Caching Networks: Low-Subpacketization Schemes and Improved Delivery Methods

Michèle Wigger Telecom ParisTech

Joint work with S. Bidokhti-Saeedi, R. Timo, Q. Yan, S. Yang, A. Yener

8th Spanish Workshop on Signal Processing, Communication and Information 14 September 2018

Caching in Networks

One-To-Many Caching Network

1) Placement phase: Tx fills caches without knowing which receiver demands which message: $Z_k = g_k(W_1, ..., W_N)$

2) Delivery phase:

- Receiver k wants file $W_{d_k} \rightarrow$ sends demand d_k to transmitter
- Tx sends input $X = f(W_1, \ldots, W_N, d_1, \ldots, d_K)$
- Rx k produces $\hat{W}_k = \varphi_k(X, Z_k, d_1, \dots, d_K)$.

Goal: $\hat{W}_k = W_{d_k}$ for all $k = 1, \dots, K$

 $R^{\star}(M) := \min \{ R: \text{ such that for } (R, M) \text{ each } Rx \ k \text{ can learn } W_{d_k} \}$

Some properties:

- $R^{\star}(M)$ is decreasing in M.
- *R**(*M*) is bounded above by min{*N*, *K*}. Moreover:
 *R**(*M* = 0) = min{*N*, *K*}.

• $R^*(M)$ is nonnegative. Moreover:

$$R^{\star}(M) = 0, \qquad \forall M \geq N.$$

Traditional Uncoded Scheme for K Receivers

- Split W_d into $(W_d^{(1)}, W_d^{(2)})$ of sizes $F_{\overline{N}}^M$ and $F(1 \frac{M}{N})$ bits
- For d = 1, ..., N: cache part $W_d^{(1)}$ at all rxs
- Deliver part $W_d^{(2)}$ for each demanded message W_d .
 - If $K \ge N$, in the worst case:

$$X = \big(W_1^{(2)}, \ W_2^{(2)}, \ldots, \ W_N^{(2)} \big).$$

• If K < N, in the worst case:

$$X = (W_{d_1}^{(2)}, W_{d_2}^{(2)}, \dots, W_{d_K}^{(2)}).$$

Trivial Upper Bound on $R^*(M)$

$$R^{\star}(M) \leq \min\{K, N\} \Big(1 - \frac{M}{N}\Big).$$

• N = 20 files and K = 2 Users

Coded caching for K = 3 Receivers, Parameter t = 2

• Split W_d into three parts $(W_d^{(12)}, W_d^{(13)}, W_d^{(23)})$ each of $\frac{F}{3}$ bits

Achieves Rate-Memory Pair
$$M = \frac{2N}{3}$$
 and $R = \frac{1}{3}$.

[1] M. A. Maddah-Ali, U. Niesen, "Fundamental Limits of Caching." IT-Trans 2014

Coded caching for K = 3 Receivers, Parameter t = 1

• Split W_d into three parts $(W_d^{(1)}, W_d^{(2)}, W_d^{(3)})$ each $\frac{F}{3}$ bits

Achieves Rate-Memory Pair $M = \frac{N}{3}$ and R = 1.

[1] M. A. Maddah-Ali, U. Niesen, "Fundamental Limits of Caching." IT-Trans 2014

Bounds for 3 Users (N = 20 files)

Lower bound on $R^*(M)$

Theorem

$$R^{\star}(M) \geq \max\left\{\max_{\ell \in \bar{\mathcal{N}}} \left[\ell - \mathsf{M} \frac{\ell^{2}}{N}\right], \, \max_{\ell \in \bar{\mathcal{N}}} \left[\ell - \mathsf{M} \sum_{k=1}^{\ell} \frac{k}{N-k+1}\right]\right\}$$

[2] C.-Y. Wang et al. "Improved Converses and Gap-Results for Coded Caching", IT-Trans 2018.

[3] Q. Yu, "Characterizing the rate-memory tradeoff in cache networks within a factor of 2," ISIT 2017.

Proof of Lower Bound on $R^*(M)$

• Fix $\ell = 1, \dots, \min\{K, N\}$ and demands (d_1, \dots, d_ℓ) :

$$FR \geq H(X) \geq I(X; W_{d_1}, \dots, W_{d_{\ell}}, Z_1, \dots, Z_{\ell}) \geq \dots$$

= $H(W_{d_1}, \dots, W_{d_{\ell}}) - \sum_{k=1}^{\ell} I(W_{d_k}; Z_1, \dots, Z_k | W_{d_1}, \dots, W_{d_{k-1}})$

- Average over all demand vectors (d_1, \ldots, d_ℓ) : $R \ge \ell - \sum_{k=1}^{\ell} \underbrace{\frac{1}{\binom{N}{\ell}\ell!} \sum_{(d_1, \ldots, d_\ell)} \frac{1}{F} I(W_{d_k}; Z_1, \ldots, Z_k | W_{d_1}, \ldots, W_{d_{k-1}})}_{=:\alpha_k}$
- By the chain rule, Han's inequality, and counting arguments:

$$\sum_{k=1}^{\ell} \alpha_k \le \min\left\{\frac{\ell^2}{N}\mathsf{M}, \sum_{k=1}^{\ell} \frac{k\mathsf{M}}{N-k+1}\right\}.$$

Coded Caching for *K* Users (Maddah-Ali & Niesen IT-Trans 2014)

- Parameter $t \in \{1, ..., K 1\}$
- Placement: Split each W_d into (^K_t) parts and save each part at a different subset of receivers
 Let for each size-t subset G denote W^G_d the part of W_d placed in caches of all receivers in G.
- Delivery transmission: For each set $S = \{s_1, \ldots, s_{t+1}\}$, send

$$W_{\mathsf{XOR},\mathcal{S}} := \bigoplus_{\ell=1}^{t+1} W_{\mathsf{d}_{\mathsf{s}_{\ell}}}^{(\mathcal{S} \setminus \{\mathsf{s}_{\ell}\})}$$

• Delivery reception: Receiver s_j has stored in its cache memory $W_{d_{s_{\ell}}}^{(S \setminus \{s_{\ell}\})}, \quad \forall \ell \in \{1, \dots, j-1, j+1, \dots, t\}.$

So, with $W_{XOR,S}$ it can recover $W_{d_{s_i}}^{(S \setminus \{s_i\})}$ and $W_{d_{s_i}}$.

Performance of Coded Caching

• *K* = 6

ł

Coded Caching Upper Bound

For all
$$M \in \frac{1}{N} \cdot \{0, 1, \dots, K-1, K\}$$
:
 $R^*(M) \le \min\left\{K\left(1 - \frac{M}{N}\right)\left(1 + \frac{MK}{N}\right)^{-1}, \ N\left(1 - \frac{M}{N}\right)\right\}$

Optimality and Improvements

- Optimal under uncoded placement
- Coded placement can improve performance
- In general within a factor of 2.009 from optimal

Main Problem: Subpacketization Level

Large files required that can be split into $\binom{K}{t}$ packets

 \rightarrow Use placement delivery arrays (PDAs) to find solution

[4] K. Wan et al. "On the optimality of uncoded cache placement", ITW 2016.[5] Q. Yu et al, "The exact rate-memory tradeoff for caching with uncoded prefetching" IT-Trans 2018.

[6] J. Gomez Vilardebo, "A novel centralized coded caching scheme with coded prefetching" JSAC on Comm.

PDA-Example for coded caching with K = 3 **and** t = 1

PDA represents both placement and delivery

PDA-Example for coded caching with K = 3 and t = 1

PDA represents both placement and delivery

PDA-Example for coded caching with K = 3 **and** t = 1

PDA represents both placement and delivery

Definition: (K, F, Z, S) **PDA**

- Any two non-star symbols in each row/column are distinct;
- If $p_{a,b} = p_{c,d} = s \neq *$, then $p_{a,d} = p_{b,c} = *$;
- Regular PDAs: each symbol *s* occurs *g* times (coding gain)

[7] Q. Yan et al. "On the placement delivery array design for centralized coded caching schemes," *IT-Trans 2017*

Given a (K, F, Z, S) PDA.

• The corresponding caching scheme has $M = \frac{NZ}{F}$ and $R = \frac{S}{F}$.

Given a (K, F, Z, S) PDA.

- The corresponding caching scheme has $M = \frac{NZ}{F}$ and $R = \frac{S}{F}$.
- The rate $R = \frac{S}{F}$ cannot be smaller than $\frac{S}{F} \stackrel{(a)}{\geq} K \left(1 - \frac{M}{N}\right) \left(1 + K\frac{M}{N}\right)^{-1}$

Given a (K, F, Z, S) PDA.

- The corresponding caching scheme has $M = \frac{NZ}{F}$ and $R = \frac{S}{F}$.
- The rate $R = \frac{S}{F}$ cannot be smaller than $\frac{S}{F} \stackrel{(a)}{\geq} K \left(1 - \frac{M}{N}\right) \left(1 + K\frac{M}{N}\right)^{-1}$
- If equality holds in (a), then $F \stackrel{(b)}{\geq} \binom{K}{\frac{KN}{N}}$

Given a (K, F, Z, S) PDA.

- The corresponding caching scheme has $M = \frac{NZ}{F}$ and $R = \frac{S}{F}$.
- The rate $R = \frac{S}{F}$ cannot be smaller than $\frac{S}{F} \stackrel{(a)}{\geq} K \left(1 - \frac{M}{N}\right) \left(1 + K\frac{M}{N}\right)^{-1}$
- If equality holds in (a), then $F \stackrel{(b)}{\geq} \binom{K}{\frac{KM}{N}}$
- Maddah-Ali and Niesen's coded caching achieves equality in (a) and (b)

For any $q, m \in \mathbb{N}^+$, $q \ge 2$, there exists a $(q(m+1), q^m, q^{m-1}, q^{m+1} - q^m)$ PDA with rate R = q - 1.

Theorem

Given $q, m \in \mathbb{N}^+$, $q \ge 2$, there exists a $(q(m+1), (q-1)q^m, (q-1)^2q^{m-1}, q^m)$ PDA with rate R = 1/(q-1).

[7] Q. Yan et al. "On the placement delivery array design for centralized coded caching schemes," *IT-Trans 2017*

Comparison with an Example ($K = 6, \frac{M}{N} = \frac{1}{2}$)

-				0	-1	0	-							
	*	*	*	0	1	2								
	*	*	0	*	3	4								
	*	*	1	3	*	5								
	*	*	2	4	5	*								
	*	0	*	*	6	7								
	*	1	*	6	*	8								
	*	2	*	7	8	*								
	*	3	6	*	*	9								
	*	4	7	*	9	*		*	0	*	2	*	1]	
	*	5	8	9	*	*	versus	1	*	*	3	0	*	
	0	*	*	*	10	11		2	*	0	*	*	3	
	1	*	*	10	*	12		*	3	1	*	2	*	
	2	*	*	11	12	*		-					_	
	3	*	10	*	*	13								
	4	*	11	*	13	*								
	5	*	12	13	*	*								
	6	10	*	*	*	14								
	7	11	*	*	14	*								
	8	12	*	14	*	*								
L	9	13	14	*	*	*								

General Performance Comparison, K = q(m + 1)

	Performance	Maddah-Ali-Niesen scheme	New scheme	
M _ 1	g	$\frac{\kappa}{q} + 1$	<u>K</u> q	
$\overline{N} = \overline{q}$	R	$rac{K}{K+q}(q-1)$	q — 1	
	F	$\sim rac{q}{\sqrt{2\pi K(q-1)}} \cdot q^{rac{K}{q}} \cdot \left(rac{q}{q-1} ight)^{K(1-rac{1}{q})}$	$q^{\frac{\kappa}{q}-1}$	
M a-1	g	$K\frac{q-1}{q} + 1$	$K \frac{q-1}{q}$	
$\overline{N} \equiv \frac{1}{q}$	R	$\frac{K}{q+K(q-1)}$	$\frac{1}{q-1}$	
	F	$\sim rac{q}{\sqrt{2\pi K(q-1)}} \cdot q^{rac{K}{q}} \cdot \left(rac{q}{q-1} ight)^{K\left(1-rac{1}{q} ight)}$	$(q-1)q^{rac{\kappa}{q}-1}$	

 $\text{Both constructions:} \quad \lim_{K \to \infty} \frac{R_{\text{MN}}}{R_{\text{New}}} = 1, \qquad \lim_{K \to \infty} \frac{F_{\text{MN}}}{F_{\text{New}}} = \infty.$

Combination Networks

- Individual links from server to relays
- Each user connected to a different subset of r relays
- Relays simply forward incoming information (shared link model)
- Rate-memory tradeoff R*(M)

- Can use schemes from single-link model and route packets through network → same packet can occupy multiple resources!
- · Design packets that can be routed over a single relay
- $R^{\star}(N) = 0$ and $R^{\star}(0) = \frac{K}{h}$ if K < N
- Traditional uncoded caching $R^{\star}(M) \leq \frac{K}{h} \left(1 \frac{M}{N}\right)$ if K < N

24

24

24

Definition

A PDA is called *combinational PDA (C-PDA)*, if its columns can be labeled by relay subsets of cardinality r, in a way that for any integer s, the labels of all columns containing s have nonempty intersection.

Theorem

Given a (K, F, Z, S) C-PDA. For any (h, r) combination network with $K = {h \choose r}$, it holds that

$$R^{\star}\left(M=\frac{N\cdot Z}{F}\right)\leq \frac{S}{Fh}$$

C-PDA Schemes Optimal for Large Cache Memories

Theorem

For (h, r)-combination network:

$$R^{\star}(M) = rac{1}{r}\left(1-rac{M}{N}
ight), \quad M \in \left[Nrac{K-h+r-1}{K}, N
ight].$$

Achieved with subpacketization level $F = {h \choose r-1}$ when $M = N \frac{K-h+r-1}{K}$.

• Example PDA from before achieves this performance

Resolvable Combination Networks *r*|*h*

Network is resolvable if r|h. Then users can be partitioned s.t.:

- Any subset of users connects to all relays
- · Different users of a subset connect to different relays

How to Exploit Resolvability

- Let relay i serve the single user in each subset connected to it
- Let each relay act as a server in a single-shared link
- Design a PDA for each relay

Example: *h* = 4, *r* = 2

{1,2}	$\{3, 4\}$	{1,3}	$\{2, 4\}$	$\{1, 4\}$	$\{2, 3\}$
*	*	1	4	2	5
1	7	*	*	3	6
2	8	3	6	*	*
*	*	7	10	11	8
4	10	*	*	12	9
5	11	9	12	*	*

How to Exploit Resolvability

- Let relay i serve the single user in each subset connected to it
- Let each relay act as a server in a single-shared link
- Design a PDA for each relay

Example: *h* = 4, *r* = 2

					$\{1, 2\}$	$\{3,4\}$	{1,3}	$\{2, 4\}$	$\{1, 4\}$	$\{2, 3\}$
					*	*	1	4	2	5
Γ	*	1	2]	1	7	*	*	3	6
	1	*	3	\Rightarrow	2	8	3	6	*	*
	2	3	*		*	*	7	10	11	8
			-	-	4	10	*	*	12	9
					5	11	9	12	*	*

Transforming PDAs into C-PDAs for Resolvable Networks

- Replicate a $(\binom{h}{r}, \frac{r}{h}, \tilde{F}, \tilde{Z}, \tilde{S})$ PDA a number of $\frac{h}{r} \cdot r$ times
- Distribute the columns of the replica PDAs so that the columns of each symbol *s* have non-empty intersection.

Theorem

Given a $\binom{h}{r} \stackrel{r}{h}, \tilde{F}, \tilde{Z}, \tilde{S}$ PDA. There exists a (K, F, Z, S) C-PDA, for a resolvable (h, r)-combination network (i.e., where r|h) with

$$K = \begin{pmatrix} h \\ r \end{pmatrix}, \quad F = r\tilde{F}, \quad Z = r\tilde{Z}, \text{ and } S = h\tilde{S}.$$

 $Pair(M = N_{\tilde{F}}^{\tilde{Z}}, R = \frac{\tilde{S}}{\tilde{F}r})$ achieved with subpacketization level $F = r\tilde{F}$.

Transforming PDAs into C-PDAs for Resolvable Networks

- Replicate a $(\binom{h}{r}, \frac{r}{h}, \tilde{F}, \tilde{Z}, \tilde{S})$ PDA a number of $\frac{h}{r} \cdot r$ times
- Distribute the columns of the replica PDAs so that the columns of each symbol s have non-empty intersection.

Theorem

Given a $\binom{h}{r} \stackrel{r}{h}, \tilde{F}, \tilde{Z}, \tilde{S}$ PDA. There exists a (K, F, Z, S) C-PDA, for a resolvable (h, r)-combination network (i.e., where r|h) with

$$K = \begin{pmatrix} h \\ r \end{pmatrix}, \quad F = r\tilde{F}, \quad Z = r\tilde{Z}, \text{ and } S = h\tilde{S}.$$

Pair $(M = N_{\tilde{F}}^{\tilde{Z}}, R = \frac{\tilde{S}}{\tilde{F}r})$ achieved with subpacketization level $F = r\tilde{F}$.

Using the Proposed PDAs with Low Subpacketization Level

Theorem

For resolvable networks (r|h), $M \in \{\frac{1}{a} \cdot N : q \in \mathbb{N}^+, q \ge 2\}$,

$$R^{\star}(M) \leq R_{\text{LSub1}} \triangleq \frac{1}{r} \cdot \left(\frac{N}{M} - 1\right).$$

is achievable with $F_{LSub1} \triangleq r\left(\frac{N}{M}\right)^{\lceil \frac{KMr}{Nh}\rceil - 1}$.

Theorem

For resolvable networks (r|h), $M \in \{\frac{q-1}{q} \cdot N : q \in \mathbb{N}^+, q \ge 2\}$,

$$R^{\star}(M) \leq R_{\text{LSub2}} \triangleq \frac{1}{r} \cdot \left(\frac{N}{M} - 1\right).$$

with $F_{\text{LSub2}} \triangleq \frac{rM}{N-M} \cdot \left(\frac{N}{N-M}\right)^{\left\lfloor \frac{Kr}{h} \left(1-\frac{M}{N}\right) \right\rfloor - 1}$.

Comparison with Known Schemes

 L. Tang and A. Ramamoorthy: Coded caching adapted to resolvable networks.

$$\begin{split} & \lim_{K \to \infty} \frac{R_{\text{TR}}}{R_{\text{LSub1}}} = 1 \quad \text{or} \quad \lim_{K \to \infty} \frac{R_{\text{TR}}}{R_{\text{LSub2}}} = 1. \\ & \lim_{K \to \infty} \frac{F_{\text{TR}}}{F_{\text{LSub1}}} = \infty \quad \text{or} \quad \lim_{K \to \infty} \frac{F_{\text{TR}}}{F_{\text{LSub2}}} = \infty. \end{split}$$

[10] L. Tang and A. Ramamoorthy "Coded caching for networks with resolvability property," ISIT 2016.

Noisy Broadcast Channel and Heterogeneous Cache Sizes

- Under all possible demands, files need to be sent reliably
- Largest data-rate *R* in function of cache rates *M*₁,...,*M*_{*K*}?

Example: An Erasure Broadcast Network

- Binary input X
- Output $Y_k = \begin{cases} X & \text{with probability } 1 \epsilon_k \\ ? & \text{with probability } \epsilon_k \end{cases}$
- $1 \ge \epsilon_1 \ge \epsilon_2 \ge \epsilon_3 \ge \ldots \ge \epsilon_K \ge 0$

Single Weak Receiver Degrades Performance

Performance when Cache Memory can be Freely Assigned

Careful cache assignment + new coding allows to mitigate loss!

Cache Assignment

- Power constraint *P* and noise variances $\sigma_1^2 \ge \sigma_2^2 \ge \ldots \ge \sigma_K^2$
- Cache memories: $M_1 + \ldots + M_K \leq M_{Total}$

 $R(M_{Total})$?

All Cache to Weakest User & Superpos. Piggyback Coding

- Placement: Cache $\{W_d^{(1)}\}_{d=1}^N$ at Rx 1, where $W_d = (W_d^{(0)}, W_d^{(1)})$
- Delivery: Send $W_{d_1}^{(0)}, W_{d_2}, W_{d_3}, \dots, W_{d_K}$ using following code

• Receiver 1 knows W⁽¹⁾ and restricts decoding to single row!

 \rightarrow Piggybacking W⁽¹⁾ provides *virtual cache access* for Rxs 2 – K

All Cache to Weakest User & Superpos. Piggyback Coding

- Placement: Cache $\{W_d^{(1)}\}_{d=1}^N$ at Rx 1, where $W_d = (W_d^{(0)}, W_d^{(1)})$
- Delivery: Send $W_{d_1}^{(0)}, W_{d_2}, W_{d_3}, \dots, W_{d_K}$ using following code

Generalized Coded Caching for K = 3 and t = 2

- Split $W_d = \begin{pmatrix} W_d^{(12)}, & W_d^{(13)}, & W_d^{(23)} \end{pmatrix}$ of rates $\frac{1}{2} \log \left(1 + \frac{P}{\sigma_3^2} \right) \ge \frac{1}{2} \log \left(1 + \frac{P}{\sigma_2^2} \right) \ge \frac{1}{2} \log \left(1 + \frac{P}{\sigma_1^2} \right)$
- Placement: Store $\left\{ W_{d}^{(ij)} \right\}$ in cache memories of Rxs *i* and *j*
- Delivery:
 - Rx 1 requires $W_{d_1}^{(23)}$; Rx 2 requires $W_{d_2}^{(13)}$; Rx 3 requires $W_{d_3}^{(12)}$
 - Send Gaussian codeword $x^n (W_{d_1}^{(23)}, W_{d_2}^{(13)}, W_{d_3}^{(12)})$
 - Decoding at Rx 1 based on restricted codebook

$$\mathcal{C}_{1}(W_{d_{2}}^{(13)}, W_{d_{3}}^{(12)}) := \left\{ x^{n} \left(w, W_{d_{2}}^{(13)}, W_{d_{3}}^{(12)} \right) \right\}_{w=1}^{2^{nR^{(23)}}}$$

For any t = 1, ..., K - 1, the following memory-rate pair is achievable

$$\frac{\mathcal{M}_{Total}^{(t)}}{D} = t \mathcal{R}^{(t)}$$
$$\mathcal{R}^{(t)} = \frac{\sum_{\ell=1}^{\binom{K}{\ell}} \prod_{k \in \mathcal{G}_{\ell}^{(t),c}} \frac{1}{2} \log\left(1 + \frac{P}{\sigma_k^2}\right)}{\sum_{j=1}^{\binom{K}{\ell+1}} \prod_{k \in \mathcal{G}_j^{(t+1),c}} \frac{1}{2} \log\left(1 + \frac{P}{\sigma_k^2}\right)}$$

where $\mathcal{G}_{1}^{(t)}, \ldots, \mathcal{G}_{\binom{t}{k}}^{(t)}$ denote all size-t subsets of $\{1, \ldots, K\}$

Bounds on the Rate-Memory Tradeoff

Gaussian broadcast network $\sigma_1^2 = 4, \sigma_2^2 = 2, \sigma_3^2 = 1, \sigma_1^2 = 0.5$

Exact Results: From Global to Local Caching Gain

- Small total cache budget:
 - all cache memory to weakest receiver
 - superposition piggyback coding

$$R^{\star} = \underbrace{C_0}_{\text{no-cache}} + \underbrace{\frac{M_{\text{Total}}}{N}}_{\text{perfect caching gain}}, \qquad M_{\text{Total}} \leq M^{(S)}$$

- Large total cache budget:
 - the more cache memory the weaker the receiver
 - generalized coded caching

$$R^{\star} = \underbrace{\sum_{k=1}^{K} \frac{1}{2} \log \left(1 + \frac{P}{\sigma_k^2} \right)}_{K \text{ point-to-point links}} + \underbrace{\frac{1}{K} \frac{M_{\text{Total}} - M^{(\text{L})}}_{\text{only local caching gain}}, \qquad M_{\text{Total}} \ge M^{(\text{L})}$$

A Setup with Fixed Cache Assignment

- K_w weak receivers with erasure probability ϵ_w
- K_s strong receivers with erasure probability $\epsilon_s < \epsilon_w$
- Cache memories of size nM bits only at weak receivers

Benefits of Joint-Cache Channel Coding

• 4 weak, and 16 strong users, $\epsilon_w = 0.8$ and $\epsilon_s = 0.2$

Some Related Works and Further Discussions

- Additional libraries with higher resolution information (Cacciapuoti, Caleffi, Ji, Llorca, Tulino-2016)
- Fading broadcast channels (Zhang&Elia-2016)
- Broadcast channels with feedback (Ghorbel,Kobayashi,Yang-2016, Zhang&Elia-2016)
- Massive MIMO broadcast channels (Yang, Ngo, Kobayashi-2016)

- PDAs useful to find good caching schemes with low subpacketization
- Can construction combinational PDAs from standard PDAs
 → good coding schemes for combination networks with low
 subpacketization levels
- PDA scheme optimal for combination networks with large cache sizes

- Delivery over noisy networks requires joint cache-channel coding
- Adapt cache allocation to channel strengths \rightarrow additional coding opportunities

- C.-Y. Wang, S. Saeedi Bidokhti, and M. Wigger, "Improved Converses and Gap-Results for Coded Caching," *IT-Trans 2018*
- Q. Yan, M. Wigger, and S. Yang, "Placement Delivery Array Design for Combination Networks with Edge Caching," *ISIT 2018*
- S. Saeedi Bidokhti, M. Wigger, and R. Timo, "Noisy Broadcast Networks with Receiver Caching," *IT-Trans 2018*
- S. Saeedi Bidokhti, M. Wigger, and A. Yener, "Benefits of Cache Assignment on Degraded Broadcast Channels," *ArXiv: 1702.08044*