.

I. INTRODUCTION AND CHANNEL MODEL

In optical wireless communication, visible, infrared, or
ultraviolet light is transmitted in free space to carry a message
to its destination [1]–[3]. Particularly attractive are simple
intensity-modulation–direct-detection (IM-DD) systems where
the transmitter modulates the intensity of optical signals
coming from light emitting diodes (LEDs) or laser diodes
(LDs), and the receiver measures incoming optical intensities
by means of photodetectors. As a first approximation, the noise
in such systems can be assumed Gaussian, and the inputs are
typically subject to both peak- and average-power constraints.
The peak power is limited mainly due to technical limitations
of the used components. The average-power constraint is
imposed by battery limitations and by safety considerations.
Notice that, unlike in radio communication, the average-power
constraint applies directly to the transmit signal and not to its
second moment, the reason being that the power of the transmit
signal is proportional to the optical intensity, which directly
relates to the transmit signal.

The main interest of this article is the capacity of such
free-space optical intensity channels. For the single-input and
single-output (SISO) scenario, where the transmitter employs
a single transmit LED or LD, and the receiver a single
photodetector, bounds on the capacity were presented in [4]–

[10]. They coincide asymptotically at high and low signal-
to-noise ratio (SNR) [6]. For the multiple-input and multiple-
output (MIMO) optical intensity channel, where the transmitter
is equipped with multiple LEDs or LDs, and the receiver
with multiple photodetectors, similar capacity bounds were
presented in [11], [12] for the special case where the channel
matrix has full column rank.

The current work considers the multiple-input and single-
output (MISO) channel. The asymptotic high-SNR capacity of
this channel was derived in [13]. The current work has the
following contributions.

• The capacity of the MISO channel is expressed as the
capacity of a SISO channel subject to complicated power
constraints (Lemma 1).

• The asymptotic low-SNR capacity slope is derived for
the MISO channel (Theorem 3).

• For almost all channel gains, we show that the asymptotic
low-SNR slope is achieved by an input distribution that
assigns either two or three point masses on the projection
of the inputs on the channel-gain vector (Lemma 2). One
of these point masses corresponds to setting all input
antennas to 0. Each of the other (one or two) point masses
corresponds to setting, for some k ∈ {1, . . . , nT}, the k
strongest antennas to the maximum allowed peak power
A and the remaining nT − k weaker antennas to 0.

• New upper bounds on the MISO capacity are presented
for finite SNRs (Proposition 4 and Theorem 7). In
the low-SNR regime, the first upper bound numerically
matches the lower bounds that are obtained by choosing
inputs as described above. The second upper bound
improves on both the first upper bound and the upper
bound in [13] in the moderate-SNR regime.

A. Channel Model

We consider a communication link where the transmitter is
equipped with nT LEDs (or LDs), nT ≥ 2, and the receiver
with a single photodetector. The photodetector receives a
superposition of the signals sent by the LEDs, and we assume
that the crosstalk between LEDs is constant. Hence, the
channel output is given by

Y = hTx + Z, (1)



where the nT-vector x = (x1, . . . , xnT)T denotes the channel
input, whose entries are proportional to the optical intensities
of the corresponding LEDs, and are therefore nonnegative:

xk ∈ R+
0 , k = 1, . . . , nT; (2)

where the length-nT row vector hT = (h1, . . . , hnT) is the
constant channel state vector with nonnegative entries, which,
without loss of generality, we assume to be ordered:

h1 ≥ h2 ≥ · · · ≥ hnT > 0; (3)

and where Z ∼ N
(
0, σ2

)
is additive Gaussian noise. Note

that, in contrast to the input x, the output Y can be negative.
Inputs are subject to a peak-power (peak-intensity) and an

average-power (average-intensity) constraint:

Pr
[
Xk > A

]
= 0, ∀ k ∈ {1, . . . , nT}, (4a)

nT∑
k=1

E
[
Xk

]
≤ E, (4b)

for some fixed parameters A,E > 0. Note that the average-
power constraint is on the expectation of the channel input and
not on its square. Also note that A describes the maximum
power of each single LED, while E describes the allowed
average total power of all LEDs together.

We denote the ratio between the allowed average power and
the allowed peak power by α:

α ,
E

A
. (5)

Throughout this paper we assume α < nT
2 . For α ≥ nT

2 the
average-power constraint is not active and the capacity is the
same as with only a peak-power constraint [14].

The capacity of the channel (1) is [15]

ChT,σ2(A,E) = sup
QX

I(X;Y ) (6)

where the supremum is over all laws QX on X =
(X1, . . . , XnT) satisfying (2), (4a), and (4b). It can be repre-
sented in an alternative form using the following definitions.
Let

s0 , 0 (7a)

sk ,
k∑

k′=1

hk′ , k ∈ {1, . . . , nT}, (7b)

and

X̄ , hTX =

nT∑
k=1

hkXk. (8)

Also, we define the random variable U over the alphabet
{1, . . . , nT} to indicate in which interval X̄ lies:

X̄ ∈ [Ask−1,Ask) =⇒ U = k, (9)

and U = nT if X̄ = AsnT . Let p = (p1, . . . , pnT) denote the
probability vector of U :

pk , Pr[U = k], k ∈ {1, . . . , nT}. (10)

Lemma 1: The MISO capacity satisfies

ChT,σ2(A, αA) = max
QX̄

I(X̄;Y ), (11)

where the maximization is over all laws on X̄ ∈ R+
0 satisfying

Pr
[
X̄ > snTA

]
= 0 (12a)

and
nT∑
k=1

pk

(
E[X̄ |U = k]−Ask−1

hk
+ (k − 1)A

)
≤ αA. (12b)

Proof: The proof follows mainly by the Markov chain
X (−− X̄ (−− Y and by noting that the ordering in (3)
implies that the most energy-efficient way of signaling is to
set Xk+1 = · · · = XnT = 0 whenever Xk = 0 and to set
X1 = · · · = Xk−1 = A whenever Xk > 0. Under such
signaling, constraints (12) are equivalent to constraints (4).

II. MAIN RESULTS

A. Asymptotic Low-SNR Capacity

The asymptotic low-SNR capacity of the MISO channel
is characterized by the maximum variance of X̄ under con-
straints (12), i.e., by

Vmax(A, αA) , max
QX̄

E
[(
X̄ − E[X̄]

)2]
, (13)

where the maximization is over all distributions on X̄ ∈ R+
0

satisfying (12).
Lemma 2:
1) The maximum variance Vmax(A, αA) can be achieved

by restricting QX̄ to the support set

{0, s1A, s2A, . . . , snTA}. (14)

2) The maximum variance Vmax(A, αA) satisfies

Vmax(A, αA) = A2γ (15)

where

γ , max
q1,..., qnT≥0:∑nT

k=1 qk≤1∑nT
k=1 k·qk≤α

{
nT∑
k=1

s2
kqk −

( nT∑
k=1

skqk

)2
}
. (16)

3) A solution q∗ = (q∗1 , . . . , q
∗
nT

) to the optimization prob-
lem (16) satisfies

∑nT
k=1 qk < 1 with strict inequality

and
∑nT
k=1 k · qk = α with equality. (It is assumed that

α ≤ nT
2 .)

4) Whenever

rank


1 1

s1
s1

1 2
s2

s2

...
...

...

1 nT
snT

snT

 = 3, (17)

the solution q∗ to (16) has at most two nonzero ele-
ments, i.e., under condition (17), the maximum variance



Vmax is achieved by an X̄∗ with positive probability
masses at 0 and at most two points from the set
{s1A, . . . , snTA}.

Proof: See Appendix A.
For many examples, the optimizing q∗ has only a single

positive entry, and thus Vmax is achieved by an X̄∗ that has
only two point masses (one of them at 0). Table I (on top of
the next page) presents some examples of maximum variances
Vmax and the probability mass functions of X̄∗ achieving Vmax.

In the low-SNR asymptotic regime, the capacity is deter-
mined by Vmax(A, αA). According to the above lemma and
the achievability proof of the following theorem, it is achieved
by an input X that puts only 2 or 3 mass points on X̄ . One
of these mass points being 0 and the other one or two mass
points are elements of {s1A, s2A, . . . , snTA}.

Theorem 3 (Low-SNR Asymptotics): The low-SNR asymp-
totic capacity slope is

lim
A↓0

ChT,σ2(A, αA)

A2/σ2
=
γ

2
, (18)

where γ is defined in (16).
Proof: The converse follows immediately from a finite-

SNR upper bound that we prove later; see Proposition 4.
Achievability follows from [16, Thm. 2], which states that

ChT,σ2(A, αA) ≥ Vmax(A, αA)

2σ2
+ o(A2), (19)

where o(A2) decreases to 0 faster than A2, i.e.,

lim
A↓0

o(A2)

A2 = 0. (20)

Note that the MISO channel under consideration in this paper
satisfies the technical conditions A–F in [16].

Example 1: Consider a two-LED MISO channel with chan-
nel gains h1 = 3 and h2 = 1. Figure 1 plots the low-SNR
slope of its capacity γ/2 as a function of the parameter α.
We notice that the low-SNR slope γ/2 is strictly increasing
for all values of α < nT

2 . Interestingly, this strict monotonicity
does not hold for the high-SNR asymptotic capacity, which
saturates at a threshold level below nT

2 ; see [14]. ♦

B. Finite-SNR Bounds

We present two analytic upper bounds and compare them to
numerical lower bounds. As we will see, our first bound is very
close to the actual capacity at low SNR. The second bound
can improve on previous bounds in the regime of moderate
SNR.

Proposition 4 (Upper Bound in Terms of Vmax): The capacity
is upper-bounded as

ChT,σ2(A, αA) ≤ 1

2
log

(
1 +

Vmax(A, αA)

σ2

)
. (21)

Proof: Since X̄ and Z are independent, we know that the
variance of Y cannot exceed Vmax(A, αA)+σ2, and therefore

h(Y ) ≤ 1

2
log 2πe

(
Vmax(A, αA) + σ2

)
. (22)
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Fig. 1. The low-SNR asymptotic slope γ/2, see (18), is depicted as a function
of α ∈ (0, 1) for the two-LED MISO channel with gains h1 = 3 and h2 = 1.

The bound follows by subtracting h(Z) = 1
2 log 2πeσ2 from

the above.
The second upper bound is based on the following two

propositions:
Proposition 5 (Upper Bound by SISO Capacity): Let X∗ be

a capacity-achieving input distribution for the MISO channel
with gain vector h. Define for all k ∈ {1, . . . , nT}:

p∗k , PrX∗ [U = k], (23a)

α∗k , EX∗

[
X̄ − sk−1A

hkA

∣∣∣∣U = k

]
. (23b)

The capacity of the MISO channel is upper-bounded as

ChT,σ2(A, αA) ≤ H(p∗) +

nT∑
k=1

p∗kC1,σ2(hkA, α
∗
khkA), (24)

and it holds that
nT∑
k=1

p∗k
(
α∗k + (k − 1)

)
≤ α. (25)

Proof: Omitted for brevity. See [14, Sec. 6, Eq. (88)].
Note that the SISO capacity C1,σ2 under peak- and average-

power constraints is itself unknown to date. Upper bounds on
it were given, for example, in [6, Eq. (12)]. We present here
a new upper bound.

Proposition 6 (Upper Bound on SISO Capacity): For any
µ > 0, the SISO capacity C1,σ2(A, αA) under peak-power
constraint A and average-power constraint αA is upper-
bounded as:

C1,σ2(A, αA)

≤ log

(
1 +

A√
2πe

1− e−µ

µ

)
+

1√
2π

µ

A

(
1− e−A2

2

)
+ µα

(
1− 2Q

(
A

2

))
. (26)



TABLE I
MAXIMUM VARIANCE FOR DIFFERENT CHANNEL COEFFICIENTS

channel gains α Vmax QX̄ achieving Vmax

h = (3, 2.2, 0.1) 0.9 6.6924A2 QX̄(0) = 0.55, QX̄(s2A) = 0.45

h = (3, 2.2, 1.1) 0.7 7.1001A2 QX̄(0) = 0.7667, QX̄(s3A) = 0.2333

h = (3, 1.5, 0.3) 0.95 5.1158A2 QX̄(0) = 0.5907, QX̄(s2A) = 0.2780, QX̄(s3A) = 0.1313

Proof: The proof is based on the duality-based upper
bound [17] and on a choice of the output distribution inspired
by [7] and [10]. See Appendix B for details.
We can now state our new upper bound on the MISO capacity.

Theorem 7: The MISO capacity is upper-bounded as:

ChT,σ2(A, αA)

≤ sup
p

inf
µ>0

{
H(p) +

nT∑
k=1

pk log

(
1 +

Ahk√
2πe
· 1− e−µ

µ

)

+
µ√
2πA

nT∑
k=1

pk
hk

(
1− e−

A2h2
k

2

)

+ µ

(
α−

nT∑
k=1

pk(k − 1)

)}
(27)

where the supremum is over vectors p = (p1, . . . , pnT)
satisfying

nT∑
k=1

pk(k − 1) ≤ α. (28)

Proof: Combine Propositions 5 and 6, and use the bound
1− 2Q

(
A
2

)
< 1 and (25).

Example 2: Consider the 3-LED MISO channel with gains
h = (3, 2, 1.5). The asymptotic low-SNR capacity slope is
γ/2 = 5.07 and is attained by choosing X̄ equal to 0
with probability q0 = 0.6 and equal to s3A with proba-
bility q3 = 0.4. Figure 2 shows lower and upper bounds
on the channel capacity at different SNR values. The blue
lower bound is obtained by numerically evaluating I(X̄;Y )
for the choice of X̄ that achieves the asymptotic low-SNR
capacity. The magenta lower bound follows by numerically
optimizing I(X̄;Y ) over all choices of X̄ that have positive
probability on X̄ = 0 and on at most two point masses from
{s1A, . . . , snTA}. In the low SNR regime, these numerical
lower bounds improve over the previous analytic lower bounds
in [13] and are very close to the maximum-variance upper
bound in Proposition 4. The gap between the best upper and
lower bounds is larger in the moderate SNR regime. In this
regime, the best upper bound (see the black line) is given in
Theorem 7. ♦

Example 3: Consider now a SISO channel with channel
gain h = 1. Figure 3 shows lower and upper bounds for this
channel. It can be noted that the curve obtained by our new
upper bound is very close to the three-point and four-point
numerical lower bounds at moderate SNR. This indicates that
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Fig. 2. Bounds on capacity of MISO channel with gains h = (3, 2, 1.5) and
average-to-peak power ratio α = 1.2.

it gives a good approximation to the capacity and dominates
other existing upper bounds in the moderate SNR regime. ♦
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APPENDIX A
PROOF OF LEMMA 2

The variance of X̄ can be decomposed as

E
[(
X̄ − E[X̄]

)2]
=

nT∑
k=1

h2
k E
[
(Xk − E[Xk])2

]
+

nT∑
i,j=1
i 6=j

hihj
(
E[XiXj ]− E[Xi] E[Xj ]

)
. (29)

Let us fix the joint distribution on (X1, . . . , XnT−1),
and fix with probability one the conditional mean
E[XnT |X1, . . . , XnT−1]. These determine the consumed
average input power, as well as every summand on the RHS
of (29) except E

[
(XnT − E[XnT ])2

]
. For any choice above,

the value of E
[
(XnT − E[XnT ])2

]
is maximized by XnT

taking value only in the set {0,A}. We hence conclude that, to
maximize the variance (29) subject to a constraint on average
input power, it is optimal to restrict XnT to taking value only
in {0,A}. Repeating this argument for XnT−1, XnT−2, etc.,
we conclude that every Xk, k = 1, . . . , nT, should take value
only in {0,A}.

Next, using the same arguments as the ones leading to [14,
Lem. 4], it can be shown that it is optimal to consider the
following joint distributions: for each k ∈ {0, . . . , nT}, set
with probability qk

X1 = · · · = Xk = A and Xk+1 = · · · = XnT = 0. (30)

Such a choice produces an X̄ that takes value only in (14).
This proves Part 1 of the lemma. Further, this choice of inputs
consumes an average power of

∑nT
k=0 qkk. The condition for

a probability vector q0, . . . , qnT to be valid is thus
nT∑
k=0

qkk ≤ α. (31)

Part 2 of the lemma is then proven by noting that with the
choice in (30), the variance of X̄ is

E
[(
X̄ − E[X̄]

)2]
= E

[
X̄2
]
−
(
E[X̄]

)2
(32)

=

nT∑
k=1

qkA
2s2
k −

(
nT∑
k=1

qkAsk

)2

. (33)

To prove Part 3, we notice that a solution q∗ = (q∗1 , . . . , q
∗
nT

)
to (16) has to satisfy

∑nT
k=1 q

∗
k < 1 because any X̄ that

achieves maximum variance Vmax puts nonzero probability on
X̄ = 0. We further notice that the optimization problem (16) is
convex because s1, . . . , snT > 0. Consider the Karush-Kuhn-
Tucker (KKT) conditions for this optimization problem, and
account for the fact that the linear constraint

∑nT
k=1 q

∗
k ≤ 1 is

not active. The KKT conditions are then given by the following
six (in)equalities:

−sk(sk − 2sTq) + µ0 · k − µk = 0, k ∈ {1, . . . , nT}, (34a)

µkqk = 0, k ∈ {1, . . . , nT}, (34b)

µ0

(
nT∑
k=1

k · qk − α

)
= 0 (34c)

µi ≥ 0, i ∈ {0, 1, . . . , nT},
(34d)

nT∑
k=1

k · qk ≤ α, (34e)

qk ≥ 0, k ∈ {1, . . . , nT}. (34f)

A solution to these conditions always exists. Assume now that
for such a solution the inequality constraint

∑nT
k=1 k · q∗k ≤

α holds with strict inequality. The corresponding Lagrange
multiplier µ0 must then equal 0. Now, since for any q∗i > 0,
µi = 0, (34a) then implies

si = 2sTq∗. (35)

But this can hold at most for a single i ∈ {1, . . . , nT} because
all values of si are different (hnT > 0). Moreover, it can hold
only for k = nT. Indeed, if (35) holds for some i < nT,
then the KKT condition (34a) cannot be satisfied for all k >
i because µk ≥ 0. To conclude, if the inequality constraint∑nT
k=1 k · q∗k ≤ α holds with strict inequality, then the optimal

q∗ satisfies q∗1 = q∗2 = . . . = q∗nT−1 and qnT = 1/2. But
this choice is only feasible for α = nT

2 , in which case the
inequality constraint

∑nT
k=1 k · q∗k ≤ α holds with equality. We

have thus reached the desired contradiction, irrespective of the
value of α ≤ nT

2 .
We now prove Part 4 of the lemma by contradiction. Assume

that for positive integers k > i > j the optimal solution q∗

satisfies q∗k, q
∗
i , q
∗
j > 0. Then, by (34b), µk = µj = µi = 0,

and (34a) implies
1 j

sj

1 i
si

1 k
sk

(2sTq
µ0

)
=

sjsi
sk

. (36)

This is an overdetermined system of linear equations in the
two “variables” (2sTq) and µ0 ≥ 0, and it has a solution if,
and only if,

rank


1 j

sj

1 i
si

1 k
sk

 = rank


1 j

sj
sj

1 i
si

si

1 k
sk

sk

 (37)

The proof follows then by noticing that this is only possible
if the rank of both matrices in (37) is 2. In particular, the left-
most matrix cannot have rank 1. And neither can the matrix
in (17).

APPENDIX B
PROOF OF PROPOSITION 6

We evaluate the upper bound [17]

C ≤ sup
Q

EQ
[
D
(
W (·|X)

∥∥f(·)
)]

(38)



(where D(·‖·) denotes the relative entropy or Kullback-Leibler
divergence) for the test density

f(y) =

{
(1− β) · f1(y) if y ∈ [0,A],

β · f2(y) otherwise,
(39)

where f1(y) is a density over [0,A],

f1(y) =
1

A
· µ

1− e−µ
· e−

µy
A , y ∈ [0,A], (40)

for some µ > 0; f2(y) is a density over R\[0,A],

f2(y) =

 1√
2π
e−

y2

2 if y < 0,

1√
2π
e−

(y−A)2

2 y > A;
(41)

and β ∈ (0, 1) will be specified later.
We notice that

−
∫ 0

−∞
W (y|x) log f(y) dy

= −
∫ 0

−∞

1√
2π

e−
(y−x)2

2

(
log

β√
2π
− y2

2

)
dy (42)

= − log
β√
2π
Q(x) +

1

2

(
Q(x) + x2Q(x)− xφ(x)

)
(43)

≤ −
(

log
β√
2π
− 1

2

)
Q(x), (44)

where φ(x) , 1√
2π
e−

x2

2 , and (44) holds because x > 0 and
xQ(x) < φ(x).

Following the same arguments, we also obtain:

−
∫ ∞
A

W (y|x) log f(y) dy ≤ −
(

log
β√
2π
− 1

2

)
Q(A− x).

(45)

Moreover,

−
∫ A

0

W (y|x) log f(y) dy

= −
∫ A

0

1√
2π

e−
(y−x)2

2

(
log

(1− β)

A

µ

1− e−µ
− µ

A
y

)
dy

(46)

= − log

(
1− β
A

µ

1− e−µ

)(
1−Q(x)−Q(A− x)

)
+
µ

A

(
φ(x)− φ(A− x) + x

(
1−Q(x)−Q(A− x)

))
(47)

≤ − log

(
1− β
A

µ

1− e−µ

)(
1−Q(x)−Q(A− x)

)
+
µ

A

(
φ(0)− φ(A) + x

(
1− 2Q

(
A

2

)))
, (48)

where (48) follows from the fact that 1 −Q(x) −Q(A − x)
achieves the maximum value at x = A

2 when x ∈ [0,A].
Combining (44), (45), and (48) with (38), and choosing

β =
µ
√

2πe

A · (1− e−µ) + µ
√

2πe
, (49)

now yields the desired upper bound in the theorem.
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